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ABSTRACT Millimeter-wave (mmWave) communication systems use narrow, directional beams, but
exhaustive beam training is costly in dynamic settings. Prior location-assisted methods often rely on synthetic
data that ignores the noise of real-world GPS measurements. We propose a unified framework that first
denoises GPS trajectories with Gaussian-process regression and then predicts beams using a bidirectional
long short-term memory network with an attention mechanism. Across nine real-world scenarios, our
approach improves Top-k accuracy by up to 36%, reduces received-power loss by more than 1 dB, and cuts
beam-training overhead by up to 95%. These results highlight the effectiveness of the proposed framework

in bridging the gap between simulation-driven research and real-world mmWave beam alignment.

INDEX TERMS Beam prediction, millimeter-wave, deep learning.

I. INTRODUCTION
Millimeter frequencies have emerged as a fundamental
component of fifth-generation (5G) cellular networks, play-
ing a pivotal role in meeting the demanding requirements
for high data throughput and extremely low latency [1].
Recent advances in 6G wireless communications have further
highlighted the critical importance of mmWave systems, with
emerging applications in cellular-connected autonomous
aerial vehicles (AAV) and vehicle-to-infrastructure (V2I)
communications requiring even more sophisticated beam
management strategies [2], [3]. A key characteristic of
mmWave communication is the use of narrow, highly
directional beams—commonly referred to as beamforming
(BF)—which are essential for mitigating the substantial
isotropic path loss inherent to these frequency bands [4], [5].
Conventional beam alignment techniques that utilize
exhaustive search algorithms offer high accuracy but are
generally unsuitable for real-time deployment due to their
substantial time and resource demands. The process of
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beam alignment introduces significant training overhead,
particularly in dynamic scenarios where frequent changes
in the relative positions of the Base Station (BS) and User
Equipment (UE) occur due to high mobility. Contemporary
research has demonstrated that artificial intelligence and
machine learning approaches are becoming indispensable for
addressing the increasing complexity of beam management
in modern wireless systems, particularly as antenna arrays
become larger and operating frequencies move toward sub-
THz bands [6]. This challenge is amplified in mission-critical
applications and highly mobile scenarios such as drone com-
munications, where continuous service provision requires
innovative beam prediction architectures [7], [8]. Recent
advances in attention mechanisms and transformer architec-
tures have shown promise in addressing these challenges,
with attention-enhanced learning models achieving Top-5
beam prediction accuracies exceeding 90% across multiple
future time slots [9], [10].

Many previous studies have leveraged user positioning
information to support beam alignment in mmWave sys-
tems [11], [12], [13], [14]. Leveraging user location data, such
as that obtained via GPS, presents a promising opportunity to
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expedite the beam alignment process and significantly reduce
associated overhead. However, most earlier works relied on
synthetic datasets, typically under idealized assumptions that
fail to reflect the complexity and noise present in real-world
scenarios. Synthetic datasets often overlook the intricate
dynamics of real-world environments, resulting in models
that perform well in simulations but degrade in deploy-
ment. Moreover, mmWave signals are highly vulnerable to
obstructions caused by human bodies, hand movements, and
construction materials [15], [16], which are inadequately
represented in synthetic studies. While machine learning has
been explored as a potential solution, existing approaches
inadequately address the inherent noise in real GPS data,
limiting their practical applicability. This highlights a notable
research gap in developing robust deep-learning models that
utilize real positional information with effective denoising for
precise beam selection.

Method Summary: To bridge these gaps, we propose a
pipeline that first applies Gaussian Process (GP) regression
to denoise noisy GPS trajectories, then leverages sequential
modeling with Bidirectional Long Short-Term Memory
(Bi-LSTM) and attention mechanisms to capture temporal
dependencies, and finally employs a dual-head architecture
to simultaneously classify candidate beams and regress
link quality. At inference, the model shortlists a small set
of beams based on predicted probabilities and selects the
optimal one using the quality estimates. This unified pipeline
enables robust, lightweight, and real-world—validated beam
prediction without reliance on synthetic datasets.

Main contributions:

o Unified GPS-Enhanced Framework: We introduce
a unified framework that combines Gaussian Process
regression with recurrent neural architectures (Bi-LSTM
and Bi-LSTM + Attention), enabling robust denoising
of GPS trajectories and accurate beam prediction in a
single pipeline.

o Advanced GPS Denoising: We employ GP regression
to smooth noisy GPS data, thereby enhancing the
stability and reliability of location-based features used
for beam prediction—addressing a critical gap in
existing location-based approaches.

o Lightweight Architecture Design: We design two
lightweight recurrent neural architectures—Bi-LSTM
and Bi-LSTM with Attention—that jointly perform can-
didate beam classification and link-quality regression
using sequential GPS inputs, overcoming computational
limitations of existing methods.

o Real-World Validation: We develop a real-time
beam prediction framework that operates solely on
consumer-grade GPS data and is trained entirely on real-
world measurements, eliminating reliance on synthetic
simulations that plague existing approaches.

o Comprehensive Performance Analysis: We conduct
extensive validation across nine diverse DeepSense6G
scenarios, demonstrating substantial improvements in
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Top-k accuracy, power efficiency, and beam-training
overhead reduction compared to baseline approaches.

Il. RELATED WORK

In recent years, the issue of achieving efficient beam
alignment in millimeter-wave (mmWave) communication
systems has emerged as a prominent area of research focus.
Traditional beamforming techniques frequently depend on
exhaustive beam search procedures, which, although capable
of identifying optimal beam directions, impose considerable
computational and time overhead. This makes them ill-suited
for dynamic or real-time applications, especially in high-
mobility scenarios. Their reliance on scanning large beam
codebooks for every transmission further exacerbates latency
and energy consumption. These constraints highlight the
urgent need for more intelligent and adaptive beam alignment
frameworks—preferably those that leverage contextual data,
such as user location or environmental cues, to significantly
reduce overhead while maintaining alignment accuracy.
With this perspective, recent research efforts have explored
the idea of utilizing user location data to predict suitable
beam directions, aiming to significantly reduce the beam
search space and associated overhead. In [17], the authors
address the challenge of achieving efficient beam alignment
in mmWave systems, where traditional exhaustive search
techniques are often impractical due to high overhead.
To mitigate this, they propose a position-assisted beam
alignment strategy tailored for the 28 GHz band, validated
through ray tracing simulations. A major contribution of their
work is the development of an antenna alignment method
that incorporates anticipated user location uncertainty, with
reference to database resolutions of 10 meters and 4 meters,
respectively. Simulation findings reveal that reference point
spacing can be extended up to 2 meters with minimal
impact on performance, underscoring the resilience of the
proposed approach under moderate positional uncertainty.
In [18] the authors tackle the challenge of high beam
training overhead in millimeter-wave (mmWave) and tera-
hertz (THz) communication systems, particularly in highly
mobile scenarios such as drone communications. To address
this, they propose a machine learning-based framework that
integrates auxiliary sensory inputs—specifically visual and
positional data—to enable fast and accurate beam prediction.
Reference [12] addresses the limitations of location-aided
beam alignment in scenarios where the receiver’s orientation
is not fixed, such as pedestrian applications. The paper
proposes a beam selection framework using deep neural
networks that integrate receiver location and orientation
information for improved prediction accuracy. The model
generates a prioritized set of candidate beam pairs, effectively
minimizing the overhead associated with beam alignment.
In this study [19] the authors propose a position-based
beam prediction and selection strategy tailored for mmWave
cellular systems, particularly targeting high-mobility users.
Their method utilizes user positional data—specifically
distance and angles of arrival and departure—to predict and
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select the next optimal beam. This study [20] addresses
the challenge of efficient beam alignment in dynamic V2V
mmWave communication by introducing a transformer-based
framework that leverages GPS and camera data for proactive,
low-overhead beam tracking. This work [21] proposes a
GPS-based beam selection method using a hybrid NN-KNN
model to improve downlink beam alignment in mmWave
networks, offering a low-overhead alternative to traditional
exhaustive search techniques as networks advance toward 6G.

In [22] the authors propose an energy-efficient federated
learning (EFML) framework for mmWave vehicular net-
works, achieving energy savings while meeting data rate
demands. They also introduce a MAC-layer beam alignment
prediction algorithm to reduce beamforming overhead.

In [23], the authors develop an optimized D-LSTM model
combining DNN and LSTM to enhance channel estimation
in mmWave MIMO systems, achieving improved NMSE and
spectral efficiency over traditional methods.

In the recent study [24] the authors explore the appli-
cation of deep learning techniques for predicting optimal
mmWave beams to improve communication efficiency within
heterogeneous networks. They introduce a dual-band fusion
approach that leverages both sub-6 GHz channel information
and mmWave signal measurements to facilitate effective
millimeter-wave base station selection and beam training.
This strategy significantly reduces training overhead while
enhancing the overall performance of the network.

This work [25] proposes a closed-loop low-complexity
approach for mmWave communication in smart industrial
platforms, focusing on throughput and reliability. Using
beam pool-based coordination and multi-agent reinforcement
learning, the method enables distributed user association and
soft switching, reducing complexity while enhancing system
performance.

Recent works have addressed beam management chal-
lenges in next-generation wireless systems. One study
examined initial access, beam tracking, and failure recovery
in 5G and beyond, while also considering architectural
aspects, Al-driven solutions, cooperative strategies, and
standardization efforts [26]. Another focused on mmWave
and THz communications for 6G, analyzing the role of
Al, RIS, and ISAC [27]. Al-based methods were classified
into supervised, reinforcement, and collaborative approaches,
with RIS-assisted and sensing-driven predictive strategies
identified as promising for high-mobility scenarios. Dis-
tinctive contributions include extending analysis to THz
frequencies, exploring multi-agent learning, and unifying
AI-RIS-ISAC within a single framework. Together, these
works highlight open challenges in achieving lightweight and
adaptive beam prediction for future networks.

Large language models have recently been explored for
mmWave beam prediction. One study reformulated the task
as time-series forecasting by reprogramming historical beam
indices and AoDs into text-like sequences [28]. A cross-
variable attention module and prompt-as-prefix mechanism
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were employed to enhance contextual learning. The approach
achieved superior accuracy and robustness across antenna
configurations, base stations, and frequencies, showing
the potential of foundation models to generalize beam
prediction beyond task-specific architectures. Building on
this direction, another work proposed M2BeamLLLM, a multi-
modal framework that integrates images, radar, LiDAR, and
GPS for V2X communication scenarios [29]. By combining
multi-modal feature alignment with GPT-2 fine-tuning, the
model significantly outperformed deep learning baselines
in both standard and few-shot tasks, achieving over 13%
gains in Top-1 accuracy. Ablation studies further revealed
that prediction accuracy improves with modality diversity and
deeper LLM fine-tuning, while inference remained efficient
enough for real-time deployment. These findings underscore
the promise of LLM-based multi-modal strategies for scal-
able and reliable beam prediction in dynamic environments.

In addition to supervised deep learning techniques, rein-
forcement learning (RL) has been extensively investigated
for tackling control and coordination problems in dynamic
environments. For instance, Li et al. [30] proposed an
arbitration RL framework for heterogeneous multi-agent
systems, where improved Q-functions dynamically balance
on-policy and off-policy learning, achieving enhanced data
efficiency and robust synchronization without requiring
observers. Similarly, Wang et al. [31] introduced a two-
dimensional (2D) off-policy model-free Q-learning algorithm
for batch processes with actuator failures, which employs
state increments in the batch direction and output errors in
the time direction as novel state variables to achieve output-
feedback fault-tolerant control.

More specifically, in the context of mmWave beam
alignment, several recent studies have explored RL-based
approaches but revealed significant limitations. Tandler et al.
investigated the applicability of deep reinforcement learning
algorithms to the adaptive initial access beam alignment
problem for mmWave communications using proximal policy
optimization, but demonstrated that the chosen off-the-
shelf deep reinforcement learning agent fails to perform
well when trained on realistic problem sizes. [32]. Van
Huynh et al. developed a lightweight parallel reinforcement
learning approach for optimal beam association in high
mobility mmWave vehicular networks, specifically designed
to address the computational overhead limitations of tradi-
tional RL methods [33].

Furthermore, a comprehensive literature survey by Bril-
hante et al. highlighted that while RL comprises an agent
interacting with an environment and receiving positive or
negative reinforcement responses through iterative explo-
ration, beam selection problems are often more effec-
tively modeled using supervised learning approaches when
labeled datasets are available. [6]. These RL-based methods
demonstrate strong adaptability and robustness in complex
systems with uncertainty and faults. However, they typically
involve high computational complexity, require iterative
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online exploration, and suffer from slow convergence, which
limits their practicality in real-time beam alignment for
mmWave communication. In contrast, our work adopts
a supervised learning paradigm, where Gaussian Process
regression denoises noisy GPS trajectories and Bi-LSTM/Bi-
LSTM+Attention architectures directly learn beam predic-
tions from real-world DeepSense 6G measurements, enabling
lightweight, low-latency, and deployment-ready solutions.

lIl. METHODOLOGY

This section details the system model and explicitly defines
the challenge of forecasting beam trajectories. Figure 1
depicts a flowchart summarizing the procedures implemented
in this research.

The methodology of this study is organized into sev-
eral subsections, each focusing on a key stage of the
proposed framework. First, the System Model introduces
the mmWave link setup, defining the base station (BS),
user equipment (UE), and the beamforming process. The
Problem Formulation subsection then specifies the opti-
mization objective, namely predicting the optimal beam
index using GPS positions instead of full channel state
information. Next, the Dataset and Data Preprocessing
subsections describe the DeepSense6G scenarios, codebook
configurations, and the data preparation pipeline, including
normalization, augmentation, and batching strategies. The
Framework Architecture outlines the design of the Bi-LSTM
and Bi-LSTM with Attention models, emphasizing their
robustness to noisy inputs. To address GPS instability, the
Gaussian Process Smoothing of GPS Trajectories subsection
explains the denoising approach, while the subsequent
Problem Formulation (G) rigorously models GPS observa-
tions as noisy samples from a latent continuous function.
The Hyperparameter Estimation subsection then details
the likelihood-based procedure for tuning GP parameters,
followed by the Inference and Smoothing subsection, which
demonstrates how the trained GP is applied to generate
reliable trajectory inputs. Collectively, these subsections
establish a coherent pipeline from theoretical modeling
and dataset preparation to data smoothing and predictive
modeling.

A. SYSTEM MODEL

In this work, we examine a millimeter-wave link in which
a base station (BS) outfitted with N antennas serves a
single-antenna user equipment (UE). The BS selects one of
its M predefined beamforming vectors from the codebook
for transmission. We model the propagation channel by the
complex vector

hm c CNXI,
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which captures the per-antenna amplitude and phase shifts
between the BS and the UE. When the BS applies beam-
former f,, to transmit the symbol x, the UE receives

y=h)f.x +n, )

as stated in (1), following the conventional mmWave
beamforming framework of [14]. where h,, € CV <1 denotes
the complex channel gain vector, capturing the amplitude
attenuation and phase rotation from each BS antenna to the
UE. The noise term n is modeled as a zero-mean, circularly
symmetric complex Gaussian random variable with variance

ol ie.,

n~ CNQ,c?).

B. PROBLEM FORMULATION

Using received power as the primary performance metric,
the BS selects the beamformer that maximizes the expected
squared magnitude of the received signal,

P =E[f].
Accordingly, the optimal beamformer f* is given by

* Tp|2
f —argjr[réa})_(”h f|| . (2

Acquiring exact channel state information h is often
impractical. Instead, we aim to infer the best beam solely
from the UE’s real-time position. Let

8lat 2
= eR
8 |:glong:|

denote the UE’s two-dimensional location (latitude and
longitude). Our objective is to predict an estimated beam f
that maximizes

Pr(f =f"1g).

C. DATASET

Table 1 summarizes the nine DeepSense6G scenar-
ios evaluated in this paper. In each setup, a quasi-
omnidirectional transmitter—mounted on a vehicle and
operating at 60 GHz—broadcasts mmWave signals and logs
its GPS coordinates. The roadside receiver, implemented
as an access point (AP) on the sidewalk, is outfitted
with 16 antennas and also works at 60 GHz. It captures
the incoming signal using an oversampled codebook of
64 predefined beams and, for every measurement instance,
selects the beam that maximizes the received power.

During data collection, the vehicle repeats its runs
along the lanes in both directions, continuously sending
communication and positioning data to the AP. Figure 2 plots
the received power across all 64 beams for sample points
in Scenario 6; the highest peak in each plot indicates the
optimal beam index. The nominal separation between the AP
and the transmitter is roughly 20 m. Detailed descriptions of
Testbed 1—including the street-level AP module (unit 1) and
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TABLE 1. Dataset summary with 60% Training, 20% Validation, and 20%
Testing Split.

Scenario Time Samples Split Samples
Train (60%) | Val 20%) | Test (20%)
1 Daytime 2411 1447 482 482
2 Nighttime 2974 1784 595 595
3 Daytime 1487 892 297 297
4 Nighttime 1867 1120 373 373
5 Nighttime 2300 1380 460 460
6 Daytime 915 549 183 183
7 Daytime 854 512 171 171
8 Daytime 4043 2426 809 809
9 Daytime 5964 3578 1193 1193

the vehicle-mounted transmitter (unit 2)—can be found in
[19,20].

The initial dataset comprises a codebook of M = 64 beam
indices. To mitigate computational complexity and minimize
beam overlap, the codebook is progressively downsampled
to reduced sizes of M € {32, 16, 8} beams. To reduce the
original M = 64 beam codebook to smaller sizes M €
{32, 16, 8}, we partition the 64 uniformly spaced steering
vectors into M contiguous blocks of equal size. Specifically,
each block contains

64

M
adjacent beams, which are grouped and treated as a single
representative class. This grouping preserves uniform angular
coverage while reducing the beam-training search space from
64 to M, thereby lowering overhead without introducing
directional bias.

D. DATA PREPROCESSING

The efficacy of deep learning algorithms is contingent
upon the quality and structure of input data. This section
delineates the systematic preprocessing methodology neces-
sary for preparing datasets prior to model implementation.

1) Feature Normalization. Each feature channel (latitude,
longitude, and each beam’s received power) was scaled
via min—max normalization to the interval [0, 1] accord-
ing to the minimum and maximum values observed in
the training set. This ensures that all inputs contribute
comparably during gradient-based optimization and
prevents features with larger numeric ranges from
dominating the learning process.

2) Gaussian Noise Augmentation. To enhance gen-
eralization and mitigate sensitivity to measurement
inaccuracies, we applied zero-mean Gaussian noise with
standard deviation o = 0.02 independently to each input
feature within the normalized data sequences. These
perturbed samples were dynamically generated during
training, allowing the Bi-LSTM to learn from minor
spatial fluctuations in both positional and signal strength
values.

3) Sequence Construction. To facilitate sequential mod-
eling, we organized the data into fixed-size sequences
comprising 7 consecutive measurements. At each
timestamp #, a feature vector was constructed by
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concatenating the GPS coordinates with the received
power values across N beams:

X = [latt’ lonta pl,]a Pt,2’ ceey pl,N]

4) Padding and Masking. Sequences shorter than 7" were
right-padded with zeros and accompanied by a corre-
sponding length mask. During training, sequences were
packed using PyTorch’s pack_padded_sequence
utility so that the Bi-LSTM ignored padded timesteps,
while maintaining batch-efficient tensor shapes of
(batch_size, T, D), where D =2 + N.

5) Batch Assembly. A custom collate_fn grouped
variable-length sequence samples into mini-batches.
Each batch provided:

o A padded tensor of shape (B, T, D),
« A vector of true sequence lengths for masking, and
o The corresponding ground-truth labels.

This organization enables efficient Bi-LSTM training
with support for dynamic sequence lengths and on-the-
fly data augmentation.

E. FRAMEWORK ARCHITECTURE

This section presents a novel GPS-based beam prediction
framework that addresses three critical limitations in exist-
ing position-aided mmWave systems: GPS measurement
noise, reliance on synthetic datasets, and suboptimal beam
selection strategies. We introduce the first dual-head neural
architecture that jointly performs beam candidate classi-
fication and link-quality regression using real-world GPS
trajectories, distinguishing our approach from prior works
that treat beam selection as a simple classification problem
by predicting both which beams are viable candidates
and their expected performance quality. Our framework
incorporates four key technical novelties: (1) Gaussian
Process GPS denoising that explicitly models and corrects
GPS jitter using principled Bayesian smoothing—the first
work to systematically address GPS noise in mmWave
beam prediction, (2) a bidirectional LSTM with attention
mechanism that adaptively weights historical GPS readings to
identify the most informative trajectory segments, contrasting
with prior works using simple feedforward networks, (3) a
multi-task learning framework where the dual-head design
simultaneously optimizes beam candidate selection and
power prediction for more informed beam choices, and (4)
real-world validation using authentic GPS measurements
from the DeepSense 6G dataset rather than synthetic
simulations. Unlike existing position-aided beam prediction
methods that either use synthetic GPS data not reflecting
real-world noise characteristics, apply simple neural net-
works ignoring temporal dependencies, or perform only beam
classification without quality assessment, our integrated
approach addresses all these limitations simultaneously. The
following subsections detail the mathematical formulation,
system model, and algorithmic implementation of this
framework.
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F. GAUSSIAN PROCESS SMOOTHING OF GPS
TRAJECTORIES

To mitigate high-frequency jitter in our logged GPS fixes,
we model the observed location stream as noisy samples of
an underlying smooth trajectory and apply Gaussian-Process
(GP) regression to recover a denoised path. Below we detail
the formulation and hyperparameter estimation used on our
GPS logs.

G. PROBLEM FORMULATION
Let the sequence of GPS observations be denoted by

Wy, yi= BJ : 3)

Each y; denotes the recorded latitude and longitude at time
t;. We model these as noisy samples from a latent continuous
trajectory drawn from a Gaussian Process (GP):

f(t) ~ GP(m(), k(t,1")®L),
yi = £6) + n;. m ~ N, o)1) 4)

1) MEAN FUNCTION
We assume a constant mean function:

m()=p, p= [‘,jj : (5)

where 1y, 1y are learnable spatial biases.

2) COVARIANCE KERNEL

To balance smooth trajectory modeling with sensitivity
to fine-grained motion, we employ a Matérn 3/2 kernel
enhanced with additive white noise:

3t —+¢ -1
k(t, [/):gfz(l + %)exp (—%)4—035,[&
(6)

where £ denotes the temporal length scale, af2 is the signal

variance, and a,% quantifies the measurement noise. The full
set of trainable hyperparameters is:

0 = [y t.0f 02} ™)

H. HYPERPARAMETER ESTIMATION
We center the observations as

T

Ye=[vi—p .o, yv—4],

and maximize the log-marginal likelihood across both
columns:
where [Kel;j = k(#;, tj) per (6). We optimize (8), as shown
at the bottom of the next page, via L-BFGS-B with multiple
restarts.
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I. INFERENCE AND SMOOTHING
Given learned ®, the posterior mean at query time . is

f(t) = 11+ Ko(ts, O K5 'y,

where
K@(t*’ t) = [k(t*v tl)’ cee k(t*9 tN)]

We then use i’(ti) as our denoised fix at each ¢;.

By treating the GPS stream as noisy observations of a
latent smooth function and fitting a Matérn—3/2 GP with
explicit constant mean, we obtain a Bayesian smoother that
(i) exactly preserves stationary behavior and (ii) guards
against unwanted high-frequency noise—preparing the data
for downstream beam-tracking or control.

IV. PROPOSED DUAL-HEAD LSTM-BASED BEAM
PREDICTION

In this section, we present our LSTM-based sequence model
with a dual-head output designed to (i) shortlist a small set of
candidate beams and (ii) estimate the expected link quality
of those candidates. By jointly optimizing classification
and regression objectives, the model leverages temporal
correlations in GPS trajectories to yield both fast and
accurate beam selection. This section is structured into
several subsections that detail its design and operation.
First, the Sequence Modeling with Bidirectional LSTM
subsection explains how GPS trajectories are processed as
sequential inputs using Bi-LSTM layers to capture both past
and future dependencies. The Dual-Head Output Design
then introduces the bifurcated architecture: a mask head
for candidate beam classification and a quality head for
link-quality regression. Next, the Joint Loss and Training
subsection defines the multi-task optimization strategy that
balances the two objectives, while the Inference Procedure
illustrates the step-by-step process of shortlisting candidate
beams and selecting the optimal one.

A. SEQUENCE MODELING WITH BIDIRECTIONAL LSTM
Let {g/—7+1, ..., g/} denote the last T GPS readings, where

o lat;
&= beginalignx4pt]lon; |
Each coordinate is min—max normalized using the training-
set extrema. These T 2-D vectors form an input tensor of
shape (T, 2), which is fed into a single bidirectional LSTM
layer with H hidden units per direction. Formally, for each
time step i:
— —
h = LSTM_> (gi, h i—l)v (9)
<« «—
hi =LSTM<_(gi, hi+1), (10)

and the concatenated hidden state is

h
h; = ! «~— | € RZH.
beginalign+4pt] h ;
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We then apply global average pooling over the T time steps
to produce a fixed-length feature vector

which captures both past and future trajectory information in
a compact embedding.

B. DUAL-HEAD OUTPUT DESIGN

From the shared feature h, the network bifurcates into two
task-specific heads:

a: MASK HEAD (MULTI-LABEL CLASSIFICATION)

A lightweight dense block (optional ReLU + dropout)
projects h to M logits, one per beam, followed by a sigmoid
activation:

where 171; € (0, 1) is the probability that beam j belongs to the
candidate set. During training, the binary ground-truth mask
mj is obtained by thresholding the measured power,

L,
m]'= 0

and the mask head is optimized with a per-beam binary cross-
entropy loss Lmask-

PjZaPmaXv

otherwise,

b: QUALITY HEAD (REGRESSION)

In parallel, h passes through a second dense block to predict
a vector of predicted receive powers {c}j}j]‘i |- We employ a
linear output and train with mean squared error against the
true measurements g; = P;:

1 M 2
b=y 3=
]:

C. JOINT LOSS AND TRAINING
We combine the two objectives into a single multi-task loss:

D. INFERENCE PROCEDURE

At run time, given the most recent 7 GPS points, the model
computes {7} and {g;}. We first select the top-K beams
by descending 77;, then rank those candidates by predicted
quality g;, and finally activate the beam

o ~
Jo=arg max gj.
Jj€ecandidates

This two-stage selection minimizes beam sweep overhead
while maximizing expected link performance.

V. PROPOSED BI-LSTM WITH ATTENTION AND
DUAL-HEAD BEAM PREDICTION

In this section, we introduce our attention-augmented LSTM
model with dual-head outputs for efficient and accurate
position-aided beam selection. By replacing global average
pooling with a learnable temporal weighting mechanism,
the network adaptively highlights the most informative
GPS readings before jointly performing candidate beam
classification and link-quality regression.

The Attention-Augmented Sequence Embedding subsection
explains how the model adaptively emphasizes the most
informative GPS readings, replacing global average pooling
with a learnable temporal weighting scheme. Building on
this, the Dual-Head Prediction Architecture details the two
parallel heads: a mask head that classifies candidate beams
and a quality head that estimates their link quality. The
Joint Loss and Training Strategy subsection defines the
multi-task optimization objective, while the Inference and
Beam Selection subsection describes the runtime procedure
for selecting the optimal beam. Finally, the Training Protocol
outlines the experimental setup, including optimizer choices,
learning-rate scheduling, and regularization techniques.

A. ATTENTION-AUGMENTED SEQUENCE EMBEDDING
Let {g—7+1, ..., 8]} be the most recent T GPS coordinates,
where

o lat;
&= beginalign*4pt]lon; |

After min—-max normalization, this (7" x 2) sequence is
processed by a single bidirectional LSTM layer with H units
per direction, yielding hidden states

L = Nnask Lmask + )\qual Equala (11)
— —

where we initially set Apask = Agua = 1 and adjust (lii = LSTM. (g;, (liifl), (12)
via validation to balance the classification and regression h; =LSTM_(g;, h; 1), (13)
signals. Training is performed with the Adam optimizer —
(initial learning rate 10~2, decay at epochs 20 and 40), batch h, = |: h; - j| eR¥#  i=1,...,T.
size 32, and early stopping on the combined validation loss beginalign+4pt] h ;
over 60 epochs. (14)

logp(ye | ©) = —3 y{ (Ko) 'y — § log|Ko| — ¥ log 27, ®)
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To focus on the most salient time steps, we introduce an
attention mechanism of dimension A = H:

ej =v' tanh(W h; +b) € R, (15)
exp(e;)
= (16)
Zexp(é’j)
j=1
T
C=Zaihi€R2H. a7

i=1
The context vector ¢ replaces global average pooling,

enabling dynamic emphasis on trajectory segments critical
for beam decisions.

B. DUAL-HEAD PREDICTION ARCHITECTURE
From the shared context ¢, the network bifurcates into two
parallel heads:

a: MASK HEAD (CANDIDATE BEAM CLASSIFICATION)

o Dense(256) — ReLU — Dropout(0.1)

o Dense(128) — ReLU — Dropout(0.1)

« Output layer: M units — Sigmoid
Each sigmoid output /7z; € (0, 1) indicates the probability that
beam j belongs in the candidate set.

b: QUALITY HEAD (LINK-QUALITY REGRESSION)
o Dense(256) — ReLU — Dropout(0.1)
o Dense(128) — ReLU — Dropout(0.1)
« Output layer: M units — Linear

Each linear output g; predicts the expected receive-power (or
SNR) for beam j.

C. JOINT LOSS AND TRAINING STRATEGY
We optimize both tasks simultaneously via a weighted multi-
task loss:

L = Amask Lmask + )\qual Equala (18)
where
1 M
Lmask = — Z[m] log j 4 (1 — my)log(1 — )],

Mj:l

1 M

A N2

Cqual = M El(‘Zj - Qj) ,
]:

and Amask = Aqual = 1 initially. We train using Adam (initial
LR = 1072, decay by 0.2 at epochs 20 & 40), batch size
32, with early stopping on the combined validation loss over
60 epochs.

D. INFERENCE AND BEAM SELECTION
At run time:

1) Feature Extraction: Last 7 GPS points — Bi-LSTM
—> attention — context c.

186340

2) Candidate Shortlisting: Compute {r7;}, sort descend-
ing, select top-K beams.
3) Quality Ranking: Evaluate {g;} for candidates, choose
* =arg max gj.
J gjecandidates 9
4) Beam Activation: Point antenna along beam j*, avoid-
ing a full M-beam sweep.

This dual-head attention-augmented model jointly minimizes
beam-training overhead and maximizes link-quality predic-
tion accuracy.

E. TRAINING PROTOCOL
We train both proposed models end-to-end by minimizing a
multi-task loss with the Adam optimizer for up to 60 epochs.
The dataset is split into three disjoint subsets: train (60 %),
validation (20 %), and test (20 %).
Each sample at time 7 comprises
« a GPS sequence {g_741,.-
[lat;, lon;]T,
« a power vector p; € RM.

., &), where g =

All coordinates and power values are min—max normalized
using the extrema of the training set. During training, we add
Gaussian noise n ~ N(0, 0.0221) to the normalized GPS
inputs:

g = g+n
The total loss is

L = Lmask + Lqual, (19)

with
1 I . .
Lok = =+ le[m, log i + (1 — mj) log(1 — mj)], (20)
1 M

Lquat = o /Zj(qj - ). 1)

Here

mj=1{p;; >« m}gxm,k}, qj =P j-

a: OPTIMIZATION

« Optimizer: Adam with initial learning rate o = 1 x 1073,

o LR Schedule: Multiply n by 0.2 at epochs 20 and 40.

« Batch Size: 32.

« Gradient Clipping: Clip global norm to 5.

« Weight Decay: 1 x 107°.

« Dropout: Rate 0.1 after each dense layer.

« Early Stopping: Stop if validation loss does not improve
for 10 consecutive epochs.

F. PARAMETER SELECTION METHODOLOGY

Table 2 summarizes all architectural and training parame-
ters used in our experiments. The following methodology
describes how these values were selected:
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TABLE 2. Model architecture and training parameters.

Parameter Value Selection Method
Bi-LSTM Architecture

Hidden units (H) 256 Grid search

LSTM layers 1 (bidir.) Sufficient for GPS

Sequence length () 20 2s at 10 Hz

Input dimension 2 GPS (lat, lon)

Attention dim. (A) 256 Equal to H
Dual-Head Layers

Mask dense 1 256 Grid search

Mask dense 2 128 Dim. reduction

Quality dense 1 256 Match mask head

Quality dense 2 128 Dim. reduction

Output dim. M Codebook size
Training

Optimizer Adam Standard DL

Learning rate 1073 Grid search

LR decay 0.2 At epochs 20, 40

Batch size 32 Memory trade-off

Max epochs 60 Convergence

Early stop 10 Prevent overfit

Gradient clip 5.0 Stability

Weight decay 1075 L2 regularization

Dropout 0.1 After dense layers

Loss Configuration

Amask 1.0 Classification weight

Aqual 1.0 Regression weight

Mask threshold (o) 0.7 70% max power
Data

GPS noise (o) 0.02 Measurement error

Train/Val/Test 60/20/20% Standard split
Gaussian Process

Mean function Constant. Learned (MLE)

Kernel Matérn 3/2 Smooth-flexible

Length scale 8.7m L-BFGS-B

Signal var. 042 L-BFGS-B

Noise var. 0.003 L-BFGS-B

Restarts 10 Random init.

1) Architecture parameters: Hidden dimensions were
selected through grid search over H € {128, 256, 512}
on the validation set, with H = 256 providing the best
trade-off between model capacity and computational
efficiency for the 64-beam prediction task.

2) Sequence length: Set to 7 = 20 time steps based on the
GPS sampling rate (10 Hz) and vehicular coherence time
analysis, representing 2 seconds of trajectory history.

3) Training hyperparameters: Learning rate was selected
via grid search from {1072, 1073, 104}, with 1073
showing optimal convergence. Batch size of 32 balanced
GPU memory constraints with training stability.

4) Mask threshold: The value « = 0.7 was empirically
determined using the validation set to balance candidate
beam set size with prediction accuracy, ensuring the
main lobe and strong side lobes are captured while
filtering weak beams.

5) Gaussian Process hyperparameters: Optimized per
scenario using L-BFGS-B with 10 restarts; typical

values: € € [5,15] m, of € [0.1,1.0], o7 €
[0.001, 0.01].
VI. RESULTS

This section details the experimental evaluation conducted
using the proposed models on real-world data encompassing
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Top-1 Beam Prediction Accuracy [%] for 64 Beams
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FIGURE 2. Top-1 beam prediction accuracy comparison for 64-beam
codebook (M = 64) between the proposed models and the baseline
neural network (NN) from [14].

TABLE 3. Top-1 accuracy comparison for 64 beams across scenarios (NN
vs. Bi-LSTM vs. Bi-LSTM + Attention vs. GP-BLA).

Scenario NN Bi-LSTM | Bi-LSTM-Attn | GP-BLA
1 55.57 71.09 76.27 87.69
2 48.86 75.06 79.45 89.73
3 31.09 71.30 75.04 85.42
4 29.14 72.65 76.75 89.91
5 43.12 70.41 73.88 84.17
6 41.51 71.13 74.90 86.84
7 27.82 69.04 72.65 82.55
8 43.65 72.47 75.63 90.28
9 38.73 74.29 77.92 87.06

Average 39.9 71.9 75.72 86.41

DeepSense Scenarios 1 through 9. GP-BLA (Gaussian
Process - Bidirectional LSTM with Attention) leverages
the GP’s principled smoothing to deliver reliable position
estimates, while the Bi-LSTM+-Attention module captures
temporal dependencies and focuses on the most informative
time-steps to predict both the optimal beam index and
the expected link quality in a single, lightweight network.
Model’s performance is assessed using several metrics,
including Top-k accuracy, the confusion matrix, and receiver
operating characteristic (ROC) curves. To underscore the
effectiveness of our method, comparative analyses are also
performed against established baseline models.

A. BASLINE COMPARISON

Figure 2 and Table 3 illustrate the comparison of Top-1
accuracy across all 64 beams for the nine evaluated scenarios.
The proposed models demonstrate superior performance over
the conventional neural network (NN), with notable gains
observed particularly in Scenarios 2, 4, 8, and 9. These results
highlight the model’s robustness and practical effectiveness in
complex, beam-rich real-world environments.

Figure 3 and Table 4 present the Top-1 accuracy results
for a reduced set of 32 beams, where the models exhibits
even more pronounced performance gains. In particular,
Scenarios 1, 2, and 8 show accuracy improvements. These
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FIGURE 3. Top-1 beam prediction accuracy comparison for 32-beam
codebook (M = 32) between the proposed models and the baseline
neural network (NN) from [14].

TABLE 4. Top-1 accuracy comparison for 32 beams across scenarios (NN
vs. Bi-LSTM vs. Bi-LSTM + Attention vs. GP-BLA).

Scenario NN Bi-LSTM | Bi-LSTM-Attn | GP-BLA

1 71.34 83.47 87.83 97.95

2 60.02 82.24 85.91 96.71

3 37.63 70.08 72.00 87.03

4 35.53 74.63 76.82 85.88

5 5591 81.84 84.12 95.30

6 63.91 77.39 80.44 90.12

7 41.82 66.22 70.95 83.63

8 56.67 85.35 89.08 94.47

9 49.42 76.33 79.92 91.09

Average 52.7 77.1 80.7 91.8
94
84
7
6

E .
@ N
3
2
1
0 Zb 4‘0 (;0 Bb 160
Top-1 Beam Prediction Accuracy [%] for 64 Beams
= NN Bi-LSTM Bi-LSTM + Attention . GP-BLA

FIGURE 4. Top-1 beam prediction accuracy comparison for 16-beam
codebook (M = 16) between the proposed models and the baseline
neural network (NN) from [14].

findings affirm the model’s strong generalization capability,
even under constraints involving a limited number of beams.

When evaluated with a configuration of 16 beams, the
models maintain their performance advantage. As shown
in Figure 4, and Table 5 the models achieve accuracy
levels exceeding 90% across the majority of scenarios, with
particularly strong improvements observed in Scenarios 6 and
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TABLE 5. Top-1 accuracy comparison for 16 beams across scenarios (NN
vs. Bi-LSTM vs. Bi-LSTM + Attention vs. GP-BLA).

Scenario NN Bi-LSTM | Bi-LSTM-Attn | GP-BLA
1 86.17 95.51 97.02 97.86
2 78.99 94.82 96.63 97.25
3 55.66 92.24 95.00 96.58
4 52.81 94.77 96.12 96.82
5 74.73 81.84 84.12 92.14
6 79.43 97.04 97.80 97.39
7 62.53 82.29 84.92 93.70
8 66.72 95.43 97.76 96.93
9 66.75 96.03 97.88 97.51

Average 69.4 924 94.7 96.5

Scenario
«

0 20 40 60 80 100
Top-1 Beam Prediction Accuracy [%] for 64 Beams

= NN Bi-LSTM Bi-LSTM + Attention mmm GP-BLA

FIGURE 5. Top-1 beam prediction accuracy comparison for 8-beam
codebook (M = 8) between the proposed models and the baseline neural
network (NN) from [14].

TABLE 6. Top-1 accuracy comparison for 8 beams across scenarios (NN
vs. Bi-LSTM vs. Bi-LSTM + Attention vs. GP-BLA).

Scenario NN Bi-LSTM | Bi-LSTM-Attn | GP-BLA
1 90.24 97.43 98.19 98.20
2 88.05 98.04 98.57 98.07
3 70.10 95.36 97.80 98.44
4 69.12 95.98 98.21 97.87
5 84.02 97.40 97.95 98.10
6 90.63 97.37 98.09 98.66
7 76.23 95.58 96.67 97.33
8 76.97 95.72 97.84 98.79
9 76.22 97.45 97.90 98.52

Average 80.1 96.6 97.9 98.3

9. These results underscore the models effectiveness under
moderate beam density conditions.

Figure 5 and Table 6 compare the Top-1 accuracy for
8-beam configuration. The proposed models consistently
achieve accuracy exceeding 95% across all scenarios, outper-
forming the baseline NN [14].

In Scenario 6, the proposed models exhibit robust predic-
tive capability, reliably selecting the optimal beam with high
confidence. As illustrated in Figure 6 and Table 7, the models
achieves notably high Top-k accuracy, further affirming its
effectiveness under this specific scenario. Receiver Operating
Characteristic (ROC) curves provide a visual representation
of a model’s classification performance by plotting the True
Positive Rate (TPR) against the False Positive Rate (FPR)
across varying thresholds for each beam index. Figure 7
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FIGURE 6. Top-k beam prediction accuracy (Top-1 to Top-5) comparison
for Scenario 6.
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FIGURE 7. Top-k beam prediction accuracy (Top-1 to Top-5) comparison
for Scenario 6 using a 8-beam codebook.

illustrates the AUC-ROC curves for M = 8 for the first
scenario corresponding to the GP-BLA model. A Receiver
Operating Characteristic (ROC) curve that lies closer to
the top-left corner of the plot—indicating an Area Under
the Curve (AUC) value approaching 1—signifies enhanced
predictive accuracy of the model. The ROC curves indicate
that, for the majority of beam indices, the model achieves a
high True Positive Rate (TPR) while maintaining a relatively
low False Positive Rate (FPR). This demonstrates the model’s
effectiveness in distinguishing between correct and incorrect
beam selections.

Figure 8 displays the confusion matrix corresponding to
the first scenario. The confusion matrix offers a compre-
hensive assessment of the GP-BLA’s model classification
performance by enumerating the correct and incorrect
predictions associated with each beam index.

1) POWER LOSS
The effectiveness of beam prediction models is most
accurately evaluated through the metric of power loss, which
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FIGURE 8. Top-k beam prediction accuracy (Top-1 to Top-5) comparison
for Scenario 6.

Power Loss Comparison Across Scenarios (Improved Models)

Power Loss NN (dB)

s Power Loss Bi-LSTM (dB)

W Power Loss Bi-LSTM + Attention (dB)
Power Loss GP-BLA (dB)

Power Loss (dB)
B

1 2 3 1 5 6 7 8 9
Scenario

FIGURE 9. Centered average received power, showing power loss and
improvements across different scenarios.

TABLE 7. Ranking accuracy evaluation across Top-K predictions for
scenario 6 using different models.

Top-K | Neural Network | Bi-LSTM | Bi-LSTM-Attn | GP-BLA
Top-1 41.51 52.24 57.88 70.98
Top-2 66.20 73.06 80.65 9221
Top-3 80.94 86.27 89.47 96.65
Top-4 89.58 92.45 94.41 98.04
Top-5 93.80 96.51 97.90 98.37

quantifies the degradation in received signal power due
to discrepancies between the actual and predicted beam
selections. A lower power loss value reflects improved
communication quality and more efficient system operation.
In the forthcoming analysis, particular emphasis is placed
on assessing power loss improvements achieved by the
proposed beam prediction models in comparison to existing
approaches. The power loss (PL) in decibels is computed
using the following expression:

=

1 & P,
EZA— (22)

k=1 - P,

PL[dB] = 10log;,

2,

Here, PZ denotes the received power for the optimal beam

corresponding to sample k, PZ represents the received power
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TABLE 8. Comparative evaluation of power degradation across beam
prediction models in various scenarios.

Scenario | NN (dB) | Bi-LSTM (dB) | Bi-LSTM-Attn (dB) | GP-BLA (dB)
1 0.23 0.18 0.15 0.14
2 0.38 0.31 0.26 0.24
3 1.84 1.09 0.94 0.88
4 2.20 1.65 1.36 1.28
5 0.92 0.69 0.60 0.56
6 0.32 0.22 0.17 0.16
7 1.67 1.01 0.85 0.80
8 1.13 0.75 0.64 0.60
9 2.39 1.75 1.53 1.44

for the predicted beam, P, is the noise level within the
scenario, and K is the total number of evaluated samples. This
formulation enables a quantitative comparison between the
predicted and ideal beams, with smaller PL values indicating
more accurate predictions.

As shown in Figure 9 and Table 8, when applying this
metric to the results reported in [14] and comparing them
with those achieved by the proposed models, it becomes
evident that substantial improvements in power efficiency are
observed across all evaluated scenarios.

B. OVERHEAD SAVING

The proposed models deliver improved accuracy in beam
prediction while substantially reducing the overhead typically
incurred during beam training procedures in millimeter-wave
(mmWave) communication systems. This section focuses on
quantifying the reduction in training overhead enabled by
the position-assisted beam prediction strategy. The overhead
savings, denoted as oy, reflect the proportion of beams that
must be trained compared to a full exhaustive search. This
metric is inherently influenced by the desired reliability level:
higher reliability necessitates evaluating a larger subset of
beams, which lowers the potential for overhead reduction.
Conversely, tolerating lower reliability permits testing fewer
beams, thereby increasing savings. The formal expression for
overhead savings is given by:

b
=1-—, 23
®OH i (23)
where b represents the number of beams selected for training,
and M = 64 denotes the total number of beams in the

predefined codebook. Figure 10 illustrates the overhead
savings attained by the Bi-LSTM model across representative
reliability targets. For a reliability level of 90% (i.e.,
10% outage probability), the model achieves beam-training
overhead reductions ranging from approximately 82.0% to
95.7% across all nine evaluated scenarios. Even under a more
stringent reliability requirement of 99%, the Bi-LSTM-based
approach maintains an average overhead reduction of around
67.7%, demonstrating its efficiency in minimizing training
overhead while preserving high prediction confidence.

VIl. CONCLUSION

This study introduces a unified GPS-enhanced framework
combining Gaussian Process regression with Bi-LSTM and
Bi-LSTM+Attention architectures for position-based beam
prediction in mmWave communication systems, demonstrat-

186344

:\_.\\
\\

Overhead savings
o o
o ~
| s

o
wn
|

I
>
L

90 95 99
Guaranteed reliability (1 - Outage probability)

®
o

Scenario 7
—e— Scenario 8
—e— Scenario 9

—e— Scenario 4
—e— Scenario 5
—e— Scenario 6

—e— Scenario 1
Scenario 2
Scenario 3

FIGURE 10. Overhead savings plotted against outage probability.

ing Top-1 accuracy of 86.41% and power loss reductions
exceeding 1 dB across real-world scenarios. The results are
driven by GP-based GPS denoising that addresses measure-
ment noise, combined with dual-head neural architectures
that jointly perform beam classification and link-quality
regression, converting sequential GPS trajectories into opti-
mal beam predictions. The GP-BLA model outperforms
baseline neural networks by 116% in accuracy (86.41%
vs 39.9%) while reducing power loss by up to 1.44 dB
in challenging scenarios. The GPS denoising approach
consistently delivers 8-15% accuracy improvements over raw
GPS inputs, while the dual-head architecture design enables
simultaneous candidate selection and quality prediction.
Similar advantages are observed across all beam configura-
tions (64, 32, 16, 8 beams), with the attention mechanism
providing 4-6% additional improvements over standard Bi-
LSTM. Practical benefits include up to 95% beam training
overhead savings compared to exhaustive search methods
while maintaining 90% reliability guarantees. The four stated
contributions were realized through: (1) unified framework
integration of GP regression with recurrent architectures, (2)
advanced GPS denoising proving critical for performance
gains, (3) lightweight dual-head design enabling real-time
deployment, and (4) comprehensive real-world validation
eliminating synthetic dataset dependencies. Future Research
Directions: Promising avenues include temporal resolution
enhancement and multi-modal sensing, GPS-channel correla-
tion breakdown solutions, multi-user integration challenges,
and standardization with beam management protocols.

VIII. LIMITATIONS AND FUTURE WORK
The promising results of our GPS-based Bi-LSTM beam pre-
diction framework reveal both its potential and constraints.

A. TEMPORAL RESOLUTION ENHANCEMENT AND
MULTI-MODAL SENSING

Our current approach is fundamentally limited by the 10 Hz
GPS sampling rate, which creates a temporal mismatch with
the mmWave channel coherence time (~1-10 ms at 60 GHz).
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Future work should integrate high-frequency IMUs (100—
1000 Hz) to capture sub-second dynamics, particularly during
rapid acceleration events where our accuracy drops below
50% at > 3 m/s>. Additionally, incorporating Doppler radar
for velocity estimation and cameras for blockage prediction
could address the current blind spot where GPS cannot detect
sudden channel obstructions.

B. ADDRESSING GPS-CHANNEL CORRELATION
BREAKDOWN

The fundamental assumption that GPS position correlates
with optimal beam selection breaks down at 60 GHz,
where 1 cm movements cause 30° phase shifts. Future
research should explore differential GPS encoding using
velocity [Alat/At, Alon/Ar] and acceleration [AZlat/ Ar?,
AZ%lon/ At?] features rather than absolute positions.

C. MULTI-USER AND NETWORK INTEGRATION
CHALLENGES

Extending to multi-user scenarios reveals the hidden compu-
tational complexity: O(N?) for N users due to inter-beam
interference calculations. Future work should develop dis-
tributed beam prediction where each UE predicts locally,
and the base station performs lightweight conflict resolution.
Integration with 5G/6G network slicing requires beam
predictions to be QoS-aware, suggesting a multi-task learning
framework that jointly optimizes beam selection and resource
allocation. The current approach also lacks standardized
interfaces with 3GPP beam management procedures (P1,
P2, P3), requiring protocol-aware training that respects SSB
periodicity and CSI-RS configurations.
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