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Abstract

The convergence of artificial intelligence (AI) and drug discovery is accelerating the pace
of therapeutic target identification, refining of drug candidates, and streamlining pro-
cesses from laboratory research to clinical applications. Despite these promising advances,
the inherent opacity of Al-driven models, especially deep-learning (DL) models, poses a
significant “black-box" problem, limiting interpretability and acceptance within the phar-
maceutical researchers. Explainable artificial intelligence (XAI) has emerged as a crucial
solution for enhancing transparency, trust, and reliability by clarifying the decision-making
mechanisms that underpin Al predictions. This review systematically investigates the
principles and methodologies underpinning XAlI, highlighting various XAI tools, mod-
els, and frameworks explicitly designed for drug-discovery tasks. XAI applications in
healthcare are explored with an in-depth discussion on the potential role in accelerating the
drug-discovery processes, such as molecular modeling, therapeutic target identification,
Absorption, Distribution, Metabolism, and Excretion (ADME) prediction, clinical trial de-
sign, personalized medicine, and molecular property prediction. Furthermore, this article
critically examines how XAI approaches effectively address the black-box nature of Al
models, bridging the gap between computational predictions and practical pharmaceutical
applications. Finally, we discuss the challenges in deploying XAI methodologies, focusing
on critical research directions to improve transparency and interpretability in Al-driven
drug discovery. This review emphasizes the importance of researchers staying current on
evolving XAI technologies to realize their transformative potential in fully improving the
efficiency, reliability, and clinical impact of drug-discovery pipelines.

Keywords: artificial intelligence; explainable artificial intelligence; drug discovery;
molecular modeling; therapeutic innovation; personalized medicine

1. Introduction

The Human Genome Project (HGP), completed in 2003, was a feat of human scientific
ambition that took 13 years to understand the human genetic makeup. This process
involved sequencing the human DNA to understand the genetic makeup [1]. HGP led
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to new research offshoots, enabling the understanding of the genetic causes of diseases
and possible interventions. Therefore, shedding light on the functional significance of the
genes has led to an economic impact of $800 billion. The emergence of novel diseases and
persistent disorders has led to an increase in the use of pharmaceutical agents in daily
life in recent years [2]. Furthermore, due to modern lifestyles that expose individuals
to harmful pollutants and microorganisms, there is a pressing need for innovative and
more reliable pharmacotherapeutic interventions. Consequently, rapid progress in drug
discovery and development is unavoidable, and it is reasonable to expect the emergence of
significant pharmaceutical solutions in a short time span. Presently, numerous research and
development institutions, including government and commercial institutions, heavily rely
on the expertise of pharmaceutical professionals for the development of these interventions.

The process of drug discovery evolved from the 1980s, when chemists began develop-
ing chemical compounds that specifically target distinct molecular entities such as receptors,
enzymes, and ion channels. Structure-based drug development gained prominence in the
1990s, particularly in identifying lead compounds for drug development. Several techno-
logical developments, including high-throughput synthesis, genomics, structural biology,
and computational chemistry, were brought into the drug-development process in the
2020s [3-6]. Given that the biological activity of a therapeutic molecule depends on its
three-dimensional structure, medicinal chemistry plays a pivotal role in drug discovery.
Thus, during the early stages of drug development, it is crucial to understand a drug’s
chemical properties through structure—activity relationship studies [7]. The lead optimiza-
tion phase is a critical stage in the drug-discovery pipeline, wherein promising molecules
identified during the hit-to-lead stage are systematically modified to improve their efficacy,
selectivity, and drug-like properties. This process aims to enhance the therapeutic potential
of the lead compounds while minimizing undesirable characteristics such as toxicity or
poor bioavailability. During this phase, candidate compounds undergo a series of in vitro
assays to assess their potency, physicochemical characteristics, and absorption, distribution,
metabolism, excretion, and toxicity (ADMET) profiles. Following this, preclinical in vivo
studies are conducted to investigate the pharmacokinetic and pharmacodynamic properties
of the selected molecules. Pharmacokinetics examines a drug’s kinetics, which are primar-
ily influenced by the body’s ADME processes. In contrast, pharmacodynamics quantifies
the drug’s impact on the body, including various dynamics such as biomarker response,
cytokine release, tumor progression, and other related factors [8]. Various physicochemical
properties, such as molecular weight, lipophilicity, and permeability, influence the phar-
macokinetic behavior of a drug [9]. Moreover, the drug’s exposure and, consequently, its
efficacy can be affected by the complex physiology of the body [10]. The data obtained
during the research process is combined into a translational approach to predict a clinically
appropriate and effective dosage and regimen that ensures safety [11,12]. Predicting clinical
efficacy solely based on a compound’s intrinsic properties or its behavior in preclinical in
vivo studies can be challenging. However, a drug’s ability to achieve a safe and effective
exposure level is generally considered the primary determinant of its efficacy. The timeline
and process of developing a new drug are illustrated in Figure 1. Typically, creating a new
pharmaceutical drug takes about 12 to 15 years in the United States and requires continuous
monitoring after its general rollout [13,14].
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Figure 1. Timeline of the conventional drug-discovery process. A typical drug undergoes five major phases. The process begins with target identification and
validation, where disease-associated biological targets are identified and confirmed. This is followed by hit and lead discovery, in which compounds that interact
with the target are identified and optimized for potency and selectivity. The preclinical phase involves in vitro and in vivo studies to assess the compound’s safety,
efficacy, pharmacokinetics, and pharmacodynamics. If successful, the drug enters clinical trials, conducted in three phases, each involving an increasing number of
human participants to evaluate safety, dosage, and therapeutic efficacy. Finally, the post-marketing surveillance phase involves continuous monitoring of the drug’s

long-term safety and effectiveness in the broader population.



Pharmaceutics 2025, 17,1119

4 of 30

Artificial intelligence (Al) is a data-driven system that uses advanced tools and net-
works to mimic human intelligence [15]. The integration of Al in healthcare encompasses
disease prediction and detection, genetic analysis and gene editing, drug discovery, ra-
diography, and personalized medicine [16]. Al models demonstrate high accuracy and
efficiency [17]. Al algorithms of varying complexity perform diverse functions at various
levels of healthcare applications [18]. Neural networks (NN), such as convolutional neural
networks (CNNs), have demonstrated a high degree of accuracy in biomedical image anal-
ysis [19]. In contrast, recurrent neural networks (RNNs) are adept at identifying anomalies
in time-series biomedical data [20]. State-of-the-art large language models (LLMs) have
revolutionized diagnosis, genomics, drug discovery, and personalized medicine [21,22].
Although these Al models yield highly accurate results, the basis for their reasoning is
obscured by the highly complex mathematical processes that underpin these models. As of
2024, the United States Food and Drug Administration (FDA) had approved 950 artificial
intelligence/machine-learning (AI/ML)-enabled devices for disease diagnosis [23]. The
challenges in using Al for determining prognosis and developing treatment plans have
slowed progress due to safety concerns. Therefore, clinical decisions must be founded
on well-established principles. Although the conclusion is accurate, flawed reasoning is
unacceptable, especially in safety-critical applications such as healthcare.

The vast chemical space, estimated to encompass over 10°° potential molecules, offers
a rich foundation for the discovery of novel drug candidates [24]. However, screening
through such a large candidate list using rudimentary methods can significantly impede
the drug-development process, making it time-consuming and financially burdensome.
However, using Al-based methods has the potential to overcome these limitations as
illustrated in Figure 2 [25]. AI can identify hit and lead compounds, enabling faster
drug-target validation and optimization of drug structure design [26]. Incorporating large
datasets into AI models has the potential to reduce the risk associated with introducing a
new molecular entity, eliminating the need for extensive experimentation. Researchers can
achieve an automated and more efficient screening and selection strategy by incorporating
in-silico Al models, which differ from a ‘trial-and-error” approach that relies solely on expert
intuition. This paradigm increases the number of screened compounds while decreasing
the screening times. While various efforts have been reported for the early phases of the
drug-development pipeline, such as target identification and hit finding, the potential
relevance of these techniques in the later stages of the process remains unclear. The use of
Al tools is thought to significantly reduce the experimental burden and timelines currently
required for characterizing drug response in vitro and in vivo [27]. The foundation of the
outcomes of these models is uncertain due to the “black-box” nature of the Al models.
Explainable AI (XAI) bridges the gap between the outcomes of an Al model and the
underlying reasoning behind those outcomes. XAl techniques can establish a foundation
for trusting the reliability of models that assist in the drug design pipeline. XAI techniques
address these challenges by identifying which molecular features or descriptors contribute
most significantly to a given prediction, or by estimating the marginal contribution of each
feature to the output, or highlighting specific substructures that are strongly associated
with a predicted outcome. These insights enable researchers to rationally prioritize or
modify molecular scaffolds, improve candidate selection, and enhance lead optimization.
Moreover, XAl can potentially enhance regulatory compliance and build confidence in
Al-driven pipelines by offering human-interpretable explanations for model predictions,
such as poor absorption, high distribution volume, metabolic instability, or toxicity during
the ADMET prediction. With the adoption of multi-modalities, from SMILES strings and
molecular graphs to transcriptomics and imaging data, XAI provides a necessary layer of
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transparency, enabling the deployment of Al not only as predictive tools but rather as a
reliable decision support system.
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Figure 2. Al-supported drug-development pipeline. Al can potentially accelerate the progress of
each stage, from target identification to post-market surveillance. This is achieved by enabling faster
compound screening, predictive modeling, clinical trial optimization, and safety monitoring, thus
improving efficiency and reducing development timelines.

The state-of-the-art Al models can potentially accelerate the drug-discovery process,
particularly in the initial two stages. The published literature reviews have summarized
the role of XAl in improving the drug-discovery pipeline. The two widely accepted explain-
ability methods are the SHapley Additive exPlanations (SHAP) and the Local Interpretable
Model-agnostic Explanations (LIME). The authors of [28] explore the role of SHAP and
its variants in enhancing transparency in Al-driven drug-discovery processes. The au-
thors outline the regulatory and practical importance of interpretability, emphasizing that
explainability improves trust and reduces the downstream costs associated with opaque
models. Their review outlines technical and regulatory challenges and future directions for
XAL Ding et. al. [29] systematically evaluates the literature on XAl applications in chem-
ical and drug research, encompassing traditional Chinese medicine domains. However,
this work predominantly relies on quantitative metrics without deep qualitative insights
into the practical efficacy or impact of specific XAl techniques. In [30], authors deliver a
structured taxonomy tailored specifically for medicinal chemistry, advocating for essential
visualization and interactive methodologies. They outline clear guidelines for effectively
integrating XAl into chemical research. The main limitation is that the recommendations
primarily focus on structural visualization, rather than performance metrics or quantitative
evaluations. Jiménez-Luna et al. [31] focus on the challenges associated with interpreting
deep-learning (DL) models in drug discovery. The authors detail various feature attribution
methods and gradient-based approaches to enhance the interpretability of models. They
underscore that interpretability significantly impacts the practical application of DL, par-
ticularly when accuracy must be balanced with human comprehensibility and regulatory
acceptance. Vo et al. [32] review XAl methodologies for predicting drug—drug interactions
(DDIs). Given the clinical importance and high-risk nature of drug—drug interactions, the
authors emphasize the necessity of transparent Al predictions to ensure reliability and
clinical acceptance. It comprehensively categorizes ML /DL models, identifying gaps and
limitations, and suggests pathways to strengthen model transparency and reliability. A
comprehensive survey [33] covers various XAl frameworks and their applications, includ-
ing target identification, compound design, and toxicity prediction. The authors identify
key limitations, such as the interpretability versus performance tradeoff, and provide future
research directions to guide the effective integration of XAl into drug-discovery processes.
Although their work offers a clear understanding of XAl in drug discovery, their discussion
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is presented from an Al-centric standpoint. Therefore, the existing literature for health
science researchers is limited to brief reviews on this research domain.

To address the existing literature gap for biomedical science researchers, this compre-
hensive review examines the role of XAl in enhancing the interpretability and transparency
of Al-driven drug-discovery methods. It summarizes the key XAI tools, models, and
their applications in molecular modeling, target identification, molecular property predic-
tion, clinical trial design, and personalized medicine. The review investigates how XAI
addresses the opacity issues of traditional Al models, identifies current implementation
challenges, and outlines key future research avenues for effectively incorporating XAl into
pharmaceutical research. This article is organized as follows. Section 2 introduces XAl, its
basic concepts, and its types. Section 3 elucidates the role of XAl in healthcare. Section 4
delves into the role of XAl in the drug-discovery process, while Section 5 discusses in detail
the impact XAI has on the drug-discovery pipeline. The challenges and future research
directions are outlined in Section 6. The discussion is concluded in Section 7.

2. Explainable Al

Explainable AI “explains” the output of an Al model. XAI constitutes a set of processes
that explain the intent and reasoning for the output generated by an Al model. XAI
elucidates the process and logical reasoning used by an AI model to arrive at a conclusion.
Ensuring the accuracy along with safety in operation is crucial in critical applications
such as autonomous vehicles, healthcare, and industrial Internet of Things (I-IoT) [34].
Data-driven decision systems in critical applications should be both trustworthy and
interpretable. Interpretability elucidates the inner workings and explains how an AI model
makes a decision. While explainability takes into account all the interpretable factors that
contribute to an Al model’s decision and allows the user to understand why the model
made a particular decision [35]. The Al models can be classified into three categories based
on their explainability: white-box, gray-box, and black-box models [34,36]. The white-box
models are self-interpretable. Users can interpret the working logic of models, such as
those in linear regression and decision trees. Still, there is a significant tradeoff in accuracy,
as they assume the data to be linear or sub-linear, which is contrary to real-world data [37].
Additionally, self-interpretable models are not highly scalable and therefore do not meet the
requirements for critical applications. The gray-box models aim to strike a balance between
accuracy and interpretability. The gray-box models can support vital applications as they
offer a level of interpretability by allowing analysis of the model’s inner workings and a
higher accuracy [38]. However, the powerful Al models powering high-end applications
are highly complex, making them difficult to interpret. Their ambiguous decision system
makes them inappropriate for critical applications. However, for these black-box Al models
with high obscurity, XAl tools can ensure trustworthiness [39]. The various types of Al
models classified based on their interpretability are illustrated in Figure 3. XAl methods
can be broadly classified into two groups, based on intrinsically interpretable models and
post-hoc models [40]. The former category consists of models that are inherently easy to
comprehend, while the latter requires a set of specialized methods to explain the model
decisions [41]. The general outline of the XAl classification is illustrated in Figure 4. The
following discussion follows the structure outlined in this figure.
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2.1. Intrinsically Interpretable Models

Intrinsically interpretable models are designed in such a way that humans can readily
understand their structure, parameters, and decision-making processes. They provide
interpretations organically due to their structure, and there is no need for extra post-hoc
approaches for interpretability [42]. These models are significant in critical domains as
healthcare, finance, and law, where understanding the underlying causes for a certain
decision is equally important to model accuracy. Inherently interpretable models can
provide stakeholders with unparalleled insights into decision-making, enabling trust,
transparency, and accountability to flourish. The following features define intrinsically
interpretable models. (a) Simplicity, as they rely on uncomplicated mathematical models,
including linear systems, rule sets, or tree ensembles. (b) Transparency, as each action or
decision made by this model can be delineated and elucidated. (c) Feature importance
clarifies the contribution of each feature to the final prediction. These models typically
possess fewer parameters than black-box models, making them more comprehensible and
interpretable [43]. The intrinsically interpretable models can be classified into the following
categories:

2.1.1. Linear Models

Linear models represent the simplest type of intrinsically interpretable models, where
the output is the result of a linear combination of the input features. These models assume a
linear relationship between input features and target variables. Therefore, the impact of an
input variable on the output is directly interpreted by its coefficient [44]. Linear Regression
models calculate a continuous dependent variable from a set of predictor variables. The
model, in turn, fits a linear equation to the empirical data. Each coefficient provides a clear
interpretation of how a one-unit change in a feature influences the target variable, assuming
all other features are held constant [45]. Logistic regression is a classification technique used
for binary problems in a manner quite similar to linear regression. It generates a model to
compute the probability that an instance belongs to a specific class. In the logistic regression
model, this output is transformed through a sigmoid function that ranges between 0 and
1. In logistic regression, the coefficients signify the log-odds of a one-unit change in the
respective feature. Although still not as intuitive as the coefficients from linear regression,
directly interpreting the output with probabilities and odds ratios does it [46].

The linear models are simple, as they are directly interpretable and can be trained
easily to perform accurately using a moderately sized dataset. The use of regularization
can also help improve explainability in linear models. Regularization techniques help
reduce overfitting by adding a penalty to the model’s loss function, encouraging simpler
weights [47]. This reduces the influence of less important input variables by moving the
variable coefficients to near zero, improving model interpretability. Regularization also
enhances generalization, making the model more robust to unseen data. However, it
requires careful hyperparameter tuning to determine the optimal strength of the penalty.
Additionally, regularization is particularly effective in high-dimensional data, where it
helps mitigate the risk of overfitting due to the large number of input variables. On the
other hand, regularization can also overly simplify models if the regularization parameter
is too large, causing the model to miss important patterns. It also assumes equal importance
for all input variables, which may not hold true, so incorporating domain knowledge can
enhance performance. Regularization may be computationally expensive, especially for
high-dimensional data, making it less suitable for real-time applications [48]. Additionally,
it presumes that data are linearly separable and independent and identically distributed
(IID), which may not apply to complex datasets like time-series or spatial data, requiring
more advanced models [49].
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Generalized Additive Models (GAMs) extend traditional linear models by allowing
the relationship between each feature and the target variable to be modeled with smooth,
nonlinear functions, while still maintaining an additive structure. Unlike linear models,
which assume a straight-line relationship between features and the target, GAMs are more
flexible, as they can capture complex, nonlinear relationships [50]. However, despite this
flexibility, GAMs remain interpretable because each feature’s contribution to the prediction
remains independent of the contributions of the others. This structure enables the visualiza-
tion of the effect of each feature, often in the form of individual plots for each constituent
function. The advantages of GAMs lie in their balance of flexibility and interpretability
[51]. They can model nonlinear patterns in the data without sacrificing transparency, as the
additive nature of the model ensures that each feature’s influence is clear and separable
from the others. This makes GAMs particularly useful for applications where both accuracy
and interpretability are essential. However, a key limitation of GAMs is that they are
restricted to additive relationships between features and the target, meaning they cannot
model interactions between features. Consequently, while GAMs are powerful in capturing
individual feature effects, they may be less suitable for datasets where feature interactions
play a critical role [52].

2.1.2. Decision Tree

A decision tree is a hierarchical ML model that partitions data into subsets based
on feature values, using a series of if-then rules to make decisions [53]. The model is
structured with three primary components: the root node, representing the initial feature
used for data splitting; internal nodes, indicating subsequent decision points; and leaf
nodes, which provide the final prediction or classification. This structure allows for high
interpretability, as each path from the root to a leaf can be easily understood as a sequence
of decision rules. One of the key advantages of decision trees is their transparency and ease
of interpretation. Additionally, they do not require feature scaling, allowing them to work
effectively with unprocessed data [54]. Furthermore, decision trees are capable of modeling
complex, nonlinear relationships, making them versatile in capturing a wide range of
diverse patterns. However, these models have limitations, such as their susceptibility
to overfitting, particularly when the trees are deep, which can lead to the capture of
noise rather than meaningful patterns in the data. Decision trees are also known for their
instability, as small changes in the input data can result in significant alterations to the tree
structure, making them sensitive to data variations [55].

Similar to a decision tree, rule-based association is an ML method that identifies
relationships or patterns between variables in large datasets through the use of if-then rules.
The explicit association rules make them particularly useful in applications such as market
basket analysis, where relationships between items can be easily extracted and interpreted.
Rule-based models are inherently interpretable, as users can assess the relevance and
validity of each rule and modify them, if necessary, based on domain knowledge [56]. This
interpretability is crucial for applications in sensitive fields, such as healthcare and finance,
where understanding the rationale behind decisions is essential for ensuring fairness,
accountability, and trustworthiness in Al systems.

In healthcare, decision trees and rule-based models are employed for medical diag-
noses due to their transparent decision-making processes, such as diagnosing diseases
based on symptoms and test results. In finance, linear models such as logistic regression
are used for credit scoring to predict default risk, while rule-based models aid in fraud
detection. In the legal domain, rule-based models and decision trees are utilized in risk
assessments, including determining parole eligibility and predicting recidivism. These
models’ interpretability makes them valuable in fields where transparency is crucial.
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2.2. Post-Hoc Explainability

Models that are not inherently interpretable require additional tools to enable a human
to understand them. Post hoc methods, applied after a model is trained, aim to explain
the decisions of a complex, already trained model. These methods are often indispensable
when using black-box models, as the internal working mechanisms of the model are too
complex to be understood without additional aids. Examples of post-hoc interpretative
methods include backpropagation-based methods within neural networks, which quantify
the features at the input, and model-agnostic approaches such as LIME and SHAP. These
provide approximate decision processes for black-box models and, in this manner, may
be used to provide insight into the interpretation of different inputs about predictive
outputs [57]. While these post hoc interpretations are indispensable in the study of black-
box models, they suffer from issues of complexity and domain specificity. In addition to
identifying essential input features, these methods can often only roughly approximate the
kind of relationships that exist between features and outputs in many domains, excluding
image and text analysis [41].

2.2.1. Model-Agnostic XAl

These techniques are used to explain the output of machine-learning models, without
regard for the underlying Al model. They are model-agnostic because they do not depend
on the architecture or inner workings of the model, which allows them to be applied
to any machine-learning model. The primary motive behind model-agnostic methods
is to provide interpretability to predictions or insights into how the model arrives at a
decision [58]. Since the complexity of the underlying Al can vary, a surrogate model that is
inherently interpretable can be used to explain the model’s decisions. A surrogate model is
an interpretable model, such as a decision tree or linear model, used to approximate the
predictions of a more complex "black-box" model. By analyzing the surrogate, insights can
be gained into how the black-box model makes decisions. The advantage of this approach
is that it provides a global understanding of the complex model’s behavior. However, it
may not fully capture the behavior of the original model, particularly in highly nonlinear
problems. Surrogate models are often used to obtain high-level explanations of complex
models, such as in DL applications in healthcare.

LIME

LIME is a widely used method that provides interpretability for individual predictions
of any ML model, irrespective of its complexity. LIME is particularly useful for complex,
black-box models such as deep neural networks and ensemble methods, which often
produce accurate predictions but are difficult to interpret. The core idea behind LIME is to
generate a local surrogate model, typically a simpler and more interpretable model like
linear regression or decision trees, to approximate the behavior of the black-box model
in the neighborhood of a specific instance. This surrogate model allows for detailed local
explanations, making the black-box model’s predictions more transparent on a case-by-case
basis [59]. To explain an individual prediction, LIME first samples data points around the
instance in question by perturbing the input features and generating new examples similar
to the original instance. Perturbation involves modifying the input data slightly to see
how the black-box model’s predictions change. By observing these changes, LIME can
understand how sensitive the model’s prediction is to individual features. It then feeds
these perturbed instances into the black-box model to obtain corresponding predictions.
LIME assigns more weight to perturbed instances that are closer to the original instance
and fits a simple interpretable model to this weighted data, approximating the black-box
model’s decision-making process in that local region. The surrogate model thus provides
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insights into the contribution of each feature toward the prediction, allowing users to
understand which features were most influential in the model’s decision for that particular
instance.

LIME’s primary advantage is its model-agnostic nature, meaning it can be applied to
any machine-learning model, regardless of complexity. This makes it particularly effective
in explaining nonlinear models [60]. It also provides detailed explanations for individual
predictions, which is crucial in high-stakes decision-making areas such as healthcare,
finance, and legal systems. However, LIME is not without limitations. One notable
drawback is its instability; small changes in data can lead to different explanations for
similar instances, especially when the black-box model’s decision boundary is highly
nonlinear. Furthermore, the local explanations provided by LIME may not generalize well
to the entire model, limiting the scope of the explanations to the neighborhood around
the instance being explained. LIME can also be computationally intensive as it requires
generating numerous perturbed samples and running predictions for each, which can be
challenging for large datasets or complex models.

Despite these limitations, LIME has demonstrated broad applicability in various
fields. In credit scoring, for instance, LIME can explain why a loan application was
approved or denied, providing users with detailed reasons based on their financial features.
Similarly, in healthcare, LIME has been used to explain diagnostic models, helping clinicians
understand which patient features contributed most to a given prediction. LIME has also
been applied to image classification tasks, where it can highlight the specific parts of an
image that were most influential in the model’s decision. In summary, LIME offers a flexible,
interpretable solution for understanding the behavior of complex machine-learning models
at the local level, although it is essential to consider its limitations in terms of stability and
generalizability.

Shapley Additive Explanations

SHAP is a method rooted in cooperative game theory that provides a comprehensive
and theoretically sound framework for explaining individual predictions by quantifying
the contribution of each feature. It assigns each feature an importance value, known as the
SHAP value, which represents the feature’s contribution to the model’s prediction. SHAP
values offer a unified measure of feature importance by considering the contribution of
each feature in the context of all possible feature subsets. This ensures that the assigned
SHAP values accurately reflect each feature’s role in the prediction [61].

The primary advantage of SHAP is its solid theoretical foundation, which guarantees
consistency in attributing feature importance at local (individual prediction) and global
(overall model behavior) levels. SHAP values ensure additivity, meaning that the sum of
all feature contributions equals the model’s prediction, which provides a clear and inter-
pretable breakdown of how each feature influences the outcome. However, the method’s
robustness comes with the disadvantage of high computational cost, particularly when
applied to large and complex models, due to the need to compute contributions across all
possible feature subsets.

SHAP operates by calculating the contribution of each feature through the lens of
Shapley values, a concept from cooperative game theory. Shapley values represent a fair
allocation method, originally designed to distribute payouts among players based on their
contribution to a coalition’s total value. In machine learning, each feature is considered
a “player,” and the model’s prediction is the total “payout.” SHAP values ensure that
each feature’s contribution is fairly evaluated by averaging the marginal contribution
of the feature across all possible combinations of features. This approach provides a
comprehensive and equitable distribution of the prediction value among the input features.
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SHAP delivers a robust and interpretable method for understanding the behavior of
complex models, ensuring fairness and transparency in decision-making processes [62].

Partial Dependence Plots

Partial Dependence Plots (PDPs) illustrate the marginal effect of one or two features
on a model’s prediction by varying the target feature(s) while keeping other features
constant. This approach helps visualize how changes in a specific feature impact the
predicted outcome, providing an intuitive and straightforward means of interpreting
feature influence. However, PDPs assume feature independence, which may not hold
in real-world scenarios where features are often correlated. This can lead to misleading
interpretations, particularly in complex models. However, Accumulated Local Effects
(ALE) plots offer an alternative to PDPs by addressing the limitations related to feature
dependencies. ALE plots estimate the local effect of a feature on the model’s predictions by
computing the changes in the prediction within small intervals of the target feature and
then accumulating these effects over the feature’s range [43].

2.2.2. Model-Specific XAl

Model-specific XAI methods are tailored to leverage the internal structures and char-
acteristics of specific types of machine-learning models to provide detailed and context-
sensitive interpretations. These methods are inherently linked to the particular architecture
or operational principles of the models they are designed for, enabling a deeper and more
precise understanding of model behavior than generic, model-agnostic approaches [63].
This category of XAI techniques is particularly relevant for complex models such as deep
neural networks, where interpretability is crucial for understanding the decision-making
process, building trust, and ensuring compliance in critical applications like healthcare,
finance, and autonomous systems [64]. Some of the major model-specific XAI methods are
described as follows.

Attention

Attention mechanisms were developed to address the challenges traditional neural
network architectures posed in processing long data sequences, particularly within natural
language processing (NLP) tasks [65]. Initially introduced for machine translation, attention
mechanisms enable models to focus selectively on different parts of the input sequence
when generating each segment of the output. This approach effectively mitigates the
limitations of RNNs, which rely on fixed-size context vectors that struggle with long-term
dependencies. The core functionality of attention mechanisms lies in the computation of
attention weights, which quantify the relevance of each input element to a specific output
element. In sequence-to-sequence models, these weights are derived by measuring the
similarity between the current state of the decoder and each state of the encoder. The
resulting attention weights are then used to generate a weighted sum of the encoder states,
forming a context vector that guides the model’s current prediction [37]. Various forms
of attention mechanisms exist, including self-attention, where each element in the input
sequence attends to all others, a method particularly effective in models like Transformers
that have set new benchmarks in NLP. Soft attention assigns differentiable weights to all
input elements, while hard attention selects a single element in a non-differentiable manner,
often requiring reinforcement learning for optimization. Attention mechanisms enhance
interpretability by highlighting which parts of the input data are most influential in the
model’s predictions, typically visualized through attention heatmaps. This transparency
facilitates a clearer understanding of the decision-making process. Consequently, attention
mechanisms are widely utilized in NLP applications such as machine translation, text
summarization, and question answering. They are also employed in computer vision tasks,
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where they enable models to concentrate on specific regions of an image, thereby improving
performance in tasks such as object detection and image captioning.

Saliency Maps

Saliency maps are a widely used visualization technique designed to interpret the
decision-making process of DL models, particularly CNNs. They identify and highlight the
regions of an input, such as specific pixels in an image, that are most influential in driving
the model’s predictions. The theoretical basis for saliency maps lies in the observation that
the gradient of a model’s output with respect to its input features can indicate the sensitivity
of the prediction to changes in those features. In essence, these gradients can reveal which
parts of the input the model considers most significant when making a prediction [37].

Generating a saliency map involves computing the gradient of the model’s output
score for a specific class with respect to each input pixel. This gradient is then visualized as
a heatmap, where the magnitude of the gradient at each pixel denotes its importance to
the prediction. A higher gradient value suggests that minor alterations in that pixel would
lead to a substantial change in the model’s output, thereby identifying the critical regions
of the input that the model relies on. This method provides an intuitive understanding of
the model’s focus and decision-making process, particularly in complex image recognition
tasks. Several variations of saliency maps offer different perspectives on feature importance.

1.  Vanilla Saliency Maps: These use the absolute value of the gradient of the out-
put class with respect to each input pixel, providing a basic visualization of feature
relevance. Guided Backpropagation enhances this approach by allowing only the
gradients that positively influence the target class to flow back, thus filtering out
irrelevant information and offering a more refined view of feature importance. Inte-
grated Gradients further refine the attribution process by calculating the cumulative
gradient as the input transitions from a baseline to the actual input, resulting in a
more stable and comprehensive measure of feature contribution. Gradient saliency
methods constitute a category of XAl techniques that utilize the gradients of a model’s
output with respect to its input features to determine the contribution of each feature
to the model’s predictions. These methods are grounded in the principle that the
gradient of the output with respect to the input can indicate how sensitive the model’s
prediction is to small changes in the input variables. By analyzing these gradients,
one can infer which features are most influential in driving the model’s decisions
[37]. The operational process of gradient saliency methods involves computing the
derivative of the model’s output with respect to each input feature, resulting in a
gradient vector. This vector captures the direction and magnitude of change in the
prediction for infinitesimal variations in each feature. The gradients are then used to
generate visualizations or attribution scores that highlight the relative importance of
the input features. There are several notable gradient-based attribution techniques,
each tailored to provide unique insights into model behavior:

2. Gradient Saliency Maps: These use the raw gradients to generate a visual repre-
sentation of feature importance. The saliency map indicates which input features,
such as pixels in an image or words in a text, have the most significant impact on the
model’s prediction. This visualization allows for a straightforward interpretation of
the model’s focus and decision-making process.

* Class Activation Mapping (CAM) and Gradient-weighted Class Activation
Mapping (Grad-CAM): CAM and Grad-CAM extend the concept of saliency
maps by integrating class-specific gradient information with spatial feature maps
from convolutional layers. CAM works by leveraging the linear relationship
between convolutional feature maps and the output layer in CNNs with global
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average pooling (GAP). Specifically, it computes the weighted sum of the feature
maps in the last convolutional layer using the weights from the output layer
corresponding to a particular class [66]. This yields a coarse localization map
that indicates the most discriminative regions used by the model for a given
prediction. Grad-CAM computes the gradient of the class score with respect to
the feature maps of a target convolutional layer, and then performs a GAP on
these gradients to obtain importance weights for each feature map. Grad-CAM
utilizes the gradients of any target concept flowing into the final convolutional
layer to produce a localization map, making it compatible with a variety of
CNN-based models without architectural modifications [67]. By combining the
spatial awareness of CNNs with gradient information, Grad-CAM provides a
more interpretable and class-discriminative visualization, which is particularly
valuable for complex image-based models [37].

*  Deep-Learning Important FeaTures (DeepLIFT): DeepLIFT assigns contribution
scores to each input feature by comparing the network’s output to a baseline
or reference output. Unlike simple gradient methods, DeepLIFT propagates
these differences backward through the network, providing a more stable and
interpretable measure of feature importance. This approach addresses some
limitations of gradient-based methods, such as zero gradients in saturated regions
of activation functions, thereby offering a more comprehensive view of feature
contributions [37].

The primary advantage of gradient-based attribution methods is their ability to pro-
vide both local, instance-specific, and global, model-wide interpretability, making
them versatile tools for understanding complex models. Gradient-based methods
have broad applicability across various domains. In computer vision, they are em-
ployed to visualize feature importance in image classification, object detection, and
segmentation tasks, providing insights into which parts of an image contribute most
to the model’s predictions. In NLP, they help identify the significance of individual
words or phrases in tasks such as text classification and sentiment analysis, facilitating
a deeper understanding of how models process linguistic information. In the health-
care sector, gradient-based methods are employed to evaluate the impact of clinical
variables on model predictions, facilitating medical diagnosis and prognosis by identi-
fying the factors that most significantly influence the model’s decision-making process.
Overall, gradient saliency methods are powerful tools for elucidating the inner work-
ings of complex machine-learning models, offering interpretable explanations that
can enhance trust, transparency, and accountability in high-stakes applications.

We summarize the key features of post-hoc methods discussed in this section in

Table 1.

Table 1. Comparison of the key post-hoc XAI techniques used in drug discovery.

Technique Basic Working Principle Input Type Requirements
Uses cooperative game
SHAP theory. As§1gns each Tabulf;lr, molecular . High
feature an importance descriptors, genomic data

value for a prediction
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Table 1. Cont.

Technique Basic Working Principle Input Type Requirements
Perturbs input locally and
LIME fits a simple interpretable Tabular, image, text Moderate

model to approximate the
prediction

Shows average predicted
outcome as a function of

Partial Dependence Plots Tabular Low to moderate
one or two features,
marginalizing others
Allocates weights to input .
Attention elements, indicating their Sequences like SMILES, Moderate
oo molecular graphs
contribution
. Compute§ gradients of the Image, 2D/3D molecular
Saliency Maps output with respect to Moderate
. structures
input features
Measures the sensitivity of
. . 11 .
Gradient Saliency output to sma Text, image, sequence Moderate

perturbations in input by
computing gradients

3. XAl in Healthcare

On average, global healthcare expenses per capita are increasing due to longer life ex-
pectancy. Thus, it increases the burden on those suffering from chronic diseases. Therefore,
questions about the long-term viability of current healthcare systems are growing. Al has
the potential to help address these issues by improving care quality and cost effectiveness
[68]. However, because of the potential fatal consequences of inaccurate predictions by an
Al model, these models must be transparent and explainable. Clinicians must understand
the Al decision-making processes to develop trust and enable adoption. Thus, healthcare
decision-makers must be reliable, accurate, and transparent in their actions. To overcome
this challenge, research efforts are ongoing to make ML and DL models interpretable [69].
Al systems should provide clinicians with explicit explanations of their results, such as
highlighting crucial aspects that influence diagnostic decisions in disease identification [70].

To elucidate the link between microbial communities and phenotypes, the SHAP
method was used, which interprets model predictions depending on the contribution of
each feature [71]. Positive SHAP values suggest characteristics that support the projected
outcome. Dopaminergic imaging modalities, such as SPECT DaTscan, have been inves-
tigated for early diagnosis of Parkinson’s disease [72], with the LIME algorithm used to
classify cases and provide interpretable explanations. XAl has also been used to diagnose
acute critical illnesses. An early warning score system uses SHAP to explain predictions
based on Electronic Health Record (EHR) data [73]. Furthermore, XAI approaches have
been investigated in Glioblastoma diagnosis, with models using fluid-attenuation inversion
recovery data validated for multiform classification and LIME used to assess local feature
significance in test samples [70].

An explainable computer-assisted approach for lung cancer diagnosis has been pre-
sented, which uses the LIME method to generate natural language explanations from
important features [74]. An ensemble clustering-based XAI model for traumatic brain
injury diagnosis improved interpretability by combining expert knowledge and automated
analysis [75]. COVID-NET, a model for COVID-19 detection using chest X-rays, obtained
93.3% accuracy and 91.1% sensitivity after interpreting its data using GSInquire, which
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audits the network’s internal decision-making by identifying the most influential internal
features and mapping them to specific regions in chest X-ray images. This ensures the
model bases its COVID-19 predictions on clinically relevant patterns rather than spurious
correlations or artifacts [76]. Additionally, an interpretable ML model has been constructed
to predict post-stroke hospital discharge disposition [77].

XAl-enabled classification models for COVID-19 have been presented to produce
accurate predictions and credible explanations [78]. The model utilizes 380 positive and 424
negative CT volumes, aiding radiologists in localizing lesions and enhancing diagnostic
insight. Early detection of sepsis is crucial, as delays can lead to irreparable organ dam-
age and higher mortality, which is addressed by analyzing health information from the
Cardiology Challenge 2019 [79]. An XAI model based on 168 hourly characteristics was
developed, utilizing a gradient boosting model (XGBoost) with K-fold cross-validation
to predict sepsis risk and provide interpretable results in the ICU setting. A study used
brain MRI scans from 1901 participants from the IXI, ADNI, and AIBL datasets to classify
Alzheimer’s Disease by training a model on chronological and brain age data [80]. This
model outperformed the existing ML approaches, with 88% accuracy for females and 92%
for males. It can support both regression and classification tasks while preserving the
morphological semantics of the input space and assigning feature scores to quantify the
contribution of each region to the final result. Table 2 tabulates the XAl tools used in recent
proposals to understand the outcomes of Al-based disease detection networks.

Table 2. Summary of XAI models used for healthcare applications.

XAI Tool Modality Applications Reference
CAM Bone X-ray The quel was intended to estimate knee damage severity [81]
and pain level based on X-ray images.
The model uses three types of lung ultrasound images and
CAM Lung Ultrasound and X-ray VGG-16 and VGGCAM networks to classify three [82]
pneumonia subtypes.
A globally aware multiple instance classifier (GMIC) was
CAM Breast X-ray proposed, which uses CAM to find the most informative [83]
regions by combining local and global data.
It trains the DRE-Net model on data from both healthy and
CAM Lung CT COVID-19 patients. [84]
Grad-CAM Lung CT A deep feature fusion methocEl was proposed, with higher [85]
performance compared to a single CNN.
A semi-supervised model integrating an attention
Grad-CAM Chest Ultrasound mechanism and disentanglement was proposed, with [86]
Grad-CAM used to improve explainability.
Crad-CAM Colonoscopy It uses .DenSt.eNet121 to predict the presence of ulcerative 87]
colitis in patients.
Crad-CAM Chest CT A neighboring-aware graph neural network was suggested [88]

for COVID-19 detection based on chest CT images.
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XAI Tool Modality Applications Reference
The study examines five deep-learning models and uses
Grad-CAMand LIME - Lung X-ray and CT a visualization technique to interpret NASNetLarge. [89]
3 R :
Attention Breast X-ray The sjcudy uses the A3Net model with triple-attention [90]
learning to diagnose 14 chest illnesses.
It proposes a predicted length-of-stay strategy to solve
SHAP EHR imbalanced EHR datasets. o1
It introduces a model for predicting mutations in
SHAP Lung CT individuals with non-small cell lung cancer. 521
LIME and SHAP Chest X-ray It provides a single pipeline to improve CNN [93]

explainability using several XAl approaches.

4. XAl in Drug Discovery

In biological systems, there are intricate layers of regulation. These layers encompass
dynamic interactions among genes, proteins, signaling networks, and metabolic pathways.
Therapeutic targeting and drug response prediction are challenging due to the inherent
variability of diseases, particularly cancer, neurodegeneration, and metabolic disorders.
Despite the strong predictive capabilities of Al and ML methodologies when working with
large datasets, their opaque and black-box nature frequently limits the biological inter-
pretability of their results. XAl is an essential tool that allows researchers to understand the
reasoning behind a model’s specific prediction by connecting these decisions to biologically
significant variables. This interpretability is crucial for enhancing trust and reproducibility,
as well as for developing new hypotheses based on mechanisms that will inform future
phases of drug discovery.

Recent advancements in explainable and interpretable Al have markedly improved
the reliability and acceptance of AI models in drug discovery and healthcare. Numerous
newly established frameworks illustrate the effective integration of XAI principles into
drug-target interaction (DTI) prediction and molecular property modeling. DeFuseDTI and
DTRE utilize advanced DL architectures in conjunction with feature attribution methods
to enhance the precision and interpretability of DTI predictions, thereby facilitating more
informed therapeutic decisions. ARGENT further refines this methodology by integrating
attention mechanisms and interpretable embeddings, enabling researchers to correlate
model predictions with distinct biological or chemical characteristics. DCGAN-DTA utilizes
generative adversarial networks to predict drug—target affinity, ensuring transparency via
interpretable outputs. These models underscore the growing emphasis on integrating XAl
into complex predictive systems, highlighting the importance of transparency, trust, and
actionable insights in modern drug-development processes.

XAI Tools Enabling Interpretability in Drug Discovery

In recent years, there has been an increase in the number of XAI tools designed to
elucidate the predictions generated by complex models in drug discovery. The following
tools offer case-specific interpretability, including structure-activity modeling, toxicity
prediction, and molecular property analysis. A plethora of XAI tools has significantly
enhanced the interpretability of complex models in drug discovery. SHAP utilizes game
theory to assess the contribution of individual input features and has been extensively ap-
plied in models such as random forests, support vector machines (SVMs), and deep neural
networks to identify molecular substructures affecting compound activity in Quantitative
Structure—Activity Relationship (QSAR) studies [61,94]. LIME creates simple surrogate
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models tailored to specific predictions, enabling chemists to understand the crucial struc-
tural elements that influence a compound’s expected activity or toxicity [57]. Combined
with attention mechanisms, Graph Neural Networks (GNNs) effectively recognize critical
atoms and bonds in molecular graphs, facilitating optimization guided by substructures.
Integrated Gradients and DeepLIFT provide gradient-based attributions that are vital in
omics-driven research, pinpointing genes or features that impact drug response classifica-
tions. Furthermore, Chemprop, a framework for predicting molecular properties, has been
integrated with SHAP to clarify ADMET predictions by linking pharmacokinetic properties
with specific atomic and structural features, thereby enabling informed lead optimization.
Drug repositioning can be facilitated by identifying and elucidating biologically plausible
compound-disease associations using GraphlX, which combines GNN with SHAP-like
methods [95]. InstructMol is a multimodal model that employs natural language prompts
and molecular structures to create new compounds [96]. It achieves this by ensuring that
textual and chemical features align in an interpretable manner, enabling rationale-driven
molecule design. AlphaFold 3 includes confidence scoring to identify uncertain areas in
predicted protein structures [97]. This makes structural drug design more reliable. Further-
more, platforms like PandaOmics and ID4 utilize explainable analytics and visualization
components to assist with target discovery, disease mechanisms, and lead prioritization,
enhancing transparency in Al-driven pharmaceutical processes [98]. Table 3 lists the XAI

tools used in the current drug-discovery processes.

Table 3. Summary of XAI models used in identifying interactions for the development of drugs.

Tool/Platform Description Applications in Drug Discovery Reference
Interpreting ML predictions in QSAR
A model-agnostic method that assigns and SAR studies, 1d.ent1fy1n.g key
- molecular features influencing
SHAP each feature an importance value for a . . . [61,94]
. - compound activity, and increasing
particular prediction . .
transparency in model-guided drug
design
Explains the predictions of any Understanding model decisions in
LIME classifier by approximating it locally compound activity prediction and [60]
with an interpretable model toxicity assessments
Attributes importance scores to each Interpreting DL models in senomics
DeepLIFT input feature by comparing the P 5 & [37]
- . and proteomics data analysis
activation to a reference activation
Assigns feature importance by . .
Integrated Gradients integrating gradients of the model’s Ei((ﬁleilunll;g dr(c;e}; rrtleurraelcﬂstiv(\)fgrks m [99]
output with respect to the inputs property p
Predicts protein structures and their Accelerating target identification and
AlphaFold 3 interactions with high accuracy using  understanding protein-ligand [97]
Al interactions.
A graph-based XAI framework for Identifying potential new uses for
GraphIX drug repositioning using existing drugs by analyzing biological [95]
biopharmaceutical networks networks
Integrates molecular graph data and Enhances the foundation for XAl in
InstructMol SMILES sequences Wlth natural . drug dlscove'ry by aligning molecular [96]
language by fine-tuning a pretrained  structures with natural language
LLM through instruction tuning
PandaOmics An Al-driven platform for target Discovering novel therapeutic targets 98]

discovery and biomarker identification

and biomarkers in various diseases
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5. Impact of XAI on Drug Discovery

The development of Al and ML has transformed drug research. Transparency and
interpretability become increasingly crucial as the complexity of these models grows. XAI
solves this issue by providing a better understanding of the predictions provided by ML
algorithms.

5.1. Data Analysis

XAl algorithms facilitate the analysis of large and diverse datasets containing chemical,
biological, and clinical information to find novel drug targets, predict medication efficacy
and toxicity, and improve drug design [100]. Advanced computational approaches and
ML algorithms are utilized in XAI drug discovery to process and evaluate large datasets
from multiple sources, such as molecular structures, biochemical tests, high-throughput
screening (HTS), and preclinical and clinical trials [33].

Al and ML models have shown promising outcomes in areas such as lead optimiza-
tion, virtual screening, chemical design, and medication repurposing [101-104]. As these
models evolve, they have the potential to significantly increase drug-discovery success
rates while reducing time and costs. However, their predictive capacities frequently lack
interpretability, making it difficult for academics, clinicians, and regulatory authorities to
trust and validate the results. Without insights into model decision-making, it is difficult
to evaluate and prioritize targets or compounds. XAI addresses this issue by providing
clear explanations of model predictions [28], which increases trust, enables the detection of
biases or inaccuracies, and facilitates a deeper understanding of model behavior [33].

5.2. Molecular Property Prediction

XAI can optimize lead compounds to enhance effectiveness, pharmacokinetics, and
drug-like features, resulting in the development of more effective medications with fewer
adverse effects [105]. XAl in drug development improves the transparency and account-
ability of AI models, which are critical for lead optimization and toxicity prediction [106].
This increases trust in Al-generated outcomes, encouraging their use in the pharmaceutical
industry. XAl also identifies and mitigates biases, resulting in fair and accurate predictions,
which are critical for avoiding the development of ineffective or harmful medications [31].
Various XAl investigations have focused on unraveling molecular substructures using
the gathered data in drug discovery. The authors in [94] utilize SHAP to interpret key
characteristics and substructures for predicting chemical activity. Jiménez-Luna et al. [107]
also used integrated gradient attribution to highlight key chemical characteristics and
structural aspects in graph neural network models.

5.3. Personalized Medicine

XAI algorithms help to analyze patient data and predict individual responses to
treatments, allowing for the development of personalized and effective medications [108].
In drug research, XAl facilitates personalized medicine by utilizing Al to analyze large
datasets for evidence-based decision-making, drug repurposing, and real-time monitoring
[109]. XAl methodologies, such as SHAP, LIME, and attention mechanisms, help researchers
understand the molecular or biological features that influence predictions, allowing them
to correlate model outputs with domain expertise and refine compound design decisions.

5.4. Unraveling Drug-Drug and Drug-Target Interactions

Drug—-drug interactions (DDIs) are common in polypharmacy, when the effects of one
drug might influence the actions of another in a combined therapy regimen. Ideally, such
interactions produce synergistic effects as well as therapeutic advantages. However, in
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the treatment of multiple diseases, adverse drug events that result in toxicity or reduced
efficacy may occur, thereby increasing patient morbidity and death [110,111]. The current
growth in the approval of new medications and indications has increased the possibility
of DDIs [112,113]. While wet-lab investigations to verify DDIs are time-consuming and
resource-intensive, rendering them unsuitable for routine use, AI models have been used
to predict DDIs better [114-116]. Efforts have been made to improve drug database models
to aid clinical decision-making. Effective DDI management is critical for maintaining
pharmacovigilance and patient safety. The application of XAl in predicting DDIs has
recently been extensively reviewed elsewhere [116].

Biomedical experiments to investigate DTIs are resource-intensive. To reduce costs and
time, ML algorithms have been used to predict these interactions. The abundance of drug
and target data, advances in computing technology, and the distinct capabilities of multiple
ML algorithms have made them the primary tools for predicting drug-target interactions.
This prediction approach aids in screening out inappropriate compounds, which is an
important stage in novel drug development [117]. Modeling cellular networks in cancer
using Al provides a quantitative framework for investigating the association between
network properties and disease, allowing the identification of potential new anticancer
targets and drugs [118-120]. The use of XAl in identifying novel anticancer targets, the
ideas underlying common algorithms, and its applications in biological investigation have
recently been reviewed elsewhere [121].

5.5. Facilitating Drug Repositioning and Combination Therapy

Drug repositioning entails identifying new therapeutic applications for FDA-approved
drugs. This strategy focuses on assessing the efficacy of existing drugs or those under
development in various pathological conditions [122,123]. Since 1995, new drug approvals
have been declining due to the traditional drug-development procedure, which is costly
and time-consuming. Hence, drug repositioning has emerged as a potential alternative,
using XAl to expedite drug discovery while lowering costs and risks [122]. The significant
benefits of this strategy include knowledge of drug pharmacokinetics and toxicity, as well
as the low cost of implementation, which benefits low- to middle-income nations where
traditional therapies may be too expensive [124].

Drug repositioning strategies combine computational and experimental techniques to
uncover new therapeutic applications for current drugs [125,126]. ML, network analysis,
and NLP are three critical computing methodologies [127]. These methods are classified
as disease-centric, drug-centric, or combinations of both [128]. Disease-centric techniques
identify new applications for drugs by grouping diseases based on phenotypic common-
alities, molecular markers, and genetic variants [129,130]. Drug-centric techniques seek
similarities in molecular action between drugs to identify new potential applications [131].
Combination techniques integrate both strategies by creating drug-drug and disease-
disease similarity networks, assigning drugs based on meta-path scores, and predicting
disease-drug relationships by correlating disease expression patterns with genes affected
by drugs [132,133].

5.6. Clinical Trial Design

XAI enhances clinical trial design by identifying appropriate patient demographics,
predicting trial success, and detecting possible adverse effects. This enables a more accurate
assessment of the safety and efficacy of novel medications in humans [134]. XAl can also aid
in predictive modeling, patient selection, and safety precautions during drug development.
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5.7. Ethics and Regulatory Implications

Lack of transparency in Al systems raises significant ethical concerns, particularly in
healthcare and drug development, where decisions must be both interpretable and justifi-
able. Recent frameworks emphasize the importance of fairness, accountability, and human
oversight in the deployment of AL. XAI contributes to these goals by exposing decision
logic, identifying potential biases, and facilitating more transparent communication with
regulatory bodies, clinicians, and interdisciplinary teams.

6. Key Challenges and Future Research Directions in XAI for
Drug Discovery

6.1. Key Challenges

XAl is rapidly becoming a crucial element in Al-assisted drug discovery. It promotes
informed decision-making in drug screening, biomarker identification, clinical trial de-
sign, and personalized medicine by enhancing model transparency, interpretability, and
reliability. In clinical and biomedical settings, XAl enhances interpretability for healthcare
practitioners, facilitates bias detection, improves patient communication, promotes ethical
adherence, and ensures regulatory compliance. Nonetheless, despite its potential, several
significant challenges must be addressed to harness XAl’s capabilities in drug discovery to
their maximum.

6.1.1. Data Limitations

To discover significant patterns, XAI models require large, high-quality datasets with
diverse and varied sample spaces. However, many drug-discovery datasets are limited,
incomplete, or biased, compromising model performance and interpretability. Innovative
technologies, such as data augmentation, synthetic data production, and transfer learning,
will be crucial in overcoming data scarcity and enhancing generalizability.

6.1.2. Complexity and Interpretability Tradeoff

Highly accurate models, particularly deep NN, often operate as black boxes, offering
little insight into their decision-making processes. In contrast, interpretable models may
lack the predictive effectiveness necessary for complex biomedical applications. Striking a
balance in this tradeoff presents a significant challenge. Developing hybrid XAI frameworks
that combine predictive power with intuitive interpretability is a viable strategy and a
challenge for widespread adoption.

6.1.3. Ethical and Bias Concerns

It is crucial to thoroughly assess the ethical implications of XAl models, particularly
in terms of bias and fairness across different demographic groups. Predictions based on
biased training data may exacerbate existing health disparities. The responsible use of Al
in drug discovery requires rigorous validation procedures and models that are created with
fairness in mind.

6.1.4. Regulatory Compliance

To be used in clinical or regulatory settings, XAl systems must provide clear, scien-
tifically relevant explanations that align with expert knowledge. Regulatory bodies seek
models that can be comprehended to evaluate their safety and reliability. The current
application of XAl requires further development to produce understandable results that
meet high safety and regulatory standards.
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6.2. Future Research Directions
6.2.1. Multimodal Data Integration and Augmentation

Drug responses depend on multiple factors, including genetic variations, protein
expression, metabolic pathways, and clinical phenotypes. Consequently, future research
should prioritize the integration of multimodal data—including genomics, proteomics,
transcriptomics, metabolomics, and real-world clinical data—to build comprehensive and
context-aware models of drug action. Integrating gene expression profiles with chemical
structure data significantly enhances the performance of drug sensitivity prediction mod-
els, while also improving biological plausibility and interpretability [135]. Other studies
demonstrate how multimodal fusion not only enhances predictive performance but also
provides mechanistic insights into drug action [136]. However, aligning heterogeneous
data types remains a significant challenge due to differences in data scale, format, and bio-
logical context. To address this, research should also explore data augmentation strategies
such as generative modeling, cross-modal embeddings, and transfer learning to enrich
underrepresented data domains and improve generalization. By advancing data integra-
tion and augmentation methodologies, XAI frameworks can evolve into more resilient
and biologically grounded systems, ultimately supporting safer and more personalized
therapeutic development.

6.2.2. Next-Generation XAI Frameworks

The complex biochemical interactions and the effects of pharmaceuticals on various
targets necessitate the development of innovative XAI models and frameworks. Future
research should focus on models that integrate GNNs with attention-based architectures to
model and interpret complex biochemical interactions accurately. GNNs are well-suited
for representing molecular structures, while attention mechanisms can highlight the most
dominant molecular substructures that contribute to biological activity, binding affinity,
or toxicity [31,137,138]. By leveraging these techniques, XAl models can provide intuitive
and interpretable explanations that align with pharmacological principles, offering clarity
in identifying functional groups responsible for specific pharmacological effects and high-
lighting structural alerts linked to adverse outcomes. When combined with cross-modal
attention between molecular and protein representations, these models could also clarify
drug-target binding mechanisms. Incorporating domain knowledge, such as known reac-
tion rules, toxicophore databases, or protein-ligand interaction motifs, further enhances the
biological plausibility of the explanations. This direction enables the creation of transparent,
mechanism-aware Al systems that not only predict outcomes but also generate actionable
hypotheses, supporting critical decision-making in hit-to-lead optimization, multitarget
drug design, and safety profiling.

6.2.3. Experimental Validation and Hybrid Models

The integration of XAI with experimental methodologies, including molecular dynam-
ics simulations (MDS) and high-throughput screening, can facilitate the confirmation and
enhancement of computational predictions. Research efforts should focus on integrating
XAI with MDS and HTS to validate and refine predictions generated by the AI models.
Attention maps and feature attributions used in [138] can be used to highlight critical
substructures involved in drug-target interactions. These predictions can then be evaluated
using MDS to test the stability and conformational dynamics of the predicted binding
modes, thereby offering physicochemical validation of model outputs. Similarly, XAI-
guided compound prioritization can inform HTS experiments by narrowing the chemical
search space to biologically plausible candidates, enhancing hit rates and reducing false
positives [137]. Experimental feedback from such validation efforts can be reintegrated into
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training datasets to fine-tune model weights and improve generalizability, establishing a
feedback loop between computation and experimentation. Furthermore, XAl can support
drug repurposing by identifying alternative binding sites or off-target effects, which may
then be verified through in vitro assays or biochemical profiling. This hybrid approach
not only augments model performance but also advances the interpretability and scientific
validity of Al-driven drug discovery, enabling the generation of testable hypotheses that
are both biologically plausible and experimentally verifiable.

6.2.4. Collaborative Open Platforms

The MELLODDY project is a large-scale federated learning (FL) initiative in which
several pharmaceutical companies collaboratively train advanced Al models without
explicitly sharing their proprietary data. It leverages over 2.6 billion activity records from
21 million molecules across 40,000 assays. This enables improved predictive modeling
for drug discovery while preserving data privacy and intellectual property rights. The
MELLODDY project serves as a benchmark for collaborative ecosystems that facilitate the
exchange of data, models, and tools, thereby expediting the development and validation of
XAI frameworks. Open research platforms can enhance reproducibility, transparency, and
regulatory compliance among stakeholders.

6.2.5. Ethical-by-Design Frameworks

Incorporating ethical considerations into the design of XAl systems is crucial for
ensuring safety across diverse demographic groups. To ensure the ethical utilization of
Al in healthcare and pharmaceutical development, it is imperative to integrate fairness
constraints, safeguard data privacy, and promote stakeholder accountability. Fairness
constraints are a primary consideration and critical in drug-discovery applications involv-
ing patient data or population-specific models, as algorithmic bias can lead to unequal
access to treatment or inaccurate predictions across demographic subgroups. Racial bias in
healthcare algorithms can significantly impact treatment prioritization, underscoring the
need to incorporate fairness-aware modeling techniques into biomedical Al pipelines [139].
Similarly, safeguarding data privacy through methods such as FL can enable large-scale
collaboration without compromising sensitive information. Moreover, the development of
XALI systems must be coupled with mechanisms for stakeholder accountability, ensuring
that domain experts, data custodians, and Al developers are collectively responsible for
model decisions and their consequences. Future research must therefore prioritize the
co-design of XAl systems with ethics experts, clinicians, and regulatory bodies to create
frameworks that not only explain model behavior but also align with broader safety and
ethical values. This ethical-by-design approach is foundational to building trustworthy Al
systems that can be safely and equitably deployed in the pharmaceutical and healthcare
sectors.

7. Conclusions

As Al transforms drug research, the incorporation of explainability has become a
fundamental requirement rather than an ancillary attribute. XAI reconciles predicted
accuracy with scientific confidence by providing openness, accountability, and biological in-
terpretability in AI models. This study highlights the growing importance of XAI tools and
frameworks, which clarify the reasoning behind complex predictions, allowing researchers
to make more informed, ethical, and practical decisions when designing and developing
novel therapies. The future of drug development relies on integrating advanced AI models
with strong interpretability, robust ethical protections, and interdisciplinary collaboration.
Confronting existing limitations, such as data integrity, model complexity, and regulatory



Pharmaceutics 2025, 17,1119

24 of 30

requirements, while adopting emerging technical breakthroughs, will ensure that Al tech-
nologies are both effective and trustworthy in clinical contexts. Progressing this research
area necessitates a purposeful transition to next-generation XAl research emphasizing trans-
parency, inclusion, and fairness. XAl can expedite drug-development timeframes, mitigate
risks, and facilitate more tailored and accountable therapeutic approaches. The meticulous
implementation of this approach will characterize the forthcoming epoch of pharmaceutical
research, whereby data-driven discovery is both insightful and comprehensible.
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HTS High-Throughput Screening

ICU Intensive Care Unit

1D Independent and Identically Distributed
LIME Local Interpretable Model-Agnostic Explanation
LLM Large Language Model

MDS Molecular Dynamics Simulations

ML Machine Learning

NLP Natural Language Processing

NN Neural Networks

pPDP Partial Dependence Plots

QSAR Quantitative Structure-Activity Relationship
RNN Recurrent Neural Networks

SHAP Shapley Additive exPlanations

SVM Support vector Machine

XAI Explainable Artificial Intelligence



Pharmaceutics 2025, 17,1119 25 of 30

References

1. Hood, L.; Rowen, L. The Human Genome Project: Big science transforms biology and medicine. Genome Med. 2013, 5, 79.
https://doi.org/10.1186/gm483.

2. Meganck, RM,; Baric, R.S. Developing therapeutic approaches for twenty-first-century emerging infectious viral diseases. Nat.
Med. 2021, 27, 401-410. https://doi.org/10.1038/s41591-021-01282-0.

3.  Lombardino, J.G.; Lowe, J.A. The role of the medicinal chemist in drug discovery—then and now. Nat. Rev. Drug Discov. 2004,
3,853-862. https://doi.org/10.1038 /nrd1523.

4. Ali, S;; Ahmad, K,; Shaikh, S.; Chun, H.J.; Choi, L; Lee, E.J. Mss51 protein inhibition serves as a novel target for type 2 diabetes: A
molecular docking and simulation study. J. Biomol. Struct. Dyn. 2024, 42, 4862-4869. https:/ /doi.org/10.1080/07391102.2023.2223652.

5. Ali, S.; Ahmad, K,; Shaikh, S.; Lim, J.H.; Chun, H.].; Ahmad, S.S.; Lee, E.].; Choi, I. Identification and Evaluation of Traditional
Chinese Medicine Natural Compounds as Potential Myostatin Inhibitors: An In Silico Approach. Molecules 2022, 27, 4303.
https:/ /doi.org/10.3390 / molecules27134303.

6. Ahmad, S.S.; Ahmad, K,; Lee, E.J.; Shaikh, S.; Choi, I. Computational Identification of Dithymoquinone as a Potential Inhibitor of
Myostatin and Regulator of Muscle Mass. Molecules 2021, 26, 5407. https:/ /doi.org/10.3390/molecules26175407.

7. Maryanoff, B.E. Drug Discovery and the Medicinal Chemist. Future Med. Chem. 2009, 1, 11-15. https://doi.org/10.4155/fmc.09.2.
PMID: 21426067.

8.  Glassman, PM.; Muzykantov, V.R. Pharmacokinetic and Pharmacodynamic Properties of Drug Delivery Systems. ]. Pharmacol.
Exp. Ther. 2019, 370, 570-580. https://doi.org/10.1124/jpet.119.257113.

9.  Shaikh, S;; Alj, S.; Lim, J.H.; Ahmad, K.; Han, K.S,; Lee, E.J.; Choi, I. Virtual Insights into Natural Compounds as Potential
5a-Reductase Type II Inhibitors: A Structure-Based Screening and Molecular Dynamics Simulation Study. Life 2023, 13, 2152.
https://doi.org/10.3390/1ife13112152.

10. Velkov, T.; Bergen, PJ.; Lora-Tamayo, J.; Landersdorfer, C.B.; Li, ]. PK/PD models in antibacterial development. Curr. Opin.
Microbiol. 2013, 16, 573-579. https://doi.org/10.1016/j.mib.2013.06.010.

11.  Cook, D.; Brown, D.; Alexander, R.; March, R.; Morgan, P; Satterthwaite, G.; Pangalos, M.N. Lessons learned from the
fate of AstraZeneca’s drug pipeline: A five-dimensional framework. Nat. Rev. Drug Discov. 2014, 13, 419—431. https:
/ /doi.org/10.1038 /nrd4309.

12.  Morgan, P; Brown, D.G.; Lennard, S.; Anderton, M.].; Barrett, J.C.; Eriksson, U.; Fidock, M.; Hamrén, B.; Johnson, A.; March, R.E,;
et al. Impact of a five-dimensional framework on R&D productivity at AstraZeneca. Nat. Rev. Drug Discov. 2018, 17, 167-181.
https://doi.org/10.1038 /nrd.2017.244.

13. Singh, N.; Vayer, P.; Tanwar, S.; Poyet, ].L.; Tsaioun, K.; Villoutreix, B.O. Drug discovery and development: Introduction to the
general public and patient groups. Front. Drug Discov. 2023, 3, 1201419. https://doi.org/10.3389/fddsv.2023.1201419.

14. Matthews, H.; Hanison, J.; Nirmalan, N. “Omics”-Informed Drug and Biomarker Discovery: Opportunities, Challenges and
Future Perspectives. Proteomes 2016, 4, 28. https://doi.org/10.3390/ proteomes4030028.

15.  Paul, D.; Sanap, G.; Shenoy, S.; Kalyane, D.; Kalia, K.; Tekade, R K. Artificial intelligence in drug discovery and development.
Drug Discov. Today 2021, 26, 80-93. https:/ /doi.org/10.1016/j.drudis.2020.10.010.

16. Bhardwaj, A.; Kishore, S.; Pandey, D.K. Artificial Intelligence in Biological Sciences. Life 2022, 12, 1430. https://doi.org/10.3390/
life12091430.

17. Lawrence, E.; El-Shazly, A.; Seal, S.; Joshi, C.K.; Lio, P; Singh, S.; Bender, A.; Sormanni, P.; Greenig, M. Understanding Biology in
the Age of Artificial Intelligence. arXiv 2024, arXiv:2403.04106.

18. Jiang, F; Jiang, Y.; Zhi, H.; Dong, Y.; Li, H.; Ma, S.; Wang, Y.; Dong, Q.; Shen, H.; Wang, Y. Artificial intelligence in healthcare: Past,
present and future. Stroke Vasc. Neurol. 2017, 2, 230-243. https://doi.org/10.1136/svn-2017-000101.

19. Yu, H; Yang, L.T.; Zhang, Q.; Armstrong, D.; Deen, M.J. Convolutional neural networks for medical image analysis: State-of-the-art,
comparisons, improvement and perspectives. Neurocomputing 2021, 444, 92-110. https://doi.org/10.1016/j.neucom.2020.04.157.

20. Minic, A.; Jovanovic, L.; Bacanin, N.; Stoean, C.; Zivkovic, M.; Spalevic, P.; Petrovic, A.; Dobrojevic, M.; Stoean, R. Applying
Recurrent Neural Networks for Anomaly Detection in Electrocardiogram Sensor Data. Sensors 2023, 23, 9878. https://doi.org/10
.3390/s23249878.

21. He, K,; Mao, R; Lin, Q.; Ruan, Y; Lan, X.; Feng, M.; Cambria, E. A survey of large language models for healthcare: From data,
technology, and applications to accountability and ethics. Inf. Fusion 2025, 118, 102963. https://doi.org/10.1016/].inffus.2025.102963.

22.  Ali, S; Qadri, YA; Ahmad, K; Lin, Z.; Leung, M.E; Kim, S.W.; Vasilakos, A.V,; Zhou, T. Large Language Models in Genomics—A
Perspective on Personalized Medicine. Bioengineering 2025, 12, 440. https://doi.org/10.3390/bioengineering12050440.

23. U.S. Food and Drug Administration. Artificial Intelligence and Machine Learning (AI/ML)-Enabled Medical Devices. 2025.
Available online: https\protect\protect\leavevmode@ifvmode\kern+.2222em\relax/ /www.fda.gov/medical-devices/software-
medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices (accessed on 21 May 2025).

24. Mak, K.K; Pichika, M.R. Artificial intelligence in drug development: Present status and future prospects. Drug Discov. Today

2019, 24, 773-780. https://doi.org/10.1016/j.drudis.2018.11.014.


https://doi.org/10.1186/gm483
https://doi.org/10.1038/s41591-021-01282-0
https://doi.org/10.1038/nrd1523
https://doi.org/10.1080/07391102.2023.2223652
https://doi.org/10.3390/molecules27134303
https://doi.org/10.3390/molecules26175407
https://doi.org/10.4155/fmc.09.2
https://doi.org/10.1124/jpet.119.257113
https://doi.org/10.3390/life13112152
https://doi.org/10.1016/j.mib.2013.06.010
https://doi.org/10.1038/nrd4309
https://doi.org/10.1038/nrd4309
https://doi.org/10.1038/nrd.2017.244
https://doi.org/10.3389/fddsv.2023.1201419
https://doi.org/10.3390/proteomes4030028
https://doi.org/10.1016/j.drudis.2020.10.010
https://doi.org/10.3390/life12091430
https://doi.org/10.3390/life12091430
https://doi.org/10.1136/svn-2017-000101
https://doi.org/10.1016/j.neucom.2020.04.157
https://doi.org/10.3390/s23249878
https://doi.org/10.3390/s23249878
https://doi.org/10.1016/j.inffus.2025.102963
https://doi.org/10.3390/bioengineering12050440
https\protect \protect \leavevmode@ifvmode \kern +.2222em\relax //www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices
https\protect \protect \leavevmode@ifvmode \kern +.2222em\relax //www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices
https://doi.org/10.1016/j.drudis.2018.11.014

Pharmaceutics 2025, 17,1119 26 of 30

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

Zhang, K.; Yang, X.; Wang, Y;; Yu, Y.; Huang, N.; Li, G.; Li, X.; Wu, J.; Yang, S. Artificial intelligence in drug development. Nat.
Med. 2025, 31, 45-59. https://doi.org/10.1038/s41591-024-03434-4.

Sellwood, M.A.; Ahmed, M.; Segler, M.H.S.; Brown, N. Artificial intelligence in drug discovery. Future Med. Chem. 2018,
10, 2025-2028. https://doi.org/10.4155/fmc-2018-0212.

Pillai, N.; Dasgupta, A.; Sudsakorn, S.; Fretland, J.; Mavroudis, P.D. Machine Learning guided early drug discovery of small
molecules. Drug Discov. Today 2022, 27,2209-2215. https://doi.org/10.1016/j.drudis.2022.03.017.

Kirboga, K.K.; Abbasi, S.; Kiigiiksille, E. Explainability and White Box in Drug Discovery. Chem. Biol. Drug Des. 2023, 101, 560-572.
https://doi.org/10.1111/cbdd.14262.

Ding, Q.; Yao, R.; Bai, Y;; Da, L.; Wang, Y.; Xiang, R.; Jiang, X.; Zhai, F. Explainable Artificial Intelligence in the Field of Drug
Research. Drug Des. Dev. Ther. 2025, 19, 4501-4516. https://doi.org/10.2147/DDDT.S5525171.

Ponzoni, I.; Capoferri, L.; Reis, P.A.B.; Holliday, J.D.; Bender, A. Explainable artificial intelligence: A taxonomy and guidelines for
its application to drug discovery. WIREs Comput. Mol. Sci. 2023, 13, e1681. https://doi.org/10.1002/wcms.1681.
Jiménez-Luna, J.; Grisoni, F; Schneider, G. Drug discovery with explainable artificial intelligence. Nat. Mach. Intell. 2020,
2,573-584. https://doi.org/10.1038/s42256-020-00236-4.

Vo, T.; Nguyen, N.; Kha, Q.; Le, N. On the Road to Explainable Al in Drug-Drug Interactions Prediction: A Systematic Review.
Comput. Struct. Biotechnol. J. 2022, 20, 2112-2123. https://doi.org/10.1016/j.csbj.2022.04.021.

Alizadehsani, R.; Oyelere, S.S.; Hussain, S.; Jagatheesaperumal, S.K.; Calixto, R.R.; Rahouti, M. Explainable Artificial Intelligence
for Drug Discovery and Development—A Comprehensive Survey. IEEE Access 2024, pp. 35796-35812. https://doi.org/10.1109/
ACCESS.2024.3373195.

Ali, S.; Abuhmed, T.; El-Sappagh, S.; Muhammad, K.; Alonso-Moral, ].M.; Confalonieri, R.; Guidotti, R.; Del Ser, J.; Diaz-
Rodriguez, N.; Herrera, F. Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial
Intelligence. Inf. Fusion 2023, 99, 101805. https://doi.org/10.1016/j.inffus.2023.101805.

Montavon, G.; Samek, W.; Miiller, K.R. Methods for interpreting and understanding deep neural networks. Digit. Signal Process.
2018, 73, 1-15. https://doi.org/10.1016/j.dsp.2017.10.011.

Vilone, G.; Longo, L. Notions of explainability and evaluation approaches for explainable artificial intelligence. Inf. Fusion 2021,
76, 89-106. https:/ /doi.org/10.1016/j.inffus.2021.05.009.

Das, A.; Rad, P. Opportunities and Challenges in Explainable Artificial Intelligence (XAI): A Survey. arXiv 2020, arXiv:2006.11371.
Seddik, B.; Ahlem, D.; Hocine, C. An Explainable Self-Labeling Grey-Box Model. In Proceedings of the 2022 4th International
Conference on Pattern Analysis and Intelligent Systems (PAIS), Oum El Bouaghi, Algeria, 12-13 October 2022; pp. 1-7. https:
//doi.org/10.1109 /PAIS56586.2022.9946912.

Hassija, V.; Chamola, V.; Mahapatra, A.; Singal, A.; Goel, D.; Huang, K.; Scardapane, S.; Spinelli, I.; Mahmud, M.; Hussain,
A. Interpreting Black-Box Models: A Review on Explainable Artificial Intelligence. Cogn. Comput. 2024, 16, 45-74. https:
/ /doi.org/10.1007 /s12559-023-10179-8.

Dwivedi, R.; Dave, D.; Naik, H.; Singhal, S.; Rana, O.; Patel, P,; Qian, B.; Wen, Z.; Shah, T.; Morgan, G.; et al. Explainable AI (XAI):
Core ideas, techniques and solutions. ACM Comput. Surv. 2023, 55, 194. https://doi.org/10.1145/3561048.

Stiglic, G.; Kocbek, P; Fijacko, N.; Zitnik, M.; Verbert, K.; Cilar, L. Interpretability of machine learning-based prediction models in
healthcare.

Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2020, 10, €1379. https://doi.org/10.1002 /widm.1379.

Vollert, S.; Atzmueller, M.; Theissler, A. Interpretable Machine Learning: A brief survey from the predictive maintenance
perspective. In Proceedings of the 2021 IEEE 26th International Conference on Emerging Technologies and Factory Automation
(ETFA), Online, 7-10 September 2021; pp. 1-8. https://doi.org/10.1109/ETFA45728.2021.9613467.

Hanif, A.; Zhang, X.; Wood, S. A Survey on Explainable Artificial Intelligence Techniques and Challenges. In Proceedings of the
2021 IEEE 25th International Enterprise Distributed Object Computing Conference Workshops (EDOCW), Gold Coast, Australia,
25-29 October 2021; pp. 81-89. https://doi.org/10.1109/EDOCW52865.2021.00036.

Salih, A.M.; Wang, Y. Are Linear Regression Models White Box and Interpretable? arXiv 2024, arXiv:2407.12177.

Abu-Faraj, M.; Al-Hyari, A.; Alqadi, Z.A.A. Experimental Analysis of Methods Used to Solve Linear Regression Models. Comput.
Mater. Contin. 2022, 72, 5699-5712. https:/ /doi.org/10.32604 /cmc.2022.027364.

Hope, TM.H. Linear regression. In Machine Learning: Methods and Applications to Brain Disorders; Mechelli, A.; Vieira, S., Eds.;
Academic Press: London, UK, 2020; pp. 67-81. https://doi.org/10.1016/B978-0-12-815739-8.00004-3.

Tian, Y.; Zhang, Y. A comprehensive survey on regularization strategies in machine learning. Inf. Fusion 2022, 80, 146-166.
https:/ /doi.org/10.1016/j.inffus.2021.11.005.

Pargent, F.; Pfisterer, F.; Thomas, J.; Bischl, B. Regularized target encoding outperforms traditional methods in supervised
machine learning with high cardinality features. Comput. Stat. 2022, 37, 2671-2692. https://doi.org/10.1007/s00180-022-01207-6.
Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.


https://doi.org/10.1038/s41591-024-03434-4
https://doi.org/10.4155/fmc-2018-0212
https://doi.org/10.1016/j.drudis.2022.03.017
https://doi.org/10.1111/cbdd.14262
https://doi.org/10.2147/DDDT.S525171
https://doi.org/10.1002/wcms.1681
https://doi.org/10.1038/s42256-020-00236-4
https://doi.org/10.1016/j.csbj.2022.04.021
https://doi.org/10.1109/ACCESS.2024.3373195
https://doi.org/10.1109/ACCESS.2024.3373195
https://doi.org/10.1016/j.inffus.2023.101805
https://doi.org/10.1016/j.dsp.2017.10.011
https://doi.org/10.1016/j.inffus.2021.05.009
https://doi.org/10.1109/PAIS56586.2022.9946912
https://doi.org/10.1109/PAIS56586.2022.9946912
https://doi.org/10.1007/s12559-023-10179-8
https://doi.org/10.1007/s12559-023-10179-8
https://doi.org/10.1145/3561048
https://doi.org/10.1002/widm.1379
https://doi.org/10.1109/ETFA45728.2021.9613467
https://doi.org/10.1109/EDOCW52865.2021.00036
https://doi.org/10.32604/cmc.2022.027364
https://doi.org/10.1016/B978-0-12-815739-8.00004-3
https://doi.org/10.1016/j.inffus.2021.11.005
https://doi.org/10.1007/s00180-022-01207-6

Pharmaceutics 2025, 17,1119 27 of 30

50.

51.

52.

53.

54.

55.
56.

57.

58.

59.
60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

Retzlaff, C.O.; Angerschmid, A.; Saranti, A.; Schneeberger, D.; Réttger, R.; Miiller, H.; Holzinger, A. Post-hoc vs ante-hoc explanations:
XAI design guidelines for data scientists. Cogn. Syst. Res. 2024, 86, 101243. https://doi.org/10.1016/j.cogsys.2024.101243.
Agarwal, R.; Melnick, L.; Frosst, N.; Zhang, X.; Lengerich, B.; Caruana, R.; Hinton, G. Neural Additive Models: Interpretable
Machine Learning with Neural Nets. arXiv 2020, arXiv:2004.13912.

Wood, S.N. Inference and computation with generalized additive models and their extensions. TEST 2020, 29, 307-339.
https:/ /doi.org/10.1007 /s11749-020-00711-5.

Oviedo, F,; Lavista Ferres, ]J.; Buonassisi, T.; Butler, K.T. Interpretable and Explainable Machine Learning for Materials Science
and Chemistry. Accounts Mater. Res. 2022, 3, 597-607. https://doi.org/10.1021/accountsmr.1c00244.

Lotsch, J.; Kringel, D.; Ultsch, A. Explainable Artificial Intelligence (XAI) in Biomedicine: Making Al Decisions Trustworthy for
Physicians and Patients. BioMedInformatics 2022, 2, 1-17. https:/ /doi.org/10.3390/biomedinformatics2010001.

Izza, Y.; Ignatiev, A.; Marques-Silva, ]. On Explaining Decision Trees. arXiv 2020, arXiv:2010.11034.

Kozielski, M.; Sikora, M.; Wawrowski, L. Towards consistency of rule-based explainer and black box model: fusion of rule
induction and XAl-based feature importance. arXiv 2024, arXiv:2407.14543.

Cesarini, M.; Malandri, L.; Pallucchini, F.; Seveso, A.; Xing, F. Explainable AI for Text Classification: Lessons from a Comprehensive
Evaluation of Post Hoc Methods. Cogn. Comput. 2024, 16, 3077-3095. https:/ /doi.org/10.1007 /s12559-024-10325-w.

Gianfagna, L.; Di Cecco, A. Explainable Al with Python; Springer: Cham, Switzerland, 2021. https:/ /doi.org/10.1007/978-3-030-68640-6.
Dieber, ].; Kirrane, S. Why model why? Assessing the strengths and limitations of LIME. arXiv 2020, arXiv:2012.00093.

Ribeiro, M.T.; Singh, S.; Guestrin, C. Why Should I Trust You? Explaining the Predictions of Any Classifier. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’16), San Francisco, CA, USA,
13-17 August 2016; pp. 1135-1144. https:/ /doi.org/10.1145/2939672.2939778.

Lundberg, S.M.; Lee, S.I. A Unified Approach to Interpreting Model Predictions. arXiv 2017, arXiv:1705.07874.

Salih, A.M.; Raisi-Estabragh, Z.; Boscolo Galazzo, I.; Radeva, P; Petersen, S.E.; Lekadir, K.; Menegaz, G. A Perspective on Explainable
Artificial Intelligence Methods: SHAP and LIME. Adv. Intell. Syst. 2024, 7, 2400304. https:/ /doi.org/10.1002/aisy.202400304.
Speith, T. A Review of Taxonomies of Explainable Artificial Intelligence (XAI) Methods. In Proceedings of the 2022 ACM
Conference on Fairness, Accountability, and Transparency (FAccT "22), Seoul, Republic of Korea, 21-24 June 2022; pp. 1-12.
https://doi.org/10.1145/3531146.3534639.

Weber, L.; Lapuschkin, S.; Binder, A.; Samek, W. Beyond Explaining: Opportunities and Challenges of XAI-Based Model
Improvement. Inf. Fusion 2023, 92, 154-176. https://doi.org/10.1016/j.inffus.2022.11.013.

Dehimi, N.E.H.; Tolba, Z. Attention Mechanisms in Deep Learning: Towards Explainable Artificial Intelligence. In Proceedings
of the 2024 6th International Conference on Pattern Analysis and Intelligent Systems (PAIS), Oum El Bouaghi, Algeria, 24-25
April 2024. https://doi.org/10.1109/PAIS62114.2024.10541203.

Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Learning Deep Features for Discriminative Localization. arXiv 2015,
arXiv:1512.04150.

Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks
via Gradient-Based Localization. Int. . Comput. Vis. 2020, 128, 336-359. https://doi.org/10.1007/s11263-019-01228-7.

Higgins, D.; Madai, V.I. From Bit to Bedside: A Practical Framework for Artificial Intelligence Product Development in Healthcare.
Adv. Intell. Syst. 2020, 2, 2000052. https://doi.org/10.1002/aisy.202000052.

Nasarian, E.; Alizadehsani, R.; Acharya, U.R.; Tsui, K.L. Designing Interpretable ML System to Enhance Trust in Healthcare:
A Systematic Review to Proposed Responsible Clinician-AI-Collaboration Framework. Inf. Fusion 2024, 108, 102412. https:
//doi.org/10.1016/j.inffus.2024.102412.

Rucco, M.; Viticchi, G.; Falsetti, L. Towards Personalized Diagnosis of Glioblastoma in Fluid-Attenuated Inversion Recovery
(FLAIR) by Topological Interpretable Machine Learning. Mathematics 2020, 8, 770. https://doi.org/10.3390/math8050770.
Carrieri, A.P; Haiminen, N.; Maudsley-Barton, S.; Gardiner, L.J.; Murphy, B.; Mayes, A.E.; Paterson, S.; Grimshaw, S.; Winn, M.;
Shand, C.; et al. Explainable Al reveals changes in skin microbiome composition linked to phenotypic differences. Sci. Rep. 2021,
11, 4565. https://doi.org/10.1038/s41598-021-83922-6.

Magesh, P.R.; Myloth, R.D.; Tom, R.J. An Explainable Machine Learning Model for Early Detection of Parkinson’s Disease using
LIME on DaTSCAN Imagery. Comput. Biol. Med. 2020, 126, 104041. https://doi.org/10.1016/j.compbiomed.2020.104041.
Lauritsen, S.M.; Kristensen, M.; Olsen, M.V.; Larsen, M.S.; Lauritsen, K.M.; Jorgensen, M.].; Lange, J.; Thiesson, B. Explainable
artificial intelligence model to predict acute critical illness from electronic health records. Nat. Commun. 2020, 11, 3852.
https://doi.org/10.1038 /s41467-020-17431-x.

Meldo, A.; Utkin, L.; Kovalev, M.; Kasimov, E. The natural language explanation algorithms for the lung cancer computer-aided
diagnosis system. Artif. Intell. Med. 2020, 108, 101952. https://doi.org/10.1016/j.artmed.2020.101952.

Yeboah, D.; Steinmeister, L.; Hier, D.B.; Hadi, B.; Wunsch, D.C.; Olbricht, G.R.; Obafemi-Ajayi, T. An Explainable and Statistically
Validated Ensemble Clustering Model Applied to the Identification of Traumatic Brain Injury Subgroups. IEEE Access 2020,
8, 180690-180705. https://doi.org/10.1109/ ACCESS.2020.3027453.


https://doi.org/10.1016/j.cogsys.2024.101243
https://doi.org/10.1007/s11749-020-00711-5
https://doi.org/10.1021/accountsmr.1c00244
https://doi.org/10.3390/biomedinformatics2010001
https://doi.org/10.1007/s12559-024-10325-w
https://doi.org/10.1007/978-3-030-68640-6
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1002/aisy.202400304
https://doi.org/10.1145/3531146.3534639
https://doi.org/10.1016/j.inffus.2022.11.013
https://doi.org/10.1109/PAIS62114.2024.10541203
https://doi.org/10.1007/s11263-019-01228-7
https://doi.org/10.1002/aisy.202000052
https://doi.org/10.1016/j.inffus.2024.102412
https://doi.org/10.1016/j.inffus.2024.102412
https://doi.org/10.3390/math8050770
https://doi.org/10.1038/s41598-021-83922-6
https://doi.org/10.1016/j.compbiomed.2020.104041
https://doi.org/10.1038/s41467-020-17431-x
https://doi.org/10.1016/j.artmed.2020.101952
https://doi.org/10.1109/ACCESS.2020.3027453

Pharmaceutics 2025, 17,1119 28 of 30

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

Wang, L.; Lin, Z.Q.; Wong, A. COVID-Net: A Tailored Deep Convolutional Neural Network Design for Detection of COVID-19
Cases from Chest X-Ray Images. Sci. Rep. 2020, 10, 19549. https://doi.org/10.1038 /s41598-020-76550-z.

Yao, L.; Syed, A.R.; Rahman, M.H.; Rahman, M.M.; Foraker, R.E.; Banerjee, I. Predicting Post-stroke Hospital Discharge
Disposition Using Interpretable Machine Learning Approaches. In Proceedings of the 2019 IEEE International Conference
on Big Data (Big Data), Angeles, CA, USA, 9-12 December 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 2955-2961. https:
//doi.org/10.1109/BigData47090.2019.9006592.

Ye, Q.; Xia, J.; Yang, G. Explainable AI For COVID-19 CT Classifiers: An Initial Comparison Study. arXiv 2021, arXiv:2104.14506.
Reyna, M.A; Josef, C.S,; Jeter, R.; Shashikumar, S.P.; Westover, M.B.; Nemati, S.; Clifford, G.D.; Sharma, A. Early Prediction
of Sepsis From Clinical Data: The PhysioNet/Computing in Cardiology Challenge. Crit. Care Med. 2020, 48, 210-217.
https:/ /doi.org/10.1097 /CCM.0000000000004145.

Varzandian, A.; Razo, M.A.S.; Sanders, M.R.; Atmakuru, A.; Fatta, G.D. Classification-Biased Apparent Brain Age for the
Prediction of Alzheimer’s Disease. Front. Neurosci. 2021, 15, 673120. https://doi.org/10.3389/fnins.2021.673120.

Pierson, E.; Cutler, D.M.; Leskovec, ].; Mullainathan, S.; Obermeyer, Z. An algorithmic approach to reducing unexplained pain
disparities in underserved populations. Nat. Med. 2021, 27, 136-140. https://doi.org/10.1038/s41591-020-01192-7.

Born, J.; Wiedemann, N.; Cossio, M.; Buhre, C.; Brandle, G.; Leidermann, K.; Goulet, J.; Aujayeb, A.; Moor, M.; Rieck, B.;
et al. Accelerating Detection of Lung Pathologies with Explainable Ultrasound Image Analysis. Appl. Sci. 2021, 11, 672.
https:/ /doi.org/10.3390/app11020672.

Shen, Y.; Wu, N.; Phang, ].; Park, J.; Liu, K,; Tyagi, S.; Heacock, L.; Kim, S.G.; Moy, L.; Cho, K,; et al. An interpretable classifier
for high-resolution breast cancer screening images utilizing weakly supervised localization. Med. Image Anal. 2021, 68, 101908.
https://doi.org/10.1016/j.media.2020.101908.

Song, Y.; Zheng, S.; Li, L.; Zhang, X.; Zhang, X.; Huang, Z.; Chen, ].; Wang, R.; Zhao, H.; Zha, Y.; et al. Deep Learning Enables
Accurate Diagnosis of Novel Coronavirus (COVID-19) with CT Images. IEEE/ACM Trans. Comput. Biol. Bioinform. 2021,
18, 2775-2780. https:/ /doi.org/10.1109/TCBB.2021.3065361.

Wang, S.H.; Govindaraj, V.V.; Gérriz, ] M.; Zhang, X.; Zhang, Y.D. COVID-19 classification by FGCNet with deep feature fusion
from graph convolutional network and convolutional neural network. Inf. Fusion 2021, 67, 208-229. https://doi.org/10.1016/j.
inffus.2020.10.004.

Fan, Z.; Gong, P,; Tang, S.; Lee, C.U.; Zhang, X.; Song, P.; Chen, S.; Li, H. Joint localization and classification of breast
masses on ultrasound images using an auxiliary attention-based framework. Med. Image Anal. 2023, 90, 102960. https:
//doi.org/10.1016 /j.media.2023.102960.

Sutton, R.T.; Zaiane, O.R.; Goebel, R.; Baumgart, D.C. Artificial intelligence enabled automated diagnosis and grading of
ulcerative colitis endoscopy images. Sci. Rep. 2022, 12, 2748. https://doi.org/10.1038/s41598-022-06726-2.

Lu, S.; Zhu, Z.; Gorriz, ].M.; Wang, S.H.; Zhang, Y.D. NAGNN: Classification of COVID-19 based on neighboring aware
representation from deep graph neural network. Int. J. Intell. Syst. 2022, 37, 1572-1598. https:/ /doi.org/10.1002/int.22686.
Punn, N.S.; Agarwal, S. Automated diagnosis of COVID-19 with limited posteroanterior chest X-ray images using fine-tuned
deep neural networks. Appl. Intell. 2021, 51, 2689-2702. https://doi.org/10.1007 /s10489-020-01900-3.

Wang, H.; Wang, S.; Qin, Z.; Zhang, Y.; Li, R;; Xia, Y. Triple attention learning for classification of 14 thoracic diseases using chest
radiography. Med. Image Anal. 2021, 67, 101846. https:/ /doi.org/10.1016/j.media.2020.101846.

Alsinglawi, B.; Alshari, O.; Alorjani, M.; Mubin, O.; Alnajjar, F.; Novoa, M.; Darwish, O. An explainable machine learning
framework for lung cancer hospital length of stay prediction. Sci. Rep. 2022, 12, 607. https://doi.org/10.1038/s41598-021-04608-7.
Le, N.Q.K; Kha, Q.H.; Nguyen, V.H.; Chen, Y.C.; Cheng, S.J.; Chen, C.Y. Machine Learning-Based Radiomics Signatures for EGFR and
KRAS Mutations Prediction in Non-Small-Cell Lung Cancer. Int. ]. Mol. Sci. 2021, 22, 9254. https:/ /doi.org/10.3390/ijms22179254.
Abeyagunasekera, S.H.P.; Perera, Y.; Chamara, K.; Kaushalya, U.; Sumathipala, P.; Senaweera, O. LISA: Enhance the explainability
of medical images unifying current XAI techniques. In Proceedings of the 2022 IEEE 7th International Conference for Convergence
in Technology (I2CT), Pune, India, 7-9 April 2022; pp. 1-9. https://doi.org/10.1109/12CT54291.2022.9824840.
Rodriguez-Pérez, R.; Bajorath, J. Interpretation of Compound Activity Predictions from Complex Machine Learning Models Using
Local Approximations and Shapley Values. J. Med. Chem. 2020, 63, 8761-8777. https://doi.org/10.1021/acs.jmedchem.9b01101.
Takagi, A.; Kamada, M.; Hamatani, E.; Kojima, R.; Okuno, Y. GraphIX: Graph-based In silico XAI (explainable artificial
intelligence) for drug repositioning from biopharmaceutical network. arXiv 2022, arXiv:2212.10788.

Cao, H; Liu, Z,; Lu, X.; Yao, Y.; Li, Y. InstructMol: Multi-Modal Integration for Building a Versatile and Reliable Molecular
Assistant in Drug Discovery. arXiv 2024, arXiv:2311.16208v2.

Jumper, ].; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Zidek, A; Potapenko,
A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583-589. https:/ /doi.org/10.1038/s415
86-021-03819-2.


https://doi.org/10.1038/s41598-020-76550-z
https://doi.org/10.1109/BigData47090.2019.9006592
https://doi.org/10.1109/BigData47090.2019.9006592
https://doi.org/10.1097/CCM.0000000000004145
https://doi.org/10.3389/fnins.2021.673120
https://doi.org/10.1038/s41591-020-01192-7
https://doi.org/10.3390/app11020672
https://doi.org/10.1016/j.media.2020.101908
https://doi.org/10.1109/TCBB.2021.3065361
https://doi.org/10.1016/j.inffus.2020.10.004
https://doi.org/10.1016/j.inffus.2020.10.004
https://doi.org/10.1016/j.media.2023.102960
https://doi.org/10.1016/j.media.2023.102960
https://doi.org/10.1038/s41598-022-06726-2
https://doi.org/10.1002/int.22686
https://doi.org/10.1007/s10489-020-01900-3
https://doi.org/10.1016/j.media.2020.101846
https://doi.org/10.1038/s41598-021-04608-7
https://doi.org/10.3390/ijms22179254
https://doi.org/10.1109/I2CT54291.2022.9824840
https://doi.org/10.1021/acs.jmedchem.9b01101
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2

Pharmaceutics 2025, 17,1119 29 of 30

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

Kamya, P; Ozerov, 1.V.; Pun, EW.; Tretina, K.; Fokina, T.; Chen, S.; Naumov, V.; Long, X.; Lin, S.; Korzinkin, M.; et al.
PandaOmics: An Al-Driven Platform for Therapeutic Target and Biomarker Discovery. J. Chem. Inf. Model. 2024, 64, 3961-3969.
https://doi.org/10.1021/acs.jcim.3c01619.

Sundararajan, M.; Taly, A.; Yan, Q. Axiomatic Attribution for Deep Networks. In Proceedings of the 34th International Conference
on Machine Learning, Sydney, Australia, 6-11 August 2017; Precup, D., Teh, YYW., Eds.; PMLR: New York, NY, USA, 2017; pp.
3319-3328.

Harren, T.; Matter, H.; Hessler, G.; Rarey, M.; Grebner, C. Interpretation of structure-activity relationships in real-world drug design
data sets using explainable artificial intelligence. J. Chem. Inf. Model. 2022, 62, 447-462. https://doi.org/10.1021/acs.jcim.1c01263.
Maia, E.H.B.; de Souza, L.H.M.; de Souza, R.T.; Andricopulo, A.D. Structure-Based Virtual Screening: From Classical to Artificial
Intelligence. Front. Chem. 2020, 8, 343. https://doi.org/10.3389/fchem.2020.00343.

Schneider, P.; Walters, W.P.; Plowright, A.T.; Sieroka, N.; Listgarten, J.; Goodnow, R.A., Jr.; Fisher, J.; Jansen, ].M.; Duca,
J.S.;; Rush, T.S.; et al. Rethinking Drug Design in the Artificial Intelligence Era. Nat. Rev. Drug Discov. 2020, 19, 353-364.
https://doi.org/10.1038 /s41573-019-0050-3.

Sahoo, B.M.; Kumar, B.V.VR,; Sruti, ].; Mahapatra, M.K.; Banik, B.K.; Borah, P. Drug Repurposing Strategy (DRS): Emerging
Approach to Identify Potential Therapeutics for Treatment of Novel Coronavirus Infection. Front. Mol. Biosci. 2021, 8, 628144.
https://doi.org/10.3389 /fmolb.2021.628144.

Ali, S.; Shaikh, S.; Ahmad, K.; Choi, I. Identification of active compounds as novel dipeptidyl peptidase-4 inhibitors through
machine learning and structure-based molecular docking simulations. J]. Biomol. Struct. Dyn. 2025, 43, 1611-1620. https:
//doi.org/10.1080/07391102.2023.2292299.

Danishuddin; Kumar, V.; Faheem, M.; Lee, KW. A decade of machine learning-based predictive models for human pharmacoki-
netics: Advances and challenges. Drug Discov. Today 2022, 27, 529-537. https://doi.org/10.1016/j.drudis.2021.09.013.

Rao, J.; Zheng, S.; Lu, Y; Yang, Y. Quantitative evaluation of explainable graph neural networks for molecular property prediction.
Patterns 2022, 3, 100628. https://doi.org/10.1016/j.patter.2022.100628.

Jiménez-Luna, ].; Skalic, M.; Weskamp, N.; Schneider, G. Coloring molecules with explainable artificial intelligence for preclinical
relevance assessment. J. Chem. Inf. Model. 2021, 61, 1083-1094. https://doi.org/10.1021/acs.jcim.0c01344.

Shen, L.; Bai, J.; Jiao, W.; Shen, B. The fourth scientific discovery paradigm for precision medicine and healthcare: Challenges
ahead. Precis. Clin. Med. 2021, 4, 80-84. https:/ /doi.org/10.1093 /pcmedi/pbab007.

Drancé, M. Neuro-Symbolic XAI: Application to Drug Repurposing for Rare Diseases. In Database Systems for Advanced Applications;
Bhattacharya, A., Lee Mong L4, J., Agrawal, D., Reddy, PK., Mohania, M., Mondal, A., Goyal, V., Uday Kiran, R., Eds.; Springer
International Publishing: Cham, Switzerland, 2022; pp. 539-543.

Askari, M.; Eslami, S.; Louws, M.; Wierenga, P.C.; Dongelmans, D.A.; Kuiper, R.A.; Abu-Hanna, A. Frequency and nature of drug-
drug interactions in the intensive care unit. Pharmacoepidemiol. Drug Saf. 2013, 22, 430-437. https://doi.org/10.1002/pds.3415.
Bories, M.; Bouzillé, G.; Cuggia, M.; Le Corre, P. Drug-Drug Interactions in Elderly Patients with Potentially Inappropriate
Medications in Primary Care, Nursing Home and Hospital Settings: A Systematic Review and a Preliminary Study. Pharmaceutics
2021, 13, 266. https://doi.org/10.3390/pharmaceutics13020266.

Reis, A.M.M.; Cassiani, S.H.D.B. Evaluation of three brands of drug interaction software for use in intensive care units. Pharm.
World Sci. 2010, 32, 822-828. https://doi.org/10.1007/s11096-010-9445-2.

Vonbach, P; Dubied, A.; Kriahenbiihl, S.; Beer, ].H. Evaluation of frequently used drug interaction screening programs. Pharm.
World Sci. 2008, 30, 367-374. https://doi.org/10.1007/511096-008-9191-x.

Cheng, F; Zhao, Z. Machine learning-based prediction of drug—drug interactions by integrating drug phenotypic, therapeutic,
chemical, and genomic properties. J. Am. Med. Inform. Assoc. 2014, 21, €278-e286. https://doi.org/10.1136/amiajnl-2013-002512.
Ryu, J.Y,; Kim, H.U,; Lee, S.Y. Deep learning improves prediction of drug-drug and drug—food interactions. Proc. Natl. Acad. Sci.
USA 2018, 115, E4304-E4311. https://doi.org/10.1073/pnas.1803294115.

Vilar, S.; Uriarte, E.; Santana, L.; Lorberbaum, T.; Hripcsak, G.; Friedman, C.; Tatonetti, N.P. Similarity-based modeling in
large-scale prediction of drug—drug interactions. Nat. Protoc. 2014, 9, 2147-2163. https://doi.org/10.1038 /nprot.2014.151.

Xu, L.; Ru, X,; Song, R. Application of Machine Learning for Drug-Target Interaction Prediction. Front. Genet. 2021, 12, 680117.
https://doi.org/10.3389/fgene.2021.680117.

Ideker, T.; Nussinov, R. Network approaches and applications in biology. PLoS Comput. Biol. 2017, 13, e1005771. https:
//doi.org/10.1371/journal.pcbi.1005771.

Lai, X,; Gupta, S.K.; Schmitz, U.; Marquardt, S.; Knoll, S.; Spitschak, A.; Wolkenhauer, O.; Ptitzer, B.M.; Vera, ]. MiR-205-5p and
miR-342-3p cooperate in the repression of the E2F1 transcription factor in the context of anticancer chemotherapy resistance.
Theranostics 2018, 8, 1106-1120. https://doi.org/10.7150/thno.19904.

Lai, X.; Eberhardt, M.; Schmitz, U.; Vera, ]. Systems biology-based investigation of cooperating microRNAs as monotherapy or
adjuvant therapy in cancer. Nucleic Acids Res. 2019, 47, 7753-7766. https://doi.org/10.1093 /nar/gkz638.


https://doi.org/10.1021/acs.jcim.3c01619
https://doi.org/10.1021/acs.jcim.1c01263
https://doi.org/10.3389/fchem.2020.00343
https://doi.org/10.1038/s41573-019-0050-3
https://doi.org/10.3389/fmolb.2021.628144
https://doi.org/10.1080/07391102.2023.2292299
https://doi.org/10.1080/07391102.2023.2292299
https://doi.org/10.1016/j.drudis.2021.09.013
https://doi.org/10.1016/j.patter.2022.100628
https://doi.org/10.1021/acs.jcim.0c01344
https://doi.org/10.1093/pcmedi/pbab007
https://doi.org/10.1002/pds.3415
https://doi.org/10.3390/pharmaceutics13020266
https://doi.org/10.1007/s11096-010-9445-2
https://doi.org/10.1007/s11096-008-9191-x
https://doi.org/10.1136/amiajnl-2013-002512
https://doi.org/10.1073/pnas.1803294115
https://doi.org/10.1038/nprot.2014.151
https://doi.org/10.3389/fgene.2021.680117
https://doi.org/10.1371/journal.pcbi.1005771
https://doi.org/10.1371/journal.pcbi.1005771
https://doi.org/10.7150/thno.19904
https://doi.org/10.1093/nar/gkz638

Pharmaceutics 2025, 17,1119 30 of 30

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

You, Y.; Lai, X;; Pan, Y.; Zheng, H.; Vera, J.; Liu, S.; Deng, S.; Zhang, L. Artificial intelligence in cancer target identification and
drug discovery. Signal Transduct. Target. Ther. 2022, 7, 156. https://doi.org/10.1038/s41392-022-00994-0.

Peyvandipour, A.; Saberian, N.; Shafi, A.; Donato, M.; Draghici, S. A novel computational approach for drug repurposing using
systems biology. Bioinformatics 2018, 34, 2817-2825. https:/ /doi.org/10.1093 /bioinformatics/bty133.

Wiirth, R.; Thellung, S.; Bajetto, A.; Mazzanti, M.; Florio, T.; Barbieri, F. Drug-repositioning opportunities for cancer therapy: Novel
molecular targets for known compounds. Drug Discov. Today 2016, 21, 190-199. https://doi.org/10.1016/j.drudis.2015.09.017.
Pantziarka, P.; Bouche, G.; Meheus, L.; Sukhatme, V.; Sukhatme, V.P. Repurposing drugs in your medicine cabinet: Untapped
opportunities for cancer therapy? Future Oncol. 2015, 11, 181-184. https://doi.org/10.2217/fon.14.244.

Park, K. A review of computational drug repurposing. Transl. Clin. Pharmacol. 2019, 27, 59-63. https:/ /doi.org/10.12793 /tcp.20
19.27.2.59.

Al-Taie, Z.; Liu, D.; Mitchem, ].B.; Papageorgiou, C.; Kaifi, ].T.; Warren, W.C.; Shyu, C.R. Explainable Artificial Intelligence in
High-Throughput Drug Repositioning for Subgroup Stratifications with Interventionable Potential. |. Biomed. Inform. 2021,
118,103792. https:/ /doi.org/10.1016/].jbi.2021.103792.

Xue, H,; Li, J.; Xie, H.; Wang, Y. Review of Drug Repositioning Approaches and Resources. Int. J. Biol. Sci. 2018, 14, 1232-1244.
https:/ /doi.org/10.7150/ijbs.24612.

Lotfi Shahreza, M.; Ghadiri, N.; Mousavi, S.R.; Varshosaz, ].; Green, J.R. Heter-LP: A heterogeneous label propagation algorithm
and its application in drug repositioning. J. Biomed. Inform. 2017, 68, 167-183. https://doi.org/10.1016/j.jbi.2017.03.006.

Xu, R.; Wang, Q. PhenoPredict: A disease phenome-wide drug repositioning approach towards schizophrenia drug discovery. J.
Biomed. Inform. 2015, 56, 348-355. https://doi.org/10.1016/j.jbi.2015.06.027.

Xu, R;; Wang, Q. A genomics-based systems approach towards drug repositioning for rheumatoid arthritis. BMC Genom. 2016,
17,518. https://doi.org/10.1186/s12864-016-2910-0.

Lamb, J. The Connectivity Map: A new tool for biomedical research. Nat. Rev. Cancer 2007, 7, 54-60. https://doi.org/10.1038/
nrc2044.

Lee, B.K.B,; Tiong, K.H.; Chang, ] K,; Liew, C.S.; Abdul Rahman, Z.A.; Tan, A.C.; Khang, T.F.; Cheong, S.C. DeSigN: Connecting
gene expression with therapeutics for drug repurposing and development. BMC Genom. 2017, 18, 934. https://doi.org/10.1186/
s12864-016-3260-7.

Tian, Z.; Teng, Z.; Cheng, S.; Guo, M. Computational drug repositioning using meta-path-based semantic network analysis. BMC
Syst. Biol. 2018, 12, 134. https:/ /doi.org/10.1186/s12918-018-0658-7.

Wang, Q.; Huang, K.; Chandak, P.; Zitnik, M.; Gehlenborg, N. Extending the nested model for user-centric XAI: A design study
on GNN-based drug repurposing. IEEE Trans. Vis. Comput. Graph. 2023, 29, 1266-1276. https://doi.org/10.1109/TVCG.2022.320
9435.

Zhang, B.; Huang, Z.; Zheng, H.; Li, W.; Liu, Z.; Zhang, Y.; Huang, Q.; Liu, X,; Jiang, H.; Liu, Q. EFMSDTI: Drug—target interaction
prediction based on an efficient fusion of multi-source data. Front. Pharmacol. 2022, 13, 1009996. https://doi.org/10.3389/fphar.
2022.1009996.

Huang, A,; Xie, X.; Wang, X.; Peng, S. A Multimodal Data Fusion-Based Deep Learning Approach for Drug-Drug Interaction
Prediction. In Bioinformatics Research and Applications; Lecture Notes in Computer Science; Springer, Cham, Switzerland, 2023;
Volume 13760, pp. 275-285. https://doi.org/10.1007/978-3-031-23198-8_25.

Sturm, H.; Teufel, J.; Isfeld, K.; Friederich, P.; Davis, R. Mitigating Molecular Aggregation in Drug Discovery with Predictive
Insights from Explainable Al. Angew. Chem. Int. Ed. 2025, 137, €202503259. https://doi.org/10.1002/ange.202503259.

Ying, R.; Bourgeois, D.; You, J.; Zitnik, M.; Leskovec, ]. GNNExplainer: Generating Explanations for Graph Neural Networks. In
Proceedings of the Advances in Neural Information Processing Systems (NeurIPS), Vancouver, BC, Canada, 8-14 December 2019;
Volume 32, pp. 9244-9255.

Obermeyer, Z.; Powers, B.; Vogeli, C.; Mullainathan, S. Dissecting Racial Bias in an Algorithm Used to Manage the Health of
Populations. Science 2019, 366, 447-453. https://doi.org/10.1126/science.aax2342.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.1038/s41392-022-00994-0
https://doi.org/10.1093/bioinformatics/bty133
https://doi.org/10.1016/j.drudis.2015.09.017
https://doi.org/10.2217/fon.14.244
https://doi.org/10.12793/tcp.2019.27.2.59
https://doi.org/10.12793/tcp.2019.27.2.59
https://doi.org/10.1016/j.jbi.2021.103792
https://doi.org/10.7150/ijbs.24612
https://doi.org/10.1016/j.jbi.2017.03.006
https://doi.org/10.1016/j.jbi.2015.06.027
https://doi.org/10.1186/s12864-016-2910-0
https://doi.org/10.1038/nrc2044
https://doi.org/10.1038/nrc2044
https://doi.org/10.1186/s12864-016-3260-7
https://doi.org/10.1186/s12864-016-3260-7
https://doi.org/10.1186/s12918-018-0658-7
https://doi.org/10.1109/TVCG.2022.3209435
https://doi.org/10.1109/TVCG.2022.3209435
https://doi.org/10.3389/fphar.2022.1009996
https://doi.org/10.3389/fphar.2022.1009996
https://doi.org/10.1007/978-3-031-23198-8_25
https://doi.org/10.1002/ange.202503259
https://doi.org/10.1126/science.aax2342

	Introduction
	Explainable AI
	Intrinsically Interpretable Models
	Linear Models
	Decision Tree

	Post-Hoc Explainability
	Model-Agnostic XAI 
	Model-Specific XAI


	XAI in Healthcare
	XAI in Drug Discovery
	Impact of XAI on Drug Discovery
	Data Analysis
	Molecular Property Prediction
	Personalized Medicine
	Unraveling Drug–Drug and Drug–Target Interactions
	Facilitating Drug Repositioning and Combination Therapy
	Clinical Trial Design
	Ethics and Regulatory Implications

	Key Challenges and Future Research Directions in XAI for Drug Discovery
	Key Challenges
	Data Limitations
	Complexity and Interpretability Tradeoff
	Ethical and Bias Concerns
	Regulatory Compliance

	Future Research Directions
	Multimodal Data Integration and Augmentation
	Next-Generation XAI Frameworks
	Experimental Validation and Hybrid Models
	Collaborative Open Platforms
	Ethical-by-Design Frameworks


	Conclusions
	References

