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ABSTRACT
The proliferation of user-generated content on social networking sites has intensified
the challenge of accurately and efficiently detecting inflammatory and discriminatory
speech at scale. Traditional manual moderation methods are impractical due to the
sheer volume and complexity of online discourse, necessitating automated solutions.
However, existing deep learning models for hate speech detection typically function
as black-box systems, providing binary classifications without interpretable insights
into their decision-making processes. This opacity significantly limits their practical
utility, particularly in nuanced content moderation tasks. To address this challenge,
our research explores leveraging the advanced reasoning and knowledge integration
capabilities of state-of-the-art language models, specifically Mistral-7B, to develop
transparent hate speech detection systems. We introduce a novel framework wherein
large language models (LLMs) generate explicit rationales by identifying and
analyzing critical textual features indicative of hate speech. These rationales are
subsequently integrated into specialized classifiers designed to perform explainable
content moderation. We rigorously evaluate our methodology on multiple
benchmark English-language social media datasets. Results demonstrate that
incorporating LLM-generated explanations significantly enhances both the
interpretability and accuracy of hate speech detection. This approach not only
identifies problematic content effectively but also clearly articulates the analytical
rationale behind each decision, fulfilling the critical demand for transparency in
automated content moderation.

Subjects Artificial Intelligence, DataMining andMachine Learning, Natural Language and Speech,
Network Science and Online Social Networks, Sentiment Analysis
Keywords Social media, Hate speech, Large language models, Rationale extraction

INTRODUCTION
Social media networks have revolutionized global interaction, establishing virtual forums
where participants across societal, ethnic, and regional divides converge to share
perspectives and knowledge. However, these digital spaces, while fostering unprecedented
connectivity, can deteriorate into venues for antagonistic discourse and discriminatory
rhetoric. The concept of hate speech encompasses intentional public expressions designed
to marginalize or degrade specific demographics based on inherent characteristics.
Including, but not exclusively, ethnic identity or sexual orientation (Nockleby, 1994; Perera
et al., 2023). The ramifications of online hate speech extend beyond virtual boundaries,
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manifesting in tangible societal harm. A stark illustration of this phenomenon emerged
amid the COVID-19 outbreak, Findling et al. (2022) when inflammatory online rhetoric
corresponded with documented increases in physical aggression toward Asian
communities (Han, Riddell & Piquero, 2023). Given these serious implications, including
the documented correlation between hate speech and escalating violence against minority
populations (Laub, 2019), the development and implementation of sophisticated
computational systems for identifying and moderating discriminatory content has become
a critical priority for digital platform governance.

The academic community has produced extensive research addressing digital hate
speech detection, yielding various methodological approaches and technological solutions
(Schmidt & Wiegand, 2017; Del Vigna et al., 2017). Contemporary detection systems,
primarily utilizing transformer architectures and advanced neural networks (Sheth et al.,
2023), achieve notable accuracy metrics in standardized testing environments. However,
these sophisticated computational models function as black boxes, offering minimal
insight into their executive processes. This opacity becomes particularly problematic amid
hate speech identification, where algorithmic transparency is not merely beneficial but
essential. Davidson et al. (2017) research has demonstrated that classification errors can
paradoxically reinforce discriminatory patterns against the very demographics. These
systems aim to protect (Sap et al., 2019). Consequently, developing interpretable models
serves dual purposes: enabling users to comprehend automated decisions and facilitating
the identification of systematic biases and algorithmic shortcomings.

Current approaches to algorithmic transparency encompass various analytical
frameworks, with two prominent methodologies emerging in recent literature. The
SHapley Additive exPlanations (SHAP) methodology (Lundberg & Lee, 2017) quantifies
the relative contribution of individual variables to specific model outputs through a
game-theoretic framework. Complementing this approach, local interpretable model-
agnostic explanations (LIME) (Ribeiro, Singh & Guestrin, 2016) enhances model
transparency by constructing simplified, interpretable approximations of complex decision
boundaries in the vicinity of individual predictions. Nevertheless, these analytical tools
present significant computational challenges when applied across large datasets.
Furthermore, research indicates an inherent tension between model complexity and
interpretability (Dziugaite, Ben-David & Roy, 2020), particularly in sophisticated
architectures. The nuanced nature of potentially discriminatory language necessitates
contextual analysis comparable to human cognitive processing. As Kim, Lee & Sohn (2022)
argue, effective hate speech detection systems must provide contextually grounded
explanations accessible to human reviewers. While integrating interpretability
mechanisms directly into neural architectures remains technically challenging, an
alternative framework involves developing supplementary models dedicated to generating
explanatory rationales. These supporting systems can then inform the training process of
the primary detection algorithm, creating a more transparent classification process.

A pioneering approach to algorithmic transparency was introduced through the
Faithful Rationale Extraction from Saliency tHresholding (FRESH) methodology (Jain
et al., 2020), which implements a dual-network architecture: one component identifies
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task-relevant textual elements, while a separate network utilizes these elements for
classification purposes, establishing interpretability as a fundamental design feature. While
FRESH demonstrated the viability of this approach through simplified architectural design
and token-based feature selection, its explanatory capacity remains restricted to the
isolated textual components identified during processing. Our research extends beyond
these limitations by incorporating advanced language models (LLMs) as sophisticated
feature extraction mechanisms in hate speech identification systems. This novel
framework capitalizes on the semantic processing capabilities and directive responsiveness
characteristic of contemporary LLMs to derive contextually relevant textual indicators.
These extracted elements subsequently enhance the training process of a dedicated hate
speech classification system, yielding an inherently interpretable methodology. This study
is guided by the following key research questions:

1. RQ1: To what extent can Mistral-7B contribute effectively to the task of hate speech
detection across our experimental datasets?

2. RQ2: Can recent state-of-the-art LLMs be leveraged to extract rationales as meaningful
features, and can these rationales potentially replace human annotations?

3. RQ3: To what extent can hallucinations in LLMs impact the process of hate speech
detection, and what strategy can effectively reduce these hallucinations?

4. RQ4: Can TARGE enhance the performance of the hate speech detector while also
offering transparent, reliable explanations that reflect its decision-making process?

Based on these research questions, our study makes the following significant
contributions:

. A novel framework, TARGE, is introduced, utilizing rationales generated by large
language models (LLMs) to enhance a base model for detecting hate speech, ensuring
both interpretability and fidelity. This minimizes the need for task-specific fine-tuning
and extensive human annotation.

. By incorporating LLM-extracted rationales into the base hate speech detector, we ensure
explanations are inherently aligned with the model’s reasoning, thus achieving faithful
explainability without compromising detection performance.

. Our methodology innovatively combines the base detector’s [CLS] embedding with a
separate embedding of the LLM-extracted rationales. This concatenated embedding
strategy leverages both the holistic context of the input text and the targeted,
interpretable features, resulting in improved detection performance-especially evident in
noisy data scenarios like the Twitter dataset.

. Introduces an iterative framework that uses a score-refine strategy, enabling LLMs to
assess and correct hallucinated content.

. TARGE’s outcomes are interpreted using Integrated Gradients from Captum,
showcasing the framework’s capability to deliver understandable insights into its hate
speech detection decisions.
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LITERATURE REVIEW
The identification and regulation of discriminatory discourse represents a critical challenge
in digital communications research, requiring sophisticated methodologies that protect
community standards while preserving legitimate expression. In contemporary society,
where social media platforms significantly influence public discourse, developing effective
mechanisms to counteract the societal impact of inflammatory rhetoric has become
paramount.

Traditional approaches in hate speech detection
Although current computational approaches demonstrate considerable efficacy in
detecting problematic content, their architectural complexity often obscures the
underlying analytical process. Contemporary machine learning systems, despite their
accuracy, frequently operate through opaque computational processes that resist
straightforward analysis. The development of transparent classification systems would
serve multiple objectives: enhancing user confidence through algorithmic accountability,
facilitating deeper technical understanding of detection mechanisms, and ultimately
enabling the creation of more sophisticated content moderation frameworks that
effectively balance social responsibility with expressive freedom. The escalating
significance of discriminatory content moderation in digital spaces has emerged as a focal
point of computational linguistics research. Academic investigation into automated
detection systems has produced diverse methodological frameworks, each addressing
distinct aspects of online discourse analysis and content classification. The following
literature review examines seminal contributions to this evolving field, synthesizing crucial
developments in algorithmic approaches to inflammatory speech identification. Initial
research efforts employed traditional statistical learning approaches for automated content
classification, as exemplified by Davidson et al. (2017), which introduced an extensive
annotated corpus and implemented classical algorithms—including logistic regression
(Joachims, 1998) and support vector machines (SVM) (Wright, 1995)—using n-gram
feature extraction. Early studies on hate speech detection similarly relied on conventional
machine learning techniques such as SVM, k-nearest neighbors (k-NN), random forest,
and decision tree models that leveraged diverse feature representations (e.g., syntactic
structures, semantic information, sentiment analysis, and lexical attributes) (Mullah &
Zainon, 2021). Although these classical approaches effectively captured lexical patterns,
they demonstrated inherent limitations in processing the contextual and semantic
relationships crucial for accurately identifying inflammatory content—a gap that later
motivated the exploration of deep neural networks (Sun et al., 2021). Recurrent neural
networks (RNNs) and convolutional neural networks (CNNs) have manifested as leading
methods for hate speech detection. The selection of deep learning design frequently
depends on the characteristics of the textual data under analysis. For instance, CNNs are
frequently employed for shorter texts, where capturing intricate contextual information is
less critical. Their ability to effectively identify local patterns has made them a preferred
choice for various text classification applications (Wang et al., 2020; Zhou et al., 2022;
Xu et al., 2020).
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On the other hand, for extended text sequences that require thorough insights into
semantic features and contextual relationships, RNNs, especially long short-term memory
(LSTM) networks and bidirectional LSTMs (BiLSTMs) tend to outperform other methods
(Du, Vong & Chen, 2021; Sari, Rini & Malik, 2019; Shi, Wang & Li, 2019).

Warner & Hirschberg (2012) carried out an early and groundbreaking study in hate
speech detection, emphasizing the identification of anti-Semitic expressions as a unique
category within this domain.

Waseem & Hovy (2016) performed an important finding focusing on hate speech
detection on Twitter, specifically addressing instances of racism and sexism. Their research
examined various features, including user demographic attributes, lexical patterns,
geographic data, and character-level n-grams. Among these, character n-grams of up to
four characters were identified as the most effective for the task. Additionally,
incorporating gender as a supplementary feature resulted in a modest enhancement of the
classification performance.

Khan et al. (2022) presented BiLSTM with deep CNN and Hierarchical Attention-based
deep learning model for tweet representation (BiCHAT), a neural network architecture
combining Bidirectional Encoder Representations from Transformers (BERT)-based
embeddings with BiLSTM and deep convolutional layers. It incorporates a multi-level
attention mechanism that functions at both word and sentence levels, allowing the model
to focus on critical words and phrases while filtering out less pertinent details. The
effectiveness of the proposed framework was validated on the widely-used Twitter hate
speech dataset, where it demonstrated superior performance compared to the baseline
model.

Kapil & Ekbal (2020) proposed a multi-task learning model developed to identify
different but related types of hate speech, such as racism, offensive language, and sexism.
Their methodology included various neural architectures, such as CNNs, LSTM networks,
and a hybrid architecture merging CNNs with gated recurrent units (GRUs).

Fortuna, Soler-Company & Wanner (2021) proposed an in-depth study of the
classification of hate speech, abusive language, toxicity, and offensive content. Their work
explored different models, including BERT, A Lite BERT (ALBERT), fastText, and SVM,
using nine publicly available datasets. The research evaluated model performance both
within individual datasets and across multiple datasets, assessing their ability to generalize
across different hate speech categories and data distributions.

Hate speech detection progresses at a rapid pace, fueled by progress in machine learning
and multimodal methodologies. While substantial headway has been made, key challenges
remain, such as reducing biases and strengthening defenses against adversarial intrusions.
Addressing these challenges is necessary for developing more reliable and effective
detection systems, and fostering safer and more inclusive digital environments.

Explainable approaches in hate speech detection
In response to the black-box nature of deep models, several researchers have explored
methods for making hate speech detectors more interpretable. For instance, Calabrese et al.
(2024) introduced structured explanation techniques that highlight harmful spans within a
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post to assist human moderators in making faster and more accurate decisions. Their work
demonstrated that structured, post-specific explanations can reduce moderation time, yet
their primary focus was on enhancing human efficiency rather than embedding
interpretability directly into the model’s prediction process.

LLM-based techniques
Recent studies highlight the versatility of large language models, demonstrating their
effectiveness in applications such as data annotation (Bhat & Varma, 2023;He et al., 2024),
text classification (Bhattacharjee & Liu, 2024; Kocoń et al., 2023), and reasoning (Wang
et al., 2024). Recent investigations into the behavior of large language models in the context
of hate speech detection have revealed that these models can exhibit excessive sensitivity.
Zhang et al. (2024) highlight how some LLMs tend to misclassify benign content as hateful
due to over-sensitivity toward certain groups or topics, and they also note challenges in
confidence calibration. Although this evaluation is critical for understanding the
limitations of LLMs, it primarily serves as a cautionary tale regarding their direct
application in detection tasks rather than offering a solution to enhance interpretability.
Parallel to the work on detection, another stream of research has concentrated on
generating counterspeech responses that help mitigate hate speech. Hong et al. (2024)
proposed outcome-constrained large language models that generate counterspeech
designed to steer conversations toward lower incivility or encourage non-hateful reentry.
Although this research leverages the capabilities of LLMs to produce linguistically and
contextually nuanced responses, its focus remains on reply generation rather than on
explaining the underlying classification decisions. In other words, while these models excel
at influencing conversation outcomes, they do not necessarily improve the transparency of
hate speech detection systems.

Zero- and few-shot learning techniques
Hate speech detection has experienced notable advancements through data-efficient
strategies such as zero-shot learning (ZSL). One prominent research direction employs
prompting techniques with instruction fine-tuned language models. For instance, Plaza-
del arco & Hovy (2023) illustrate that carefully designed prompts and verbalizers—such as
the “respectful-toxic” pair—can yield competitive performance across diverse datasets and
languages. However, while this ZSL approach advances detection accuracy, it tends to
operate as a black box, offering limited insight into the model’s internal decision-making
process. In another line of inquiry, Yuzbashyan et al. (2023) proposes a zero-shot method
that reframes hate speech detection as a natural language inference (NLI) task. In their
approach, a hypothesis (e.g., “This text is racist”) is paired with a target sentence, and an
NLI model evaluates whether the hypothesis is entailed by the text. Their experiments,
conducted over multiple datasets, reveal that although this NLI-based zero-shot method
can rival supervised learning approaches, its performance is highly sensitive to the exact
phrasing of the hypothesis; even minor lexical variations can lead to substantial
fluctuations in the F1-score, raising concerns about its robustness and generalizability. A
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further advancement in this domain is presented by Goldzycher & Schneider (2022), who
explore hypothesis engineering for zero-shot hate speech detection. Their work repurposes
NLI models by formulating a range of hypotheses (e.g., “That contains hate speech.”) and
combining multiple supporting hypotheses to mitigate common errors, such as the
misclassification of counterspeech, reclaimed slurs, or dehumanizing comparisons. While
this hypothesis engineering strategy enhances performance in low-resource settings, it
relies heavily on the manual formulation and meticulous selection of hypotheses. This
reliance not only increases computational overhead—given the need for multiple forward
passes per hypothesis— but also reduces transparency in understanding how decisions are
ultimately made. In contrast to ZSL methods, TARGE integrates LLM-extracted rationales
into its detection process. This not only maintains competitive accuracy but also provides
transparent, interpretable insights that enhance trust and facilitate error analysis.

SYSTEM MODEL
Preliminary
The advent of social media has transformed communication and self-expression, creating a
virtual space for individuals to engage in dialogue and share their perspectives. However,
the obscurity and assumed absence of responsibility on these platforms have contributed to
the spread of offensive and hate speech content (Ullmann & Tomalin, 2020). With the
expanding influence and widespread use of these platforms, the development of automated
systems to detect and address hate speech has become an essential priority. Various
approaches to hate speech detection have been proposed, yet many depend on intricate
deep learning models that function as black-box systems with limited clarity and
explainability (Guidotti et al., 2018). Interpretability, which refers to the ability of humans
to understand the reasoning behind a decision (Miller, 2019), remains a critical but
frequently neglected aspect in these models. This deficiency raises significant concerns
regarding potential biases and inaccuracies in predictions. Ensuring interpretability in hate
speech detection systems is essential to fostering user trust, enhancing the understanding
of decision-making processes, and enabling the development of more equitable and
reliable solutions (Felzmann et al., 2020). LLMs have revolutionized artificial intelligence
(AI) research by showcasing exceptional proficiency in generating contextually rich text
and managing intricate tasks (Hadi et al., 2023). In the realm of misinformation detection,
LLMs are being employed to create more robust systems for identifying fake news,
particularly targeting disinformation produced by LLMs. Furthermore, their proficiency in
natural language tasks, such as stance detection, has shown results comparable to human
annotations, prompting researchers to explore their potential in automating annotation
processes. Building on this approach, our goal is to harness LLMs to automate the
extraction of rationales from human annotations tailored to our use case. By using LLMs in
a one-shot setting, we aim to produce superior rationales while reducing the biases
typically associated with these models. This method leverages the sophisticated language
understanding and generation abilities of LLMs to ensure both reliable predictions and
interpretable outcomes. Evaluations using a comprehensive social media-rich dataset,
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which incorporates text from multiple social media platforms, validate our framework’s
effectiveness in two critical areas:

. The quality and alignment of rationales extracted by LLMs.

. The ability to retain detector performance while incorporating interpretability,
challenging the assumed trade-off between accuracy and interoperability.

Rationale extraction
Our framework utilizes advanced instruction-tuned LLMs as pre-trained tools for
extracting textual features. While prior research indicates that LLMs underperform in hate
speech detection without fine-tuning or auxiliary models (Li et al., 2023; Zhu et al., 2023),
we propose leveraging their language comprehension capabilities to extract rationales as
textual features. By confining LLMs to text-level tasks, we avoid directly applying them to
sensitive domains like hate speech detection, addressing concerns about bias and
limitations (Harrer, 2023).

This approach strategically employs LLMs as auxiliary feature extractors, capitalizing on
their strengths in text analysis while assigning hate speech detection to a specialized model.
By separating feature extraction from classification, we balance the advantages of LLMs
with the need for reliable and unbiased detection systems. The feature extraction process
involves prompting the LLM with a specific query for each input text, as shown in Fig. 1.
Although LLMs demonstrate impressive potential and have advanced significantly, they
still encounter a critical issue known as “hallucination,” where they produce responses that
sound plausible yet are ultimately inaccurate or nonsensical. To assess how hallucinations
in LLMs may affect hate speech detection and to validate the interpretability of our results
with real human judgment, we compare them against human-annotated rationales from a
reference dataset (HateXplain) using similarity metrics. At the token level, we compute
overlap similarity to assess the degree of textual correspondence between the generated
and human rationales. In addition, we calculate cosine similarity in the latent space—by
encoding the texts with the Universal Sentence Encoder—to capture semantic alignment.
For our experiments, we set a threshold of 0.50 for the token-level metrics and 0.70 for the
cosine similarity. If the scores fall below these thresholds, the generated rationale is deemed
hallucinated or unreliable.

In such cases, the system automatically re-prompts the language model with modified
instructions as shown in Fig. 2 to produce a refined rationale. This iterative score-refine
loop continues until the refined rationale satisfies the similarity criteria, thereby ensuring
that it is factually grounded and closely aligns with human judgment.

The rationales and extracted features act as additional inputs for a tailored hate speech
detection model, improving its capacity to provide more accurate and transparent
predictions. This approach capitalizes on the LLM’s proficiency in text analysis while
assigning the critical process of hate speech classification to a tailored model.

We compute the similarity between the Mistral-7B-extracted rationales for the input
text from the HateXplain dataset and the corresponding human-annotated rationales
using our defined similarity metrics. The resulting scores, which represent the baseline
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performance prior to any intervention, are presented in Table 1. Subsequently, Table 2
shows the similarity metrics after our automated hallucination reduction process has been
applied.

Embedding module
The next crucial element of our framework is the core hate speech detection model,
implemented using DistilBERT. DistilBERT, a lighter and more efficient variant of the
BERT model (Devlin et al., 2019), is trained on an extensive dataset to preserve BERT’s
essential functionalities while enhancing efficiency. For our application, rather than
focusing on output labels or class probabilities for an input text ti 2 T , we extract the
embedding from the final layer of the CLS token, hi½CLS�. This embedding captures the most
critical semantic and contextual information extracted from the input text, specifically
tailored for hate speech detection.

Utilizing the pre-trained and fine-tuned embeddings offered by DistilBERT, the
framework gains a concise yet rich encoding of the input data. Rather than solely
depending on the final classification result, the [CLS] token embedding acts as a dense
representation of the input’s features and semantics. This approach strengthens the base
detector by integrating supplementary features and rationales derived from the large
language model, resulting in a more robust and interpretable system for detecting hate
speech.

Figure 1 Task prompt. Full-size DOI: 10.7717/peerj-cs.2911/fig-1

Figure 2 Task re-prompt. Full-size DOI: 10.7717/peerj-cs.2911/fig-2
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Feature embeddings
After processing the outputs, we extract a set of s textual features, denoted as z1; z2; . . . ; zs,
from the input text ti. To embed these features and rationales generated by the LLM, we
utilize a pre-trained transformer-based language model RoBERTa. This model, even
without task-specific fine-tuning, generates comprehensive and expressive latent
representations of text. Specifically, the LLM-extracted textual features are fed into the
RoBERTa-base model, and the embedding corresponding to the [CLS] token in its final
hidden layer, represented as hftCLS;i, is obtained.

By leveraging a pre-trained model such as Robustly Optimized BERT Pretraining
Approach (RoBERTa), we produce embeddings that are both semantically rich and
contextually informed. These embeddings, hftCLS;i, encapsulate the semantic and contextual
essence of the LLM-derived features and rationales. Their integration into our hate speech
detection framework enhances the base detector by incorporating valuable complementary
insights provided by the LLM-generated outputs. The robust representations from
RoBERTa, even without task-specific fine-tuning, allow for a more comprehensive and
effective detection system.

Fusion and classification
For each input text ti, two embeddings are obtained from the prior components: the text
embedding Etext;i derived from the core hate speech detection model and the embedded
features Efeat;i generated by the feature embedding model based on RoBERTa. To integrate
these embeddings, we concatenate them as follows:

Ecombined;i ¼ Etext;i � Efeat;i:

This combination integrates the task-specific representation from the core detector
with the contextual features and rationales obtained from the LLM-extracted textual
elements, creating a unite representation. Ecombined;i. This comprehensive embedding
captures complementary information, enhancing its utility for the final hate speech
classification task.

Table 1 Similarity between HateXplain’s human-annotated explanations and Mistral-7B rationales
before hallucination removal.

Similarity metric Similarity coefficients (%)

Overlap similarity 90.50

Cosine similarity 69.00

Table 2 Similarity between HateXplain’s human-annotated explanations and Mistral-7B rationales
after hallucination removal.

Similarity metric Similarity coefficients (%)

Overlap similarity 94.85

Cosine similarity 72.30
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The concatenation process facilitates a smooth integration of the two embeddings,
maintaining their distinct contributions while allowing the final classifier to utilize the
merged representation efficiently. By blending these diverse features, the pipeline leverages
the strengths of both the core detector and the enriched textual insights provided by the
LLM, enhancing both interpretability and decision-making capabilities.

Unlike previous studies, which relied solely on extracted rationales for downstream
tasks, our approach combines them with additional contextual embeddings, providing a
richer input. The concatenated representation Ecombined;i is input into a feed-forward multi-
layer perceptron (MLP) composed of two fully connected layers with a rectifier linear unit
(ReLU) activation function (Agarap, 2018) in between. This MLP projects the combined
embedding onto a lower-dimensional space to retain essential features while reducing
overfitting during training. Following prior methodologies (Pan et al., 2022) this projection
ensures robust feature utilization.

The training aim is to minimize the batch-wise binary cross-entropy loss. For a batch
size of n, the loss is computed as:

LossCE ¼ � 1
n

Xn

i¼1

½yi logðpðyijf ðEcombined;iÞÞÞ þ ð1� yiÞ logð1� pðyijf ðEcombined;iÞÞÞ�:

Here, yi represents the ground truth label for the input xi, and f ð�Þ denotes the MLP that
processes the concatenated embedding. The RoBERTa feature embedding model remains
frozen during training, ensuring it only serves as a contextual encoder for the extracted
textual features z.

This approach generates a comprehensive representation by merging embeddings from
the core detector with features derived from the LLM. The resulting concatenated
embedding provides a valuable input for the final classifier, enabling it to utilize
complementary insights for improved prediction accuracy. Employing an MLP for
dimensionality reduction helps preserve essential features while reducing the risk of
overfitting, thereby increasing the model’s overall robustness and ability to generalize
effectively.

EXPERIMENTS
To execute the proposed TARGE framework, we utilized PyTorch in combination with the
Hugging Face Transformers library, as illustrated in Fig. 3. The initial phase of the
framework leverages a pre-trained LLM to extract features and rationales. For this step, we
employed Mistral-7B, recognized for its superior performance on multiple NLP tasks
(Jiang et al., 2023). Mistral-7B was selected for its strong performance in
instruction-following tasks and computational efficiency, providing an optimal balance
between model size, speed, and accuracy suitable for rationale extraction in
resource-constrained environments. Within the framework, a pre-trained and frozen
RoBERTa model (roberta-base) serves as the Feature Embedding Model, while a
pre-trained DistilBERT model functions as the hate speech detector. To facilitate efficient
training, the AdamW optimizer is employed with a learning rate of 2� 10�5. All
experiments are assessed using accuracy as the primary performance metric, ensuring
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consistency and reliability in the evaluation of results. To enhance robustness and
detection performance, we employed a heterogeneous embedding approach where
DistilBERT encodes the original offending message, and RoBERTa encodes the rationale
text generated by Mistral-7B. DistilBERT’s distilled architecture allows efficient processing
of raw text with reduced computational overhead, making it well-suited for encoding
offensive messages. Conversely, RoBERTa, with its robust pre-training and superior
contextual representation capabilities, effectively captures complex semantic nuances from
the generated rationales. This complementary embedding strategy introduces diversity in
the feature space, enhancing the model’s ability to capture a broader range of linguistic and
semantic cues. Additionally, the integrated gradients (IG) method (Sundararajan, Taly &
Yan, 2017) as implemented in the Captum library was employed to explain the predictions
of the hate speech detection model.

Datasets
To analyze the performance of the proposed TARGE framework, we employed the ETHOS
dataset (Mollas et al., 2022). The dataset is publicly available at the official GitHub
repository: https://github.com/intelligence-csd-auth-gr/Ethos-Hate-Speech-Dataset/tree/
master/ethos/ethos_data. The ETHOS dataset is a well-curated collection of hate speech
data sourced from diverse social media platforms, including YouTube and Reddit. This
English-language dataset is annotated in detail, making it suitable for binary and
multi-label classification tasks. For binary classification, the dataset includes 998
comments labeled to indicate whether hate speech is present or absent. For multi-label
classification, the Ethos Multi-Label subset consists of 433 instances of hate speech,
annotated across multiple categories, including violence, gender, race, national origin,
disability, sexual orientation, and religion. The ETHOS dataset was constructed through
data collection efforts on the Hatebusters platform and Reddit’s publicly available
repositories. The annotation process was further validated via the Figure-Eight platform,
ensuring both reliability and diversity. These rigorous steps establish ETHOS as a

Figure 3 Proposed framework architecture. Full-size DOI: 10.7717/peerj-cs.2911/fig-3
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benchmark dataset, offering a robust foundation for evaluating hate speech detection
systems. In our experimental setup on ETHOS dataset, we reserved 12.5% of the total data
exclusively for testing, which is used only for final evaluation. Of the remaining data, 75%
was allocated for training while the final 12.5% served as a validation set. This split ensures
that the model is robustly trained and hyperparameters are effectively tuned prior to final
evaluation. Our study uses the Mathew et al. (2021) HateXplain dataset as another
benchmark for explainable hate speech detection. HateXplain is a pioneering dataset that
not only provides the traditional three-class labels—hate speech, offensive speech, and
normal—but also incorporates additional layers of annotation that are crucial for
explainability. The dataset comprises approximately 20,148 posts collected from two
prominent social media platforms: Twitter (9,055 posts) and Gab (11,093 posts). This
dual-source collection ensures a diverse representation of hate speech and provides
insights into platform-specific language usage and context. For our experiments, we
adopted a two-phase evaluation approach: Split-version evaluation: Initially, we
conducted separate experiments on the Twitter and Gab sub-datasets as shown in Table 3.
This allowed us to analyze the characteristics and performance of our models on
platform-specific data, understanding nuances that might arise from the distinct nature of
each source. Combined-version evaluation: Subsequently, we used a unified data set. This
combined version was employed to benchmark our results against the evaluation

Table 3 Results for our TARGE framework (highlighted in bold) vs. The baseline models.

Model F1-score Accuracy Precision Dataset

BiLSTM + static BE (Rajput et al., 2021) 79.71 80.15 80.37 Ethos

BERT (Mollas et al., 2022) 78.83 76.64 79.17 Ethos

BiLSTM + Attn FT (Mollas et al., 2022) 76.8 77.34 77.76 Ethos

DistilBERT (Mollas et al., 2022) 79.92 80.36 80.28 Ethos

SVM (Mollas et al., 2022) 66.07 66.43 66.47 Ethos

Random Forests (Mollas et al., 2022) 64.41 65.04 64.69 Ethos

TARGE (Proposed) 82.01 87.05 82.04 Ethos

DistilBERT 77.02 80.64 78.47 GAB

Mistral-7B-1shot 81.31 81.03 80.86 GAB

TARGE (Proposed) 90.32 91.26 90.85 GAB

DistilBERT 51.91 52.26 50.73 Twitter

Mistral-7B-1shot 55.21 56.07 54.75 Twitter

TARGE (Proposed) 63.02 62.83 62.15 Twitter

Table 4 Performance comparison of TARGE FRamework (highlighted in bold) vs. Non-LLM
baseline model.

Model F1-score Accuracy Dataset

BERT-HateXplain [Attn] (Mathew et al., 2021) 0.687 0.698 HateXplain

TARGE (Proposed) 0.766 0.770 HateXplain
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framework proposed in the original HateXplain work, enabling a comprehensive
comparison of performance as shown in Table 4.

RESULTS
This section presents a thorough explanation of the experiments conducted and an
in-depth examination of the results to evaluate the practicality and effectiveness of the
proposed TARGE framework. The investigation assesses whether the TARGE framework
can sustain or enhance the performance of the hate speech detection system while
delivering faithful interpretability. This evaluation addresses the critical trade-off between
achieving high predictive performance and maintaining model transparency, aiming to
meet both objectives effectively. Table 5 presents the faithfulness metrics for explainability,
which include comprehensiveness and sufficiency, to evaluate how well the integrated
gradients-based explanations capture the decision-making process of our model.
Comprehensiveness is measured by removing the highly attributed words from the input
and quantifying the drop in the model’s predicted probability for the target class; a larger
drop indicates that these words are critical for the decision. Conversely, sufficiency is
determined by providing only the influential words and comparing the resulting
prediction to that obtained with the full input. A small difference here implies that the
selected words are sufficient to preserve the original prediction, effectively capturing the
essential factors behind the model’s decision. Together, these metrics offer a rigorous

Table 5 Faithfulness metrics for explainability—selected for the TARGE model.

Model Comprehensiveness Sufficiency

TARGE 0.74 0.001

Figure 4 Integrated gradients (IG) visualization of the proposed framework’s performance on the
GAB dataset. Full-size DOI: 10.7717/peerj-cs.2911/fig-4

Figure 5 Integrated gradients (IG) visualization of the proposed framework’s performance on the
Twitter dataset. Full-size DOI: 10.7717/peerj-cs.2911/fig-5
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assessment of the model’s explanation fidelity. The TARGE framework enhances
interpretability by integrating extracted rationales into the input while maintaining high
accuracy. Figures 4–6 illustrate the key influential words identified by the model using
integrated gradients.

LLM performance evaluation
This study examines the capability of Mistral-7B to understand text and context, with a
specific focus on extracting features pertinent to hate speech detection. Mistral-7B-v0.1, a
state-of-the-art LLM, is utilized as the feature extraction component, leveraging the
advanced instruction-following abilities characteristic of modern LLMs. A carefully crafted
prompt (illustrated in Fig. 1) facilitates the extraction of rationales, offensive language, and
profanities from the input text. These extracted features are subsequently provided as
interpretable inputs to the predictor model, DistilBERT, ensuring a transparent and
dependable interpretation of hate speech detection outcomes. To build on prior research,
we designed a one-shot prompt that guides Mistral-7B to classify a given text using a single
labeled example. This prompt returns a binary result, assigning a “1” to texts identified as
hateful and a “0” to those deemed non-hateful, as depicted in Fig. 7. We classify the data

Figure 6 Integrated gradients (IG) visualization of the proposed framework’s performance on the
ETHOS dataset. Full-size DOI: 10.7717/peerj-cs.2911/fig-6

Figure 7 Mistral-7B one-shot hate speech detection prompt and response.
Full-size DOI: 10.7717/peerj-cs.2911/fig-7
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across two datasets GAB and Twitter and measure the resulting accuracy. The
performance of this one-shot classification approach is then compared with that of the
baseline models, and the outcomes are presented in Table 3. We observe a clear contrast
between the baseline models and Mistral-7B’s one-shot classification performance.
Although this indicates that LLMs—may not excel as standalone hate speech detectors,
their strong capabilities in understanding textual nuances remain impressive.

Hate speech detector performance
This experiment aims to improve the interpretability of hate speech detection by
incorporating extracted rationales into the input text during model training. DistilBERT is
utilized as the base model for hate speech detection, with the results presented in Table 3,
alongside comparisons with other baseline methods. The findings indicate that the
proposed TARGE framework achieves performance comparable to the fine-tuned
DistilBERT model on the same dataset. This retention of performance is noteworthy, as
interpretability-focused models often sacrifice accuracy (Dziugaite, Ben-David & Roy,
2020; Bertsimas et al., 2019).

LIMITATIONS
While our iterative-refinement method demonstrates effectiveness in reducing
hallucinations through similarity-based comparisons with human-annotated rationales,
several aspects require further attention. A notable consideration is the method’s
dependence on the availability of expert-provided annotations, which may not always be
feasible for completely unseen texts. Future research will therefore explore unsupervised
consistency checks and annotation-free approaches to further enhance the robustness and
generalizability of our hallucination reduction method.

CONCLUSION
In this work, we demonstrate that although Mistral-7B is not competitive as a standalone
zero-shot hate speech detector, it is highly effective in generating high-quality rationales.
When these rationales are integrated through our proposed TARGE framework, the
resulting model achieves classification performance comparable to that of a strong
supervised baseline. By training exclusively on LLM-generated rationales, we show that
machine-derived explanations can serve as effective supervisory signals, achieving
interpretability and decision consistency comparable to models trained with human
annotations. Furthermore, we address the challenge of hallucinated rationales by
introducing a similarity-based filtering strategy, which effectively removes spurious spans
without compromising recall, thereby enhancing the reliability of the model’s
explanations. Overall, TARGE successfully combines these advancements into a
unified framework that maintains high predictive accuracy while offering transparent,
token-level justifications for each prediction. This work provides a promising direction for
developing interpretable and trustworthy hate speech detection systems for social media
platforms.
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