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Abstract: Integrating artificial intelligence (AI), particularly large language models (LLMs),
into the healthcare industry is revolutionizing the field of medicine. LLMs possess the
capability to analyze the scientific literature and genomic data by comprehending and pro-
ducing human-like text. This enhances the accuracy, precision, and efficiency of extensive
genomic analyses through contextualization. LLMs have made significant advancements
in their ability to understand complex genetic terminology and accurately predict med-
ical outcomes. These capabilities allow for a more thorough understanding of genetic
influences on health issues and the creation of more effective therapies. This review em-
phasizes LLMs’ significant impact on healthcare, evaluates their triumphs and limitations
in genomic data processing, and makes recommendations for addressing these limitations
in order to enhance the healthcare system. It explores the latest advancements in LLMs
for genomic analysis, focusing on enhancing disease diagnosis and treatment accuracy
by taking into account an individual’s genetic composition. It also anticipates a future in
which AI-driven genomic analysis is commonplace in clinical practice, suggesting potential
research areas. To effectively leverage LLMs’ potential in personalized medicine, it is vital
to actively support innovation across multiple sectors, ensuring that AI developments
directly contribute to healthcare solutions tailored to individual patients.

Keywords: large language models (LLMs); artificial intelligence (AI); genomic data;
precision medicine

1. Introduction
Personalized or precision medicine utilizes genomic, environmental, and lifestyle data

to inform healthcare decisions, marking a paradigm shift in medical practice [1]. This strat-
egy diverges from conventional methods by employing personalized therapies tailored to
the unique characteristics and needs of each patient [2]. Traditional therapeutic approaches
prioritize treating patients over individual characteristics such as genetics, health status,
physical condition, age, and gender, necessitating personalized medicine. As a result, the
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efficacy of drugs and therapies varies significantly between patients, ranging from highly ef-
fective to completely ineffective [3]. Medical research focuses on developing individualized
diagnostic procedures and innovative medications tailored to each patient’s specific needs.
Advances in high-resolution analytics, pharmacogenomics, biotechnology, chemistry, and
cell and molecular biology are critical for developing effective drugs and gaining a deeper
understanding of genetic and biological processes. Disease-specific biomarkers provide
precise information about the nature, molecular origin, and progression of diseases, allow-
ing for the successful implementation of personalized therapeutic approaches. Diseases
can be classified according to their type, molecular cause, and stage, allowing for more
effective implementation of personalized therapeutic strategies [4]. Personalized medicine
combines interdisciplinary medical professionals and integrated technologies to improve
disease understanding and preventive measures. To achieve the best results, personalized
medicine tailors treatments to an individual’s unique genetic makeup, environment, and
lifestyle. This approach relies heavily on genomic data analysis, which provides in-depth
insights into genetic tendencies, disease mechanisms, and treatment responses [5].

The ubiquity of artificial intelligence (AI) is undoubtedly a result of the fast-paced
evolution of hardware and software. Large language models (LLMs) represent the next step
in the evolution of AI, which has significantly altered how humans interact with technology.
Search engines, writing tools, image and video generation, and software development
are among the key areas where LLMs have triggered a paradigm shift [6]. LLMs can
identify natural language input and generate output using knowledge based on billions
of resources available online and application-specific databases. LLMs can recognize the
context of the input prompt and can, therefore, generate a relevant and highly accurate
output [7]. Foundational models (FMs) are highly versatile learning models trained on a
relatively small dataset and are capable of performing a wide variety of tasks. However,
LLMs require a large corpus of domain-specific data to perform specific tasks based on
natural language prompts. An LLM can be considered an FM that is trained on a very
large, specialized dataset to perform a dedicated task, such as language translation or text
generation. FMs are essentially deep learning (DL) neural network (NN)-based models that
are highly versatile and adaptive. FMs utilize unlabeled data for self-supervised learning
and minimal fine-tuning to specialize in a wide range of applications, as illustrated in
Figure 1. Consequently, they form the foundation for many AI applications, including text
prediction, image generation, and biomedical image analysis [8,9]. FMs are built using
powerful NNs, including transformers, generative adversarial networks (GANs), diffusion
models, and variational autoencoders.

LLMs are based on transformers that were introduced in 2017 in a seminal work
published by Google called “Attention Is All You Need” [10]. Transformers are NNs that
are capable of understanding the context of each element of an input by identifying its
relationship with other input elements. Transformers create an algebraic map to define a
relationship between each input element by utilizing positional encoders [11]. Transformers
convert the input sequence into tokens, which are an algebraic representation of each input
element. The model is trained on a large volume of training data, which enables the model
to understand the relationship between each token and its neighbors [12]. Each token
can be processed in parallel, which accelerates the training process. LLMs can accurately
translate text, generate highly detailed and accurate text data, interpret and summarize text,
and even perform peer reviews [6]. LLMs are also successfully utilized for code and image
generation [13,14]. LLMs can revolutionize healthcare services and research through the
use of vast medical records and datasets to train for disease diagnosis, protein discovery,
and accelerate drug development [15].
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1.1. Motivation

In 2021, the United States Food and Drug Administration (FDA) evaluated over one
hundred applications containing AI components, indicating a significant shift toward incor-
porating AI in healthcare submissions. AI rapidly improves the accuracy and refinement
of disease-specific advanced therapy medicinal products (ATMPs) [16]. LLMs can assist
medical professionals in the clinical decision process, leveraging their capability to correlate
patient conditions with the medical literature and derive conclusions. In addition, medical
professionals can rely on the LLMs to gather and process relevant information to support
their clinical decisions. Several clinical decision-support LLMs have been developed to
understand clinical terminology [17]. LLMs can support biomedical research and drug
development by analyzing the massive tranche of academic literature available on this
topic [18,19].

1.2. Contributions

This review aims to highlight the transformative potential of LLMs in personalized
medicine, particularly through the analysis of genomic data. Recent advances in AI, particu-
larly the development and refinement of LLMs, have paved the way for more sophisticated
analyses of large genomic datasets. These models can interpret the complex language of
genetics, predict outcomes, and provide insights at unprecedented scale and accuracy. By
leveraging LLM capabilities, researchers can perform more nuanced, faster, and poten-
tially less expensive genomic analyses. This enables a more tailored approach to medicine,
considering individual genetic backgrounds and increasing the efficacy of treatments and
interventions. The contributions of this survey can be summarized as follows:

1. Present a primer to LLMs and their architecture.
2. Understand the LLMs in genomics from the perspective of personalized medicine.
3. Identify the limitations of LLMs and possible future research directions in this domain.
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1.3. Related Work

The existing surveys investigating the efficacy of LLMs in personalized medicine, es-
pecially in the context of genomics, are rudimentary. These works focus on the applications,
operational terminology, and tutorials of LLMs in healthcare. The scope of these surveys
is usually limited to clinical decision support systems, clinical information search and
delivery, and biomedical research and education. To the best of our knowledge, this work
is the first comprehensive survey to focus on personalized medicine, with an emphasis on
the genomic aspect of precision medicine. The survey [20] introduces LLMs and their role
in biomedical applications. This work provides a broader examination of the fundamen-
tal architecture of LLMs, their applications, and utilization strategies to enhance model
performance, ultimately identifying the challenges associated with LLMs. The authors
of [21] use a similar approach and delve deeply into the various applications of LLMs,
discussing personalized patient management in a limited capacity. The study [22] offers a
technical insight into the role of LLMs in medicine and discusses the technical challenges
associated with these models. The term Med-LLMs was coined in [23] to refer to LLMs
that are designed for medical tasks. These tasks include clinical decision support, medical
literature inference, report generation, and medical education. This work does not cover
personalized medicine in detail. Another general scope study is presented in [24], which
covers the latest advancements in LLMs and their contribution to advancing healthcare.
Their discussion also provides insight into the ethical and social implications of LLMs,
particularly in light of the privacy concerns surrounding the sharing of sensitive medical
data. The surveys [20–24] focus on the natural language processing (NLP) capabilities of
LLMs. A brief survey undertakes a study of transformer-based models that are used to
accelerate the speed of drug development [25]. The process of developing new pharmaceu-
tical drugs requires an intensive study of chemical interactions, which help establish the
efficacy and safety of a drug before the clinical trial starts. The LLMs accelerate this process
by identifying adverse impacts based on their ability to analyze the vast scientific literature
and streamline the drug development process. A similar but comprehensive study in [26]
covers the drug discovery process and the role of LLMs in the process. The development of
personalized medications can benefit from the contextual awareness that LLMs provide.
The interaction of proteins determines the efficacy of a drug and possible adverse reactions
that might result due to genetic predispositions. Therefore, the capabilities of LLMs can be
used for understanding protein interactions and designing proteins to enhance personal-
ized treatments. Surveys [27,28] provide a deep insight into these interactions and their
potential role in developing personalized treatment plans.

Section 2 introduces LLMs and their role in healthcare, especially in medical research.
It delves into the building blocks of LLMs and different model architectures. Section 3
introduces the key concepts of precision medicine, discussing the various aspects of person-
alized healthcare and its key enabling techniques. We discuss the role of LLMs in advancing
precision medicine in personalized healthcare systems and the underlying medical research
in Section 4. The limitations and potential research direction are laid out in Section 5.
Section 6 concludes this discussion.

2. Large Language Models: An Introduction
ChatGPT, from OpenAI (San Francisco, CA, USA), is an LLM that has changed the

landscape of the use of AI in the consumer space and the research community. At least
four research articles co-authored by ChatGPT have been accepted during peer review [29].
ChatGPT has evolved since 2020, with ChatGPT-4 passing the Turing Test [30]. Google and
Meta AI also released their latest LLMs, Gemini and Llama 3. These exponentially large
models are available for various applications, including research and development. LLMs
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are based on the transformer architecture, essentially deep NNs trained on a large corpus
of data. Therefore, LLMs are a class of DL models, a machine learning (ML) subgroup. The
relationship between AI, ML, DL, and LLMs can be illustrated in Figure 2.
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Transformers are essentially DL models that are trained using unsupervised and rein-
forcement learning (RL) combined with human feedback. A transformer is composed of
several layers of NNs, as illustrated in Figure 3. The transformer comprises an encoder and
a decoder, each containing identical stacked layers. Both include a multi-head self-attention
mechanism and a position-wise fully connected feed-forward network. The self-attention
mechanism of the encoder allows the model to weigh the different tokens in an input
sequence with varying importance by projecting the input embeddings into query, key, and
value spaces [31]. The attention scores are computed as a dot product between the query
and key, determining a weighted sum of the values. There are multiple attention blocks
known as attention heads. This allows the different attention heads to capture various de-
pendencies in the sequence in parallel. The decoder resembles the structure of the encoder
with an additional mechanism of encoder–decoder attention, which allows for coherent and
contextually relevant output sequences by attending to the entirety of the encoded input.
The decoder has an additional masked multi-head attention layer, which ensures that the
output sequence is generated based only on the previously generated tokens and not future
ones [32]. To address the above-mentioned inadequacy in intrinsic position awareness,
positional encodings augment the input embeddings to retain sequential information, dif-
ferentiating transformers from previous attention mechanisms. Each layer’s feed-forward
network elevates the representations using non-linear transformations. Stability and better
gradient flow during training are enhanced by using residual connections and performing
layer normalization. This model serves as a basis for many state-of-the-art models, such
as Bidirectional Encoder Representations from Transformers (BERTs), Bidirectional and
Auto-Regressive Transformers (BARTs), and Generative Pre-trained Transformers (GPTs)
(Figure 3).

Transformers can be broadly classified into three categories based on their archi-
tectural design [33] as follows: 1. encoder-only models, 2. decoder-only models, and
3. hybrid models.
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2.1. Encoder-Only Models

These classes of LLMs are also known as BERT-style models. These models are based
on bidirectional pre-training, which means that the context of the input is understood
from both directions, from the left and right of each input token. These are primarily
encoder-only models, which can predict masked words based on the context provided by
the surrounding words, thereby earning the moniker “masked language modeling”. These
are non-causal models that do not regard the causality of the language. All the tokens
are visible to each other during the attention process, disregarding the causal relationship
between the individual tokens. BERT and the Robustly Optimized BERT Pretraining
Approach (RoBERTa), developed by Google and Meta AI, fall into this category [34,35].

2.2. Decoder-Only Models

LLMs are fundamentally designed to be task-agnostic, but they can be trained on
specific datasets to perform specialized tasks in a process termed fine-tuning [36]. However,
scaling up the language models can significantly improve performance in both zero-shot
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and one-shot learning [37]. Zero-shot learning refers to the model’s ability to understand
a data sample without prior knowledge of the data class. In contrast, one-shot learning
means the model has been trained once on a data class before a sample is taken as the input.
Unlike encoder-only models, these models are causal models that consider the preceding
words to predict the next word in a generated output sentence. Therefore, the model only
considers the tokens preceding the current token, ensuring the causality in the generated
output. Generative pre-trained transformers (GPTs) fall into this category; therefore, this
category is also referred to as GPT-style models. The GPT-4 architecture is an autoregressive
language model that falls into this category [37].

2.3. Hybrid Models

Hybrid models combine the best of both worlds, from encoder and decoder models,
and introduce pre-training. The UNILMv2 model is introduced in [38], which belongs to
the pseudo-masked language model (PMLM) class. This approach combines the attention
procedure of the encoders in the encoder–decoder models in the first part, and the second
part mirrors the decoder functionalities. BART [39] is another example of a hybrid model
that is suitable for text comprehension and generation.

Researchers continue to explore and refine these architectures, pushing the boundaries
of what LLMs can achieve for different applications [40]. An LLM architecture can be
selected for a specific task based on several considerations. For bidirectional contextualiza-
tion, encoder-only models like BERT and RoBERTa may be more suitable. For generation
tasks, such as translation or summarization, decoder-only or encoder–decoder models, like
the GPT-style models or BART, may be suitable candidates. Table 1 presents LLMs and
their underlying architectures. It also highlights their creators and their applications.

Table 1. A summary of LLMs.

Model Developer Key Features Applications Reference

BERT Google

- Bidirectional pre-training
- Uses masked language

modeling and
next-sentence prediction

Text classification, named
entity recognition,
chatbots, language
translation

[34]

GPT OpenAI

- Unidirectional
autoregressive model

- Uses decoder-only
architecture

Text generation, language
modeling, chatbots,
creative writing

[41]

GPT-3 OpenAI

- Uses a very large-scale
model with 175 billion
parameters

- Includes reinforcement
learning from human
feedback along with
multi-modal support

Text generation, code
generation, language
translation, text
summarization, chatbots

[37]

GPT-4 OpenAI

- Uses a very large-scale
model, greater than GPT-3

- Autoregressive language
model

Text generation, code
generation, language
translation, text
summarization, chatbots

[42]
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Table 1. Cont.

Model Developer Key Features Applications Reference

Text-To-Text
Transfer

Transformer
(T5)

Google Research

- Uses a text-to-text
framework where all NLP
tasks are treated as
text-generation tasks

Text translation and
summarization, chatbots,
text classification

[40]

RoBERTa Meta AI
- Uses a BERT model with

longer training, more data,
and dynamic masking

Text classification, named
entity recognition,
chatbots, sentiment
analysis

[35]

XLNet
Google/Carnegie

Mellon
University

- Combines autoregressive
and autoencoding
approaches

- Uses permutation-based
training

Text classification,
sentiment analysis,
chatbots

[43]

A Lite BERT
(ALBERT)

Google and
Toyota

Technological
Institute

- Uses parameter reduction
techniques to lower
memory consumption and
increase training speed

Text classification, natural
language inference,
chatbots

[44]

BART Meta AI

- Combines bidirectional and
autoregressive transformers

- Designed for
sequence-to-sequence tasks

Text generation and
summarization, machine
translation, chatbots

[39]

ERNIE
(Enhanced

Representation
through

Knowledge
Integration)

Baidu

- BERT-based model using
phrase-level masking

- Integrates external
knowledge graphs during
pre-training

Text classification,
chatbots, natural language
understanding, language
generation

[45]

Turing-NLG Microsoft

- Autoregressive language
model

- Very-large-scale model with
17 billion parameters

Text generation, chatbots,
text summarization,
dialogue systems

[46]

The integration of LLMs in computational biology and bioinformatics has accelerated
the process of drug discovery and protein identification. LLMs initially designed for
NLP tasks have shown remarkable adaptability and effectiveness in understanding and
generating biological sequences due to their versatility and ability regarding zero-shot and
one-shot learning [47]. LLMs are fine-tuned by training the FMs on application-specific
datasets for genome study, protein identification, and disease prediction, as illustrated in
Figure 4.

LLMs have been adapted to assist in predicting molecular properties, identifying
potential drug candidates, and optimizing drug design, which is usually a resource and
time-intensive process. ChatMol is a novel approach to molecular discovery that combines
natural language capabilities with drug design and molecular research [48]. ChemBERTa
leverages a transformer model called RoBERTa [35] to encode chemical information directly
from a Simplified Molecular Input Line Entry System (SMILES) dataset. This model utilizes
self-supervised learning to understand chemical properties and interactions, facilitating
drug discovery processes such as lead identification and optimization [49]. NVIDIA offers
a generative AI platform to accelerate drug development, utilizing its proprietary NVIDIA
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BioNeMo platform. This platform enables researchers to run multiple FMs, including
ESM-1, OpenFold [50], MegaMolBART, and ProtT5.
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Protein identification involves predicting protein structures, functions, and interac-
tions, which are crucial for understanding biological processes and developing effective
therapeutic strategies. DL models are available for predicting protein structures and their
molecular interactions. AlphaFold2, developed by Google’s DeepMind, is a breakthrough
DL model that accurately predicts protein structures. Its creators were awarded the 2024
Nobel Prize in chemistry due to its potential to transform scientific discovery. It uses
self-attention to infer the three-dimensional structure of proteins from their amino acid se-
quences, aiding in the understanding of protein function and interaction [51]. AlphaFold3,
released in 2024, demonstrates high prediction accuracy in detecting almost all the protein
types in the Protein Data Bank (PDB) along with a broader range of biomolecular complexes,
including ligands, metals, and modified residues [52]. It uses a generative diffusion-based
approach compared to an evoformer used in AlphaFold2. OpenFold released a reimple-
mentation of AlphaFold2 designed to be fast, memory-efficient, and trainable from scratch,
providing an open framework for protein structure prediction [50], which matches the accu-
racy of AlphaFold2. While AlphaFold is a complex DL model, OpenFold released an LLM
called SoloSeq, which is 10× faster but delivers comparable performance to AlphaFold2.
GenoML is a Python package (v1.0.1) that is used in automating genomics research [53].

LLMs have been adapted to interpret genomic data, identify variants, and predict
their effects. BERT-genome adapts the BERT architecture to genomic sequences. The BERT
architecture is designed to pre-train deep bidirectional representations from an unlabeled
text by conditioning on both the left and right context in all layers simultaneously. An
additional output layer can be used to fine-tune the BERT model, resulting in novel models
for diverse tasks without requiring substantial modifications to the task-specific architecture.
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ProteinBERT applies a transformer architecture to protein sequences. This model learns
contextualized representations of protein sequences which are beneficial for various tasks,
including protein classification, function prediction, and interaction analysis [54]. The
authors of [55] compared the performance of auto-regressive and auto-encoder models
for protein identification, yielding exceptionally accurate results. DNABERT employs
transformer models to capture patterns in DNA sequences. This model enhances the
ability to identify genomic variants and predict their potential impacts on gene function
and disease [56]. These models are fine-tuned for medical applications for diagnosis and
disease prediction using electronic health records (EHRs) [57–60]. Table 2 summarizes the
LLM models that are specialized for biological research and medicine, while Table 3 lists
the common databases used to access training datasets for these models.

Table 2. DL models and LLMs for biological research and clinical decision processes.

Model Developer Key Features Applications Reference

ChemBERTa Industry-Academic
Collaboration

Self-supervised learning
on SMILES strings

Lead identification, drug
optimization [49]

AlphaFold DeepMind DL for 3D protein
structure prediction

Protein structure
prediction, function

understanding
[51]

GenoML GenoML ML for automated
variant analysis

Variant annotation and
prioritization in genomics [53]

ProteinBERT Industry-Academic
Collaboration

BERT-based pre-trained
on about 106M proteins

from UniRef90

Protein function
prediction,

protein–protein
interaction, drug

discovery

[54]

ProtBERT Industry-Academic
Collaboration

BERT applied to protein
sequences

Protein classification,
function prediction,
interaction analysis

[55]

DNABERT Northwestern/Brook
University

Transformer models for
DNA sequences

Genomic variant
identification, gene
function prediction

[56]

MedBERT Stanford University
BERT-based model

pre-trained on electronic
health records

Patient diagnosis
prediction, treatment

recommendation, medical
image analysis

[60]

BioBERT Naver/Korea
University

BERT model pre-trained
on biomedical literature
from PubMed and PMC

Biomedical text mining,
named entity recognition,

relation extraction,
interactive systems

[57]

PubMedBERT Microsoft Research

BERT-based, pre-trained
specifically on PubMed
abstracts and full-text

articles

Biomedical text mining,
information retrieval,

named entity recognition,
relationship extraction

[58]

ClinicalBERT MIT
BERT-based, pre-trained

on clinical notes from
electronic health records

Clinical text mining,
patient outcome

prediction, medical
information extraction

[59]
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Table 2. Cont.

Model Developer Key Features Applications Reference

GenoTEX Collaborative
Genomics Group

Benchmarking and LLM
integration for gene

expression data

Evaluation and
benchmarking of LLMs in

gene expression data
analysis

[47]

QuST-LLM QuPath and
Bioinformatics

Spatial transcriptomics
enhanced by LLMs

Analysis and
interpretation of spatial

transcriptomics
[61]

SeqMate RNA-Seq Analysis
Initiative

Automated RNA
sequencing analysis
pipeline with LLM

support

RNA sequencing data
preparation and

differential expression
analysis

[62]

GENA-LM AIRI Foundational DNA
language model

Long DNA sequence
handling [63]

Geneverse T Liu et al. Multimodal LLM Genomics and proteomics
research [64]

GROVER German Cancer
Research Center DNA language model Human genome context

learning [65]

Table 3. Summary of databases containing training datasets for genomic analysis for personalized
medicine used for training DL and LLMs.

Dataset Name Description Source/Website

1000 Genomes Project

A comprehensive resource of human
genetic variation, supporting studies on
genetic variation, health, and disease. It
includes data from diverse populations

worldwide.

https:
//www.internationalgenome.org/data/

(accessed on 20 April 2025)

ENCODE Project

Provides functional genomic data,
including ChIP-seq, RNA-seq, and

epigenomic data, to identify all
functional elements in the human

genome.

https://www.encodeproject.org/
(accessed on 20 April 2025)

Genotype-Tissue Expression
(GTEx)

Offers data on gene expression and
regulation across 54 tissue sites from

nearly 1000 individuals, enabling studies
on tissue-specific gene expression.

https://www.gtexportal.org/home
(accessed on 20 April 2025)

The Cancer Genome Atlas
(TCGA)

Contains genomic, epigenomic,
transcriptomic, and proteomic data for

over 20,000 primary cancer and matched
normal samples across 33 cancer types.

https://www.cancer.gov/ccg/
research/genome-sequencing/tcga

(accessed on 20 April 2025)

Human Microbiome Project
Provides data on microbial communities

in the human body, including
metagenomic and 16S sequencing data.

https://www.hmpdacc.org/resources/
data_browser.php (accessed on 20 April

2025)

UniProt

A comprehensive database of protein
sequences and functional information,
supporting studies in proteomics and

genomics.

https://www.uniprot.org/ (accessed on
20 April 2025)

https://www.internationalgenome.org/data/
https://www.internationalgenome.org/data/
https://www.encodeproject.org/
https://www.gtexportal.org/home
https://www.cancer.gov/ccg/research/genome-sequencing/tcga
https://www.cancer.gov/ccg/research/genome-sequencing/tcga
https://www.hmpdacc.org/resources/data_browser.php
https://www.hmpdacc.org/resources/data_browser.php
https://www.uniprot.org/
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Table 3. Cont.

Dataset Name Description Source/Website

dbSNP

A database of single-nucleotide
polymorphisms (SNPs) and other

genetic variations, facilitating studies on
genetic associations and population

genetics.

https://www.ncbi.nlm.nih.gov/snp/
(accessed on 20 April 2025)

Gene Expression Omnibus
(GEO) Database

A repository for gene expression and
other functional genomics data,
supporting MIAME-compliant
submissions and analysis tools.

https://www.ncbi.nlm.nih.gov/geo/
(accessed on 20 April 2025)

Catalogue of Somatic
Mutations in Cancer

(COSMIC)

An expert-curated database of somatic
mutations in cancer, including mutation

distributions and effects.

https://cancer.sanger.ac.uk/cosmic
(accessed on 20 April 2025)

ClinVar

Archives information about genomic
variations and their relationships to

human health, including disease
associations and drug responses.

https:
//www.ncbi.nlm.nih.gov/clinvar/

(accessed on 20 April 2025)

PharmGKB

A pharmacogenomics knowledge base
that links genetic variations to drug
responses, aiding in personalized

medicine.

https://www.pharmgkb.org/ (accessed
on 20 April 2025)

UK Biobank

A large-scale biomedical database
containing genetic, lifestyle, and health

data from 500,000 participants,
supporting research in personalized

medicine.

https://www.ukbiobank.ac.uk/
(accessed on 20 April 2025)

Medical Information Mart for
Intensive Care (MIMIC)

A critical care database with
de-identified health data, including

clinical notes, lab results, and
prescriptions, for personalized

healthcare research.

https://mimic.mit.edu/ (accessed on 20
April 2025)

3. Personalized Medicine
Precision medicine, also known as personalized medicine, is a medical approach that

advocates for customizing healthcare by tailoring medical decisions, treatments, practices,
or interventions to each individual patient [66]. This strategy utilizes diagnostic tests to
determine the most suitable and effective treatment plans, informed by a patient’s genetic
makeup or other molecular or cellular studies. The concept of customized medicine is
based on the unique response of each patient to the treatment plan. However, the absence
of technological breakthroughs has hindered the comprehension and implementation of
personalized medical interventions [67].

The completion of the Human Genome Project (HGP) in 2003 marked a significant
milestone in the history of precision medicine. The HGP provided the first comprehensive
map of all human genes, enabling researchers to understand the genetic basis of many dis-
eases and conditions [68,69]. This study paved the way for developing tools and procedures
to analyze an individual’s genetic information, making personalized medicine a more viable
notion. Following the HGP, the field of genomics experienced significant growth. Advances
in sequencing technology, such as next-generation sequencing (NGS) [70], have reduced the
cost and time necessary to sequence a genome, making it suitable for widespread clinical

https://www.ncbi.nlm.nih.gov/snp/
https://www.ncbi.nlm.nih.gov/geo/
https://cancer.sanger.ac.uk/cosmic
https://www.ncbi.nlm.nih.gov/clinvar/
https://www.ncbi.nlm.nih.gov/clinvar/
https://www.pharmgkb.org/
https://www.ukbiobank.ac.uk/
https://mimic.mit.edu/
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use. The current push to integrate genomic data with clinical practice yields more precise
diagnoses and targeted therapies [71].

Precision medicine aims to enhance treatment efficacy by tailoring medical interven-
tions to each patient’s unique genetic traits. Understanding the genetic and molecular
underpinnings of an illness allows clinicians to choose treatments that are more likely to
benefit a specific patient [72]. This technique reduces the trial-and-error aspect of traditional
medicine by providing treatments based on population averages rather than individual
needs [73] and aims to minimize side effects by tailoring therapies to the patient’s genetic
composition. Precision medicine has the potential to be cost-effective in the long run by
providing more effective treatments and reducing the incidence of adverse effects. This
can reduce the healthcare costs associated with prolonged therapies, hospitalizations, and
managing side effects [74].

3.1. Precision Medicine and Genomic Analysis

Precision medicine consists of multiple interconnected components that deliver a
personalized approach to patient care. These include genomic data analysis, biomarker
discovery, pharmacogenomics, and clinical applications [4].

3.1.1. Genomic Data Analysis

Genomic data analysis examines an individual’s genetic material to identify mutations
and variations that may influence disease risk, progression, and response to treatment. This
analysis reveals the extent of genetic variability in the human population and its implica-
tions for health and disease. Single-nucleotide polymorphisms (SNPs), insertions, deletions,
and copy number variations (CNVs) are among the types of genetic variations that can
impact an individual [75,76]. Several technologies and methodologies are employed in
genomic data analysis, including whole-genome sequencing (WGS) [77], whole-exome
sequencing (WES) [78], and targeted gene panels [79]. These technologies have changed the
capacity to analyze the genome swiftly and cost-effectively, making them useful in research
and therapeutic contexts [71].

3.1.2. Biomarker Identification

Biomarkers play a critical role in precision medicine by providing information regard-
ing the type, etiology, and stage of a disease, thereby informing personalized therapeutic
approaches. Measurable indicators in blood, urine, tissues, or imaging scans encompass nu-
cleic acids, deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), proteins, lipids, cells,
and imaging characteristics. These are essential for disease diagnosis, prognosis, and treat-
ment selection, enhancing the precision and effectiveness of medical interventions [80,81].
Identifying biomarkers is an important part of precision medicine as it provides insights
into disease causes and aids in developing targeted treatments. For example, the discovery
of the HER2 protein as a biomarker in breast cancer has led to the development of targeted
medicines such as trastuzumab [82,83].

3.1.3. Pharmacogenomics

Pharmacogenomics is an essential aspect of precision medicine as it investigates how
genetic differences influence individual responses to drugs. Pharmacogenomics enables
personalized treatment by identifying genetic markers that influence drug metabolism,
efficacy, and safety [84]. Pharmacogenomics examines how genes affect an individual’s
response to medications. This discipline aims to enhance medication therapy by tailoring it
to the patient’s genetic composition, thereby boosting efficacy while minimizing side effects.
For instance, changes in the CYP2C9 and VKORC1 genes [85] impact the metabolism of
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warfarin [86], a routinely used anticoagulant, necessitating individualized dosing regimens
to prevent bleeding problems.

3.2. Key Enablers of Personalized Medicine

Over the past decade, genomic data processing has made significant progress, thanks
to technological advancements. Genomic data analysis is crucial in predicting and prevent-
ing diseases. Individuals’ risk profiles can be categorized based on genetic risk factors for
specific diseases, allowing for focused preventive treatments [87]. Individuals with a high
hereditary risk for cardiovascular illnesses can be evaluated more regularly and offered
specific lifestyle and pharmaceutical measures to minimize their risk [88]. Using genomic
data in customized treatment presents some ethical, legal, and social concerns [89]. Privacy
and confidentiality of genetic information, informed consent, the possibility of genetic
discrimination, and fair access to genomic-based healthcare are some of the issues that must
be addressed to ensure the responsible use of genomic data. It is critical to develop ethical
norms and regulatory frameworks to address these difficulties and encourage the equitable
use of precision medicine [90]. The following discussion delves into the key innovations
that are driving personalized medicine research.

3.2.1. Next-Generation Sequencing

NGS remains at the forefront of genomic data processing, enabling high-throughput
sequencing of DNA and RNA with remarkable speed and accuracy. NGS technologies
have dramatically lowered the cost of sequencing, making it accessible for a wide range of
applications, including research and clinical diagnostics [91]. Building on NGS’s success,
third-generation sequencing technologies [92], such as Pacific Bioscience’s Single Molecule
Real-Time (SMRT) sequencing and Oxford Nanopore Technologies’ nanopore sequencing,
provide longer read lengths and the ability to sequence single molecules of DNA or RNA
in real-time. These methods provide more comprehensive insights into complex genomic
regions, structural variations, and epigenetic alterations [93].

3.2.2. Single-Cell Genomics

Single-cell genomics is a novel discipline that allows for the investigation of genetic
and transcriptional variability at the individual cell level. Unlike typical bulk sequencing,
which averages signals across millions of cells, single-cell genomics captures the hetero-
geneity of cellular populations, exposing unique cell types, states, and lineages within
a given sample. Single-cell RNA sequencing (scRNA-seq) is an essential technology in
this field. It profiles the transcriptomes of individual cells by isolating single cells, reverse
transcribing their RNA into cDNA, amplifying the cDNA, and then sequencing it [94].
This approach has transformed our knowledge of cellular diversity, developmental biol-
ogy, and disease pathways. In developmental biology, scRNA-seq maps gene expression
profiles at various stages of development, identifying new cell types and reconstructing
developmental trajectories [95]. In cancer research, single-cell genomics unravels tumor
heterogeneity by analyzing the genetic and transcriptomic profiles of individual cancer
cells, identifying subpopulations with distinct mutations and transcriptional programs
crucial for understanding tumor evolution, metastasis, and drug resistance [96]. DL has
demonstrated potential in enhancing single-cell omics by surpassing conventional data
preprocessing and analysis models, although its complete capabilities in tackling significant
challenges remain unexploited [97].
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3.2.3. Gene Editing Technology

Gene editing technologies, primarily Clustered Regularly Interspaced Short Palin-
dromic Repeats (CRISPRs) technology, have revolutionized the field of genetics by pro-
viding a precise and efficient method for modifying DNA sequences. CRISPR Cas9, the
most widely used system, utilizes a guide RNA to target specific DNA sequences, where
the Cas9 enzyme creates double-strand breaks. These breaks are then repaired by the cell’s
natural repair mechanisms, allowing for the insertion, deletion, or modification of genetic
material. CRISPR-Cas9 enables precise genome changes, providing therapeutic solutions
for genetic illnesses [98]. AI algorithms can design highly specific and efficient gRNAs
by analyzing vast genomic datasets to predict the most effective sequences for targeting
specific genes, minimizing off-target effects [99]. AI models trained to anticipate the poten-
tial off-target effects of CRISPR edits help researchers identify and mitigate unintended
genetic modifications, improving the safety and precision of gene editing [100]. AI-driven
tools are also being developed to optimize CRISPR components, such as Cas proteins
and gRNAs, for better performance, enhancing the targeting range, editing efficiency, and
specificity. AI can simulate the outcomes of CRISPR-based edits before conducting actual
lab experiments, allowing researchers to test various strategies computationally and saving
time and resources [101–103].

3.2.4. Novel Computational Methods and Bioinformatics

The use of AI/ML in genomic data analysis has significantly enhanced our ability to
analyze and interpret large datasets. ML algorithms can identify patterns and connections
in genetic data that may not be apparent to traditional statistical methods, enabling the dis-
covery of new biomarkers, therapeutic targets, and disease pathways [104]. The explosion
of genomic data has necessitated the development of advanced big data analytics tools and
platforms. Cloud computing and high-performance computing (HPC) infrastructures are
increasingly used to store, manage, and analyze large-scale genomic datasets, facilitating
collaborative research and integrating multi-omics data to enhance the understanding
of complex biological systems [105]. Typical bioinformatics tasks in precision medicine
include implementing and executing established and reproducible pipelines for analyzing
genomic, transcriptomic, epigenomic, and proteomic data, as well as developing novel
algorithms and tools for integrating and interpreting multi-omics data within a clinical
context [106]. Additionally, developing robust bioinformatics pipelines and software tools
is essential for the accurate and efficient analysis of genomic data. Widely used tools such
as the Genome Analysis Toolkit (GATK), Burrows–Wheeler Aligner (BWA), and SAMtools
are pivotal for sequence alignment, variant calling, and data processing. These pipelines
are continually updated to incorporate new algorithms and improve performance [107].

4. Role of LLMs in Precision Medicine
LLMs are becoming increasingly crucial in genomic data analysis, enabling advanced

tasks such as genetic variant annotation, gene expression prediction, and modeling gene-
regulatory networks [108,109]. These models are trained on the extensive, diverse medical
literature and datasets to utilize their advanced processing capabilities. This training helps
them better analyze and generate written content, resulting in more accurate and efficient
genomic interpretations. By incorporating attention mechanisms, LLMs can gain a nuanced
understanding and generate relevant output, thereby significantly improving personalized
medicine and genetic research.
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4.1. Genomic Data Integration and Interpretation

Genomic data integration, which combines multiple sources such as DNA sequences,
RNA transcripts, and epigenetic modifications, is crucial for comprehending biological
systems fully [110]. GROVER, a foundation model with an optimized vocabulary for
the human genome, was selected using next-k-mer prediction. This fine-tuning task is
independent of the foundation model’s structure and can handle different vocabulary
sizes and tokenization strategies without requiring the selection of models for specific
biological tasks.

GROVER understands the DNA language structure by learning the characteristics
of tokens and their sequence contexts [65]. Extracting this knowledge can create a gram-
mar book for the code of life. This integrated approach helps extract critical insights for
advancing personalized medicine. LLMs are capable of superior pattern recognition and
contextual capabilities. DeepMAPs [111], a graph transformer-based method designed
for integrating and interpreting biological networks from scMulti-omics data (including
scRNA-seq, scATAC-seq, and CITE-seq), utilizes a graph with nodes that represent genes
and cells, enabling features from various modalities to be mapped to genes [112].

4.2. Drug Development and Personalized Therapeutics

LLMs significantly enhance drug development and personalized therapeutics by uti-
lizing genomic data to identify potential drug targets and predict individual responses to
drugs. This capability enhances the efficiency of the development of personalized medica-
tions, lowers the risk of adverse reactions, and improves therapeutic outcomes. AlphaFold
transformed the prediction of critical protein structures used in drug targeting, thereby
simplifying development procedures [113]. Since then, several LLMs have been trained to
achieve high accuracy. ProteinGPT is a multimodal LLM designed for protein property pre-
diction and structure understanding, integrating protein sequence and structure encoders
with linear projection layers and an LLM to generate precise and contextually relevant re-
sponses. Trained on a diverse set of 132,092 annotated proteins. These proteins are selected
to cover various biological functions, structures, and properties, ensuring the model can
handle various protein-related queries and analyses and optimizing the instruction-tuning
process with GPT-4o [114]. Recent studies have shown that LLMs effectively predict indi-
vidual patient responses to cancer treatments, indicating significant progress in precision
medicine and personalized healthcare. CancerGPT, a few-shot learning approach with
approximately 124M parameters, can successfully predict drug pair synergy in rare cancer
tissues with limited data, producing results comparable to the larger GPT-3 model [115].

4.3. Integration of Multi-Omics Data

Multi-omics is an integrative approach that combines data from multiple “omics” dis-
ciplines, including genomics, transcriptomics, proteomics, metabolomics, and epigenomics,
to comprehensively understand biological systems [1]. By leveraging these diverse datasets,
researchers can elucidate complex molecular interactions and identify disease-associated
biomarkers, enhancing diagnostic accuracy and therapeutic development. Multi-omics can
be critical in tailoring treatment strategies to an individual’s unique genetic and biochemical
profile, enabling more precise and practical interventions with reduced adverse effects.
Integrating multi-omics data is crucial for comprehending complex biological processes,
but traditional methods often struggle due to the heterogeneity and size of these datasets.
LLMs can integrate various types of omics data, enabling a comprehensive understanding
of genetic and molecular interactions. This integration enhances comprehension of disease
mechanisms and identifies potential targets for therapeutic intervention. LLMs excel at
handling large amounts of data and identifying patterns across multiple data types. Single-
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cell RNA sequencing (scRNA-Seq) has significantly contributed to our comprehension of
cellular diversity and function [116]. Integrating LLMs into these frameworks can enhance
multi-omics data analysis, yielding additional insights into gene regulation, cellular dif-
ferentiation, and disease mechanisms. The incorporation of multi-omics data significantly
improves the feature set used to train ML algorithms, resulting in more accurate models of
disease risk, progression, and treatment responses [117]. LLMs can use these multi-omic
datasets to improve prediction accuracy and aid in discovering new biomarkers, thereby
advancing the field of personalized healthcare.

DeepMAPS is a graph transformer-based method for integrating and inferring bio-
logical networks from multi-omics data, such as scRNA-seq, scATAC-seq, and CITE-seq.
It creates a graph with nodes representing genes and cells and maps features from other
modalities to genes. DeepMAPS learns local and global features to construct cell–cell and
gene–gene relationships by using RNA velocity to infer cell–cell communication [111].
scMoFormer is another advanced method that converts gene expression to protein abun-
dance and facilitates multi-omics predictions, such as protein abundance to gene expression,
chromatin accessibility to gene expression, and vice versa. It uses graph transformers to
make these predictions, which improves the integration and interpretation of complex
multi-omics data [118].

5. Challenges, Limitations, and Future of LLMs in Precision Medicine
AI integration in healthcare significantly impacts this field and yields high accuracy

and efficiency. With the improving accuracy of various LLMs, health management is
gradually moving towards higher efficiency, potentially at a lower cost, in the near fu-
ture [119]. LLMs are valuable in analyzing genomic data and bioinformatics, leveraging
extensive datasets to detect patterns that surpass traditional methodologies. LLMs have
demonstrated impressive effectiveness in identifying complex patterns in genomic data, as
evidenced by their ability to analyze and comprehend DNA and RNA sequences, much
like textual data. Subsequently, there has been substantial advancement in tasks such as
predicting splice sites, transcription factor binding sites, and other regulatory elements
in the genome [120]. LLMs’ flexibility enables them to be utilized in various genomic
tasks without requiring specific modifications. This adaptability is especially useful in
genomics, where standard data types and analysis requirements are used. Although these
models offer several advantages, they must be acknowledged and addressed to enhance the
accuracy and effectiveness of diagnosis and treatment options in precision medicine. The
limitations and potential research directions to mitigate these shortcomings are as follows.

5.1. Data Sparsity and Complexity

Data sparsity is a common challenge in genomic data, especially in single-cell omics
data like scRNA-seq. Many genes are not expressed in most cells, leading to sparse
data [110,121]. This poses difficulties for LLM algorithms, which typically work better
with dense and evenly distributed data. The sparsity and high dimensionality of genomic
datasets make it challenging to train models without overfitting or losing essential details
in the noise. Even with tools like scBERT that are designed to tackle these issues, the
underlying sparsity and expression level variability still pose significant computational
challenges [122]. The Mixture of Experts (MoE) model, designed for efficiency and effec-
tiveness, can understand context even with limited data through several mechanisms. By
leveraging the sparse activation of experts, a sub-model dedicated to sub-tasks, only the
most relevant experts are engaged for a given input, thus optimizing the use of available
data [123]. The model’s dynamic routing mechanism further ensures that inputs are di-
rected to the most appropriate experts, enhancing adaptability and context understanding.
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Efficient parameter usage allows the MoE model to generalize effectively. MoEs can be
significantly helpful when handling limited genetic, clinical, or biological data by focusing
on specialized experts tailored to specific datasets, maximizing the insights gleaned from
restricted information, and improving predictive accuracy in sparse data scenarios.

5.2. Interpretability and Model Transparency

This is a significant limitation in genomic studies where understanding the biological
implications of predictions is crucial. For instance, predicting interactions and compre-
hending biological pathways and underlying mechanisms are essential in gene regulatory
network inference. The opaque nature of DL models, such as LLMs, can obscure these
insights, making it challenging for researchers to trust and validate the results without
extensive external testing.

Explainable AI (XAI) can enhance transparency and trust in LLM-based clinical deci-
sion support systems and biomedical research tools. XAI “explains” the thought process of
an LLM or AI model in general decisions, leading to better diagnostic accuracy and patient
outcomes. XAI also mitigates biases, ensuring equitable treatment. XAI methods like Local
Interpretable Model-agnostic Explanations (LIMEs) and Shapley Additive explanations
(SHAPs) have been applied to interpret AI models’ clinical decisions when predicting
cardiovascular diseases and oncology decisions, improving trust in AI prediction [124,125].

5.3. Computational Resources

The training and fine-tuning of LLMs require significant computational resources.
Many researchers cannot access state-of-the-art models due to the need for powerful GPUs
and infrastructure. This is particularly challenging in genomics, where datasets can be
extremely large. Additionally, training LLMs on genomic data often requires a significant
initial computational investment and ongoing retraining as new data become available,
further adding to the resource burden.

Several strategies alongside the supporting literature that mitigate the high resource
requirements can be leveraged in precision medicine. Model pruning reduces the num-
ber of parameters in the model by removing less important weights or neurons, thereby
minimizing computational resources without significantly affecting performance. Quanti-
zation lowers the precision of the model’s weights and activations, typically from 32 bit to
8 bit, which reduces memory usage and computational demands. Knowledge distillation
involves training a smaller, more efficient model to mimic the behavior of a larger model,
resulting in faster computations and reduced resource consumption [126,127]. Efficient
model architectures, such as the Transformer-XL or Efficient Transformers, are designed
with minimal computational overhead as a key requirement [128,129]. These strategies
collectively contribute to reducing the computational load and enhancing the scalability
of LLMs.

5.4. Relevance and Generalization Accuracy

The inherent differences between text and genomic data present significant chal-
lenges for LLMs’ effective generalization of genomic data. Text data are linear and se-
quential, whereas genomic data are three-dimensional, highly interactive, and non-linear.
NLP-oriented models employed by models such as DNABERT may not fully capture the
complexities of chromosomal interactions, epigenetic modifications, and the impact of non-
coding regions [130]. The three-dimensional organization of genomic data within the cell
nucleus is crucial for understanding gene regulation and genome function. Additionally,
genes do not act in isolation, as there are complex interactions between different regions of
the genome, including chromatin interactions and regulatory elements. Epigenetic mod-
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ifications add another layer of regulation that is not present in text data. Furthermore, a
significant portion of the genome consists of non-coding regions with regulatory functions.

Possible solutions to these challenges include the integration of multi-omics data to
provide a more comprehensive understanding of biological systems and the development
of advanced computational models that incorporate knowledge of the genome, such as
ReUseData for efficient data management and reuse [131,132]. Promoting data sharing
and collaboration among researchers can help overcome data scarcity and improve model
training’s [133] 3D structure and epigenetic landscape, and the enhancement of data
management tools.

5.5. Privacy and Security

The analysis of private health data using LLMs presents significant privacy challenges
due to the sensitivity of healthcare data, including personal medical histories, diagnoses,
and treatment plans. Unauthorized access or data breaches can lead to severe privacy
violations and the misuse of sensitive information. Additionally, the complexity of LLMs
and their decision-making processes can result in a lack of transparency and trust [134].
Algorithmic bias is another concern, as biased datasets can produce inaccurate or unfair
outcomes, particularly for underrepresented demographic groups, leading to disparities
in patient care and health outcomes. Additionally, protected data from research centers
can become vulnerable to unauthorized usage for training, leading to potential financial
losses [135].

To mitigate these privacy challenges, several solutions can be implemented. Robust
security protocols, including encryption and regular audits, are essential to prevent unau-
thorized access. Transparency and accountability in data usage should be prioritized, with
clear policies provided to patients. Privacy-preserving techniques like data anonymiza-
tion, federated learning, and differential privacy can protect patient confidentiality while
allowing for meaningful analysis. Collaboration among healthcare institutions, regulators,
and AI developers is crucial for establishing robust governance frameworks and ensuring
compliance with regulatory standards such as HIPAA. By addressing these challenges
and implementing these solutions, LLMs can be effectively integrated into healthcare for
precision medicine.

6. Conclusions
AI integration in healthcare has led to a paradigm shift in medical research and

clinical decision processes. LLMs have a promising future in personalized medicine, with
several key advancements on the horizon. They can integrate diverse datasets, such as
genomic, proteomic, and clinical data, to identify patterns and correlations essential for
understanding complex diseases and developing personalized treatments. Predictive
modeling by LLMs forecasts disease progression, treatment outcomes, and potential side
effects, enabling tailored treatment plans.

In drug discovery, LLMs expedite the identification of drug targets, predict interac-
tions, and optimize formulations, thereby accelerating the development of new therapies.
Clinical decision support from LLMs offers evidence-based recommendations, synthesizes
medical research, and aids healthcare professionals in making informed decisions. Further-
more, LLMs enhance patient engagement by providing personalized health information,
answering queries, and improving treatment adherence through conversational interfaces.
They also support research by processing and summarizing vast amounts of the medical
literature, providing easy access to knowledge. While promising, LLMs face challenges
such as data privacy concerns, model interpretability issues, and the risk of generating
inaccurate information. Ensuring responsible use and continuous improvement is crucial
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for their successful integration into precision medicine. Integrating multi-omics data, such
as genomics, proteomics, and metabolomics, will provide a comprehensive understanding
of diseases, enhancing treatment precision. Continuous enhancements to model architec-
tures, such as transformer models, will increase the accuracy of understanding complex
genetic data. Real-time data processing capabilities will emerge, enabling rapid insights
and recommendations in healthcare conditions. Interdisciplinary collaboration among com-
putational scientists, geneticists, and healthcare professionals will be essential for building
therapeutically applicable models.

Validating LLM outputs, particularly in the genomic analysis field, involves a symbi-
otic operation between complementary technologies. Primarily, using high-quality, domain-
specific datasets provides the knowledge base required to understand complex genomic
patterns and biological terminology. Structured knowledge aggregation by symbolic-neural
hybrid techniques and from dependable databases such as Gene Ontology or the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database is critical to increase its factual
dependability. Retrieval-Augmented Generation (RAG) also increases accuracy by allowing
the model to fetch and leverage contextual information from the current genomic literature
in real time at inference. Adapter-based and fine-tuning methods facilitate the general-
purpose LLMs to be trained into specialized genomic applications. In contrast, prompt
engineering guides the model into biologically meaningful and structurally well-formed
outputs. Moreover, uncertainty estimation methods, including ensemble methods and
Monte Carlo dropout, enable the quantification of the confidence in predictions. Post-
processing with biomedical ontologies and rule-based validators enables terminological
correctness and consistency. XAI methods, such as attention visualization, increase in-
terpretability and transparency for gene–disease association tasks. Feedback loops and
continuous learning algorithms allow the model to stay in line with the latest genomic
evidence. At the same time, strict compliance with regulations and ethics standards ensures
that outputs are reliable for clinical decision-making.

Addressing ethical and privacy concerns with robust data protection measures will
safeguard patient information. LLMs will also enhance personalized treatment recommen-
dations, suggesting tailored therapies and lifestyle changes based on individual genetic
profiles. Efforts to make these technologies scalable and accessible will broaden their im-
pact, ensuring that the benefits are available to diverse populations. These improvements
will collectively enhance the precision, efficacy, and accessibility of personalized healthcare,
significantly improving patient outcomes.
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