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Abstract: The mainstream adoption of Internet of Things (IoT) devices for health and
lifestyle tracking has revolutionized health monitoring systems. Sixth-generation (6G)
cellular networks enable IoT healthcare services to reduce the pressures on already resource-
constrained facilities, leveraging enhanced ultra-reliable low-latency communication (eU-
RLLC) to make sure critical health data are transmitted with minimal delay. Any delay
or information loss can result in serious consequences, making spectrum availability a
crucial bottleneck. This study systematically identifies challenges in optimizing spectrum
utilization in healthcare IoT (H-IoT) networks, focusing on issues such as dynamic spec-
trum allocation, interference management, and prioritization of critical medical devices.
To address these challenges, the paper highlights emerging solutions, including artificial
intelligence-based spectrum management, edge computing integration, and advanced
network architectures such as massive multiple-input multiple-output (mMIMO) and
terahertz (THz) communication. We identify gaps in the existing methodologies and pro-
vide potential research directions to enhance the efficiency and reliability of eURLLC in
healthcare environments. These findings offer a roadmap for future advancements in
H-IoT systems and form the basis of our recommendations, emphasizing the importance of
tailored solutions for spectrum management in the 6G era.

Keywords: eURLLC; 6G; healthcare Internet of things; artificial intelligence

1. Introduction
The recent proliferation of wearables has led to an exponential growth in lifestyle and

health-tracking management systems. The delivery of healthcare and lifestyle improvement
services has been transformed along with the manner of handling health emergencies [1].
Internet of Things (IoT) devices are pervasive within hospitals and other healthcare facilities,
supporting several applications from continuous patient monitoring to tracking critical
medical assets. IoT sensors have a compact form factor and significant accuracy, enabling
remote real-time monitoring services. This enables clinicians to monitor the vital signs
and identify potential health issues in patients before they reach a higher severity level,
resulting in reduced fatality rates and medical costs. Besides that, such systems help
optimize the operation of healthcare facilities by ensuring proper use of both material and
human resources [2]. IoT facilitates seamless communication between healthcare facilities,
caregivers, insurance providers, and patients. The health infrastructure should, therefore,
be full of integration and responsiveness. A fast and reliable communication network is of
critical importance to enable support for an increasing number and variety of healthcare
IoT applications in a reliable, secure, and robust system [1,2].
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The digital transformation is driven by ultra-reliable low-latency communication
(URLLC), a requirement critical to the safety and effectiveness of modern medical treat-
ments. In healthcare settings, even insignificant delays or interruptions in communication
can have significant consequences. URLLC ensures the data from IoT devices are transmit-
ted without extended delay and with the highest level of reliability, thereby maintaining
the integrity of real-time patient monitoring and other mission-critical applications. This
stringent demand for reliability and low latency is especially pertinent in scenarios such
as telemedicine, remote surgery, and the management of life-support systems, where
continuous, uninterrupted data flow is essential. As healthcare-IoT (H-IoT) ecosystems
become more complex, with an increasing number of connected devices, the challenge of
maintaining URLLC quality of service (QoS) amidst spectrum congestion and interference
intensifies, making it a critical area of research and development efforts [3].

The massive deployment of IoT in healthcare has made healthcare more accessible.
However, this democratization comes at a high cost of spectral utilization. Healthcare
facilities are usually located in the city centers for easier accessibility. These areas are
densely populated, which leads to overburdening the electromagnetic spectrum for wireless
communication. For instance, urban hospitals have to deal with interference levels forcing
data throughput down by 30% in peak hours of usage, with over 100 milliseconds of delay
in transmitting data far above the 10-millisecond threshold necessary for applications that
are critical, such as remote surgery [1,3,4]. This spectrum scarcity poses a challenge as an
increasing IoT deployment requires more wireless channels to communicate efficiently.
Therefore, severe competition for wireless spectrum can result in network congestion, which
limits the performance of the overall healthcare system. Interference generated by dense IoT
deployment is also among the leading causes of network performance degradation. These
challenges create a need for highly efficient and robust spectrum management solutions
that can not only cope with increasing spectrum demands but also minimize interference
and improve the overall quality of the H-IoT system [2,5].

URLLC specifications form the fundamental requirements to ensure patients’ well-
being. The time-sensitive nature of H-IoT networks entails the delivery of data within a
tight delay tolerance, exceeding which could lead to fatal consequences. It is estimated
that interference in urban hospital environments may cause packet loss rates as high
as 15%, thereby degrading real-time health monitoring systems [3,4,6]. Communication
reliability has the utmost significance as lost data can cause misdiagnosis or erroneous
treatment. The challenges of limited spectrum availability and the high QoS requirements
of URLLC underscore the critical need for innovative solutions that can manage these
constraints effectively, ensuring that H-IoT systems operate in compliance with security
and performance benchmarks [1]. The key performance indicators (KPIs) of healthcare
systems in the fifth-generation cellular communication (5G) domain are analyzed in [7],
where authors have reviewed experimental studies on achieving satisfactory performance
in terms of these KPIs. The delay and reliability thresholds for H-IoT applications can be
inferred from the cited case studies in [7], which are summarized in Table 1.

Table 1. Upper limits on delay and reliability performance for healthcare applications. Monitoring ap-
plications have a higher delay threshold compared to haptic applications such as remote surgeries [8].

Application Delay (ms) Reliability (BER)

Healthcare Monitoring (Heart rate, stress levels, blood pressure) 250 10−3

Remote Surgery 10 10−4

Figure 1 illustrates the general architecture of H-IoT, elucidating the different faculties
of an H-IoT system along with its use cases and stakeholders. Health data, generated from
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IoT devices, are securely forwarded to centralized systems for analysis, generating emer-
gency alerts, and remote consultations. The stakeholders in this paradigm include health-
care providers, who can access real-time insights through secure data-sharing protocols that
enable the best outcomes for patients. This is information flow in both directions, where
healthcare providers or autonomous monitors can push feedback or counter-measures to
IoT devices on environment control or personalized treatments.

Stakeholders

Research Literature

Insurance

Companies

Healthcare

Providers

E-Health Companies

Secure

Data

Sharing

Secure Data Storage

Analytics

Health Alerts

Remote Consultations

Environment

Control

Internet

IoT Use Cases

Health

Data

Figure 1. A general framework of H-IoT networks. The different use cases and stakeholders are
identified.

Contributions of This Work

The challenges in enabling sustained and reliable real-time communication for H-IoT
are reviewed in this work. The contributions of this work can be summarized as follows.

• This work provides a clear understanding of an H-IoT system, its scope, and its
underlying network operation, especially enhanced ultra-reliable low-latency com-
munication (eURLLC). The focus of this review remains on sustained and reliable
real-time communication for H-IoT, which acts as a background to understand critical
challenges in efficient spectrum utilization.

• This work identifies the key challenges that limit the performance of real-time systems
due to limitations in spectrum utilization.

• This work analyzes state-of-the-art strategies aimed at optimizing spectrum utilization
in time-critical wireless networks, with a focus on the healthcare domain, including
traditional and emerging approaches.

• This work compares emerging technologies and traditional approaches in terms of
their performance gains. Artificial intelligence (AI)-based methodologies paired with
advanced network architectures provide an insight into the emerging solutions and
their potential to address the current challenges.

• The discussion on each of these solutions identifies research gaps and future research
directions, focusing on experimental validation and practical deployment in real-world
healthcare environments. Furthermore, this work presents some recommendations at
the end based on the drawbacks of the existing solutions.

Figure 2 illustrates the structure of this survey. Section 1 highlights the significance of
H-IoT and the key features of H-IoT. Section 2 introduces the underlying communication
network features enabling H-IoT systems. Section 3 identifies the limitations of the current
spectrum utilization methodologies for enabling eURLLC while Section 4 highlights the
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state-of-the-art solutions along with the future research directions based on the current
solutions. Section 5 concludes the discussion.

Optimizing Spectral Utilization in Ultra-Reliable 
Low-Latency Communication for Healthcare Internet of Things

Introduction

From URLLC to 
Enhanced URLLC

Key Challenges in Efficient 
Spectrum Utilization 

in H-IoT Networks
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Figure 2. General structure of the study.

2. From URLLC to Enhanced URLLC
URLLC is the defining feature of beyond 5G (B5G) networks and is intertwined in

the design of sixth-generation (6G) cellular networks, designed to meet stringent require-
ments in delay and reliability performance [4]. The evolution of cellular communication
specifications shifted the goalpost from maximizing the throughput and network capacity
to enabling real-time communication with minuscule tolerance to transmission errors.
The requirements of reliable communication in mission-critical applications including
autonomous vehicles, smart industries, cobots, and healthcare drive this shift. The ca-
pabilities of URLLC will evolve further as 6G networks are rolled out commercially to
support novel applications. The KPIs for 6G networks demonstrate the push for a further
reduction of average end-to-end (E2E) latency to a sub-millisecond scale and reliability
of 99.99999% [9]. These performance parameters define the eURLLC paradigm. The de-
livery of sustained performance at these levels addresses the increasing complexity and
demands of emerging applications [10]. eURLLC networks are anticipated to include
advanced technologies including terahertz (THz) communication, massive multiple-input
multiple-output (mMIMO), and AI-driven network management. An interplay of all of
these technologies is likely to play a critical role in securing real-time communications for
future applications. Real-time remote surgery, telemedicine, and IoT-based monitoring
applications can be potentially enabled by employing reliable, instantaneous, and secure
communications.
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The proliferation of H-IoT has sparked a rigorous research effort into the development
of spectrum management and utilization strategies tailored to the demanding requirements
of medical applications. Numerous research studies have explored the different aspects
of spectrum allocation, such as efficiently managing the limited spectrum resources while
ensuring the required reliability and low-latency communication necessary for critical
healthcare applications. A comprehensive survey of technologies outlining the require-
ments and challenges of H-IoT networks is presented in [6]. The authors in [11] present a
review of IoT applications in healthcare, focusing on the main application areas, compo-
nents of IoT architecture, and enabling technologies. It highlights the challenges of security
and privacy in IoT-based healthcare systems. The study in [12] investigates the use of
cognitive radio (CR) for smart healthcare systems. It evaluates spectrum sensing using
tree-based machine learning (ML) algorithms, aiming to improve the accuracy of spectrum
utilization in healthcare settings. The authors in [13] discuss the integration of 5G and IoT
in healthcare, emphasizing the potential for improved real-time communication, remote
patient monitoring, and data management. It also addresses the benefits and challenges of
combining these technologies. The systematic review in [14] analyzes the literature focused
on IoT in healthcare, discussing enabling technologies, applications, and challenges. It
provides insights into the current state of IoT in healthcare and identifies key areas for
future research. The survey in [15] explores emerging IoT communication standards and
technologies suitable for smart healthcare. It emphasizes low-power wireless technologies
as key enablers for energy-efficient IoT-based healthcare systems and discusses major
challenges in privacy and security. The study in [16] explores the transformative poten-
tial of the internet of medical things (IoMT) in healthcare. It discusses the integration of
technologies like AI, ML, and blockchain into IoMT to improve patient care and health
outcomes. The study also addresses the security and privacy concerns associated with
IoMT devices and data. The study in [17] investigates the implications of IoT integration
in the healthcare management domain. It presents a detailed discussion on how IoT can
improve the functionalities of hospital management systems, focusing on the benefits and
challenges of IoT adoption in healthcare settings. Table 2 summarizes the literature and
highlights the key takeaways and research challenges with a focus on spectrum utilization.

Spectrum management strategies significantly affect the performance of H-IoT net-
works. Static resource allocation methods suffer from severe detriments when the number
of users increases. This is due to the default allocation of a unique frequency band to specific
applications. These methods often fail to adapt to the rapidly changing and unpredictable
nature of the transmission features of electromagnetic signals in crowded environments
filled with instruments causing interference. In dynamic environments, the bandwidth
requirements fluctuate constantly due to varying device density and mobility. Moreover,
the static allocation methods fail to satisfy all the needs of such a dynamic network; this
approach fails to maximize throughput per Hertz per second. This rigidity usually leads to
either under-utilization of the spectrum or congestion in certain bands, each compromising
the real-time aspect of communication expected from the H-IoT network. The current spec-
trum management techniques can be improved to allocate resources based on priority while
maintaining a reliable service for non-critical applications. Non-critical devices may occupy
valuable spectrum resources at the expense of more crucial applications, exacerbating the
challenges of maintaining eURLLC performance. These limitations underscore the need for
more adaptive, intelligent, and context-aware spectrum management solutions that can
respond in real time to the demands of H-IoT networks, ensuring that critical healthcare
devices are always prioritized and supported with the required communication resources.
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Table 2. Summary of existing studies on enabling technologies and challenges for H-IoT networks.

Study Focus Area Methodology Key Findings Limitations

Qadri et al. [6] Novel technologies
enabling H-IoT Comprehensive review

Survey of emerging
technologies to power
H-IoT

No empirical results
presented

Ahmadi et al. [11] IoT applications in
healthcare Comprehensive review

Identified main
application areas,
components of IoT
architecture, and key
technologies
Highlighted security
and privacy challenges

Limited to a review and
lacks empirical data

Raza et al. [12] Cognitive radio for
smart healthcare

Spectrum sensing using
tree-based ML
algorithms

Improved accuracy of
spectrum utilization in
healthcare settings

Focused on a specific
algorithm, may not
generalize to all
settings

Butt at al. [13] Integration of 5G and
IoT in healthcare Discussion and analysis

Emphasizes potential
for improved real-time
communication, remote
patient monitoring, and
data management.
Addresses benefits and
challenges

Theoretical discussion;
lacks practical
implementation

Mohamad et al. [14]
Enabling technologies
and applications of IoT
in healthcare

Systematic review

Provides insights into
the current state of IoT
in healthcare. Identifies
key areas for future
research

Review-based, lacks
experimental
validation

Gardavšević et al. [15]

Emerging IoT
communication
standards for smart
healthcare

Review paper

Emphasizes low-power
wireless technologies as
key enablers for
energy-efficient
IoT-based healthcare
systems. Discusses
privacy and security
challenges

Survey-based, may not
cover all emerging
technologies

El et al. [16]
Internet of Medical
Things (IoMT) in
healthcare

Exploration and
analysis

Discusses integration of
AI, ML, and blockchain
into IoMT; addresses
security and privacy
concerns

Exploratory; lacks
empirical evidence

Almotairi et al. [17]
IoT integration in
healthcare
management

Detailed discussion

Presents benefits and
challenges of IoT
adoption in healthcare
settings. Improves
functionalities of
hospital management
systems

Discussion-based; lacks
a practical
implementation

3. Key Challenges in Efficient Spectrum Utilization in H-IoT Networks
As the number of H-IoT devices increases to serve diversified medical use cases,

consolidated efforts are underway to realize reliable communication with a minimum delay
and maximum reliability. Several challenges to achieving realistic eURLLC performance
warrant attention, especially efficiently allocating the limited spectrum. This section delves
into the key issues that need addressing to optimize spectrum utilization in H-IoT networks.
This work explores the intricacies of dynamic spectrum allocation, which enables adapting
to fluctuating network demands in real time, the pervasive problems of interference and
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spectrum scarcity that can hinder reliable communication, and the importance of priority-
based allocation to ensure that critical medical devices receive the necessary bandwidth and
low-latency support. Each of these challenges is crucial to maintaining the integrity and
efficiency of healthcare IoT systems and demands innovative solutions to meet the stringent
requirements of modern healthcare environments. Figure 3 summarizes the challenges in
spectrum utilization in H-IoT networks.

Key Challenges in Spectrum Allocation in URLLC in H-IoT

Priority-Based 

Allocation

Interference and 

Spectrum Scarcity

Dynamic Spectrum 
Allocation

• Unpredictable network 

conditions

• Bandwidth requirement 

prediction

• Channel sensing

• Unpredictable network 

conditions

• Congestion prediction

• Low-power transmission

• Flow-prioritization 

• Priority-based scheduling

• Dynamic priority

assignment

Figure 3. Key challenges in spectrum utilization for H-IoT networks.

3.1. Dynamic Spectrum Allocation

Recent studies have proposed solutions for dynamic spectrum allocation in H-IoT.
For instance, one intelligent approach has been presented using fuzzy logic in the cog-
nitive radio (CR) network to deal with inherent imprecision and ambiguity in spectrum
sensing [18]. Another work proposed a deep multi-user reinforcement learning (RL)-based
CR access strategy, which demonstrates enhanced wireless communication with improved
user satisfaction [19]. Moreover, ML-based traffic prediction for 5G network dynamic
spectrum allocation to reduce congestion and further improve network performance has
also been explored [20]. An analytical model for dynamic spectrum sensing in CR incor-
porating blockchain-based management for more accuracy and security has also been
proposed [21].

Despite these advancements, several challenges persist in implementing dynamic
spectrum allocation in H-IoT. One of the primary challenges is predicting the demand for
spectrum resources accurately [22]. The unpredictable nature of hospital environments
makes it difficult to forecast bandwidth requirements, necessitating advanced algorithms
and real-time monitoring systems to dynamically allocate spectrum resources based on
current network conditions and anticipated demand. Another significant challenge is
ensuring that critical devices are prioritized in the allocation process [23]. Failure to
adequately prioritize these devices can lead to potential risks, including delayed data
transmission or communication failures, which could have serious consequences for patient
safety. Therefore, sophisticated prioritization mechanisms must be incorporated into
dynamic spectrum allocation strategies to dynamically allocate resources based on the
urgency and criticality of the communication.
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3.2. Interference and Spectrum Scarcity

Interference and spectrum scarcity are among the major challenges in the optimiza-
tion of spectrum allocation for H-IoT networks, particularly in dense urban populations.
Many hospitals in urban cores usually face very high levels of electromagnetic interfer-
ence due to highly dense deployments of IoT devices and medical equipment, along
with coexisting radio access networks. It is shown that this interference can result in
packet loss rates of up to 15% and a 30% reduction in data throughput during peak hours,
which seriously impairs the reliability of time-critical applications such as remote moni-
toring and telemetry [3,6]. Furthermore, SINR levels in urban hospitals are often below
the acceptable threshold of 10 dB, further degrading the quality of communication [3].
Spectrum scarcity further worsens these issues since the number of available wireless
channels is reduced. Wearable health-monitoring devices are growing at an annual rate
of 20%, further increasing pressure on the already crowded spectrum [24]. A case study
involving a hospital utilizing multiple IoT-enabled devices for patient monitoring found
that delays above 150 ms were experienced during peak operation times, which is far
beyond the 10 ms tolerance needed for URLLC [1,4]. This underlines the importance of
dynamic spectrum allocation techniques, enhanced interference management algorithms,
and prioritization mechanisms toward ensuring reliable communications for the most
critical medical devices.

Recent advancements to address interference and spectrum scarcity in H-IoT include
novel solutions. One of the methods comprising intelligent dynamic spectrum access
utilizes the concept of fuzzy logic in CR networks for handling imprecision and ambiguity
in the estimation of spectrum sensing [15,18]. Other techniques involve the development of
distributed RL algorithms for dynamic spectrum allocation in wireless communication to
improve user satisfaction in CR-based IoT networks [19]. Other proposals explore ML-based
traffic predictions to make better decisions on dynamic spectrum allocation in 5G networks,
thereby reducing congestion and enhancing network performance [20]. An analytical
model for dynamic spectrum sensing in CR has incorporated blockchain management
to ensure high accuracy and security [21,25]. Emerging wireless sensor networks and
IoT technologies can enable smart healthcare applications, with an emphasis on low-
power wireless technologies for energy-efficient systems. These solutions collectively aim
to improve spectrum utilization and mitigate interference for IoT networks that can be
applied in H-IoT environments.

Hospitals are often located in urban areas with high levels of wireless traffic, leading to
significant interference. This interference can adversely impact the reliability of the network
required for critical healthcare applications. Interference can cause delays, data loss, and
communication failures, which are unacceptable in healthcare settings where real-time
data transmission is crucial. To mitigate these effects, several methods have been proposed.
One approach is the implementation of advanced interference management techniques,
such as interference cancellation and avoidance algorithms [26,27]. Furthermore, the use
of CR technology allows for a dynamic spectrum access, enabling devices to switch to less
congested frequency bands in real time [28]. Another method involves deploying small
cells and heterogeneous networks to improve coverage and reduce interference. These
strategies, combined with robust security measures, can enhance the reliability of eURLLC
in H-IoT, ensuring that critical medical devices and applications function seamlessly even
in high-interference environments.
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3.3. Priority-Based Allocation

Prioritizing critical H-IoT devices over non-critical H-IoT devices during resource
allocation is paramount. Recent works have proposed several solutions for prioritizing
critical data transmissions. The authors in [29] proposed a new task scheduling and alloca-
tion approach called Prioritized Sorted Task-Based Allocation for healthcare monitoring
implemented in IoT cloud-based architecture. The solution selects the best virtual machine
for the execution of the health task, considering several factors that include wait time
and expected time to process the task along with its criticality. The work in [30] proposes
an intelligent patient health monitoring system (PHMS) based on optimized scheduling
mechanisms using IoT-task orchestration architecture for monitoring the vital signs data
of remote patients. It reduces task starvation and failure rates compared to conventional
scheduling mechanisms. The authors in [23] discuss a priority-based resource allocation
scheme along with smart channel assignment in a wireless body area network (WBAN)
capable of energy harvesting. The proposed scheme prioritizes emergency and critical
signals to avoid collisions, hence ensuring reliable data transmission. Authors in [31]
present two hybrid approaches for resource allocation in WBANs based on the health data
criticality. The first one considers joint AP association and channel allocation, while the
second one includes a Stackelberg game with price updates to provide QoS for critical users.
In [32], a prioritized scheduling (PS) scheme was proposed that outperforms the Earliest
Deadline First (EDF) scheme for IoT-based healthcare applications. In the PS scheme, both
the delay and size of data are considered for prioritizing critical healthcare tasks.

Ensuring critical medical devices are maintained before less critical ones is an impor-
tant factor in H-IoT, mainly based on the aspect of patient safety. Life-support systems,
real-time patient monitoring equipment, and emergency response tools must have seamless
and reliable communication for proper performance in a clinical setting. By prioritizing
these life-critical devices, they will obtain the bandwidth and resources required with no
lag or malfunction, which might bring serious consequences to the patient’s health and
safety. However, not many efficient prioritization mechanisms can act in real time through
enactment. One of the challenges is that hospital environments are dynamic, being variable
in demand for bandwidth and resources, hence making it difficult to maintain consistent
prioritization. Given that this will require dynamic resource allocation proportional to
urgency and criticality, advanced real-time monitoring systems are needed to support these
algorithms. Moreover, prioritization mechanisms must ensure security and dependability
to prevent risks like delays in transmission data or communication failures. The devel-
opment of robust and adaptive prioritization strategies to respond to the ever-changing
demands that healthcare environments impose is crucial to maintaining healthcare IoT
system reliability and efficiency.

4. Emerging Solutions and Approaches for Efficient Spectrum Utilization
The rapid growth in H-IoT and subsequent high demand for eURLLC impose unpar-

alleled pressure on spectral utilization, which mandates innovative and adaptive solutions.
Novel approaches have to be devised since the traditional communication frameworks
cannot support the high-level requirements concerning reliability, latency, and bandwidth
unique to critical healthcare applications. These state-of-the-art developments in AI-driven
spectrum management, advanced edge computing, and next-generation network archi-
tectures provide the necessary tools for further gains in spectral efficiency and also to
meet high standards for H-IoT. The emerging approaches empower H-IoT systems to offer
support for real-time patient monitoring, surgical assistance, and emergency response
despite the complexity of challenges in serving the increasing number of users in the
healthcare domain.
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4.1. AI-Based Spectrum Management

AI and ML have emerged as powerful tools for predicting network conditions and
dynamically optimizing spectrum allocation in H-IoT. These technologies enable real-time
analysis and decision-making, which are crucial for maintaining the reliability and low-
latency communication required in a medical setting. There have been several recent
advancements in AI-based spectrum management solutions. The work [33] discusses how
AI-collaborative IoT technologies can assist medical professionals with decision-making
and develop a sustainable and smart healthcare system. The study highlights the potential
of AI algorithms to enable machines to learn, make decisions, and process information
more efficiently, thereby optimizing spectrum allocation. Authors in [13] highlights the
potential for improved real-time communication, remote patient monitoring, and data
management through the combination of 5G and IoT in healthcare settings. AI algorithms
play a crucial role in optimizing spectrum allocation to support these applications. The
efficiency of spectrum utilization can be mathematically expressed as follows:

η =
B · log2(1 + SINR)

W
(1)

where B represents the bandwidth allocated to a device, SINR is the Signal-to-Interference-
plus-Noise Ratio, and W is the total available spectrum bandwidth. This model quantifies
spectrum efficiency and highlights how AI-based solutions optimize η by dynamically
adapting allocation strategies in real time.

The work [34] focused on AI-driven dynamic spectrum allocation schemes that adapt
to changing network conditions in healthcare environments. The AI algorithms prioritize
critical medical devices to ensure low-latency and high-reliability communication. Authors
in [35] explored the use of AI for intelligent spectrum management in future-generation
communication systems, including 6G networks. The study discusses trending AI-based
techniques, algorithms, and advanced models for spectrum management using cognitive
radio and RL techniques. The survey in [18] reviews various intelligent decision-making
techniques for dynamic spectrum access in CR networks, including fuzzy logic, RL, and
game theory, and it discusses their applications in spectrum access and management.
The AI models and techniques used in spectrum management in the literature can be
categorized into the following categories.

4.1.1. Reinforcement Learning (RL)

RL offers a promising paradigm to optimize the spectrum allocation problem in time-
varying network scenarios and, hence, is highly suitable to the eURLLC scenario in H-IoT
systems. Contrasting with traditional supervised learning, which learns with pre-defined
labels, an RL model learns iteratively to obtain optimal policies through interactions with
the environment directly, and it adapts to real-time feedback. This approach allows an
agent to solve sequential decision problems with evaluative and delayed rewards. The
latter is crucial for mitigation in complex fluctuating network conditions. RL algorithms,
over time, learn and adaptively allocate the spectral resources across the time-varying
network demands, thus enabling a fair and an efficient use of the spectrum. RL models can
be computationally simple without requiring explicit training; they might be susceptible to
unwanted delays when applied in time-sensitive applications. Balancing computational
efficiency against adaptiveness in learning remains an open challenge in the effective
deployment of RL [35,36].

Several works have been performed that compare different AI-based spectrum man-
agement techniques, demonstrating that RL algorithms achieve spectrum efficiency. In this
respect, the work in [37] presents how the Vickrey–Clarke–Groves (VCG) auction-based al-
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gorithm outperforms the baseline allocation schemes in improving the spectrum utilization
by 83%. The studies in [38,39] show that RL reduces latency, is simple to implement, and
has less overhead. Therefore, they are very effective for urban hospital deployments. These
results show the practical benefits of adopting AI-driven spectrum management techniques.

4.1.2. Fuzzy Logic

Fuzzy logic systems are promising for the management of the spectrum in H-IoT
systems. Real-time uncertainty and imprecision crop up within the communication envi-
ronments. Noisy or incomplete data can, therefore, be interpreted and thereby effectively
managed by a fuzzy logic system using linguistic variables and adaptive rule sets to ensure
reliable spectrum allocation under dynamic networking conditions. While designing fuzzy
rules is cumbersome and is usually considered a job for a domain expert, fuzzy logic is
highly suitable in terms of interpretability and flexibility against ambiguities in signal
conditions to support precise adaptive spectral management. Fuzzy logic, when combined
with other AI techniques, may be viewed as one of the important enablers of robust and
fast spectrum management frameworks to ensure the reliability of H-IoT systems operating
under strict eURLLC requirements [18,40,41].

In further improving the management of the spectrum, a hybrid AI framework in-
tegrating RL with fuzzy logic can be employed. RL makes decisions dynamically by
learning from network conditions, such as device density and interference levels, to reach
an optimum allocation strategy. Fuzzy logic complements RL in managing uncertainties of
demand and prioritization of critical devices. Fuzzy rules ensure that time-critical appli-
cations such as remote surgery will receive priority during spectrum allocation. It, thus,
offers robust, adaptive management, which is appropriate for the heterogeneous nature of
H-IoT systems.

4.1.3. Supervised Learning

Supervised learning models, including neural networks, promise very good perfor-
mance in predicting spectrum availability through pattern analysis from historical data,
hence being useful in AI-based spectrum management in H-IoT systems. These models
deliver a highly accurate performance with labeled datasets, enabling efficient spectrum
allocation that can support real-time health monitoring and emergency interventions. Nev-
ertheless, reliance on curated training data is considered to be challenging, since common
healthcare settings generally have sparse, heterogeneous, and unpredictable data. There-
fore, such a limitation may make these models hard to generalize for unknown conditions,
rendering them less reliable in dynamic healthcare settings. While recently proposed ap-
proaches in the field of supervised learning, including Auto-ML, aim to improve model
adaptability, there remains a need for more data-efficient and general methods that can
handle real-world complexities in healthcare spectrum management [12,13,42–44].

4.1.4. Unsupervised Learning

Unsupervised learning techniques, such as clustering, play a crucial role in the man-
agement of spectrum resources, especially in H-IoT. They can discover unseen patterns and
outliers from large unlabeled datasets. A possible proposal is the K-means clustering that
organizes healthcare devices and their communication needs into specific clusters, based
on proximity, usage, or signal quality, to optimize network interactions. The clustering of
similar devices can enable seamless communication with the devices within a cluster to
communicate effectively with each other, enhancing bandwidth utilization and, thereby, re-
ducing congestion in the network. Such mechanisms in H-IoT aid the real-time monitoring
of patients. The clustering of health data may help in categorizing vital signs patterns across
patient groups and prioritizing urgent ones. Furthermore, anomaly detection provides
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insight into unusual patterns in network traffic or device behavior that may occur from
malfunctioning or an unexpected surge in data traffic; hence, this could allow for rapid
troubleshooting and ensure system reliability. While these methods may not assign parts of
the spectrum directly, their insights from data trends and anomaly patterns surely can feed
into more refined and data-driven policies for spectrum allocation. Eventually, this will
provide high levels of communication and reliability of healthcare systems, which increases
the scalability and effectiveness of smart healthcare frameworks [35,45–48].

4.1.5. Cognitive Radio

CR systems combined with AI capabilities play a very important role in the transforma-
tion of H-IoT through intelligent sensing of spectrum conditions and dynamic adaptation
of transmission parameters. These resolve the issues of spectrum scarcity by facilitating
the unlicensed users in opportunistically accessing underutilized spectrum bands, signifi-
cantly improving spectrum efficiency without compromising the licensed primary users’
QoS requirements in communication. In particular, AI algorithms, especially ML and RL,
advance the CR beyond just spectrum sensing, thus making the systems learn, adapt, and
decide in real time; that is, from reactive to proactive spectrum management [49–51]. It can
also dynamically allocate time, frequency, and spatial resources through AI, thus enabling
an optimized network in the dynamic and usually unpredictable scenarios of healthcare.
Deep learning (DL) can enable predicting spectrum usage patterns and, hence, move to
a state to avoid interference with primary users, securing seamless, reliable connectivity
that is essential for real-time patient monitoring and data transmission. However, robust
sensing mechanisms are necessary as CR faces an environment of rapidly shifting network
conditions. Further research effort is required on the enhancement of spectrum sensing
accuracy, efficiency in the resource allocation process, and security in communications
within AI-driven CNs, with efficient utilization achieving sustainable, responsive, and
efficient healthcare systems [18,52–54].

Fundamentally, AI and ML use soft spectrum management to achieve network effi-
ciency, spectrum allocation optimization, and low latency with dependable communication
for H-IoT. Based on algorithms from clustering to RL and deep neural networks, these sys-
tems adapt to real-time status and change the network state to ensure sufficient spectrum
availability alongside interference management across complex healthcare environments.
AI-driven spectrum management is already envisioned to play a pivotal role in enabling
eURLLC as healthcare systems continue to grow and demand increasingly robust commu-
nication networks. Latency in H-IoT networks can be quantified as follows:

L = Ltrans + Lproc + Lqueue (2)

where Ltrans is the transmission latency (inversely proportional to bandwidth), Lproc repre-
sents processing latency at the edge or cloud nodes, and Lqueue denotes queuing delay due
to network congestion. This relationship helps to identify bottlenecks and evaluate how
edge computing solutions reduce L to meet stringent eURLLC requirements.

4.2. Edge Computing Integration

Edge computing plays a pivotal role in reducing latency by processing data closer
to where they are generated, which is crucial for critical H-IoT systems. By allocating
computational resources closer to the edge of the network, edge computing minimizes
the physical distance of the data, thereby significantly reducing latency and improving
response times. This is particularly important in modern healthcare environments where
faster data processing can determine patient outcomes.
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The traditional cloud computing model requires the data generated by IoT devices to
be transmitted to remote centralized data centers for processing. The physical transmission
adds delay due to the latency associated with the transmission characteristics of the medium.
Edge computing implies that the sensed data are processed on or near the source of the data.
Many applications require data analysis and counter-action closer to the end-user, especially
in cases where the application requires a near-real-time response. Edge computing in the
context of a hospital allows for the rapid processing of critical information such as vital
signs in a patient, allowing for immediate detection of anomalies [55]. The difference
between the data processing approaches in cloud and edge computing is illustrated in
Figure 4.

Figure 4. Functional difference between cloud and edge computing.

The state-of-the-art techniques in the edge computing domain for enabling eURLLC,
focusing on concepts such as AI-enabled edge computing, multi-access edge computing
(MEC), edge caching, and security and privacy enhancements, are presented in this sub-
section. Collaborative edge–cloud architectures exploiting the advantages offered by edge
and cloud resources to maximize performance and resource utilization are investigated.
With growing IoT devices in healthcare, edge computing can provide an economical infras-
tructure that will scale up demand without overloading the centralized infrastructure. By
distributing computational resources across edge nodes, healthcare institutions can handle
the expanding range of connected devices and high volumes of data without compromising
on performance or latency. This scalability is significant for hospitals while they adopt
sophisticated IoT devices for patient monitoring, diagnostics, and real-time data gathering
without degrading the quality of service and handling increased loads on the network [56].
Furthermore, it also leads to lower dependence on the cloud infrastructure, which, in turn,
reduces the operational costs involved in maintaining the same for data transmission and
storage [55,57]. Empirical studies demonstrate that the integration of edge computing with
federated learning (FL) reduces latency by a factor of 11–38%, especially in applications
requiring real-time data processing, such as remote patient monitoring. This approach pro-
vides benefits in preserving privacy by avoiding sharing the data for training. Simulation
results further indicate that combining edge caching with blockchain increases the accuracy
by 8–14% and amplifies data security [58].
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4.2.1. AI-Driven Edge Computing

The growth of AI and edge computing has transformed the decision-making pro-
cesses in the eURLLC systems which are important to meet the stringent requirements
of 5G and future 6G networks. Through edge-deployed AI algorithms, they can help
interpret large datasets in real time, anticipate operational breakdowns, and allocate
resources more efficiently, contributing to reliable and efficient operations [59–61].
This feature makes it vital for applications that need to have a latency of less than
1 ms and 99.99999% reliability in data transfer, like the smart grid and intelligent
transport systems. The predictive analytics powered by AI can predict where network
congestion is likely to occur and dynamically adjust the data flows within the network
to ensure minimal latency and, therefore, overcome the limitations of conventional
centralized architectures [62,63]. Moreover, the encapsulation of edge-centric artificial
intelligence technologies like optimized ML models and low-latency communication
protocols improves bandwidth efficiency as well as data security, enabling a smarter
and more responsive healthcare framework. Through the combination of individual
potentials of AI and edge, eURLLC can provide a platform for complicated services in
diverse industries and create innovation and improvements in the real-time delivery of
services [64,65].

4.2.2. Multi-Access Edge Computing (MEC)

MEC is an enabling technology that makes it possible to bring cloud functionality
closer to the user. It is possible for such systems to drastically reduce the time needed for cy-
cling data back and forth, which is imperative in many use cases that require prompt action
as in the case of remote monitoring of patients and emergency response systems [66–68].
MEC enhances mobile data and service exploitation by the processing of information and
provision of useful services, within the RAN, simultaneously or in close succession with
high-capacity new applications engineered for the 6G network. The confluence of MEC
and 6G-enabling technologies not only significantly boosts the potential of eURLLC for
use in healthcare but also opens many other possibilities such as autonomous vehicles,
augmented and extended reality, and autonomous robotics. Given that the use of MEC
in 5G networks is still in its nascent stages specific to deployment, further research and
industry–academia collaboration must be fostered to fully exploit the existing resources
as well as mitigate the issues of resource management, dynamic service placement, and
security of edge computing environments [69–71].

4.2.3. Edge Caching

Edge caching works by making a copy of the most frequently accessed data, patient
records, and diagnostic images that are stored at network edge nodes, reducing dependence
on servers far away. This enables significant reductions in latency, better reliability for
access to time-critical data, and applications like robotic-assisted surgery and real-time
patient monitoring. Advanced techniques, especially FL and deep reinforcement learn-
ing (DRL), further optimize this process. FL allows edge nodes to collaboratively cache
content based on local usage patterns while guaranteeing patient data privacy, adapting
models to localized needs, and reducing network load. Meanwhile, DRL-based systems
predictably cache data through learning from network conditions and demands; thus,
helping healthcare systems deal much more efficiently with fluctuations in the volume of
data needs [55,72,73].
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The integration of information-centric networking (ICN) with edge caching also
presents a promising solution for healthcare applications that need real-time access to
big volumes of data. ICN improves cache hit ratios and cuts delays in retrieval by giving
priority to the content based on their type and frequency, thus supporting IoT-driven ap-
plications requiring massive volumes of data. These AI-driven caching solutions, thereby,
create a strong foundation for compliance with the eURLLC in healthcare, enabling a
wireless network that can resist the exacting demands of future digital health services
with resilience, ultra-low latency, and optimization of resources according to the require-
ments [67,74,75].

Integration of edge caching with FL is considered one of the most promising directions
for enhancing localized decision-making. Edge caching stores frequently accessed data
locally, while FL trains models on local data independently at edge nodes without needing
to centrally process the data. Integrating blockchain technology with edge computing will
further enhance the security and transparency of spectrum management. Blockchain-based
smart contracts can automate spectrum allocation based on the principles of fairness, hence
preventing unauthorized use of the spectrum.

4.2.4. Security and Privacy Enhancements

Edge computing aids in healthcare security and privacy where the sensitive data
are processed locally while minimizing the utilization of central servers to reduce po-
tential breaches. This can minimize the risk of data breaches and enhance privacy
through localized approaches that enable healthcare providers to meet strict regulatory
requirements, such as HIPAA and GDPR. Encryption with secure data transmission
protocols is often performed at the edge to advance the safety of patient information
while provisioning the low latency required for real-time communications in healthcare
applications [66]. Furthermore, key techniques like advanced encryption and secure
transmission protocols push to the edge, raising the difficulty level of data interception
by malicious actors during transmission. This approach supports real-time processing,
enhancing security while reducing latency in applications such as remote monitoring
and diagnostics [55,76,77].

Federated Learning (FL) and Blockchain contribute to the added protection of patient
data in healthcare, integrated into edge computing. FL enables the training of models
locally on edge devices without raw data transmission, hence avoiding many privacy-
related issues while being collaborative and secure at the same time. This is very relevant
in H-IoT, which often has location-specific diverse data. Additionally, Blockchain provides
an immutable and transparent ledger, strengthening authentication and access control at
the edge. Taken together, these approaches can improve data privacy as well as guarantee
sound security levels for healthcare applications in the emerging Internet of Everything
(IoE) frameworks, which must support an increasingly decentralized and patient-centered
healthcare ecosystem [78–80]. Edge computing increases reliability by distributing data
processing operations on multiple nodes and reducing dependency on centralized servers,
which have a single point of failure. This ensures that in mission-critical healthcare en-
vironments, critical data flows and processing are not interrupted in the case of network
outages or high traffic. With IoT devices constantly monitoring patients and feeding vital
information to medical staff, edge computing’s decentralized structure protects these pro-
cesses from disruptions and offers a robust framework behind which data availability can
consistently support high-quality patient care [55].
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4.2.5. Collaborative Edge–Cloud Architecture

The integration of edge and cloud computing in a hybrid architecture capitalizes on
the unique strengths of each to create a responsive and efficient environment for eURLLC-
enabled H-IoT networks. Accordingly, critical latency-sensitive data processing is per-
formed at the edge, being positioned closer to the data sources for rapid response times
with minimum delay. It moves the resource-intensive and not-so-time-critical tasks to
the cloud, leveraging huge computation and storage resources in the cloud. This load-
balancing approach further optimizes network performance and yields high reliability and
low-latency computation-intensive healthcare applications [81,82].

Furthermore, this hybrid arrangement is enabled through resource allocation tech-
niques, which distribute tasks, ensuring adherence to eURLLC requirements. It ensures
mechanisms like joint power allocation, user association, and offloading strategies for the
efficient use of both edge and cloud resources in healthcare applications where low latency
is crucial for real-time monitoring and diagnostic applications. In summary, a hybrid
architecture balances these computational loads across the network, enabling seamless
data processing, enabling enhanced energy efficiency, and ensuring that critical medical
information is always be presented to healthcare providers with minimum latency [83,84].

4.3. Advanced Network Architectures

B5G and 6G provide a significantly enhanced spectrum efficiency and support for eU-
RLLC, which is quintessential for H-IoT applications. Advanced network architectures face
the challenge of increasing demands for higher data rates, lower latency, and connectivity.
The following section illustrates some of the potential technologies that are likely to change
the design and deployment of future communication networks and their relationship with
H-IoT. B5G and 6G technologies are expected to revolutionize H-IoT by providing un-
precedented levels of connectivity and performance. THz communications and mMIMO
are among the key technologies that will drive these enhanced capabilities [85]. mMIMO,
in particular, facilitates the support of many devices with minimal interference, enhanc-
ing H-IoT by enabling reliable, continuous monitoring, and real-time data collection and
analysis across numerous sensors and devices. Non-invasive imaging and diagnostics
also become possible through THz communications. Unlike X-rays, THz waves do not
ionize biological tissues, making them ideal for high-resolution, non-invasive imaging and
diagnostic applications. This advancement allows for the early detection of health issues
and a detailed assessment of patient conditions without invasive procedures, offering a
safer and more accessible diagnostic alternative for patients [86].

4.3.1. THz Communications

THz communication works within the frequency range of 0.1-10 THz, opening a new
dimension toward ultra-high data rates and huge bandwidths. Applications requiring
ultra-high-resolution imaging and real-time data transfer are especially suitable and find
wide applications in healthcare environments. Biological tissues can be penetrated by
THz waves, thus enabling non-invasive imaging and diagnostics that have the potential to
revolutionize branches of medicine dealing with oncology and cardiovascular health [87].
With the realization of B5G and 6G networks, THz technology is capable of meeting the
increasing demand for URLLC a key to mission-critical applications. Furthermore, the
integration of THz communications with edge computing will reduce energy consumption
and enhance latency performance, making it a viable solution for real-time healthcare
applications. Figure 5 places THz in perspective with the electromagnetic spectrum, also
placing it in context as a key enabler of the emerging healthcare IoT landscape, underpinned
by next-generation connectivity frameworks [86,88].



Sensors 2025, 25, 615 17 of 25

Though THz communication promises ultra-high data rates and bandwidth, it still
faces some serious challenges impeding its practical deployment. Among these, the main
challenge is to cope with the path loss, which limits the propagation distance of THz
signals, due to the short wavelength and high susceptibility to scattering and reflection.
Furthermore, molecular absorption, especially by water vapor in the atmosphere, seriously
attenuates the THz signal, which further reduces the efficiency of the signal over long-
distance transmission [89]. These call for novel solutions to be developed to make THz
communication feasible. Advanced signal processing techniques, such as beamforming
and Intelligent Reflecting Surfaces (IRSs), provide a potential solution that can redirect
and amplify the THz signal by programmable metasurfaces, which overcomes path loss
and extends the communication range effectively [90]. Interference management in dense
deployments can be modeled as follows:

min Itotal =
N

∑
i=1

N

∑
j=1,j ̸=i

Pi · Pj

d2
ij

(3)

where Itotal is the total interference, Pi and Pj are the transmit powers of devices i and j, and
dij is the distance between them. This model demonstrates how IRS can reduce interference
by optimizing signal redirection and power levels. Moreover, the development of channel
coding and channel modeling is crucial to reach an optimum solution in data transmis-
sion over the THz band. New encoding schemes such as polar code and low-density
parity-check (LDPC) code will provide better error-correcting against molecular absorption.
Moreover, these might be combined with accurate channel models, considering the peculiar
characteristics of wave propagation, thus enabling the design of more robust and efficient
tailored communication systems for deployment scenarios. These are innovations that
drive practical implementation in THz communication for various emerging applications
such as high-resolution imaging and healthcare IoT [10,91].

Figure 5. THz band in the electromagnetic spectrum.

4.3.2. Massive MIMO

mMIMO allows for a very large number of antennas to be used on the transmitter
and the receiver, significantly improving the spectral efficiency, reliability, and connectivity.
The capability of supporting an enormous number of devices in H-IoT, with robust and
low-latency communication, is highly crucial to mission-critical medical applications such
as remote patient monitoring and emergency diagnostics. mMIMO leverages channel
hardening and favorable propagation properties—reducing interference and enhancing
signal quality, even in dense device environments—to meet the stringent requirements of
eURLLC [92,93]. The transceivers for mMIMO not only enhance reliability but also can
support interference mitigation techniques, such as cell-free massive MIMO (CF-mMIMO)
and grant-free access schemes. Special emphasis is put on CF-mMIMO, which can enable
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the eURLLC performance by spatially distributing the antennas across multiple access
points. It provides better connectivity and resilience against interference, especially in
dynamic healthcare environments. Therefore, it enables applications that require eURLLC,
such as real-time telemedicine and remote surgery [94,95].

The large-scale deployment of an mMIMO approach for H-IoT faces several challenges
caused mainly by high computational demand and power consumption. Similarly, with
the computational complexity, there is a need to develop advanced channel estimation and
beamforming algorithms. DRL in such resource management frameworks can, therefore,
unlock the efficient use of resources for optimized sharing between slices of eMBB and
eURLLC. DRL would prioritize uninterrupted connectivity of medical devices without com-
promising data rates or latency requirements for all other applications. Other challenges
include pilot contamination, whereby pilots are shared across cells and induce interference,
thus degrading the system’s performance. Such challenges have been approached using
hybrid beamforming that reduces computational demand by turning to an analog–digital
signal processing combination and energy-efficient hardware design such as a low-power
amplifier and energy-harvesting antenna. Different pilot decontamination techniques, such
as advanced pilot allocation schemes and machine learning-based channel estimation, can
be used to mitigate pilot contamination. CF-mMIMO is another important concept that
provides better coverage and interference mitigation in dense scenarios. These approaches
enable massive MIMO systems to realize their potential for high spectral efficiency, reliabil-
ity, and connectivity in next-generation communication networks. Hence, mMIMO acts as
the cornerstone technology that has the potential to scale connectivity for H-IoT and, at the
same time, provide a foundation for future-proof and high-performance communication
networks in the healthcare vertical [85].

4.4. Discussion

The preceding subsections discuss several emergent solutions for efficient spectrum
utilization in H-IoT systems, including AI-based spectrum management, integration of edge
computing, and advanced network architectures such as THz communication and mMIMO.
These solutions pave the way for more reliable, efficient, and scalable H-IoT networks,
hence ensuring robust communication for critical healthcare applications. The solution to
cope with real-time spectrum needs while prioritizing critical applications increasingly lies
in AI-driven dynamic spectrum allocation. Among the advanced architectures, mMIMO,
together with hybrid beamforming techniques, is prominent because these can improve
spectral efficiency in densely populated environments. IRS and advanced channel coding
techniques also hold immense promise for the unique challenges in THz communications.
Future works will need to focus on experimental validation in real scenarios, possibly
healthcare environments, and develop adaptive frameworks that can combine multiple
techniques. Research could also be conducted on the decentralized approach of spectrum
management using blockchain.

The summary of the various approaches to maximize the spectrum efficiency is tabu-
lated in Table 3. This table provides an insight into the different underlying techniques and
their advantages, drawbacks, and applicability to H-IoT systems.
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Table 3. Comparison of emerging solutions for spectrum utilization.

Solution Core Technology Advantages Challenges Suitability for
Healthcare IoT

RL AI-based
solution

Learns optimal policies through
interaction with the
environment [35]. Adapts to
changing network conditions [38].
Achieves twice the throughput
performance compared to slotted
ALOHA) [96].

Requires significant
training during
exploration [35].

Low complexity allows
for implementation in
resource-constrained
devices. Suitable for
wireless networks.

Fuzzy Logic Many-Valued
Logic Approach

Handles uncertainty and
imprecision. Useful in
environments with incomplete or
noisy data. (Achieves a maximum
of 11 Gbps throughput for V2X [97].

Designing fuzzy rules
can be complex [98].
Requires expert
knowledge [99].

It does not require a
high-specification
processing device.

Supervised
Learning

AI-based
solution

Predicts spectrum availability based
on historical data. Achieves a 60
Mbps data rate, which is almost
twice that of a random search [95].
Effective with well-labeled datasets.
A 12% enhancement in the
prediction accuracy [100].

Struggles with
generalization in
unseen
conditions [13].
Dependent on
high-quality labeled
data [101].

Can predict anomalies
proactively to avoid
delays.

Unsupervised
Learning

AI-based
approach

Identifies patterns and outliers
without labeled training data. A
78% improvement in average packet
arrival rate [102]. Useful for
exploratory data analysis. A 12.7%
improvement in energy
efficiency [103].

May not provide
precise control over
spectrum
allocation [35].

Suitable for efficient
pattern recognition.
Suitable for predicting
issues.

Cognitive Radio Utilizes unused
spectrum

Enhances spectrum efficiency by
allowing secondary users to access
underutilized bands [52].
Dynamically adjusts transmission
parameters. A 28% increase in
spectrum efficiency [104,105].

Requires robust
sensing
mechanisms [28,106].
Potential for
interference with
primary users.

Effective in
environments with
variable spectrum
availability.

Edge Computing Distributed
Computing

Achieves a maximum of 40%
reduced latency [107]. Enhances
data processing at the edge [108].

Requires robust
infrastructure [109].
Security and privacy
concerns [110].

Suitable for real-time
data processing and
analysis. Effective for
applications requiring a
low latency.

Terahertz
Communications

THz Frequency
Bands

High data rates and bandwidth.
Achieves 200 Gbps at 100 GHz
using QPSK [111]. Non-invasive
imaging and diagnostics are used
for blood cell detection, cancer cell
characterization, bacterial
identification, and biological tissue
discrimination [112].

High atmospheric
absorption [113].
Limited range [86].

Suitable for
high-resolution imaging
and real-time data
transmission. Effective
for non-invasive
diagnostics.

Massive MIMO Large Antenna
Arrays

Supports a large number of
devices [51]. Improves spectral
efficiency and reliability; 38
bits/s/Hz using 500 antennas [114].

High computational
complexity [115].
High power
consumption [85].

Ideal for environments
with many connected
devices. Ensures reliable
and low-latency
communication.
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5. Conclusions
The data transmission speed and reliability are crucial to patient safety and the effi-

ciency of medical treatments over H-IoT networks. However, as the number of connected
devices increases, ensuring spectrum availability and efficient utilization is essential to
guarantee eURLLC performance. The significance of advanced spectrum management
techniques in tackling challenges posed by healthcare settings, such as the need to prioritize
essential medical devices and the dynamic nature of network demand, is highlighted in this
work. Emerging solutions like dynamic spectrum management, AI-driven technologies,
and next-generation network architectures offer intriguing possibilities to improve spec-
trum efficiency and satisfy the stringent demands of H-IoT applications, while traditional
approaches, such as static spectrum allocation, frequently fall short in such circumstances.
The fact that these solutions are still far from realizing their full potential suggests the
necessity of continuing research and advancement in this field. Future research must
concentrate on creating spectrum management strategies that are more intelligent and
flexible, capable of instantly adapting to the changing demands of healthcare networks.
Additionally, developing strong and dependable communication systems that can support
the upcoming generation of H-IoT applications requires an interdisciplinary approach that
combines knowledge from network technology, AI, and healthcare.
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