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CHAPTER

Introduction to Green loT
devices

Wali Ullah Khan, Chandan Kumar Sheemar, and Eva Lagunas
Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg
Luxembourg, Luxembourg

1.1 Introduction to loT and its environmental impact
1.1.1 What is loT?

The Internet of Things (IoT) is a system of linked devices that exchange data across
the Internet [1]. These sensors, actuators, and communication modules-equipped de-
vices provide real-time monitoring, control, and automation in a variety of uses
including smart homes, healthcare, agriculture, transportation, and industrial automa-
tion [2].

1.1.2 Arising environmental challenges

IoT devices’ broad acceptance has transformed daily life and businesses, allowing
formerly unheard-of degrees of data-driven decision-making, connectivity, and au-
tomation. Still, this fast spread of IoT technologies has brought major environmental
problems. The lifetime of IoT devices—including their manufacture, running, and
disposal—defines these obstacles. We explore the main environmental issues con-
nected with IoT devices below.

1.1.2.1 Energy consumption

Often in remote or difficult-to-reach areas, IoT devices are meant to run continuously
to offer real-time monitoring and control. Although this ability is quite useful, signif-
icant energy consumption results from it. Important problems include data centers,
battery reliance, ongoing operation, and cloud computing [3]. Many IoT devices, such
surveillance cameras and smart sensors, run around-the-clock, which drives great en-
ergy demand. For instance, a single smart home gadget—such as a thermostat or
security camera—may use just a tiny bit of energy, but when multiplied by millions
of devices worldwide, the total energy usage becomes somewhat noteworthy. More-
over, a lot of IoT gadgets run on batteries. Regular battery changes not only raise
running expenses but also help to damage the environment by battery manufacture
and disposal. IoT devices create enormous volumes of data that are often handled
and kept in energy-intensive data centers. Large amounts of electricity consumed by
these data centers help to explain world energy usage and carbon emissions. Recent
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estimates indicate that data centers account for about 1% of world electricity use; this
figure is anticipated to increase significantly as the IoT develops.

Electronic waste

The short lifetime of many IoT devices aggravates the worldwide e-waste issue.
Discarded electronic equipment, sometimes known as e-waste, often have toxic com-
ponents that might endanger human health or the environment. Important concerns
are limited device lifetime, toxic materials, and recycling difficulties [4]. More pre-
cisely, many Internet of Things devices are made with planned obsolescence—that
is, they are meant to have a limited lifetime. Frequent replacements encouraged by
this cause e-waste to rise. For instance, as newer versions are unveiled, smart home
appliances like wearable fitness trackers or voice assistants are sometimes changed
every few years. Apart from that, IoT gadgets sometimes have harmful elements
such as cadmium, mercury, and lead, which, if improperly disposed of, can seep
into the ground and water. Much of the world’s e-waste is sent to underdeveloped
nations, so inappropriate management of e-waste there poses major environmental
and health hazards. Moreover, the intricate architecture of IoT devices—which fre-
quently combine several materials and components—makes recycling challenging.
Many technologies are not meant to be disassembled, and the absence of uniform
recycling policies aggravates the problem. Furthermore, the extensive application of
lithium-ion batteries in Internet of Things devices begs issues with resource depletion
and battery waste pollution. Consequently, a good amount of e-waste either burns or
finds their way in landfills, spewing dangerous toxins into the surroundings.

Carbon footprint

IoT devices have a carbon footprint that includes greenhouse gas emissions pro-
duced all during their lifetime, from manufacture to disposal. Important contributors
are end-of-life emissions, operating emissions, and manufacturing emissions [5].
Energy-intensive operations including the procurement and processing of raw mate-
rials, component manufacture, and device assembly comprise the production of IoT
devices. For instance, semiconductor manufacture—which is necessary for Internet
of Things devices—requires a lot of energy and produces large emissions. IoT de-
vices’ running energy consumption adds to their carbon footprint. For gadgets that
depend on non-renewable energy sources especially, this is quite alarming. [oT de-
vices running coal-based electricity, for example, have a far larger carbon impact
than those running renewable energy. Particularly by landfilling or incineration, the
disposal of IoT devices generates methane and carbon dioxide. Further adding to
emissions is the movement of e-waste to disposal sites or recycling centers.

Resource depletion

Rare earth metals, copper, and gold are among the few natural resources needed for
IoT devices’ manufacture. Among important issues are resource shortages and rare
earth metals. Most IoT devices, including sensors and communication modules, de-
pend on rare earth metals such dysprosium and neodymium [6]. Deforestation, soil
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erosion, and water contamination follow from the environmentally disastrous ex-
traction of these resources. Consequently, the growing demand for IoT devices is
stressing world supply of important resources. For instance, the manufacturing of
lithium-ion batteries, which are extensively utilized in Internet of Things devices,
depends on lithium, a resource that is growingly limited.

Impact on biodiversity

Furthermore affecting the environment are IoT devices’ effects on biodiversity. Im-
portant problems include pollution and damage of habitat. Raw material extraction
for Internet of Things devices sometimes entails mining operations that disturb
ecosystems and harm natural habitats. For rare earth metals, for instance, mining has
been connected to the degradation of wetlands and forests. IoT device and compo-
nent disposal might cause harmful chemicals to leak into the environment, therefore
damaging ecosystems and wildlife. For example, heavy metals found in e-waste can
poll water supplies, therefore compromising aquatic life.

1.1.3 The need for Green loT

The fast expansion of the IoT has resulted in major technological developments
allowing smarter homes, businesses, hospitals, and communities. But the environ-
mental effect of conventional IoT devices has caused major issues that call for Green
IoT development. Green IoT is centered on designing IoT devices and systems that
reduce environmental damage while preserving or perhaps improving performance
and functionality. We investigate the main drivers and approaches behind Green IoT
below.

Reducing energy consumption

Energy consumption is one of the most critical environmental challenges posed by
IoT devices. Green IoT aims to address this issue through several strategies such
as energy-efficient hardware, energy harvesting, and optimized data transmission.
Designing IoT devices with low-power processors, sensors, and communication mod-
ules can significantly reduce energy consumption [7]. For example, microcontrollers
with advanced sleep modes and energy-efficient wireless protocols like Zigbee or
LoRaWAN are increasingly being used in Green IoT applications. Green IoT devices
can leverage renewable energy sources such as solar, thermal, or kinetic energy to
power themselves. For instance, solar-powered sensors in agricultural fields can op-
erate indefinitely without the need for battery replacements, reducing both energy
consumption and waste. Transmitting data over long distances consumes substantial
energy. Green IoT systems often use edge computing to process data locally, reduc-
ing the need for frequent data transmission to centralized cloud servers. This not only
saves energy, but also reduces latency.
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Using sustainable materials

The production of IoT devices often relies on non-renewable resources and hazardous
materials. Green IoT promotes the use of sustainable materials to mitigate the issues
of biodegradable and recyclable materials, non-toxic substances, and lightweight and
durable designs [8]. Green IoT devices can be designed using biodegradable plastics
or recyclable metals, reducing the environmental impact of their production and dis-
posal. For example, some companies are experimenting with biodegradable circuit
boards made from organic materials. Traditional IoT devices often contain toxic sub-
stances like lead, mercury, and cadmium. Green IoT devices avoid these materials,
using safer alternatives that are less harmful to the environment and human health.
Using lightweight and durable materials reduces the amount of raw materials needed
for production and extends the lifespan of devices. For instance, aluminum and mag-
nesium alloys are increasingly being used in [oT device casings due to their strength
and recyclability.

Extending device lifespan

Many IoT devices have a limited lifetime that greatly adds to electronic garbage
(e-waste). By stressing longevity and durability through modular design, firmware
upgrades, and strong construction [9], Green IoT tackles this problem. Easy repairs
and updates made possible by modular IoT devices help to extend their useful lives.
For instance, one can change the sensors or communication components of a modu-
lar smart thermostat without throwing away the complete gadget. Frequent firmware
updates help IoT devices to remain relevant for longer times and improve their secu-
rity and performance. This cuts e-waste and lessens the need for regular replacements.
IoT devices should be built to survive in hostile environmental circumstances, includ-
ing high temperatures or dampness, therefore guaranteeing their prolonged operation.
For industrial IoT applications, for example, tough sensors are designed to survive in
demanding surroundings.

Promoting recycling and reuse

IoT devices’ disposal presents major environmental problems. Green IoT advocates a
circular economy approach whereby devices are made to be recycled and used again.
Easy disassembly of IoT devices will help to enable the component recycling [10].
For instance, modular designs of smart homes and cellphones let customers replace
certain components instead of throwing away the whole gadget. Take-back initiatives
let manufacturers gather end-of-life IoT devices for refurbishing or recycling. Com-
panies like Apple and Dell have already established successful take-back programs
for their electronic products. Used IoT devices can be repurposed for secondary ap-
plications. For instance, retired smartphones can be used as security cameras or home
automation controllers, extending their useful life and reducing e-waste.
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Reducing carbon footprint

The carbon footprint of IoT devices encompasses emissions from their production,
operation, and disposal. Green IoT aims to minimize this footprint through various
measures. Using renewable energy sources in the production of IoT devices can sig-
nificantly reduce their carbon footprint [11]. For example, factories powered by solar
or wind energy produce fewer emissions compared to those relying on fossil fuels.
Green [oT devices are designed to operate with minimal energy consumption, reduc-
ing their carbon emissions during use. For instance, smart lighting systems that use
energy-efficient LEDs and motion sensors can drastically cut energy use in build-
ings. Proper disposal and recycling of IoT devices prevent the release of greenhouse
gases from landfills and incineration. Green IoT promotes the use of certified e-waste
recycling facilities to ensure environmentally friendly disposal.

Enhancing resource efficiency

The production of IoT devices relies on finite natural resources, such as rare earth
metals and lithium. Green IoT makes use of alternative materials and resource-
efficient production to support environmental sustainability. Advanced manufactur-
ing methods, including additive manufacturing (3D printing), can lower material
waste and raise resource efficiency. 3D-printed [oT device casings, for instance, save
waste by using just the required quantity of material. Green [oT investigates using
less ecologically harmful and more plentiful alternative materials. For IoT compo-
nents, researchers are looking at substituting graphene and other nanomaterials for
rare earth metals, for example.

1.2 Enabling technologies for Green loT

Green IoT aims to reduce environmental effect and energy usage while nevertheless
preserving flawless connectivity and operation. Several main enabling technologies
help IoT networks to reach sustainability and energy economy.

1.2.1 Energy-efficient wireless communication

Adaptive power control, energy-aware Medium Access Control (MAC) protocols,
and duty-cycling algorithms assist lower power usage in IoT networks [12]. Cognitive
radio and dynamic spectrum access technologies maximize spectrum use and reduce
energy waste.

1.2.2 Reconfigurable Intelligent Surfaces (RIS)

With clever reflection and manipulation of wireless signals, RIS is a new technology
improving spectrum and energy efficiency [13]. RIS lowers power needs in Green
IoT systems by maximizing phase shifts and focusing signals toward designated re-
ceivers.



6

CHAPTER 1 Introduction to Green loT devices

1.2.3 Energy harvesting

IoT devices can gather thermal, mechanical, RF, solar, and mechanical vibrations
[14] from ambient sources. This promotes self-sustaining functioning, hence low-
ering reliance on conventional battery-powered systems and prolonging IoT device
lifetime.

1.2.4 Artificial Intelligence (Al) and Machine Learning (ML)

In Internet of Things networks, artificial intelligence and machine learning methods
maximize intelligent energy management, predictive maintenance, and resource allo-
cation [15]. Effective data routing, congestion control, and anomaly detection made
possible by artificial intelligence-driven algorithms help to lower unneeded energy
consumption.

1.2.5 Low-power communication protocols

Designed to guarantee consistent connectivity while consuming little power, light-
weight communication protocols including Bluetooth little Energy (BLE), Zigbee,
LoRaWAN, and Narrowband IoT (NB-IoT). Large-scale deployed battery-operated
IoT devices depend on these protocols.

1.2.6 Edge and fog computing

Edge and fog computing process data near to the source instead of depending just on
cloud computing, therefore lowering the demand for energy-intensive cloud transfers
[16]. Using localized processing helps these technologies improve response times
and lower general network energy usage.

1.2.7 Software-Defined Networking (SDN) and Network Function
Virtualization (NFV)

SDN and NFV enable dynamic network configuration, virtualized resource alloca-
tion, and traffic optimization, leading to more energy-efficient IoT networks [17].
These technologies help minimize redundant network operations and enhance adap-
tive energy management.

1.2.8 Green data centers and cloud computing

Energy-efficient data centers powered by renewable energy sources help mitigate the
carbon footprint of IoT applications [18]. Cloud computing platforms with optimized
resource allocation and cooling mechanisms further support sustainable IoT ecosys-
tems.
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FIGURE 1.1
Use cases of Green loT.

1.2.9 Backscatter communication and tags

Backscatter communication is a promising technique for ultra-low-power IoT de-
vices, enabling data transmission by reflecting existing RF signals rather than gen-
erating new ones [19]. Backscatter tags operate without batteries, harvesting energy
from ambient sources such as Wi-Fi, cellular, and TV signals. This technology is
particularly useful for applications like RFID-based tracking, smart agriculture, and
passive environmental sensing, where minimizing power consumption is critical.

1.3 Applications of Green loT devices

Green IoT devices are transforming various sectors by enabling smarter, more ef-
ficient, and environmentally friendly solutions. These applications leverage energy-
efficient technologies, sustainable materials, and advanced data analytics to minimize
environmental impact while enhancing functionality. Below, we explore the key ap-
plications of Green IoT across different domains, shown in Fig. 1.1.

1.3.1 Smart homes

Green IoT devices are revolutionizing smart homes by reducing energy consumption
and promoting sustainable living. Key applications include energy-efficient light-
ing, smart thermostats, Water-Saving Systems, and energy monitoring [20]. Smart
lighting systems use energy-efficient LED bulbs and motion sensors to automatically
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adjust lighting based on occupancy and natural light levels. For example, Philips
Hue and LIFX offer smart lighting solutions that can be controlled via smartphones,
reducing unnecessary energy use. Devices like the Nest Thermostat learn user prefer-
ences and optimize heating and cooling schedules to minimize energy consumption.
These thermostats can reduce household energy use by up to 20%, significantly low-
ering carbon emissions. Smart irrigation systems, such as those offered by Rachio,
use weather data and soil moisture sensors to optimize watering schedules, reducing
water waste. Smart faucets and showerheads similarly track water use and offer real-
time feedback to promote conservation. Like those from Sense or Emporia, smart
plugs and energy monitors measure the energy use of particular appliances, therefore
enabling homeowners to find and cut energy-intensive gadgets.

1.3.2 Smart cities

By besting resource utilization and lowering environmental effect, green IoT is abso-
lutely essential in creating sustainable smart cities. Important uses are waste manage-
ment, energy distribution, intelligent traffic control, and environmental monitoring
[21]. Real-time traffic flow, monitored by IoT-enabled sensors and traffic lights,
adjusts signal timings to lower idle and congestion. Cities such as Barcelona and
Singapore, for instance, deploy IoT technologies to increase traffic efficiency, there-
fore reducing fuel usage and emissions. Sensible waste bins with sensors track fill
levels and maximize waste collecting paths, therefore lowering fuel consumption and
running costs. [oT solutions for effective garbage management come from companies
like Bigbelly and Enevo. Integrating renewable energy sources like solar and wind,
smart grids monitor and control energy distribution using IoT devices. For example,
Copenhagen employs IoT-enabled smart grids to help it to reach its target of carbon-
neutrality by 2025. Real-time monitoring of air quality, noise levels, and water quality
using [oT sensors helps cities to respond early in order to mitigate pollution. For in-
stance, [oT sensors in the Breathe London project track air quality to guide policy
decisions.

1.3.3 Precision agriculture

Precision farming methods enabled by green IoT are revolutionizing agriculture by
besting resource use and waste reduction. Important uses include cattle monitoring,
crop health monitoring, soil and weather monitoring, and [22]. IoT sensors track
nutrient levels, temperature, and soil moisture to give farmers real-time data that max-
imizes fertilization and irrigation. The CropX system, for instance, reduces water use
by up to 25% by delivering exact irrigation recommendations based on soil sensors.
Hyper-local weather forecasts made possible by IoT-enabled weather sensors enable
farmers to schedule their planting and harvesting operations. IoT solutions for agri-
cultural weather monitoring come from companies like Davis Instruments and Metos.
IoT-equipped drones track crop condition and identify pests and illnesses early on.
Targeted treatments made possible by this help to lower the demand for chemical fer-
tilizers and pesticides. For precise crop spraying, for example, the DJI Agras drone is
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rather popular. IoT devices track cattle’s health and whereabouts, therefore allowing
farmers to maximize feeding and identify diseases early on. IoT solutions for cattle
management are offered by businesses including Allflex and HerdDogg.

1.3.4 Healthcare

Green [oT devices are improving healthcare outcomes while reducing energy con-
sumption and carbon emissions. Key applications include wearable devices, remote
patient monitoring, smart hospitals, and telemedicine. Wearables like Fitbit and
Apple Watch monitor vital signs such as heart rate, blood pressure, and activity
levels, enabling remote health monitoring [23]. These devices reduce the need for
frequent hospital visits, lowering energy consumption and carbon emissions. IoT-
enabled medical devices, such as glucose monitors and ECG monitors, allow patients
to manage chronic conditions from home. For example, the Dexcom G6 continu-
ous glucose monitoring system provides real-time data to patients and healthcare
providers, reducing the need for in-person consultations. IoT devices optimize energy
use in hospitals by monitoring and controlling lighting, heating, and cooling systems.
For instance, the Cleveland Clinic uses [oT systems to reduce energy consumption
and improve patient comfort. IoT-enabled telemedicine platforms allow patients to
consult with healthcare providers remotely, reducing travel-related emissions. Plat-
forms like Teladoc and Amwell have seen significant adoption, especially during the
COVID-19 pandemic.

1.3.5 Industrial loT (lloT)

Green [oT is driving sustainability in industrial settings by enabling predictive main-
tenance, energy monitoring, and process optimization. Key applications include pre-
dictive maintenance, energy monitoring, process optimization, and sustainable supply
chains. IoT sensors monitor the condition of machinery and predict failures before
they occur, reducing downtime and energy waste [24]. For example, Siemens uses
IoT-enabled predictive maintenance to optimize the performance of industrial equip-
ment. [oT devices track energy consumption in factories, identifying inefficiencies
and opportunities for savings. Companies like Schneider Electric and Siemens offer
IoT solutions for industrial energy management. IoT systems optimize manufacturing
processes by monitoring and adjusting parameters in real-time. For instance, General
Electric uses IoT to optimize the performance of its wind turbines, increasing energy
output and reducing maintenance costs. [oT devices track the environmental impact
of supply chains, enabling companies to make more sustainable decisions. For ex-
ample, IBM’s Food Trust platform uses IoT to track the carbon footprint of food
products from farm to table.

1.3.6 Satellite loT

Satellite IoT extends the reach of Green IoT to remote and underserved areas, en-
abling global connectivity and environmental monitoring. Key applications include
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environmental monitoring, disaster management, precision agriculture in remote
areas, and maritime and aviation monitoring [25]. Real-time monitoring of defor-
estation, glacier melting, and ocean health using satellite IoT devices supplies vital
information for climate study and policy development. Sentinel satellites of the Eu-
ropean Space Agency, for instance, track environmental changes using IoT sensors.
Real-time monitoring of natural disasters such as hurricanes, earthquakes, and wild-
fires, which is made possible via satellite 10T, improves reaction times and lowers
damage by means of better control. To watch and forecast natural disasters, for ex-
ample, the NASA Earth Observing System employs loT-enabled satellites. For areas
lacking consistent internet access, satellite [oT offers connectivity for precision agri-
culture. By tracking soil conditions, meteorology, and crop health using satellite data,
farmers can maximize resource utilization and lower waste. By tracking ship and air-
craft locations and environmental impact, satellite IoT helps to enable more effective
routing and lowers emissions. For maritime and aircraft IoT uses, for instance, the
Iridium satellite network offers worldwide access.

1.4 Challenges in Green loT

While Green IoT holds immense potential for creating a sustainable and environ-
mentally friendly IoT ecosystem, its widespread adoption faces several challenges.
These challenges span technical, economic, and regulatory domains, and addressing
them is crucial for realizing the full potential of Green IoT. Below, we explore these
challenges in detail.

1.4.1 Technical challenges

The development and deployment of Green IoT devices involve overcoming several
technical hurdles. These challenges stem from the need to balance performance, en-
ergy efficiency, and reliability.

Balancing performance and energy efficiency

Green IoT devices have to minimize energy use while also delivering great perfor-
mance. Striking this balance is difficult, since energy-efficient designs can compro-
mise processing power, communication range, or functionality. Low-power micro-
controllers, for instance, can cut energy use, but restrict the device’s capacity to run
sophisticated calculations or support fast-moving communication protocols.

Ensuring reliable operation with energy harvesting

Green [oT devices in far-off or difficult-to-reach areas must be powered by energy
collecting systems include solar or kinetic energy. These methods, however, often
offer erratic and changeable energy, which makes dependability of operation difficult.
Solar-powered sensors, for example, could find it difficult to operate consistently in
low-light or cloud cover, so sophisticated energy management systems are needed to
store and control acquired energy.
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Managing the complexity of edge computing and Al algorithms
Optimizing the performance of Green IoT devices depends critically on edge com-
puting and artificial intelligence techniques. Their computational and memory needs
make deploying these technologies on resource-limited devices difficult, though.
Running machine learning algorithms on low-power IoT devices, for instance, could
call for specialized hardware or optimized software frameworks, hence escalating
development complexity and cost.

1.4.2 Economic challenges

The adoption of Green IoT practices often involves higher upfront costs and eco-
nomic barriers, which can hinder widespread implementation.

Higher upfront costs for sustainable materials and technologies

Often requiring sustainable materials and cutting-edge technologies, green IoT de-
vices might be more costly than conventional substitutes. For instance, rare earth-
free components or biodegradable plastics could raise manufacturing costs, therefore
reducing the competitiveness of Green [oT devices on the market. Higher initial in-
vestments involved in energy-efficient hardware and energy harvesting systems also
discourage producers and consumers.

Lack of incentives for manufacturers to adopt Green loT practices

Particularly in very competitive industries, many manufacturers give cost control and
profitability top priority over environmental issues. Companies can be reluctant to
spend in Green IoT technologies without financial incentives or legislative rules. For
sustainable manufacturing techniques, for example, the absence of tax benefits or
subsidies can deter businesses from implementing environmentally friendly designs
and methods.

1.4.3 Regulatory and policy challenges

The lack of consistent regulations and standardized guidelines poses significant chal-
lenges for the development and deployment of Green IoT devices.

Inconsistent regulations across regions

Regarding energy efficiency, e-waste management, and the usage of hazardous mate-
rials, different nations and areas have different rules. Manufacturers producing Green
IoT devices for worldwide markets find difficulties resulting from this inconsistency.
A gadget compliance with European Union rules, for instance, might not satisfy crite-
ria in the United States or Asia and calls for expensive changes or alternative product
lines.
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Lack of standardized guidelines for Green loT design and deployment
Lack of consistent policies for Green IoT design and implementation complicates de-
velopment process and reduces interoperability. Manufacturers find it challenging to
guarantee compliance and compatibility across devices since, for example, there are
no global criteria for sustainable material certifications or energy-efficient communi-
cation protocols. For consumers, who could find it difficult to spot really sustainable
IoT items, this lack of standardizing also generates ambiguity.

1.5 Future directions

With lots of chances for invention and teamwork, Green IoT has bright future. Grow-
ing demand for sustainable technology will depend much on developments in energy-
efficient technologies, standardization, and cooperative efforts to shape Green IoT
going forward. We go into great detail below on these future paths.

1.5.1 Advances in energy-efficient technologies

The development of energy-efficient technologies is essential for reducing the en-
vironmental impact of IoT devices. Future advancements in this area will focus on
improving performance while minimizing energy consumption.

Development of ultra-low-power processors and sensors

Researchers and manufacturers are working on designing processors and sensors that
consume minimal power without compromising performance. For example, ultra-
low-power microcontrollers like the ARM Cortex-M series and energy-efficient sen-
sors such as those from Bosch Sensortec are already making strides in this direction.
Future innovations may include processors that leverage quantum computing or neu-
romorphic engineering to achieve unprecedented energy efficiency.

Integration of advanced energy harvesting techniques

Energy harvesting technologies, such as solar, thermal, and kinetic energy, will con-
tinue to evolve, enabling IoT devices to operate autonomously without relying on
traditional batteries. For instance, advancements in flexible solar panels and piezo-
electric materials will allow energy harvesting to be integrated into a wider range of
IoT devices, from wearable gadgets to industrial sensors. Additionally, hybrid energy
harvesting systems that combine multiple energy sources (e.g., solar and thermal)
will enhance reliability and efficiency.

1.5.2 Standardization and certification

Standardization and certification are critical for ensuring the consistency, interoper-
ability, and credibility of Green IoT devices. Future efforts in this area will focus on
establishing global standards and promoting eco-friendly products.
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Establishing global standards for Green loT devices

The development of global standards for energy efficiency, sustainable materials,
and e-waste management will provide a unified framework for manufacturers and
consumers. Organizations like the International Telecommunication Union (ITU)
and the Institute of Electrical and Electronics Engineers (IEEE) are already work-
ing on standards for IoT sustainability. Future standards may include guidelines for
energy-efficient communication protocols, such as LoORaWAN and NB-IoT, as well
as requirements for the use of recyclable and non-toxic materials.

Introducing certification programs to promote eco-friendly products

Certification programs, such as Energy Star and EPEAT, will play a key role in pro-
moting Green [oT devices. These programs provide consumers with a reliable way to
identify eco-friendly products, encouraging manufacturers to adopt sustainable prac-
tices. Future certification programs may include criteria for carbon footprint, energy
harvesting capabilities, and end-of-life recyclability, ensuring a holistic approach to
sustainability.

1.5.3 Collaborative efforts

Collaboration between governments, industries, and researchers is essential for driv-
ing innovation and accelerating the adoption of Green IoT. Future efforts will focus
on fostering partnerships and raising public awareness.

Encouraging collaboration between governments, industries, and re-
searchers

Governments, industries, and academic institutions must work together to address the
technical, economic, and regulatory challenges of Green IoT. For example, public-
private partnerships can fund research and development projects, while government
incentives can encourage companies to adopt sustainable practices. Collaborative ini-
tiatives like the European Union’s Horizon 2020 program and the U.S. Department of
Energy’s Advanced Research Projects Agency-Energy (ARPA-E) are already driving
innovation in Green IoT.

Promoting public awareness and consumer demand for sustainable loT
solutions

Raising public awareness about the environmental impact of IoT devices and the ben-
efits of Green IoT is crucial for driving consumer demand. Educational campaigns,
eco-labeling, and incentives for purchasing sustainable products can encourage con-
sumers to make environmentally conscious choices. For instance, companies like
Apple and Google are already promoting their eco-friendly initiatives, such as using
recycled materials and reducing carbon emissions, to attract environmentally con-
scious consumers.
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1.6 Conclusion

A revolutionary way to solve the environmental problems caused by the explosive
spread of conventional IoT technologies is provided by green IoT devices Green loT
presents a road to a more sustainable and environmentally friendly IoT ecosystem
by including circular economy concepts, sustainable materials, and energy-efficient
designs. The relevance of Green IoT, its main ideas, enabling technologies, applica-
tions, difficulties, and future paths has been investigated in this chapter.

Adoption of Green IoT presents many difficulties. Technical challenges includ-
ing handling the complexity of edge computing and artificial intelligence algorithms,
balancing performance and energy efficiency, guaranteeing dependable operation us-
ing energy harvesting technologies, and so addressing technical obstacles. Significant
challenges also come from economic hurdles, including more upfront costs for sus-
tainable materials and technologies as well as from manufacturers’ lack of incentives
to embrace Green IoT techniques. Moreover, unequal rules among different areas and
the lack of common standards for Green IoT design and implementation hamper the
evolution and acceptance of sustainable IoT solutions.

Notwithstanding these obstacles, Green [oT has bright potential. More sustainable
IoT devices are making possible by developments in energy-efficient technology such
ultra-low-power CPUs and sophisticated energy harvesting methods. While coopera-
tive projects between governments, businesses, and researchers are driving innovation
and fast adoption of Green IoT, standardizing and certification activities are helping
to set worldwide rules and promote environmentally friendly goods. Growing pub-
lic knowledge of and consumer demand for sustainable IoT solutions also motivates
producers to give environmental sustainability top priority.

Green IoT is ultimately a need for creating a sustainable future as much as a
technology advancement. We may fully actualize Green IoT by tackling technical,
financial, and regulatory obstacles and using the chances given by developments in
technology, standardization, and teamwork. This will help to further more general
objectives of sustainability and climate action in addition to lessening the environ-
mental effect of IoT devices. A greener [oT environment has yet to be reached, hence
constant research, creativity, and teamwork are crucial to realize this vision.
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2.1 Introduction

Traditional wireless systems have focused on rate-hungry, human-centric applica-
tions, including extended reality, virtual reality, and conference calling. These sys-
tems were designed to prioritize high data rates and optimized to improve quality-
of-experience (QoE) and support seamless human-to-human communication. In con-
trast, the vision of the Internet of Things (IoT) has transformed the demands and
architectures of wireless systems by introducing new constraints and objectives. IoT
networks require support for massive machine-to-machine communication, with bil-
lions of interconnected devices operating under strict constraints of energy efficiency,
network sustainability, scalability, and long-range connectivity. The scale and diver-
sity of IoT deployments, ranging from smart cities and industrial automation to envi-
ronmental and agricultural monitoring, demand technologies that minimize energy
consumption, extend network lifetime, and ensure reliable communication across
wide geographical areas. Addressing these constraints has reshaped wireless system
design by prioritizing sustainability and scalability in architectures. This chapter de-
tails the principles and methodologies for designing an end-to-end sustainable IoT
network, emphasizing energy efficiency, scalability, and long-term operational feasi-
bility across diverse applications.

2.1.1 Historical perspective

In this section, we briefly discuss the emergence of the IoT paradigm of commu-
nication. The conceptual foundation of the IoT dates back to 1999, when Kevin
Ashton introduced the term in the context of supply chain optimization at Procter &
Gamble [1,2]. He envisioned a system of interconnected physical objects capable of
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autonomous and efficient communication, laying the groundwork for the global IoT
ecosystem. While the concept of IoT emerged in the late 1990s, it was not until the
early 2000s that wireless communication technologies began to integrate machine-
centric communication into standard infrastructures.

From 1G to 3G, wireless networks were primarily designed for voice commu-
nication and basic data services, lacking the technologies necessary for supporting
large-scale, interconnected 0T ecosystems [2]. The evolution of IoT was catalyzed
by advancements in sensor technology, enhanced computing capabilities, and the
development of optimized communication protocols, which enabled seamless data
collection, processing, and exchange, forming the backbone of modern IoT applica-
tions. The introduction of 4G networks marked a turning point for IoT systems and
enabled higher data rates, lower latency, and higher system capacity. The increased
bandwidth and lower latency facilitated real-time data exchange between devices and
supported the development of low-power wide-area networks (LPWAN), specifically
designed for long-range, low-power IoT use cases [2—4].

The emergence of 5G networks has further revolutionized the IoT landscape
by supporting a massive number of connected devices with capabilities such as
ultra-reliable low-latency communication (URLLC) and enhanced mobile broadband
(eMBB [5]. These advancements enable seamless integration of IoT devices across
sectors, including smart cities, healthcare, and industrial automation. However, de-
spite these advancements, 5G is limited by the lack of scalability, which is imperative
to support mass-scale next-generation networks [6]. Future applications, which in-
clude holographic communication [7], immersive reality [8], real-time autonomous
systems, etc., demand higher data rates, seamless coverage, and ultra-low latency.
Furthermore, the expansion of MTC and the integration of billions of IoT devices
into intelligent ecosystems further strain 5G’s scalability and energy efficiency.

6G networks aim to address these shortcomings by prioritizing diverse metrics
that are critical for next-generation applications, e.g., reliability for mission-critical
systems, spectral efficiency for denser networks, and energy efficiency for reduced
operational costs. 6G systems will have sustainable designs, ensuring networks can
support massive connectivity while minimizing environmental and operational im-
pacts through optimized energy consumption. This will enable network scalability
by supporting large-scale 10T ecosystems, facilitating global connectivity in remote
regions, and maintaining consistent performance as network density and device di-
versity increase.

2.2 Fundamentals of loT

IoT networks extend beyond the human-centric traditional wireless systems to create
an interconnected ecosystem of data, devices, processes, and persons. This paradigm
has created diverse opportunities across different sectors and presents new challenges
that demand sustainable, scalable, and secure solutions. The IoT vision aims to create
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FIGURE 2.1

loT functions.

a seamlessly interconnected network where devices operate autonomously with min-
imal human intervention. IoT devices encompass a vast variety of physical objects,
ranging from wearable devices and household appliances to industrial machinery
and autonomous vehicles. These objects or things are connected to the internet and
equipped to realize one or more of the following functions, also illustrated in Fig. 2.1.

1. Sense: Sensing is the ability to gather data about and from the environment.

2. Analyze: Devices can also have the ability to process and interpret the collected
data to derive actionable insights.

3. Communicate: IoT devices have the ability to receive and transmit processed or
raw information to neighboring nodes and central access points.

4. Actuate: Actuation involves executing specific actions or commands to control
physical systems based on the analyzed data or received instructions.

2.2.1 Architecture of loT

The architecture of IoT systems is segregated into different layers which perform
specific functions to ensure seamless communication, data processing, and device
management. We briefly describe IoT architecture in Fig. 2.2, and describe it as fol-
lows [9,10]:

Application layer

The application layer provides an interface between the network and the end user and
enables use-case specific services and functionalities through IoT devices and plat-
forms [11-14]. Here, raw data is converted into insights, and the actionable directives
are propagated toward the network devices. The functions of the application layer are
described as follows:



20 CHAPTER 2 Designing an End-to-End Sustainable loT Network

Actuat :
S . RF Chains  Wircless
End-Devices Technology
Interaction Layer Network Layer
Processors Routing Protocols
IoT System
Edge Computing Gateways

Access Points

Application Layer

Cloud Servers
Analytics

FIGURE 2.2

Architecture of loT systems.

» Data processing: Aggregating and interpreting the collected data is a core func-
tion of IoT systems. This is realized in the application layer by using advanced
analytics frameworks to extract actionable insights.

* Service provisioning: The application layer delivers use-case specific services
such as remote monitoring, and automation. These services are tailored to meet
user requirements and application demands.

» User interaction: The application layer also has interfaces for user interactions,
which can be implemented as web portals, mobile applications, or application
programming interfaces (APIs). These interfaces provide seamless control and
monitoring of IoT devices.

* Device management: The application layer facilitates device registration, firmware
updates, and node maintenance to ensure optimal performance.

Network layer

The network layer enables data transmission between IoT devices, gateways, and
central servers [11-14]. Routing, connectivity, and protocols are implemented in this
layer. The key functionalities are as follows:

» Data routing: The network layer ensures efficient delivery of data packets across
the IoT system. This is achieved through energy-aware routing protocols designed
to optimize resource usage while maintaining reliable communication paths.
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* Connectivity management: Establishing and maintaining communication links
is a key function of the network layer. It employs technologies such as low-power
wide-area networks (LPWANSs) for long-range connectivity or short-range stan-
dards like Zigbee or Bluetooth for high-density deployments.

* Interoperability: The network layer combines heterogeneous technologies such
as LPWAN:Ss, Bluetooth low energy (BLE), and WiFi to enable seamless commu-
nication between devices operating on different protocols or standards.

» Network optimization: Reducing power consumption and improving spectral ef-
ficiency are critical for IoT systems. Techniques such as duty cycling, adaptive
modulation, energy harvesting, backscattering, etc. are realized in this layer.

Interaction layer

The interactions of the end-devices with the environment are managed at this layer,
e.g., sensing, data collection, and actuation. This layer facilitates real-time interaction
between the physical world and the IoT ecosystem.

* Data aggregation: The interaction layer gathers data from the environment using
end-devices. This data is then preprocessed to ensure it is ready for further analysis
in higher layers of the IoT architecture.

* Operation management: This layer also enables seamless operation among di-
verse sensors and actuators. The formats and protocols to enable efficient commu-
nication with the network layer are implemented here.

* Control: The interaction layer executes control commands received from higher
layers. These commands are realized as physical actions, e.g., turning on a device,
adjusting a parameter or initiating a process, etc.

* Environmental interaction: This layer realizes direct interaction with the phys-
ical world through sensing and actuation. Sensors measure parameters, e.g., tem-
perature, humidity, motion, etc., while actuators influence the environment by
controlling devices or systems.

2.2.2 Network entities in loT

In the context of IoT systems, network entities are classified according to their spe-
cific roles and operational functions within the architectural framework, as shown in
Fig. 2.2. These entities are distributed across multiple layers and facilitate key pro-
cesses such as data acquisition, transmission, processing, and decision-making. The
fundamental components that constitute an IoT network include:

End-devices

End-devices serve as the foundational nodes within an IoT network, integrating sen-
sors and actuators to facilitate direct interaction with the physical environment. These
devices are tasked with capturing real-time data from their surroundings, executing
localized computations, and transmitting relevant information to intermediary gate-
ways or centralized processing servers. The embedded sensors within these nodes
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continuously monitor key environmental parameters, including temperature, humid-
ity, motion, and light intensity, converting these variations into electrical signals for
further processing. To optimize network performance and minimize communication
overhead, IoT end-devices often employ preprocessing techniques such as data filter-
ing, aggregation, or compression before transmission. This localized data refinement
not only conserves bandwidth, but also enhances the overall efficiency and respon-
siveness of the IoT system. End-devices in IoT networks are inherently resource-
constrained with limited energy availability, computational capacity, and storage. To
operate efficiently within these constraints, they leverage lightweight communica-
tion protocols such as the constrained application protocol (CoAP) [15] and message
queuing telemetry transport (MQTT) [16], which minimize data overhead and opti-
mize transmission efficiency. Additionally, energy conservation techniques, including
duty cycling, where devices alternate between active and sleep states [17], and en-
ergy harvesting from ambient sources are employed to extend operational time [18].
End-devices operate in the interaction layer where they serve as the critical inter-
face between the physical environment and the broader IoT ecosystem, facilitating
real-time sensing, data acquisition, and actuation while ensuring minimal resource
utilization.

Gateways

Gateways function as critical intermediaries within IoT architectures and bridge
the communication gap between resource-constrained end-devices and high-capacity
processing servers. Their primary roles are to enable seamless connectivity, aggregate
data from multiple IoT nodes, and perform protocol translation to ensure interop-
erability across heterogeneous networks. Additionally, they serve as access points
for diverse communication technologies, including Zigbee, LoRaWAN, Wi-Fi, and
Bluetooth Low Energy (BLE). Through these capabilities, gateways enhance network
reliability, support device heterogeneity, and enable seamless integration within the
broader IoT ecosystem. A fundamental role of gateways in IoT networks is to fa-
cilitate interoperability by bridging heterogeneous communication protocols. They
perform protocol translation between device-level standards and network-layer proto-
cols enabling necessary data exchange across diverse network infrastructures. Unlike
resource-constrained end-devices, gateways possess greater computational power and
energy reserves, allowing them to support advanced functionalities such as encryp-
tion for secure communication, error correction to enhance data integrity, and inter-
ference management to maintain signal quality in congested environments.

Processing servers

Processing servers serve as the computational houses of IoT networks, encompass-
ing both cloud platforms and edge computing workstations to handle data-intensive
tasks such as storage, analysis, and decision-making. Cloud servers provide scalable
and centralized resources and enable large-scale data aggregation, and advanced an-
alytics which extract actionable insights from IoT-generated data. These platforms
support high-volume processing and long-term storage. In contrast, edge and fog
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computing workstations bring computational capabilities closer to data sources, per-
forming localized preprocessing to reduce latency, conserve bandwidth, and enable
real-time decision-making for latency-sensitive applications. By distributing compu-
tational tasks across cloud and edge infrastructures, [oT networks achieve a balance
between efficiency, responsiveness, and scalability, optimizing performance for a di-
verse range of use cases. Processing servers are integral to IoT architectures and
execute complex tasks such as data fusion, anomaly detection, predictive analytics,
and long-term storage. These systems are distinguished by their high computational
power, extensive storage capacity, and capability to seamlessly integrate with APIs.
Beyond data processing, they enforce stringent security measures, including encryp-
tion, access control, and compliance frameworks to safeguard data integrity and
uphold privacy regulations. Functioning primarily at the application layer, process-
ing servers transform raw sensor data into actionable insights and enable advanced
decision-making in IoT applications across domains such as smart cities, industrial
automation, and healthcare.

2.2.3 Types of loT

IoT systems have versatile application domains, as shown in Fig. 2.3, which address
specific sector needs, operational challenges, and QoS requirements. This section
describes the major IoT application types, highlighting their technical requirements,
network characteristics, and use cases.

Consumer applications

Consumer [oT (CIoT) applications enable and assist personal experiences by integrat-
ing automation, real-time data processing, and seamless connectivity into everyday
life. Key use-cases of CIoT are wearable devices [19], tracking devices [20], and
smart homes [21]. Some of these use-cases are illustrated in Fig. 2.4. In smart homes,
IoT systems automate and control home devices and manage lighting, thermostats,
and security cameras using technologies like Zigbee, Wi-Fi, and Bluetooth low en-
ergy (BLE). These devices monitor and actuate different environmental parameters
and adapt to user preferences. Wearable devices, e.g., fitness trackers, smartwatches,
and health monitors, collect real-time data on physical activities and health metrics.
This data is processed locally or transmitted to gateways or mobile phones to provide
insights and alerts. Tracking devices leverage GPS and LPWAN technologies like Lo-
RaWAN and Sigfox to provide accurate, long-range tracking for personal items, pets,
or individuals [22]. Consumer [oT devices prioritize low power consumption to ex-
tend battery life in portable and wearable devices. They must be designed to provide
reliable performance during movement and have moderate data rate requirements
which efficiently handle periodic updates and event-driven communication. Security
and privacy protocols are also integrated into consumer IoT to protect sensitive user
data, including health and location information. For example, smart assistants cen-
tralize the control of IoT devices, BLE-enabled fitness trackers offer real-time health
insights, and LPWANSs ensure reliable connectivity over extended ranges, making
CIoT an indispensable component of modern lifestyle.
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Commercial applications

IoT of commercial things (IoCT) optimizes enterprise operations by integrating IoT
technologies into urban cities [23], office systems [24], and retail processes [25].
Smart city applications are included in IoCT and include use-cases such as urban in-
frastructure monitoring, traffic control, smart parking, and waste management. These
systems use real-time data, collected by sensors, to identify traffic congestion, moni-
tor resource usage, and optimize municipal services. Smart offices implement IoT so-
lutions to improve workspace processes by monitoring energy consumption, tracking
employee activities, and automating environmental controls. Retail stores utilize IoT
for smart shopping experiences by enabling personalized recommendations, in-store
navigation, and automated checkouts powered by IoT beacons and sensors. Commer-
cial IoT systems require scalable design to support large deployments across cities
and enterprises. They must ensure the reliability of critical services, e.g., traffic man-
agement and waste monitoring, etc. [26,27], while minimizing energy consumption
for continuous operation. Interoperability is essential for enabling IoCT as it includes
a diverse set of requirements and devices. For example, smart parking systems use
LoRaWAN to detect and communicate available parking spaces, while traffic mon-
itoring systems enable real-time traffic flow optimization. IoT-enabled waste bins
provide immediate updates on fill levels, allowing for more efficient waste collec-
tion.

Industrial applications

Industrial IoT (IIoT) systems utilize IoT devices to monitor, automate, and optimize
industrial processes such as warehouse tracking [28], supply chain control [29], and
smart grids [30]. Warehouse tracking systems use RFID, BLE, and LPWAN tech-
nologies to monitor inventories, and provide efficient supply management. Control
applications such as predictive maintenance and fault detection automate production
lines by leveraging IoT sensors and machine learning. Smart grids collect and process
data about power generation, transmission, and consumption. This enables efficient
energy distribution and significantly reduces operational costs. Industrial IoT systems
require high reliability and low latency to support critical operations. Low latency
ensures real-time responsiveness for automation and control tasks. Predictive main-
tenance using IoT sensors can prevent costly equipment failures in industrial plants.
Furthermore, manufacturing can be streamlined using IoT-integrated robotics, creat-
ing efficient, precise, and manageable processes.

Infrastructure applications

IoT of infrastructure things (IoIT) improves the safety and reliability of critical infras-
tructures by integrating real-time monitoring and automated maintenance using IoT
sensors. [olIT use cases span transportation systems [31], railway management [32],
and public safety systems [33]. In transportation systems, sensors can be embedded
in bridges and roads to measure structural integrity, traffic loads, and environmen-
tal conditions. The sensors can detect anomalies such as stress cracks or overloads
and alert maintenance teams to avoid disasters. Railway management systems can
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track train locations, schedules, and conditions using loT-enabled sensors, improving
safety and operational efficiency. Public safety systems can also utilize IoT sensors
to monitor environmental hazards and enable real-time emergency response. IoIT
prioritizes long-term reliability for decade-long deployments and ensures continu-
ous operation with minimal maintenance. Scalable and high-precision designs are
required to cover extensive geographical areas and enable safety-critical applications.
Energy efficiency is critical for devices deployed in remote locations. For example,
smart bridges equipped with load and vibration sensors provide real-time monitoring
of structural health.

Healthcare applications

Healthcare IoT (HIoT) improves medical services and processes by enabling real-
time monitoring and remote diagnostics using wearable devices, telemedicine [34],
and smart hospitals [35]. Wearable devices track vital signs such as heart rate, glu-
cose levels, and blood pressure, which provides information critical to healthcare
providers [36]. These devices transmit data to cloud platforms or mobile applications
and enable continuous monitoring for early detection of health issues. Telemedicine
platforms also use IoT systems to facilitate remote consultations, diagnostics, and
patient monitoring [37]. This improves the efficiency of hospitals and enables imme-
diate consultations. Smart hospitals integrate IoT systems to optimize patient flows,
and equipment management. HIoT demands ultra-reliable communication for accu-
rate data transmission. Low latency is also essential for real-time monitoring and
alerts, as healthcare processes are extremely critical and can have disastrous conse-
quences. Strong data security measures are also required in HIoT systems to protect
sensitive patient information. Examples include IoT-enabled glucose monitors for di-
abetic patients and smart hospital beds equipped with pressure sensors to prevent
bedsores.

Agricultural applications

Agricultural IoT (AIoT) leverages advanced sensors, wireless communication, and
data analytics to optimize farming practices. It enables use-cases such as precision
farming [38], livestock management [39], and smart irrigation systems [40]. Pre-
cision farming systems use IoT sensors to measure soil moisture, nutrient levels,
and weather conditions, which provide real-time data for informed decision-making
regarding farming schedules. Livestock management systems track animal health, be-
havior, and location using IoT-enabled collars and tags, which improves the efficiency
of farming processes. Smart irrigation systems automate water delivery by analyzing
soil and weather data and provide optimal resource utilization and waste reduction.
AloT systems require low power consumption for remote sensors as the farms have
expansive areas. These systems must also be seamlessly integrated with data ana-
lytics platforms to provide actionable insights. For example, loT-based soil moisture
sensors help farmers optimize irrigation schedules. GPS-enabled livestock trackers
monitor herd movement and enhance productivity. Smart greenhouses equipped with
IoT systems control temperature, humidity, and lighting, hence improving crop yield
and reducing labor costs.
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Military applications

Military IoT (MIoT) leverages advanced sensing, communication, and analytics
to improve situational awareness, operational efficiency, and decision-making in
defense environments. MIoT systems provide real-time intelligence and support
mission-critical operations [41]. They enable surveillance and reconnaissance of en-
emy activities and battlefield conditions using unmanned aerial vehicles (UAVs),
ground-based sensors, and autonomous vehicles. These systems transmit secure, real-
time data to command centers and improve tactical decision making. MIoT also
transforms logistics using IoT-enabled tracking devices, e.g., RFID tags and GPS
units, etc., to monitor military assets, streamline inventory, and optimize resource
distribution. Wearable IoT devices further enhance troop safety by monitoring sol-
dier vitals. They can alert command centers to potential health risks or emergencies
in real time.

Environmental applications

Environmental IoT (EIoT) systems monitor and manage ecosystems to provide pol-
lution control [42], resource management, and disaster mitigation [43]. IoT-enabled
sensors measure environmental parameters such as air quality, water quality, soil
conditions, etc. [44], to transmit data in real-time to centralized systems for analy-
sis and actionable insights. For example, air quality monitoring networks deployed
in urban areas continuously track pollutant levels, enabling city administrators to
implement timely measures, such as traffic rerouting, emission reduction policies,
etc. Similarly, IoT-based water quality monitoring systems detect contamination, en-
suring regulatory compliance and safe resource utilization. These systems require
energy-efficient and scalable designs to operate reliably in remote and harsh envi-
ronments. Energy harvesting techniques are vital to EIoT systems as they extend
the operational lifespan of sensors. They also have low-rate requirements and have
reduced bandwidth usage for seamless transmission across vast geographical ar-
eas.

2.3 Fundamentals of sustainability

Sustainability refers to the design and operation of IoT systems with minimal envi-
ronmental impact, optimized resource utilization, and network scalability. With the
proliferation of IoT devices — from smart homes to industrial automation — achiev-
ing sustainable designs has become a multidimensional challenge. It requires ad-
dressing and minimizing different expense verticals, including energy consumption,
deployment complexity, hardware design, spectrum allocation, processing efficiency,
and maintenance. Each expense vertical presents distinct challenges and opportuni-
ties for sustainable IoT, as shown in Table 2.1.
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Factor Impact Challenges Solutions
Energy Con- | Defines power High power demand Low-power
sumption efficiency and network | for RF transmission; communication
lifetime; affects real-time processing in | protocols; energy
sensing, data constrained harvesting (solar,
processing, environments; limited kinetic, thermal);
communication, and battery life in remote adaptive power
actuation. deployments. management
techniques.
Deployment | Determines ease of Remote and Modular and scalable
Challenges installation, integration, | inaccessible network architectures;
and scalability of loT deployments require standardized
networks. specialized equipment; | protocols; automated
interoperability configuration and
between provisioning tools.
heterogeneous
devices; high initial
costs.
Hardware Encompasses RF High energy Use of energy-efficient
Design chains, antenna consumption in components;
modules, sensors, and | real-time applications; | recyclable materials;
processors for data environmental impact modular designs for
collection, of non-recyclable easy maintenance and
communication, and materials; difficulty in upgrades.
computation. repairing miniaturized
components.
Spectrum Governs wireless Spectrum congestion Dynamic spectrum
Allocation communication in densely populated access; cognitive radio
reliability, efficiency, areas; interference in techniques; spectrum
and congestion unlicensed bands sensing and adaptive
management. (Wi-Fi, Zigbee); limited | frequency
bandwidth in LPWAN management.
systems.
Processing Defines how loT High computational Lightweight Al
Ability devices analyze and burden for real-time algorithms; edge
manage data locally or | applications; limited computing; federated
centrally to extract processing power in learning for distributed
insights. edge devices; model updates;
increased energy over-the-air (OTA)
consumption. computations.
Network Involves hardware Frequent maintenance | Predictive maintenance
Maintenance | repairs, software is costly and using loT sensors; OTA

updates, and battery
replacements in
large-scale
deployments.

resource-intensive;
firmware updates
introduce security
vulnerabilities; remote
device access is
challenging.

firmware updates with
secure authentication;
modular hardware
replacement strategies.
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2.3.1 Energy consumption

Energy consumption is critical in IoT systems as it directly impacts network lifetime
and operational efficiency. IoT devices perform energy-intensive tasks, e.g., sensing,
data processing, communication, actuation, etc. Furthermore, most devices operate
in energy-constrained environments and rely on batteries, which are impractical to
replace in remote deployments. For example, an environmental IoT system or in-
frastructure monitoring system must operate for years without human intervention.
It is also directly influenced by the network architecture. Wireless data transmission
consumes substantial energy due to the demands of radio frequency (RF) chain func-
tions, e.g., source coding, channel coding, modulation, amplification, etc. Devices
using cellular technologies, e.g., 3G, 4G, or 5G, etc., have higher energy footprints
compared to low-powered, loT-specific technologies, e.g., LoRa, Bluetooth, Zigbee,
etc. Additionally, continuous data transmission to cloud servers or access points/
gateways exacerbates energy consumption in real-time applications such as monitor-
ing and supply chain management. Energy-hungry tasks such as anomaly detection,
data preprocessing, and predictive analytics, further add to the burden. Devices de-
ployed in isolated environments face even greater challenges. Addressing these issues
requires sustainable designs such as energy harvesting, low-power communication
protocols, and efficient processing techniques.

2.3.2 Deployment challenges

Deployment challenges are associated with installing, integrating, and scaling IoT
devices across diverse environments. IoT systems usually consist of a diverse set of
devices with unique communication protocols, processing capabilities, and power
requirements. In large-scale deployments such as smart cities, forest fire detection
systems, industrial plants, etc., thousands of devices coordinate to operate as a uni-
fied system. Devices may need to be installed in remote or inaccessible areas, which
require specialized equipment and significant human effort, driving up costs and time.
IoT systems must accommodate additional devices and increased data traffic without
degrading performance. To manage this, sustainable deployments must be realized
using modular designs, standardized protocols, and automation tools.

2.3.3 Hardware design

Hardware design in IoT systems encompasses the RF chains, antenna modules and
processors responsible for sensing, communication, analysis, and actuation. The di-
versification of IoT applications has resulted in a wide range of hardware designs,
from compact, lightweight wearable devices to robust industrial sensors capable of
withstanding extreme environmental conditions. Each of these devices must balance
performance, durability, and energy efficiency respective to their corresponding use-
cases. Sensors can be of different types, such as optical, acoustic, and chemical
sensors. Each sensor is tailored to a specific application. For example, air quality
monitoring systems use chemical sensors to detect pollutants, while autonomous ve-
hicles rely on LiDARs (light detection and ranging) and radars for real-time object
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detection. These functions consume significant power, particularly during continu-
ous operation for real-time applications. Furthermore, many components used in [oT
systems rely on non-recyclable materials, leading to environmental concerns. Ad-
ditionally, the miniaturization of IoT devices exacerbates environmental concerns,
as smaller components are harder to repair or recycle. Addressing these challenges
requires sustainable designs such as modular hardware, recyclable materials, and
low-powered components.

2.3.4 Spectrum allocation

Spectrum allocation is the process of designating specific frequency ranges within the
electromagnetic spectrum to various services and technologies. This ensures efficient
and interference-free operation of wireless systems. IoT devices do not have high pro-
cessing capabilities, therefore, efficient spectrum usage is critical to ensure reliable
communication. Spectrum congestion has become a pressing issue in densely popu-
lated areas owing to the scale of IoT networks, which is ever-increasing. Furthermore,
the utilization of unlicensed frequency bands such as 2.4 GHz for Wi-Fi and Zig-
bee, etc., exacerbates interference and reduces data throughput. Similarly, LPWAN
technologies rely on sub-GHz frequency bands, which provide efficient long-range
communication at the cost of limited bandwidth. Spectrum congestion also increases
energy consumption as devices expend more power to retransmit lost or corrupted
data. Dynamic and cognitive spectrum management techniques can empower the de-
vices to sense and adapt to underutilized frequencies. However, implementing them
complicates the design of IoT devices, which hinders sustainability.

2.3.5 Processing ability

IoT systems generate vast amounts of data from sensors, which must be processed
to extract actionable insights. Therefore, IoT devices need processors to direct the
collection and management of data locally or centrally. The computational demands
of applications such as anomaly detection, predictive analysis, and real-time ana-
Iytics strain the limited processing power of IoT devices. Local processing in the
gateways or end-devices reduces the need for continuous data transmission to the
cloud. However, these devices face constraints in terms of processing power, mem-
ory, and energy availability. The use of lightweight algorithms and energy-efficient
processors can partially address these challenges. Over-the-air (OTA) computations
can also mitigate these constraints. However, sustainable designs are required to bal-
ance the processing demands and energy constraints, especially in high-density IoT
networks.

2.3.6 Network maintenance

Network maintenance processes are the activities required to ensure devices re-
main operational, e.g., hardware repairs, software updates, and battery replacements.
Frequent battery replacements or firmware updates in large-scale deployments are
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impractical, unsustainable, and resource-intensive. Additionally, IoT deployments in
remote localities further complicate network maintenance. Predictive maintenance
techniques can be employed to reduce maintenance costs. They use IoT sensors to
identify potential failures before they occur and reduce network downtime. OTA up-
dates can streamline the software maintenance process, but require secure and reliable
communication channels to prevent failures or cyberattacks. Modular hardware de-
signs can further simplify the replacement of faulty components and reduce waste.

2.4 Challenges of sustainable loT

IoT ecosystems possess a unique set of characteristics which enables specific use-
cases and distinguishes IoT from conventional wireless systems. These characteris-
tics are critical to the proper functionality of IoT systems, but introduce significant
sustainability challenges. These challenges demand a balance between the require-
ments that enable the functionality of IoT-enabled architectures, and resource con-
sumption. In most cases, [oT devices are often deployed in locations where frequent
battery replacement or maintenance is impractical, necessitating energy-efficient de-
signs. These designs can take advantage of solar or ambient energy harvesting tech-
nologies to extend their operational lifecycle. Even though the data generated from
a single IoT device is minuscule, the exchange of control information and data
traffic from hundreds or thousands of nodes can become significant. Efficient data
handling, storage, and processing solutions adopted on an individual and architec-
tural level have the potential to minimize the environmental impact of IoT-enhanced
ecosystems. Durable and low-cost hardware can support diverse applications across
different deployment scenarios eliminating the complexity of device manufacturing
and management. The key characteristics are shown with their corresponding sus-
tainability challenges in Table 2.2, and are described as follows:

Table 2.2 Challenges of sustainable IoT.

Challenge | Impact Problems Solutions

Massive Billions of IoT devices High congestion, Edge computing,

Scale require seamless increased interference, | adaptive frequency
management, data bandwidth limitations, management,
handling, and reliable authentication hierarchical clustering,
communication. complexity. congestion control.

Scalability loT networks must Performance Distributed processing,
support continuous degradation, increased | self-organizing
growth in device count, | latency, inefficient networks, optimized
data generation, and routing, resource congestion control,
application demands. exhaustion. adaptive routing.

continued on next page
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Table 2.2 (continued)

Challenge | Impact Problems Solutions

Hetero- loT systems integrate Compatibility issues, Middleware for

geneity diverse devices with inefficient data interoperability,
different protocoals, standardization, standardization of
energy needs, and increased processing protocols, cross-layer
data formats. overhead. optimization.

Autonomy |oT devices require Continuous sensing Integrated sensing and
minimal human increases energy communication (ISAC),
intervention for consumption, power-efficient
sensing, synchronization localization,
decision-making, and overhead in real-time event-driven
actuation. systems. processing.

Energy Long-term operation in | High energy demand for | Ultra-low-power

Efficiency constrained sensing and architectures, energy
environments requires | communication, rapid harvesting, efficient
minimal power battery depletion. sleep-wake
consumption. scheduling.

Low Trans- | loT traffic consists of Inefficient bandwidth Adaptive data

mission small, burst utilization, increased compression,

Rates transmissions rather queuing delays, high event-triggered
than continuous data protocol overhead. transmission,
streams. traffic-aware

scheduling.

Real-Time Applications like High power Edge computing,

Communi- autonomous vehicles consumption for time-sensitive

cation and industrial continuous connectivity, | networking,
automation require low | network congestion in low-latency routing
latency. time-sensitive protocols.

applications.

Long-Range | loT must maintain High transmission LPWAN protocols

Connectivity | communication across | power requirements, (LoRa, NB-loT),
vast geographical signal degradation, satellite 0T, advanced
areas. spectrum scarcity. error correction

techniques.

Security & loT systems process Increased Lightweight encryption,

Privacy large volumes of computational burden, | blockchain
sensitive data and vulnerability to attacks authentication,
require robust (e.g., jamming, Al-driven anomaly
protection. spoofing). detection.

Massive scale

Approximately 40 billion IoT devices are estimated to be operational by the year 2025
[45]. The versatility of IoT systems has accelerated their integration in a number of
industries, including but not limited to smart home, healthcare, manufacturing, etc.
The smart home sector is projected to constitute approximately 60% of all IoT appli-
cations, this statistic translates to more than 5 billion IoT devices [46]. The large scale
of connections within this type of connectivity paradigm introduces problems related
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to device management, data handling, storage and processing, and network scala-
bility. Billions of devices generating real-time data can lead to data handling issues
requiring novel methods for storage, processing, management, and analysis. Central-
ized architectures can lead to problems like latency, bandwidth limitations, channel
access issues, data drops, corruption, energy efficiency, etc., especially in real-time
applications like self-driving cars or mission-critical applications like manufactur-
ing plants. These challenges are effectively mitigated using fog and edge computing
architectures that bring the processing nodes closer to the IoT devices.

IoT devices are envisioned to be connected to each other and other nodes through
wireless communication networks. The number of devices communicating over a
wireless medium with limited capacity is a major concern especially in terms of
congestion of the wireless medium and interference. Advanced resource allocation
schemes are required that work to address these limitations, especially in dense net-
work configurations. Adaptive frequency management and congestion control are
also areas where significant improvement can be made to maintain reliable com-
munication. Technologies like LoRaWAN, Sigfox, and NB-IoT focus on techniques
that enable scalability in massive IoT networks. These protocols and technologies,
however, require careful optimization for a good balance between range, bandwidth,
and energy efficiency. The scale of the network formed by a massive number of IoT
devices, also poses sustainability concerns. The energy consumption, hardware man-
ufacturing waste, and wireless channel resource consumption for billions of devices
have highlighted legitimate environmental concerns. Processes have to be put in place
that not only allow for very low energy operation, but also produce recyclable waste
and enable effective wireless resource consumption with robust hardware that allows
for long-lasting operation. Proper device life-cycle tracking can also be implemented
to evaluate the impact of devices from their point of manufacturing to their oper-
ation and final decommissioning. The life-cycle of devices provides insights about
the environmental impact of devices, allowing for better analysis of devices for their
environmental footprint. This footprint can then later be reduced by recognizing op-
portunities for improvement.

Scalability

Scalability refers to the ability of a network to support a growing number of con-
nected devices, increase in data traffic, and explosion in application demands without
performance degradation. A systematic structure capable of supporting repeating
hierarchies, distributed processing, and dynamic control protocols can ensure the
seamless scalability of extremely large and growing networks [47]. IoT networks are
expected to form large and dense networks that can only be sustained using adaptive
architectures and protocols. All the devices being added the IoT networks increase
the data processing and management load, which has to provide resources to keep
the network operational and meet QoS demands. Increased device interference and
network congestion needs to be managed by appropriate protocols that can dynam-
ically make optimal decisions for appropriate device resource management. These
steps can ensure the scalability of IoT networks.
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Heterogeneity

Heterogeneity refers to the integration of nodes in the network that have varying
requirements, functions, and/or performance metrics. IoT nodes can vary in their na-
ture and can be devices, sensors, and/or actuators. An IoT system can therefore be
expected to form a heterogeneous network. In this network, a number of devices
with varying power consumption, computational power, functions, and communica-
tion protocols exist. The optimization and management of such a system with varying
requirements and configurations becomes increasingly complex. The management of
a network with heterogeneous entities becomes complex and incurs additional re-
sources to enable appropriate hardware compatibility, energy optimization, and data
standardization. The different functions of devices operating within an ecosystem can
cause them to have a different life cycle. Less resilient devices have to be frequently
changed, contributing to waste production. The processing overhead involved in the
interoperability of the devices in the network also decreases efficiency. Sustainable
IoT designs account for this decrease in efficiency and work to reduce the overhead
involved between devices while also minimizing waste by using devices with longer
life cycles. Accounting for compatibility between devices can also lead to a decrease
in energy consumption.

Autonomy

One of the key features of IoT systems is their ability to operate autonomously
with minimal human intervention [48]. This is done by collecting data, process-
ing it and taking appropriate actions in order to achieve an outcome. Systems that
are designed to operate autonomously often have a sensing aspect underlining their
operation. They achieve this by integrating technologies such as global position-
ing system (GPS) and radar for real-time positioning, motion detection, and spatial
awareness. Due to the nature of the systems formed by autonomous IoT devices, they
require continuous and reliable operation. This leads to significant energy demands,
especially in the case of sensing and localization, where a constantly changing en-
vironment necessitates frequent updates and high computation. Integrated sensing
and communication (ISAC) frameworks are efficient in their operation, but still re-
quire resources for synchronization and reliability [49]. In order to make autonomous
systems more sustainable, power requirements, computational complexity and com-
munication overhead must be balanced.

Energy efficiency

Energy-efficient operation in constrained environments is one of the most common
operating conditions in the case of IoT systems. Monitoring of remote environments,
wearable devices, underwater sensors, etc., are expected to be operational for a long
period of time without the need to be maintained [50]. This need for long-term oper-
ation conflicts with the high power demands of continuous sensing, processing, and
communication. In order to achieve low power consumption, devices often have to
have lower processing power, lower update frequency, and a smaller feature set. As
the IoT devices use and wear down their batteries, these batteries have to be replaced
and thus contribute to environmental pollution. Ultra-low power designs or energy
harvesting devices have to be made more robust for their widespread adoption.
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Low transmission rates

IoT devices have a different transmission behavior, as compared to human-generated
traffic, and are mostly focused on small transmissions in regular or semi-regular
bursts. Applications such as environmental monitoring and asset tracking often re-
quire similar transmission behaviors. These types of behaviors can be configured for
optimal power consumption for devices operating in constrained environments albeit
at the cost of lower performance such as a lower number of updates, etc. Real-time
communication requires frequent updates and degradation in performance may be
observed with a decrease in the amount of updates. This can also become dangerous
in situations where a slow update can lead to an increased risk of accidents, as in
the case of autonomous vehicles. Some mechanisms might be able to handle the spo-
radic flows of IoT networks, including queueing, but these mechanisms also lead to
processing overhead. Low transmission rate protocols may be developed that accom-
modate the sporadic nature of machine communication in IoT networks. However,
due to the recent interest in the field, further testing and evaluation may be needed.

Real-time communication

Real-time communication allows IoT devices to adapt to dynamic conditions and re-
spond to user interactions without significant delays. This capability is particularly
critical in applications that demand immediate decision-making and action [51]. For
instance, in autonomous vehicles, real-time communication ensures safety by en-
abling rapid responses to changing road conditions and potential hazards. Similarly,
healthcare monitoring systems rely on real-time data to promptly detect and address
critical patient health changes. Industrial automation also benefits from this charac-
teristic, where time-sensitive processes require seamless communication to maintain
operational efficiency and prevent costly disruptions. Real-time systems are charac-
terized by their need for continuous connectivity, low latency, and high reliability, but
these requirements often come at the cost of increased energy consumption and com-
putational complexity. Ensuring real-time capabilities in large-scale IoT networks
introduces additional challenges, such as managing network congestion, mitigating
power drainage, and addressing hardware degradation over time. The sustainability of
such systems relies on carefully optimized network architectures and the implemen-
tation of low-power, high-efficiency communication protocols. These measures must
balance the trade-offs between maintaining real-time responsiveness and minimizing
resource utilization to achieve practical and scalable IoT solutions.

Long-range connectivity

Long-range connectivity enables IoT devices to maintain communication across
extensive geographical areas, making it suitable for diverse applications such as
precision agriculture in rural farms, infrastructure management in smart cities, and
monitoring in large industrial sites [52]. Technologies such as LoORaWAN and NB-
IoT provide energy-efficient solutions for low-data—rate communication over long
distances. Additionally, cellular networks, such as long-term evolution (LTE) and 5G
offer higher data rates and reliability. These technologies collectively facilitate robust
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communication in scenarios where extended coverage and dependable connectivity
are paramount. Long-range communication systems often require higher transmis-
sion power to maintain reliable connectivity, particularly in environments character-
ized by significant signal attenuation or high levels of interference. This increased
transmission power directly impacts energy consumption, posing a challenge for
energy-constrained IoT devices. Moreover, ensuring dependable connectivity over
extended distances can demand greater spectrum usage, potentially contributing to
network congestion in densely deployed regions. The deployment and maintenance of
long-range communication infrastructure, such as gateways and base stations, further
amplify these challenges, contributing to the system’s overall environmental foot-
print. Addressing these concerns necessitates a careful balance between achieving
extended coverage and minimizing energy and resource consumption.

Security and privacy

IoT systems are responsible for processing and transmitting large volumes of sensi-
tive data, including personal information, healthcare records, and critical industrial
metrics. Protecting this data from unauthorized access and breaches requires robust
security measures, such as encryption to safeguard data during transmission, au-
thentication mechanisms to verify user and device identities, and stringent access
control policies to restrict unauthorized interactions. These measures are essential
for maintaining the integrity, confidentiality, and privacy of IoT networks, particu-
larly in applications where data sensitivity and regulatory compliance are critical.
The implementation of security protocols in IoT systems often introduces additional
computational and communication overhead, which can lead to increased energy con-
sumption and higher latency. Addressing emerging vulnerabilities requires frequent
software updates, further consuming system resources, and necessitating constant
monitoring to ensure robust security. Moreover, privacy concerns demand compre-
hensive and reliable data handling policies, adding complexity to system design and
management. Developing sustainable IoT systems requires carefully balancing these
security and privacy requirements with the need to minimize resource usage and
reduce environmental impact. This calls for innovative approaches that optimize se-
curity measures while maintaining efficiency and scalability.

2.5 Design elements of sustainable loT

The design of sustainable IoT systems is governed by various technical elements that
influence network performance, energy efficiency, and scalability. These elements
define how data is processed, transmitted, and managed within an IoT ecosystem.
Optimizing these elements is essential for ensuring long-term operational efficiency
while minimizing energy consumption and resource utilization. This section details
the critical design elements that impact sustainable IoT networks.
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2.5.1 Modulation schemes

Modulation schemes play a fundamental role in wireless communication by defining
how digital information is encoded onto an analog carrier wave for efficient transmis-
sion. The choice of modulation technique directly impacts key performance metrics
such as spectral efficiency, power consumption, and signal robustness in the presence
of noise and interference. Low-order modulation schemes, such as binary phase shift
keying (BPSK), offer superior noise immunity and lower energy requirements. These
characteristics make them well-suited for long-range, low-power IoT applications
where reliability and energy efficiency take precedence over data rate. Conversely,
higher-order schemes like quadrature amplitude modulation (16-QAM, 64-QAM)
enable significantly higher data throughput by encoding more bits per symbol, but
necessitate a stronger signal-to-noise ratio (SNR) and higher transmission power.
This trade-off makes high-order modulation preferable for bandwidth-intensive ap-
plications, but less suitable for power-constrained devices. Sustainable IoT networks
leverage adaptive modulation that dynamically adjusts the modulation order in re-
sponse to varying channel conditions, optimizing both throughput and energy ef-
ficiency. Advanced techniques such as orthogonal frequency-division multiplexing
(OFDM), widely implemented in LTE and Wi-Fi, improve spectral efficiency by
enabling parallel data transmission across multiple subcarriers while mitigating the
effects of multipath fading. Low-power IoT technologies such as LoRa and Sigfox
favor low-order modulation schemes to maximize energy efficiency and coverage.

2.5.2 Coding techniques

Coding techniques improve the reliability of IoT communication by detecting and
correcting transmission errors. These techniques enhance data integrity at the cost
of additional computational complexity and power consumption that might not be
suitable for power-constrained IoT network infrastructures. Forward error correc-
tion (FEC) techniques, including low-density parity-check (LDPC) and Turbo codes,
enable reliable communication between the sender and receiver by allowing the re-
ceiver to reconstruct the corrupted bits using the embedded redundancy [53-55].
Automatic repeat request (ARQ) mechanisms like hybrid ARQ (HARQ) used in
LTE and 5G [56], optimize retransmissions based on error feedback. Sustainable
coding techniques minimize overhead while ensuring sufficient error protection to re-
duce retransmissions, as retransmissions not only result in increased latency but also
consume additional power. Polar codes are one example of highly efficient error cor-
rection codes with minimal computational cost [54]. Energy-efficient IoT networks
aim for lightweight error correction mechanisms that adapt dynamically to channel
conditions, preventing unnecessary power expenditure.

2.5.3 Antenna design

Antenna design directly affects signal propagation, interference mitigation, and en-
ergy efficiency of IoT systems. Antennas convert electrical signals into electromag-
netic waves for transmission and reception. Directional antennas focus transmission
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power in a specific direction, thereby improving range and reducing interference [57].
Omnidirectional antennas provide uniform radiation patterns, making them suitable
for mesh networks and short-range IoT applications [58]. Multi-antenna technologies
increase spectral efficiency by taking advantage of the spatial multiplexing provided
by multiple antennas. These technologies enhance throughput and reliability with-
out increasing bandwidth or power consumption. Sustainable IoT networks leverage
energy-aware antenna designs, including passive backscatter antennas and recon-
figurable intelligent surfaces (RIS), to enhance efficiency while maintaining robust
connectivity.

2.5.4 Interference management techniques

Interference management ensures reliable communication in dense IoT networks by
minimizing signal degradation caused by overlapping frequencies. Frequency plan-
ning and dynamic spectrum allocation can enhance spectrum utilization. The inter-
ference in this case is reduced by allocating orthogonal frequency bands to adjacent
transmitters. Adaptive power control minimizes interference by adjusting transmis-
sion power based on network conditions. Modern IoT systems can employ advanced
interference cancellation techniques including interference alignment and successive
interference cancellation (SIC) in non-orthogonal multiple access (NOMA) systems
[59]. These approaches aid in spectral reuse, enabling multiple devices to share the
same frequency bands efficiently. Sustainable IoT networks implement low-power
interference mitigation strategies to enhance spectrum management.

2.5.5 Spectrum allocation schemes

Spectrum allocation directs how frequency bands are assigned to IoT devices and
affects network capacity, reliability, and efficiency. Dynamic spectrum access (DSA)
enables IoT devices to opportunistically use underutilized frequencies, which im-
proves spectrum efficiency [60]. Cognitive radio techniques, such as spectrum sens-
ing and spectrum sharing, allow IoT networks to identify and utilize vacant frequency
bands, which reduce network congestion [61]. Hybrid models, e.g., licensed shared
access (LSA), combine fixed and dynamic spectrum strategies to ensure fair and sus-
tainable spectrum allocation [62]. Efficient spectrum distribution maximizes through-
put while minimizing interference and energy consumption.

2.5.6 Processor designs

IoT processor design impacts computational efficiency, power consumption, and real-
time responsiveness. Low-power microcontrollers are optimized for energy-efficient
processing in constrained environments. Edge Al processors enable on-device ma-
chine learning inference, which reduces dependence on cloud processing and mini-
mizes data transmission overhead. Dynamic voltage and frequency scaling (DVFES)
adjust processor power consumption based on workload demands, which optimizes
energy efficiency while maintaining performance [63]. Sustainable processor designs
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incorporate hardware accelerators, such as field-programmable gate arrays (FPGAs)
and application-specific integrated circuits (ASICs), to execute specialized tasks with
minimal energy usage.

2.5.7 Power allocation strategies

Efficient power allocation balances energy consumption and network performance
in IoT deployments. Fixed power allocation maintains consistent transmission power
levels and ensures stable connectivity. However, it can potentially waste energy in fa-
vorable channel and network conditions. Adaptive power control dynamically adjusts
transmission power based on link quality, interference levels, and energy constraints.
Energy-aware routing protocols further enhance power efficiency by selecting paths
that minimize overall energy consumption. Sustainable IoT networks employ green
power allocation frameworks and integrate renewable energy sources with intelligent
power management technologies.

2.5.8 Multiple access techniques

Multiple access schemes regulate how various IoT devices share communication re-
sources. Time-division multiple access (TDMA) assigns time slots to devices and
reduces channel contention and energy consumption in low-power applications.
Frequency-division multiple access (FDMA) separates communication channels into
different, non-overlapping frequency bands, thus mitigating interference in dense net-
works. Orthogonal frequency-division multiple access (OFDMA) improves spectral
efficiency by dynamically allocating subcarriers to users, whereas NOMA enhances
network capacity by superimposing signals at different power levels, which enables
simultaneous transmissions without increasing bandwidth requirements. Selecting
appropriate multiple access techniques ensures functional communication while con-
serving energy.

2.5.9 Edge and fog computing

Edge and fog computing reduce latency and bandwidth usage by processing data
closer to the source rather than relying on cloud infrastructure. Edge computing en-
ables real-time analytics on IoT devices or gateways, which minimizes transmission
overhead and improves response times. Fog computing distributes processing across
intermediate nodes and balances computational loads while enhancing system scal-
ability. These paradigms optimize resource utilization and contribute to sustainable
IoT ecosystems by reducing network congestion and energy consumption.

2.6 Design considerations for sustainable loT

IoT networks have a diverse set of critical metrics that evaluate their performance, ef-
ficiency, and applicability across versatile use cases. These metrics not only define the
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technical capabilities of the IoT systems, but also affect sustainability as they govern
resource utilization, energy consumption, and environmental impact. Optimization of
network designs to meet these metrics efficiently ensures that IoT networks are en-
abling application-specific functions while adhering to sustainable design principles.
This section provides a detailed analysis of the IoT design metrics and their effects
on sustainability.

2.6.1 Data rate

The data rate is the speed at which information is transmitted and received between
IoT devices, gateways, or access points. It is directly affected by the modulation
schemes, power allocations, frequency-of-operation, antenna designs, network archi-
tectures, and coding techniques. The effects are briefly described as follows:

* Modulation schemes: Higher-order modulation schemes increase the number of
bits transmitted per symbol. This improves the effective data rate of the wireless
communication link. However, higher orders require higher signal-to-noise ratios
(SNRs), and are more susceptible to noise. Hence, higher-order modulations may
demand higher power to function feasibly.

* Power allocation: Transmission power dictates the strength of received signal
over long distances. It also reduces bit errors, thus enabling higher data rates.
However, high power utilization hinders sustainability and scalability. Power allo-
cation must be optimized to provide sustainability and realize a balance between
coverage, link throughput, and green functioning.

* Frequency-of-operation: Higher frequencies provide increased bandwidth and
support higher data rates. For example, 5SG millimeter-wave (mmWave) bands pro-
vide Gbps throughputs, but are limited in range compared to sub-GHz frequencies.
Higher frequencies experience greater signal attenuation and reduced penetration
through obstacles, making them less suitable for long-distance or non-line-of-sight
applications.

* Antenna design: High-gain and directional antennas improve signal strength and
minimize interference, hence, providing higher data rates. Multi-antenna tech-
nologies such as multiple-input multiple-output (MIMO) arrays enhance spectral
efficiency using spatial diversity and enable higher throughput.

* Network architectures: Decentralized architectures such as mesh networks re-
duce congestion and improve data rates by optimizing routing paths. In contrast,
centralized systems rely on efficient gateway management and maintain high
throughput. In general, centralized systems can provide higher throughput owing
to the higher processing ability and transmission powers available at the central
gateways or access points.

* Coding techniques: Advanced error correction codes, such as LDPC (low-density
parity check) and Turbo codes, improve the reliability of data transmission by
correcting errors caused by noise or interference, indirectly supporting higher data
rates.
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* Channel bandwidth: Wider bandwidths improve link capacity and directly in-
crease data rates. For example, Wi-Fi 6 (802.11ax) utilizes wider channels to
achieve higher throughput.

* Interference management: Properly managing co-channel and adjacent-channel
interference improves signal-to-interference-plus-noise ratio (SINR), which di-
rectly improves effective channel capacity. It also reduces retransmissions and
indirectly enables higher data throughput.

* IoT protocol design: Efficient protocols with low overhead maximize the
payload-to-header ratio, and indirectly enhance the effective data rates.

* Processor design: IoT devices with advanced hardware, e.g., high-speed proces-
sors and optimized transceivers, etc., support faster data processing and transmis-
sion, resulting in higher data rates.

* Routing protocols: Routing protocols dictate how data is localized through the
network. Energy-efficient routing protocols are critical for ensuring optimal data
paths, reducing delays, and maintaining throughput.

LPWANSs such as LoRa and SigFox, support data rates of tens of kilobits per
second (kbps), which is sufficient for low-rate and low-bandwidth applications, e.g.,
smart metering, smart lightening, and environmental monitoring. These technologies
are designed for energy-efficient long-range communication, making them ideal for
large-scale IoT deployments in remote or resource-constrained environments. Zig-
bee and BLE support data rates in the range of hundreds of kbps to a few megabits
per second (Mbps). Zigbee provides data rates up to 250 Kbps and is well suited for
industrial IoT, home automation, and smart city applications that demand medium-
range connectivity. BLE offers a balance between energy efficiency and performance
and enables data rates up to 2 Mbps for applications such as wearable devices,
proximity-based interactions, and indoor navigation. In contrast, high-data-rate tech-
nologies such as Wi-Fi, long-term evolution (LTE), and 5G enable data rates ranging
from Mbps to gigabits per second (Gbps). These technologies enable data-intensive
applications, e.g., real-time video streaming, augmented reality (AR), telemedicine,
industrial robotics, etc.

Higher data rates consume more energy due to the increased transmit power and
computational demands. This trade-off between performance and energy efficiency
hinders sustainability, particularly in resource-constrained environments. Sustainable
designs can mitigate these challenges by employing adaptive modulation schemes,
advanced routing algorithms, and complex interference management techniques.
These designs provide an effective balance between power consumption and com-
munication reliability, ensuring long-term operational efficiency in IoT networks.

2.6.2 Coverage

Coverage of a network is defined as the maximum geographical distance over which
a signal can be transmitted and reliably received between communication devices. It
is a critical design consideration for ensuring connectivity in large-scale IoT deploy-
ments, particularly in remote areas and harsh environments with physical obstruc-
tions. Applications such as smart agriculture and environmental monitoring heavily
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depend on reliable, large-coverage networks to maintain system functionality. Cov-
erage is influenced by the following factors:

* Modulation schemes: Lower-order modulation schemes provide higher noise tol-
erance and enable larger coverage. In contrast, higher-order modulation schemes
improve spectral efficiency and provide higher data rates at the cost of reduced
effective coverage and lower noise tolerance.

* Transmission power: An increase in the transmission power improves the effec-
tive strengths of the signal at the receivers and enables large propagation distances.
However, this increased energy consumption can hinder sustainability of battery-
powered devices.

* Frequency-of-operation: Lower frequencies (e.g., sub-GHz bands) have higher
obstacle penetration abilities and support longer ranges of coverage. However,
they provide lower data rates and shorter bandwidths. Higher frequencies (e.g.,
mmWave) suffer from greater attenuation and are less effective for long-range and
non-line-of-sight applications. However, higher frequencies can provide higher
bandwidths and higher effective throughputs.

* Antenna design: High-gain directional antennas focus energy in specific direc-
tions and extend the range of the communication system. Omnidirectional anten-
nas provide uniform coverage but have reduced range. MIMO systems can provide
a balance and improve coverage by leveraging spatial diversity and dynamically
directing signals toward the desired devices.

* Interference management: Effective mitigation of co-channel and adjacent-
channel interference can significantly improve the network’s effective coverage.

* Network architecture: Multi-hop and mesh architectures expand coverage areas
by relaying data through intermediate nodes. This reduces the need for high trans-
mission power, but requires energy-efficient routing protocols.

LPWAN protocols provide long-range coverage (up to a few kilometers), which
makes them ideal for applications like environmental monitoring in rural or remote
areas. Zigbee and BLE have shorter ranges of operation and are well-suited for in-
door IoT applications, such as home automation, smart offices, etc. Cellular networks
(e.g., LTE and 5G) offer scalable coverage across diverse deployment scenarios and
can enable high-rate and low-energy applications using different technical standards.
Extending coverage necessitates higher transmission power, which increases energy
consumption and impacts sustainability. Sustainable IoT designs utilize adaptive
power allocation, energy-efficient routing protocols, and advanced antenna configu-
rations to maintain reliable connectivity over large coverage areas while minimizing
resource utilization.

2.6.3 Transmission frequency

Transmission frequency defines how often data transmission is initiated in an IoT
network between end-devices, gateways, or central servers. It impacts system re-
sponsiveness and the age of information (Aol), which is a critical metric for real-time
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applications, e.g., industrial automation and healthcare monitoring, etc. Applications
with periodic or event-triggered data transmissions, such as environmental moni-
toring, benefit from lower transmission frequencies to conserve energy. However,
real-time applications, such as autonomous vehicles and telemedicine, require fre-
quent data transmissions to maintain low latency and provide updated information.
The transmission frequency is influenced by the following factors:

* Energy availability: Battery-operated IoT devices often reduce the effective
transmission frequency to conserve energy and do not enable real-time appli-
cations. Devices with continuous power sources can realize real-time and high
transmission rate applications.

* ToT protocols: Efficient, low-overhead protocols enable more frequent data trans-
mission without exhausting network resources. In contrast, high-overhead proto-
cols offer enhanced functionality and robustness at the cost of increased energy
and bandwidth consumption, which is inefficient in real-time applications.

* Multiple access techniques: Multiple access techniques reduce contention in
high-transmission-frequency scenarios, and ensure reliable communication even
in dense networks.

* Processor design: Devices with advanced processors and transceivers enable fre-
quent transmissions more efficiently by reducing processing delays and power
consumption.

BLE supports moderate transmission frequencies for event-driven communica-
tion in wearable devices, ensuring frequent updates with minimal latency. In con-
trast, LORaWAN prioritizes scheduled transmissions for energy conservation in peri-
odic applications, e.g., environmental sensing, infrastructure monitoring, etc. High-
throughput technologies, e.g., 5G and LTE, etc., enable ultra-frequent transmissions
in applications such as augmented reality (AR), telemedicine, and industrial robotics.
Frequent transmissions increase energy demands and network congestion in dense
IoT networks, which hinders network sustainability. To mitigate these challenges,
adaptive scheduling, data aggregation, and event-triggered communication are em-
ployed in large-scale IoT systems.

2.6.4 Network densities

Network density quantifies the number of IoT devices operating within a defined
spatial area and affects interference, bandwidth allocation, and network scalability.
High-density networks, such as smart cities and industrial IoT systems, have high
levels of interference, congestion, and resource contention. In contrast, low-density
networks prioritize coverage and long-range communication, particularly in rural or
sparsely populated areas. Network density is influenced by the following factors:

* Interference management: Dense networks increase co-channel and adjacent-
channel interference, which degrades the signal quality. Advanced interference
mitigation techniques are required to maintain reliable communication.
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* Multiple access techniques: Efficient access schemes can allocate resources dy-
namically, which provides increased network traffic support while minimizing
packet collisions.

* Routing protocols: Hierarchical and clustered routing protocols optimize com-
munication paths, reducing congestion and improving energy efficiency in dense
deployments.

* Antenna design: High directionality antennas and MIMO technology provide
spatial diversity and enable advanced interference mitigation, which enable feasi-
ble and functional high-density deployments.

* Bandwidth: Wider allocated bandwidths can enable service to a higher number
of devices, which improves network capacity and reduces delays in high-density
environments.

Zigbee mesh networks are highly efficient for medium-density deployments in
smart homes and industrial automation systems. In contrast, 5G networks leverage
massive MIMO to support ultra-dense IoT applications in urban environments. LP-
WAN technologies are designed for low-density and long-range deployments, and
have high performance in long-range, low-rate applications. Sustainable designs in
dense networks focus on reducing interference, minimizing energy consumption,
and managing congestion. Device clustering, dynamic spectrum allocation, non-
orthogonal multiple access, and adaptive scheduling techniques can enable efficient
resource utilization and minimal environmental impact.

2.6.5 Network architecture

Network architecture is the structure and organization of devices in an IoT network.
It can be centralized, decentralized, or hybrid in nature. Centralized architectures
have a central hub or gateway for data aggregation and processing, while decentral-
ized architectures, such as mesh networks, distribute communication and processing
tasks across multiple nodes. Each of these architectures is optimized for specific
performance metrics like scalability, fault tolerance, and energy efficiency. Network
architecture is affected by the following factors:

* Routing protocols: Centralized systems rely on efficient routing to aggregate data
at the hub, while decentralized systems use distributed routing to balance traffic
loads and minimize congestion.

* Processing distribution: Centralized architectures realize data processing at the
gateways, which reduces 10T device complexity. In contrast, decentralized sys-
tems leverage edge computing and perform localized processing, which reduces
latency and bandwidth usage at the cost of higher device complexity and energy
consumption.

* Failure tolerance: Decentralized systems provide higher resilience by rerouting
traffic around failed nodes. This enables enhanced fault tolerance. In contrast,
centralized architectures can experience single-point failures.
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* Energy efficiency: Centralized systems typically consume less energy at end
devices, as most processing is offloaded to the gateway. Decentralized systems
distribute energy consumption more evenly across the network, but have higher
energy footprints per end-device.

Centralized architectures are commonly employed in LPWAN technologies like
Sigfox and LoRaWAN, where data from devices is routed to a central gateway. In
contrast, Zigbee mesh networks implement decentralized architectures to improve
scalability and fault tolerance in smart home and industrial IoT applications. Hybrid
architectures (e.g., LTE and 5G, etc.) combine centralized and decentralized systems
to optimize performance across versatile usage scenarios. Sustainability in network
architectures requires a balance of energy efficiency, scalability, and fault tolerance.
Techniques such as adaptive routing, hierarchical clustering, and edge computing
improve the sustainability of both centralized and decentralized architectures.

2.6.6 Security

IoT security protocols protect data confidentiality, integrity, and availability during
transmission between devices, gateways, and servers. These protocols use encryption,
authentication, access control, and intrusion detection to prevent unauthorized access,
breaches, and attacks. Owing to the densely connected nature of IoT systems, secu-
rity breaches can compromise entire networks and result in data theft, unauthorized
access, false alarms, or system disruptions. Critical applications such as telemedicine,
industrial automation, and infrastructure monitoring require robust security measures
to safeguard sensitive information. IoT network security is directed by the following
factors:

* Encryption techniques: End-to-end encryption techniques, e.g., AES-128 and
RSA, etc., ensure data confidentiality during transmission. These techniques re-
quire key exchange to realize functional communication.

* Authentication mechanisms: Robust authentication protocols, e.g., public key
infrastructure (PKI) and biometrics, etc., verify device and user identities. They
enable confidentiality and prevent eavesdroppers.

* Access control: Role-based access control restricts access to authorized users and
devices, minimizing security risks.

* Intrusion detection: Real-time monitoring and anomaly detection systems can be
deployed to identify and mitigate potential threats to the network.

Zigbee and BLE incorporate AES-128 encryption for secure communication
and provide adequate security in local area IoT applications. Cellular networks use
mutual authentication and SIM-based security procedures for enhanced protection.
Blockchain is emerging as a promising candidate for secure IoT and can enable
decentralized use-cases, particularly in supply chain management and critical in-
frastructure. Sustainable systems require lightweight cryptographic protocols and
efficient authentication mechanisms to reduce energy consumption without compro-
mising protection.
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2.6.7 Privacy

Privacy in IoT systems protects personal and sensitive data collected by devices and
provides user anonymity and controlled access to information. Unlike security mea-
sures, which safeguard data from unauthorized access and attacks, privacy protocols
enable compliance with user consent and regulatory requirements. Privacy is a criti-
cal design metric for healthcare, smart homes, and wearable technology applications.
Privacy can be enabled using the following:

* Data anonymization: Anonymity prevents the identification or tracking of in-
dividuals or devices within a communication system by dissociating transmitted
data from identifiable information. Pseudonymization, encryption, and data ob-
fuscation preserve privacy and mitigate the risk of surveillance.

* Access control: Access control mechanisms restrict data access to authorized
users and applications based on predefined policies. Techniques such as role-based
access control (RBAC) and attribute-based access control (ABAC) can enforce
precise access policies to minimize privacy risks.

e Data minimization: Data minimization reduces privacy risks by collecting and
processing the data necessary for a specific application or service.

* Secure storage: Secure storage protects stored data using encryption methods
such as AES-128 or AES-256 and ensures that the information remains inaccessi-
ble to unauthorized entities.

» Data transmission: Data transmission protocols protect information during prop-
agation by implementing encryption schemes such as TLS/SSL which provide
confidentiality and integrity.

Healthcare IoT systems rely on data anonymization and secure transmission to
protect patient information. Smart home platforms implement role-based access con-
trol to manage data privacy among devices and users. Decentralized systems use
blockchains to enhance privacy by providing tamper-proof transaction records. Sus-
tainable privacy practices must balance security measures with energy efficiency.
Lightweight encryption and authorization algorithms can reduce the resource burden
while protecting sensitive and identifiable information.

2.6.8 Reliability

Reliability is the network’s capability to consistently ensure accurate data delivery
and maintaining seamless operational functionality. It is characterized by perfor-
mance metrics such as packet delivery ratio and bit error rate (BER) and is governed
by mechanisms like error correction, interference mitigation, and the implementa-
tion of network redundancy. High reliability is essential for mission-critical applica-
tions, such as industrial automation, healthcare monitoring, and autonomous vehicles,
where delays or data loss can result in catastrophic consequences. Reliability is influ-
enced by the following factors:

* Packet loss: Reducing packet loss ensures consistent data delivery and minimizes
retransmissions.
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* Error correction: Techniques such as forward error correction and ARQ improve
data reliability in noisy channels.

* Network redundancy: Redundant communication paths prevent data loss due to
node or link failures.

* Hardware design: Devices designed for harsh environments can withstand ex-
treme conditions and ensure uninterrupted operation.

LPWAN technologies implement error correction to improve network reliability
in long-range, low-power networks. Cellular systems (e.g., LTE, 5G, etc.) provide
ultra-reliable low-latency communication (URLLC) for critical applications. Zigbee
mesh networks enhance reliability through redundant paths and ensure continuous
data delivery by mitigating node failures. Sustainable designs focus on minimizing
energy consumption associated with retransmissions and redundancy. Efficient error
correction codes can achieve high reliability while conserving resources.

2.6.9 Latency

Latency is the time delay between the generation of data by an IoT device and its
successful delivery to the intended destination. It includes any processing or trans-
mission delays. Low latency is critical for real-time applications, e.g., autonomous
driving, industrial automation, telemedicine, etc., where even minor delays can im-
pact functionality. Latency is defined by the following factors:

* Network congestion: High traffic volumes increase queuing delays and worsen
the end-to-end delay of successful data transmission.

* Routing protocols: Efficient routing protocols minimize path delays and ensure
faster data delivery. They also minimize network congestion.

* Processing time: Faster processing at devices and gateways reduces the delay
introduced by data handling.

* Multiple access techniques: Efficient access mechanisms reduce contention and
packet collisions which cause delays in end-to-end successful transmission.

5G networks provide ultra-low latency communication and enable advanced ap-
plications such as augmented reality and autonomous vehicles. LPWAN systems
prioritize energy efficiency but have higher latencies due to lower data rates and
scheduled transmissions. Sustainable designs can be realized by using edge com-
puting and adaptive routing to reduce latency while maintaining energy efficiency.

2.6.10 Network lifetime

Network lifetime is the operational duration of an IoT network before its components
require significant maintenance, such as device replacements or battery recharging.
It is a critical metric for sustainability and is the core focus of large-scale and re-
mote deployments where frequent maintenance is impractical. Network lifetime is
influenced by the following factors:
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* Energy efficiency: Minimizing power consumption extends device lifetimes and
reduces network downtime. Hence, modulation schemes, coding techniques, and
routing protocols must be tailored to provide high energy efficiency.

* Energy harvesting: Energy harvesting technologies enable IoT device operation
without frequent battery replacements by utilizing solar, thermal, and vibrational
energy. For example, piezoelectric sensors in industrial IoT applications can con-
vert mechanical vibrations into usable electrical energy and provide continuous
operation in remote environments.

* Duty cycling: Duty cycling alternates between active and sleep states of the de-
vices to conserve energy during periods of inactivity and extend network lifetimes
in energy-constrained environments.

* Hardware durability: Robust and durable hardware designs reduce the need for
frequent replacements, ensuring reliable operation over extended periods.

* Battery capacity: Devices with higher-capacity batteries provide longer opera-
tional durations, but may increase deployment costs and environmental impact.

e Communication overhead: Reducing the frequency of information transmission
conserves energy and extends device lifetimes.

LoRa and Sigfox networks optimize network lifetime through low-power opera-
tion and infrequent transmissions. Energy harvesting technologies in industrial IoT
enable continuous operation in power-constrained environments, reducing reliance
on battery replacements. Sustainable designs focus on energy-efficient protocols,
durable hardware, and energy harvesting solutions to extend operational durations
without increasing environmental impact.

2.7 Conclusion

This chapter explores the architectural foundations, sustainability challenges, and de-
sign considerations of IoT networks. We define the layered IoT architecture of IoT
systems and detail the roles of interaction, network, and application layers along-
side key network entities such as end-devices, gateways, and processing servers.
IoT applications are categorized into consumer, commercial, industrial, healthcare,
agricultural, infrastructure, military, and environmental domains. These domains are
analyzed based on technical constraints and operational demands. We identify sus-
tainability challenges driven by large-scale deployments, heterogeneity, autonomy,
real-time constraints, and security concerns. Core design elements, e.g., modulation
schemes, coding techniques, antenna configurations, spectrum allocation, multiple
access strategies, and power control mechanisms, etc., are discussed in the con-
text of energy efficiency and network scalability. Finally, we define essential design
considerations such as data rates, coverage, transmission frequency, network densi-
ties, security, privacy, reliability, and latency. These factors guide the development
of sustainable, low-power, and high-performance IoT networks, ensuring long-term
operational feasibility.
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3.1 Introduction

The Internet of Things (IoT) can be defined as a network of interconnected devices
capable of sensing the world around them, taking actions, and communicating with
each other without human intervention [1,2]. This interconnected ecosystem encom-
passes sensors, cameras, and computing devices, reshaping industries, enhancing
operational efficiency, and improving the quality of life [3]. From smart homes and
cities to supply chains and transportation, IoT applications are ubiquitous and rapidly
expanding [4]. By 2025, it is estimated that 42 billion [oT devices will be deployed
globally, underscoring the vast scale of this technology [3].

However, this remarkable growth of IoT is accompanied by significant environ-
mental challenges. The energy consumption of billions of devices, including their
production, operation, and eventual disposal, raises critical concerns about their car-
bon footprint and sustainability [5]. As IoT adoption accelerates, addressing its en-
vironmental impact becomes imperative to ensure a sustainable future. Green IoT
emerges as a solution to this challenge by focusing on reducing the energy consump-
tion and carbon footprint of IoT systems throughout their lifecycle. This involves
designing energy-efficient hardware, optimizing software, and implementing sus-
tainable practices that align with the United Nations (UN) sustainability goals. By
prioritizing energy efficiency and sustainability, green [oT aims to balance techno-
logical advancement with ecological responsibility [6].

One of the key areas influencing energy consumption in IoT systems is the pro-
cessing unit, which serves as the computational heart of these systems. Single-Board
Computers (SBCs), such as the Raspberry Pi, offer comprehensive computational ca-
pabilities, making them suitable for high-performance applications. However, their
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relatively high energy demands can strain energy resources, particularly in resource-
constrained deployments [7,8]. On the other hand, Single-Board Microcontrollers
(SBMs) like Arduino and ESP32 are optimized for low-power operations, making
them ideal for task-specific, energy-constrained applications [9]. Striking a balance
between computational performance and energy efficiency is critical for advancing
green IoT, necessitating the design of hardware that minimizes energy usage without
compromising functionality. This ensures that IoT systems can meet application-
specific requirements sustainably.

In addition to hardware considerations, communication technologies, which form
the backbone of IoT systems—present another critical area for energy optimization.
These technologies enable devices to transmit and receive data, but their energy con-
sumption varies depending on the protocol and the deployment context. For instance,
Long Range (LoRa) and Bluetooth Low Energy (BLE) are tailored for energy-
constrained devices, making them suitable for low data-rate communication scenar-
ios [10,11]. Conversely, Wi-Fi and Millimeter Wave (mmWave) technologies offer
high-speed data transfer capabilities at the cost of increased energy usage [12,13].
Achieving energy-efficient communication requires selecting the appropriate tech-
nology based on application needs and implementing optimization techniques to
minimize unnecessary data transmission and idle power consumption.

Another innovative approach to address the energy challenges of 10T is Energy
Harvesting (EH), which harnesses ambient energy sources such as sunlight, radio
waves, mechanical vibrations, or temperature gradients [14—16]. IoT devices can use
these sources to generate their own power, reducing dependency on traditional bat-
teries and external power supplies. For example, solar EH is particularly well-suited
for outdoor applications with consistent sunlight availability [17], while piezoelectric
EH utilizes mechanical vibrations to power devices in dynamic environments [18].
These self-sustaining energy solutions extend device lifespans, lower maintenance
requirements, and reduce electronic waste. Despite their potential, EH technologies
face challenges, such as variability in energy availability and the need for efficient
storage systems to ensure consistent device operation. By integrating advanced EH
technologies into IoT systems, energy-resilient solutions can be created, aligning with
the objectives of green IoT.

Moreover, advances in edge and fog computing have further revolutionized the
potential of green IoT. These paradigms address the energy inefficiencies of tradi-
tional cloud-centric IoT systems by bringing computational resources closer to the
devices that generate data [19]. Edge computing processes data locally at the device
or network level, significantly reducing the energy consumed in transmitting large
volumes of data to the cloud and back. This also improves system responsiveness
and supports real-time applications [20]. Fog computing extends the cloud model by
leveraging intermediate nodes to distribute cloud resources and tasks across multi-
ple locations closer to IoT systems, enabling scalable and energy-efficient operations
[19]. Together, these technologies enable green IoT systems to minimize energy costs
while maintaining high performance and reliability [21].

The integration of Artificial Intelligence (AI) and Machine Learning (ML) is also
integral to realizing the full potential of green IoT. By analyzing the vast amounts of
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data generated by IoT devices, Al and ML can enable intelligent decision-making and
optimize energy consumption [22]. For example, edge intelligence leverages Al at the
device level to process data locally, reducing transmission energy and latency. Fur-
thermore, Deep Learning (DL) models enhance capabilities such as image and video
recognition, while predictive ML algorithms improve system performance through
functions like anomaly detection, predictive maintenance, and resource allocation
[23,24].

Despite its promising potential, green IoT faces several challenges that must be
addressed for widespread adoption. One significant obstacle is the trade-off between
energy efficiency and performance. Designing energy-efficient hardware and soft-
ware often involves compromises that limit computational capabilities, particularly
in resource-intensive applications. Additionally, integrating sustainable technologies,
such as EH and advanced communication protocols, can increase initial costs, posing
economic barriers to large-scale implementation. Moreover, the variability of renew-
able energy sources, such as solar or Radio Frequency (RF) harvesting, introduces
reliability concerns that require innovative storage and energy management solutions
[25]. Security concerns also arise, as distributed computing approaches like edge
and fog computing increase the attack surface of IoT systems [19]. Addressing these
challenges requires holistic approaches that integrate technological innovation, cost-
effective designs, and robust security measures.

In conclusion, the successful implementation of green IoT will play a pivotal role
in building a sustainable and environmentally responsible technological ecosystem.
By prioritizing energy efficiency, minimizing carbon footprints, and leveraging in-
novative technologies, green IoT can drive a paradigm shift toward a greener future,
ensuring that the benefits of IoT are realized without compromising the health of our
planet.

The remainder of this chapter is structured as follows: Section 3.2 surveys the cur-
rent landscape of green IoT, focusing on hardware and software challenges. Section
3.3 discusses EH techniques. Section 3.4 explores the role of edge and fog computing
in supporting green IoT. Section 3.5 showcases the use of AI and ML in fulfilling the
promise of green IoT. Finally, Section 3.6 concludes the chapter.

3.2 Energy efficient hardware

Energy-efficient hardware has become a crucial area of focus in the pursuit of green
IoT, emphasizing the development of devices that minimize power consumption with-
out compromising performance [26]. This section explores the foundational elements
of energy-efficient hardware, with a particular focus on advanced processing units,
innovative communication technologies, and their integration into IoT systems [27].
By examining state-of-the-art solutions such as SBCs, SBMs, and optimized commu-
nication protocols, this section underscores the importance of sustainable hardware
design in promoting eco-friendly IoT deployments [3,9].
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Table 3.1 Comparison of SBM and SBC.

SBM SBC

Primary Purpose Automation, real-time tasks, | General-purpose computing
control

Operating System (OS) | Minimal to no firmware Full OS (Linux, Android)

Performance Lower performance, Higher performance, more
task-focused versatile

Power consumption Lower, usually less than Higher, usually 0.5 W to 1.5 W
500 mW

Cost Lower Higher

3.2.1 Energy-efficient processing units

Processing units form the core of IoT systems, responsible for performing compu-
tational tasks and often serving as the primary consumers of energy. Sustainable
hardware design emphasizes energy-efficient processors to balance computational
capabilities with power consumption. The two main types of processing units used in
IoT devices are SBCs and SBMs [3]. On one hand, SBCs are fully functional modern
computers built on a single circuit board, integrating all necessary components such
as the Central Processing Unit (CPU), Random Access Memory (RAM), input/output
interfaces, storage, and sometimes even a power supply, all onto one board [3]. On the
other hand, SBMs are compact devices that includes a Microcontroller Unit (MCU)
and essential components (such as RAM and storage) on a single board, designed
specifically for controlling tasks or systems in embedded applications [9]. Unlike an
SBC, which is a full-fledged computer, an SBM is focused on control and automation
rather than computational performance. SBM have gained popularity in the IoT in-
dustry due to their ultra-low power consumption and integrated Wi-Fi and Bluetooth
functionality [28]. Their low power consumption and small size make them ideal for
real-time monitoring devices [28]. A comparison between SBC and SBM is shown
in Table 3.1.

Raspberry Pi

The Raspberry Pi is a low-cost SBC widely used for its versatility and modular de-
sign. Although originally developed for educational purposes, its adaptability and
computational power have made it a popular choice in IoT deployments. It supports a
range of IoT applications, including industrial automation and smart homes, though
its power requirements are higher compared to simpler microcontrollers. Fig. 3.1 il-
lustrates the components of a standard Raspberry Pi 4 model. Energy efficiency is a
critical consideration when using Raspberry Pi devices, as it is a key priority in green
IoT initiatives.

The Raspberry Pi also offers extensive library support, such as RPi.GPIO for con-
trolling General Purpose Input/Output (GPIO) pins and Adafruit’s CircuitPython for
simplified interaction with hardware components. These libraries, along with support
for popular programming languages like Python, C, and Java, make the Raspberry
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FIGURE 3.1
An illustration of Raspberry Pi 4.

Pi highly accessible to developers building energy-efficient IoT solutions [29]. Addi-
tionally, its robust community ecosystem provides access to open-source resources,
facilitating rapid prototyping and development. While Raspberry Pi models like the
Raspberry Pi 3 offer significant computational capabilities, their power consumption
(1.5 W) may not be suitable for battery-powered IoT deployments [7]. To address
this, the Raspberry Pi Zero, an energy-efficient variant, offers power consumption as
low as 0.5 W during operation, while still featuring a quad-core processor and Wi-Fi
and Bluetooth connectivity. This makes it an ideal choice for sustainable IoT appli-
cations. The Raspberry Pi’s balance of computational performance, flexibility, and
energy efficiency positions it as a valuable tool for achieving green IoT objectives
[30].

Arduino

Arduino is a widely used open-source SBM platform, renowned for its simplicity,
affordability, and versatility. Unlike full-fledged SBCs, Arduino is designed for tasks
that require minimal computational power, making it an ideal choice for energy-
efficient IoT applications. Arduino’s extensive library ecosystem simplifies the de-
velopment of such solutions. For example, the Arduino low-power library enables
the use of sleep modes, allowing devices to enter extremely low-power states when
idle, significantly reducing energy consumption [31].

Additionally, there are libraries specifically tailored for low-power features, such
as the Arduino low-power library for SAMD?21-based boards, which helps extend bat-
tery life and enhance sustainability [31]. By providing tools that streamline energy-
conscious development and integrating low-power functionalities with ease, Arduino

________________________
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An illustration of Arduino Uno.

empowers developers to create solutions that align with green IoT principles. This re-
duces environmental impact and conserves energy resources, particularly in battery-
powered and remote deployments [9]. Fig. 3.2 illustrates the components of a stan-
dard Arduino UNO.

ESP32 and STM32

The ESP32 and STM32 are prominent examples of energy-efficient SBM that have
gained significant traction in the IoT industry. Like Arduino, both are compact and
optimized for low power consumption. However, the ESP32 stands out with its
built-in Wi-Fi and Bluetooth capabilities, making it ideal for IoT applications. In
contrast, the STM32 focuses on high performance and a wide range of peripher-
als, making it better suited for industrial and complex systems that typically require
external modules for wireless connectivity [32,33]. The ESP32 is particularly well-
suited for applications like smart homes and wearable devices due to its ultra-low
power consumption and dual-core processor, which enables efficient multitasking
[32]. Similarly, STM32 microcontrollers, based on the ARM Cortex-M architecture,
are known for their energy efficiency and versatility, making them popular in indus-
trial automation and precision control systems [33]. These characteristics position the
ESP32 and STM32 as excellent choices for sustainable IoT solutions, especially in
battery-powered or off-grid deployments [32]. Their blend of computational capabil-
ity, connectivity, and energy efficiency aligns with the goals of green IoT.
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3.2.2 Communication technologies

IoT devices are typically small, wireless, and battery-powered units that must operate
for extended periods without requiring frequent battery replacements. These devices
also need to communicate regularly with a base station or gateway to send and receive
data, as illustrated in Fig. 3.3. As a result, energy-efficient wireless communication is
crucial for the development of effective IoT networks for future applications. In this
section, we will explore some of the communication technologies commonly used in
IoT deployments.

LoRa

LoRa is a communication protocol specifically designed for low-power, low-bitrate,
and long-range communication in IoT applications [10]. It is particularly well-suited
for deployments involving energy-constrained devices that transmit or receive small
amounts of data, typically just a few bytes per transaction. Operating mainly in the
800 MHz frequency band, LoRa can transmit data over distances of up to 15 kilo-
meters. These characteristics make LoRa an attractive solution for a wide range of
IoT applications, especially those requiring broad coverage and minimal energy con-
sumption.

Bluetooth

Originally introduced in 1994, Bluetooth technology has undergone significant devel-
opment over the years [34], culminating in the release of Bluetooth 6.0 in September
2024. The versions most commonly used in industry today include Bluetooth 4, Blue-
tooth 5, and BLE. BLE, a variant introduced by the Bluetooth special interest group,
is specifically designed for low energy consumption, making it particularly well-
suited for IoT applications that require efficient data exchange between smartphones
and energy-constrained peripheral devices [11]. Notably, most modern smartphones
are equipped with BLE capabilities, offering an advantage over other low-power
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wireless communication standards such as ZigBee and Thread [11]. A comparative
analysis reported in [35] demonstrates that Bluetooth 4.2 and Bluetooth 5 consume
significantly less energy than the IEEE 802.15.4 standard. Specifically, these Blue-
tooth versions use approximately one-third of the energy required by IEEE 802.15.4
in indoor environments and less than half in outdoor settings [35].

Wi-Fi

Wi-Fi is a technology that allows devices to connect to the internet or communicate
wirelessly with one another using radio waves. It operates under the IEEE 802.11
family of standards and is commonly used in Local Area Networks (LAN). Wi-Fi
is widely utilized in homes, businesses, and public spaces to connect devices such
as smartphones, laptops, tablets, and other internet-enabled gadgets to the internet,
typically through a wireless router. Wi-Fi generally operates on the 2.4 GHz and
5 GHz frequency bands and can transfer data at gigabit speeds, making it signif-
icantly faster than technologies like LoRa and Bluetooth. However, Wi-Fi typically
consumes more energy than these alternatives. This higher energy consumption poses
a significant challenge for IoT devices, which often rely on small, battery-powered
units. To preserve energy efficiency in such devices, minimizing power consumption
during wireless communication is critical. Simply embedding conventional Wi-Fi
chipsets in IoT devices is not a viable solution, as it would lead to excessive energy
consumption [12]. To address this issue, Hossein Pirayesh and colleagues propose an
asymmetric physical design that enables substantial power reduction in IoT devices
[12]. Furthermore, the IEEE 802.11 standard includes a power-saving mode, which
allows mobile devices to enter a low-power state by turning off the transmitter and
receiver when not in use, thus conserving energy [36].

Millimeter wave

The introduction of mmWave technology in 5G New Radio (NR) is expected to play a
critical role in future 6G networks [37]. mmWave refers to extremely high-frequency
RF signals, typically ranging from 24 GHz to 300 GHz. Compared to legacy RF
technologies operating below 6 GHz, mmWave significantly expands the available
bandwidth by using higher carrier frequencies, which far exceed the bandwidth al-
located to today’s Wi-Fi and cellular networks [13,37]. mmWave systems enhance
transmission efficiency by leveraging beam directivity, which improves antenna per-
formance for both transmitters and receivers [5]. Additionally, the shorter wavelength
of mmWave signals allows for smaller antennas, enabling the deployment of large
Multiple-Input Multiple-Output (MIMO) antenna arrays. This improves communica-
tion performance, particularly in IoT environments [5]. However, several challenges
persist. The shorter wavelength also results in higher path loss, limiting transmission
range [38]. Atmospheric and molecular absorption exacerbate this problem, espe-
cially in the 60 GHz, 120 GHz, and 180 GHz bands, where significant propagation
loss occurs [37]. On the other hand, certain frequency bands, such as 35 GHz, 94
GHz, 140 GHz, and 220 GHz, experience lower attenuation, enabling longer-range
communication [37]. Due to these limitations, mmWave communication often re-
quires line-of-sight transmission and is highly susceptible to obstruction by vehicles,
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Table 3.2 Comparison of LoRa, Bluetooth, Wi-Fi, and mmWave technologies.

Technologies | LoRa Bluetooth Wi-Fi mmWave

Range 4.8 km-16 km 10m-240m |20 m-45m 80 m-200 m
Data transfer 250 Kbps 2Mbps 1Gbps—9Gbps | 1Gbps—-10Gbps
rate

Energy 10mWto 50 mW | 10 mW-1W | 2 W-20 W 320 W-450 W
consumption

Frequency 433 MHz- 2.4 GHz 2.4 GHz-6 GHz | 24 GHz-300 GHz
bands 928 MHz
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pedestrians, and even the human body [37]. This line-of-sight dependency, along
with the short transmission range, makes mmWave systems highly sensitive to mo-
bility and fading effects, which can degrade signal quality [37]. Another significant
challenge for mmWave systems is energy consumption. The technology demands
substantial power for transmission and beamforming, making it unsuitable for low-
power IoT devices [13]. Additionally, the complexity of phased array systems, which
are used to focus mmWave signals into narrow beams, further increases power con-
sumption and hardware costs [13]. These factors limit mmWave’s applicability in IoT
applications, where cost and energy efficiency are crucial. Table 3.2 compares various
communication technologies.

3.3 Energy harvesting

One approach to achieving energy efficiency in IoT, as previously discussed, is the
use of energy-efficient IoT devices. Another method for promoting green IoT is the
generation or harvesting of renewable and sustainable energy through EH techniques
to power IoT devices. In the following section, we will explore these EH techniques
in detail.

3.3.1 Photovoltaic/solar energy harvesting

Photovoltaic or solar EH is a clean and affordable energy source that can help address
energy shortages in IoT networks by converting light into electricity through the pho-
tovoltaic effect [5]. Among all EH techniques, it is one of the most effective due to its
efficiency and high power density of 100 mW/cm? during daylight hours [17]. This
process uses solar cells to generate power from light shining on semiconducting ma-
terials, making it particularly suitable for locations with abundant sunlight. Outdoor
IoT devices can directly utilize solar energy during periods of sufficient sunlight,
while indoor devices can benefit from trickle charging in well-lit environments [5].
However, the technique faces limitations in areas with inconsistent light availability,
and transporting harvested energy to other locations can result in significant energy
losses, emphasizing the need for further research and improvements [39].
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3.3.2 Radio-frequency harvesting

RF EH is a technique used to power 10T devices and charge batteries by capturing
energy from radio waves. It operates based on magnetic inductive coupling, where
a time-varying current in a transmitter loop generates an open-circuit voltage in a
nearby receiver loop [18]. The induced voltage, typically around 0.5 V, can power
passive devices like Radio Frequency Identification (RFID) tags or be stored in bat-
teries for active battery-powered devices [18]. This technology is currently applied
in systems such as electronic ID tags and smart cards, which activate when exposed
to RF-rich environments. However, scaling this solution for large-scale IoT deploy-
ments may require significant RF radiation, which could potentially pose health risks
to humans [18,40].

Despite the relatively low power density of ambient RF energy (ranging from 0.2
nW/cm? to 1 W/cm?), it is increasingly available due to the widespread presence
of wireless communication infrastructures like Wi-Fi, cellular networks, and broad-
casting systems, especially in urban areas [17]. This technology is particularly ad-
vantageous for wirelessly charging batteries or powering electronics in hard-to-reach
locations, such as bridges, chemical plants, or aircraft, and can operate continuously
with minimal ambient power [17].

3.3.3 Thermoelectric harvesting

Thermoelectric harvesting is an EH technique that generates electricity from tem-
perature gradients or differences. The thermoelectric effect allows the conversion of
temperature gradients into electrical energy by diffusing charge carriers, which cre-
ates a voltage difference [5]. This principle can be used to power [oT devices by
harnessing thermal energy from sources such as hot beverages, the human body, or
environmental temperature variations [5]. Efficient energy generation is essential to
fully leverage the potential of thermal EH for powering IoT devices. The human
body, in particular, is an excellent source for thermoelectric harvesting and is espe-
cially valuable for powering wearable devices [41].

3.3.4 Piezoelectric harvesting

Piezoelectric materials have the ability to convert mechanical energy into electrical
energy. The direct piezoelectric effect, where mechanical strain generates an electric
field proportional to the applied stress, is the primary mechanism used for EH from
vibrations [18]. This principle enables the powering of IoT devices, such as roadside
sensors and smart traffic lights, by harnessing vibrations from human motion or ve-
hicles. Piezoelectric devices can also act as backup energy sources for smartphones
and other electronics by capturing energy from movements like shaking [5].

Piezoelectric energy harvesters are more reliable and efficient compared to other
EH methods [18]. These materials can be optimized for specific applications and are
available in various shapes and sizes, offering considerable flexibility [18]. As the
cost of piezoelectric materials decreases, their high energy density and adaptability
make them ideal for IoT devices requiring long lifespans. By integrating piezoelectric
units for energy harvesting and storage, device lifetimes can be significantly extended
[18].
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3.4 Edge & fog computing

IoT devices typically lack the processing power needed to analyze the data they col-
lect. These devices are primarily designed to gather data and transmit it to remote
cloud centers for processing. However, this centralized cloud-based approach can be
inefficient or infeasible in certain situations. For instance, in real-time systems, the
latency caused by transmitting data to distant cloud servers may exceed the appli-
cation’s requirements. Additionally, in remote areas with poor or no connectivity,
sending data to the cloud may not be possible. In such cases, local processing be-
comes essential, making edge and fog computing a viable solution [42].

Edge computing involves performing computational tasks at the network’s edge,
closer to the IoT devices themselves [43], [44], [23]. Edge computing offers energy
savings in scenarios where the cost of processing locally is lower than transmitting
data to remote cloud centers. This can contribute to more energy-efficient and sus-
tainable IoT systems [45]. While cloud computing setups are highly effective for
handling large-scale systems with multiple users or devices per server [46], [47],
their energy efficiency decreases significantly under low loads. In cases like small-
scale IoT deployments, where devices transmit data infrequently, the static energy
costs of running a cloud server often outweigh the benefits of centralized process-
ing [48]. In contrast, edge computing proves more energy-efficient in such situations.
Even with increased sensor density, the energy cost of edge infrastructure scales more
linearly than that of centralized cloud systems, due to the distributed nature of edge
networks, which minimizes bottlenecks and the need for extensive cooling [48].

Similar to edge computing, fog computing brings cloud computing resources
closer to the network edge. However, rather than placing computation directly on
the edge devices, fog computing divides traditional centralized cloud resources and
data centers into smaller centers located at strategic geographical points, bringing
cloud capabilities nearer to the endpoints [19]. While edge computing relies on local
resources within the target network, fog computing functions as an intermediary be-
tween the cloud and the edge. Essentially, fog computing is akin to having a cloud
center closer to the network, often provided as Infrastructure as a Service (IaaS).
Although fog computing cannot fully replace cloud computing, nor replicate the
extensive functionality of a complete cloud computing center, it extends and com-
plements the cloud’s capabilities [19].

3.4.1 Challenges

Despite the numerous advantages offered by edge and fog computing, there are sev-
eral drawbacks that must be considered. Since edge and fog centers are distributed
across various locations at the edge of networks, they increase the overall attack
surface by introducing more potential points of vulnerability for hackers to exploit
[44,49]. If one center is compromised, attackers can use it as a gateway to target other
centers or services [44,50,51]. Furthermore, because edge and fog centers are smaller
and less resourceful than full-scale cloud centers, they lack the hardware capabilities
to implement robust security measures [44]. This makes them more susceptible to
attacks, which can, in turn, create vulnerabilities that hackers might use to breach the
larger cloud infrastructure.
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3.5 Artificial intelligence for Green loT

Al can enable machines to learn and solve problems similarly to humans, and have
gained significant popularity across various disciplines [22] due to its ability to handle
large amounts of data, a task where traditional systems often fall short [22]. As the
number of IoT devices continues to grow, the volume of data generated has increased
dramatically, making it challenging for traditional systems to manage. Al can play
crucial roles in the future of IoT, potentially enabling smart decision-making that can
help save energy, in alignment with the green IoT concept [3].

IoT devices produce substantial amounts of data, which is typically transferred to
the cloud for further processing. These devices incorporate various types of sensors
that collect both structured and unstructured data. While structured data can be eas-
ily processed by traditional systems, unstructured data, such as videos, images, and
sounds, requires significant computational power—resources that IoT devices gen-
erally lack [23]. Whereas DL (an Al variant) enhances the efficiency of processing
unstructured data [23], saving time, computation, and energy.

Cloud computing relies on centralized data centers to handle large-scale tasks,
such as training DL models and performing complex data analytics. However, these
data centers are energy-intensive. The power usage effectiveness of large data centers
is typically around 1.2, meaning that 20% of their energy consumption supports in-
frastructure, like cooling systems and power distribution [52]. This static power cost
contributes significantly to the overall energy consumption of cloud systems.

For Al applications, cloud computing provides efficient scaling and parallel pro-
cessing. However, as the traffic and computational load increase, so does the dynamic
energy consumption of the cloud systems. Furthermore, transmitting data from IoT
devices to the cloud increases network energy consumption. For example, a study
showed that static power consumption from idle servers and routers, combined with
the dynamic costs of data transmission, creates inefficiencies, especially in low-
bandwidth IoT applications [48].

On the other hand, deploying Al on edge computing can amplify the benefits
provided by edge networks. Edge Al reduces latency further and filters unnecessary
data, ensuring that only relevant information is transmitted to the cloud, thus sav-
ing transmission energy [3]. With the Al model running locally, the IoT system can
continue to function without connectivity, and the Al system can troubleshoot and
predict potential issues before they cause system failure, improving both availability
and uptime [3].

Video sensing and image recognition are key applications within the IoT do-
main that deal with unstructured data. These technologies combine image processing
and computer vision to enhance IoT networks [22]. However, accurately recogniz-
ing objects in low-quality video data captured by IoT devices remains a significant
challenge [22]. Given the impressive accuracy of DL techniques in video recogni-
tion tasks, this area exemplifies how DL can be leveraged in IoT applications [22].
An example of this is the license plate recognition system as illustrated in Fig. 3.4
[53]. In traditional cloud-based architectures, images captured by cameras are trans-
mitted to the cloud for processing, recognition, and storage, leading to high data
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FIGURE 3.4
An illustration of license plate recognition process [53].

transfer and bandwidth consumption, which results in excessive energy usage. How-
ever, when implemented with edge intelligence, the recognition software runs locally
on the camera system, meaning only the license plate number and associated meta-
data need to be sent to the cloud. This significantly reduces bandwidth requirements
and energy consumption.
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Minimizing energy consumption in DL is essential for battery-powered edge de-
vices in IoT systems. Reducing computational complexity naturally lowers energy
use, but further research into how DL computations interact with battery management
mechanisms—such as CPU throttling and sensor hardware optimizations—could
reveal additional opportunities for energy savings [54]. Techniques like change de-
tection, implemented either in software or hardware, can reduce the frequency of
DL executions, lowering the overall energy demand [54]. While optimizing energy
efficiency in hardware is important, a comprehensive understanding of how these
hardware optimizations interact with broader system mechanisms, such as battery
management and edge server resource trade-offs, is crucial for achieving overall en-
ergy optimization [54]. Another strategy for improving energy efficiency in edge
intelligence involves reducing the size and complexity of neural networks deployed
on edge devices [55]. In [55], the authors propose a neural network compression
method called DeeploT, which is applicable to common architectures, including fully
connected, convolutional, and recurrent neural networks. This technique can reduce
the size of deep neural networks by up to 98.9%, leading to a 72.2% to 95.7% de-
crease in energy consumption, all without sacrificing accuracy [55].

3.6 Conclusion

Green IoT represents a transformative approach to the development and deployment
of IoT systems, aiming to minimize their environmental impact while maintaining
functionality and efficiency. By addressing key challenges such as energy consump-
tion, resource optimization, and sustainability, green IoT seeks to align technological
advancement with ecological responsibility. The core principles of green IoT empha-
size the use of energy-efficient hardware, sustainable communication technologies,
and EH methods that reduce reliance on traditional power sources. Alongside hard-
ware improvements, advancements in edge and fog computing bring computational
resources closer to IoT devices, thereby lowering the energy demands associated
with data transmission and cloud processing. These decentralized approaches not
only improve energy efficiency, but also enhance system responsiveness, supporting
real-time applications. Moreover, the integration of Al, ML, and DL technologies
further optimizes IoT operations by enabling intelligent decision-making, predictive
analytics, and efficient resource allocation, ensuring minimal energy waste. Despite
the promising potential of green IoT, several challenges persist, including trade-
offs between energy efficiency and performance, economic feasibility, and security
concerns. Overcoming these barriers requires collaborative efforts from researchers,
developers, and policymakers to create cost-effective, secure, and sustainable IoT
ecosystems. By focusing on energy-efficient design, sustainable practices, and the
integration of advanced technologies, green IoT can pave the way for a sustainable
digital future, ensuring that the growth of IoT contributes positively to both society
and the environment.
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4.1 Introduction to NTNs

NTNs are an incomparable advancement in communication technologies. They ex-
tend complex connections beyond terrestrial borders with a constellation of spe-
cialized airborne and space-borne platforms. The space-borne platforms consist of
satellites and are divided into three primary types: Geostationary Earth Orbit (GEO)
satellites, Medium Earth Orbit (MEQO) satellites, and Low Earth Orbit (LEO) satel-
lites. GEO satellites are about 35,786 km from Earth and always occupy the same
position above the equator. The best utility of this type of satellite is for continu-
ous, wide-area coverage. GEO satellites are widely used in television broadcasting
and meteorological monitoring applications. MEO satellites travel at distances from
2,000 km to 35,786 km above the equator. Mostly, MEO satellites are used in global
positioning and navigation systems. MEO satellites offer a great compromise be-
tween the area over which coverage is provided and the delay in signal strength. LEO
satellites operate above Earth in the range between 180 km and up to 2,000 km, pro-
viding much lower latency and increased bandwidth that are essential for real-time,
data-intensive IoT communication [1-3].

Besides satellites, NTNs consist of airborne platforms consisting of High-Altitude
Platforms (HAPs) and Unmanned Aerial Vehicles (UAVs), which are an essential
part of NTNs [4,5]. HAPs encompass objects such as balloons or airships within the
stratosphere, which can provide localized communications coverage that is close to
that of a satellite. In addition, HAPs offer more operational flexibility and reduce the
necessary operational costs. These platforms are particularly used to provide tempo-
rary solutions for connectivity during live events, emergency response situations, or
other transient conditions that demand extra coverage with lower latency [4]. UAVs or
drones augment the high flexibility of NTNs with their quick deployability to ensure
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NTN layers supporting loT connectivity.

disaster areas receive immediate ad-hoc network support. UAVs are also deployed
to provide support in wide areas hosting important events, ensuring network avail-
ability in critical situations [5]. Fig. 4.1 shows the hierarchical arrangement of NTN
components comprising GEO, MEO, LEO satellites, HAP, and UAV interconnected
with terrestrial and core networks to enable seamless data exchange and Low-Power
Wide-Area Network (LPWAN) for sustainable IoT applications.

The integration of NTN is critical in geographical or underdeveloped regions,
where laying physical cables in the ground or installing cell towers and terrestrial
infrastructure is not possible or economically viable [6]. NTNs in these regions cat-
alyze the expansion of robust communication services, driving the world closer to
seamless global connectivity. The integration of NTNs becomes especially important
with respect to IoT, where seamless connectivity in a wide range of locations is essen-
tial for continuous data collection and delivery between devices [7]. IoT applications
that support environmental monitoring in remote wilderness or real-time data man-
agement with offshore oil platforms are highly dependent on the wide coverage and
support of NTNs. NTNs are also highly beneficial in enhancing network resiliency,
as they provide alternative data routes, useful when the terrestrial network fails, par-
ticularly during calamities. In case of such natural disasters, readily available NTNs
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provide continued communication, aiding the key emergency services and coordina-
tion [8].

The strategic deployment of NTNs immensely relieves the congestion that exists
on terrestrial networks by managing the excess overflow of information traffic. The
network overburden is imperative given the exponential growth in the number of IoT
devices, which tends to exert a strain on the existing network infrastructure. Through
the use of NTNs, diversification of the data path occurs, hence enhancing the overall
network performance. NTNs not only guarantee increased service quality, but also
ensure that the network attains sustainability through optimized performance of the
energy resources as well as minimized usage of extensive physical infrastructural ex-
pansions that cater to the modern-day challenges of network demand, connectivity
reliability, and inclusivity on a geographically wide scale. As we move forward, the
combination of terrestrial and NTNs would, without a doubt, be one of the pillars
around which the revolution in the global communication landscape unravels, espe-
cially in the vast and variably connected space of the IoT [7] [9].

4.2 NTNs and loT connectivity

The integration of NTNs with existing terrestrial and IoT infrastructure is a step for-
ward in achieving full global connectivity. This is important to create a connectivity
mesh around the world that welcomes both traditional ground-based networks and ad-
vanced aerial and satellite systems [10]. To ensure the seamless operation of global
IoT systems, it is important to have such a connected mesh, especially in providing
reliable service delivery in areas with a sparse or non-existent terrestrial network. By
providing stable internet connectivity, the NTNs enable these areas to be connected
to the internet, allowing these populations to participate more positively in the global
digital economy. This is not only for accessing information, but also for varied ser-
vices including advanced health, education, and disaster management, in which the
data exchange is of great importance [1] [11].

The integration of NTNs extends the capability of IoT to support massive deploy-
ments across a range of sectors. This promise of IoT technology for the transforma-
tion of industrial operations, agriculture, and urban management relies heavily on
handling a big network of devices that work smoothly and efficiently. Here, NTNs
are providing a major solution for increased bandwidth and wider coverage [10]. An
example is in large agricultural lands, where traditional terrestrial connectivity can
hardly cover all the areas, leading to the formation of blind spots. NTNs remove
these gaps by offering farmers detailed real-time data from sensors. These sensors
are spread across large fields and enable farmers to achieve an optimized irrigation
system, including pest management, and crop health monitoring [12]. Similarly, in
urban scenarios, where the density of devices and data demand is massive, NTNs
take the load off the terrestrial networks by spreading the data traffic across the avail-
able spectrum [13]. This will not only make the operation of the IoT applications run
smoother, but also enable the urban network service providers to achieve optimized
infrastructure, and obtain higher spectrum efficiency and greater reliability [14].
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Table 4.1 Comparison of NTNs and terrestrial networks for 10T connectivity.

Parameter Terrestrial Networks NTNs
Coverage Area Limited to urban and suburban | Global, including remote and
areas underserved areas
Bandwidth High Varies, typically lower than
terrestrial
Latency Low Higher due to signal travel distance
Deployment Cost High initial cost, lower Lower initial cost, higher
maintenance operational cost
Scalability Limited by infrastructure Highly scalable across vast regions
Reliability High in covered areas Consistent, even in challenging
environments
Data Handling High Can handle large volumes from
Capacity numerous devices

The NTNs support massive data from a large number of devices, a game changer
for 10T deployments. It not only has the potential to support the current scale of
IoT implementations, but also has to support future network expansions. The ex-
pandability that NTNs have in place ensures the network’s growth with technological
advances in the IoT and the expected resultant growth in data traffic, while maintain-
ing service performance at full speed and quality [15]. In addition, NTNs improved
connectivity, paving the way for the use of more sophisticated IoT applications. One
such example is in industrial IoT applications, which require precision and efficiency,
where the use of NTNs ensures that complex automated processes and machin-
ery operate continuously [16]. NTNs significantly improve productivity and safety
and reduce downtime due to connection issues, allowing real-time monitoring and
maintenance. The merger of NTN with industrial IoT networks represents simply
an incremental value addition to the existing system and is a step toward a global
IoT infrastructure that is more accessible, more connected, and finally more capable
[17]. Table 4.1 provides a comparison of NTNs and terrestrial networks for IoT Con-
nectivity, highlighting differences in coverage, bandwidth, latency, deployment costs,
scalability, reliability, and data handling, showcasing NTNs’ strengths in global and
remote IoT applications.

4.3 NTNs sustainability challenges and opportunities

The deployment and maintenance of NTNs inherently involve significant environ-
mental and sustainability challenges, largely due to the energy-intensive nature of
their lifecycle. The process begins with the manufacturing of components, such as
satellites, UAVs, and HAPs, which require substantial amounts of various raw ma-
terials, including metals and composite materials that are often procured through
environmentally taxing mining practices. Many of these materials, such as lithium for
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Life Cycle Stage | Environmental Impact Sustainable Solutions
Manufacturing Raw material extraction (e.g., Use of recycled materials,
lithium, rare earth elements) eco-friendly mining practices,
material substitution
Launch High carbon emissions from Development of reusable rockets,
rocket propellants green propellants, more efficient
launch schedules
Operation Energy consumption (satellites | Increased use of solar power,
in orbit, ground stations) energy-efficient ground station
designs
End-of-Life Space debris, decommissioned | Recycling/re-purposing satellites,
Management satellites safe de-orbit technologies, space

Broad Impact

Resource
Management

Disruption from terrestrial
infrastructure (e.g.,
deforestation)

Efficient water and fertilizer use,
renewable energy management

debris mitigation

Reducing terrestrial reliance
through NTN connectivity

loT applications for agriculture,

real-time data collection for remote

installations

batteries and rare earth elements crucial for electronic components, often have com-

plex extraction processes associated with high environmental costs, such as habitat

destruction, water pollution, and high carbon emissions [1]. Next, the launch phase
of the satellites introduces another layer of environmental impact. The rocket launch-

ing process used to place satellites into orbit is the most carbon-intensive aspect of
NTN operations. These launches utilize rocket propellants that release significant
amounts of carbon dioxide and other pollutants into the atmosphere, contributing

to both localized air pollution and global greenhouse gas emissions [18]. There is
another environmental impact due to the satellite constellation that needs to be main-

tained by launching new satellites, especially as more and more satellites reach their

end of life and require replacement [19]. Once operational, NTNs continue to con-
sume energy, predominantly to power the satellites in orbit and the ground stations
that control them. Although solar power provides much of the in-orbit energy needs,
ground operations often rely on conventional energy sources that may not be sustain-
able. Furthermore, the end-of-life management of these technologies poses a critical
sustainability challenge, as decommissioned satellites can contribute to the growing

problem of space debris. Space debris not only poses a threat to other satellites and

space missions, but also represents a long-term environmental concern in near-Earth
space [20,21]. Table 4.2 illustrates the environmental impact throughout the NTN
lifecycle and the solutions that support this with an effective green approach that sup-
ports sustainability across every stage in their life cycle, from manufacturing through
to end-of-life management, to enable positive contributions towards overall global

sustainability.
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4.3.1 Opportunities for sustainable solutions

Despite these challenges, NTNs hold substantial potential for fostering sustainable
IoT systems and reducing the environmental footprint of global connectivity infra-
projects. One of the most pronounced benefits is their ability to minimize reliance on
terrestrial infrastructure, which is often more invasive and resource-intensive to build
and maintain. Terrestrial network components such as cell towers and ground ca-
bles necessitate extensive physical disruption, including deforestation and landscape
alteration, to establish network coverage, especially in rural or environmentally sensi-
tive areas. By providing connectivity from the sky, NTNs can drastically reduce these
intrusions, thereby preserving natural habitats and decreasing the carbon footprint as-
sociated with constructing and maintaining terrestrial networks [14]. The expanded
coverage offered by NTNs enables more effective management and utilization of nat-
ural resources, especially for IoT applications powered by NTNs in agriculture can
optimize the use of water and fertilizers, reducing waste and environmental impact.
Similarly, NTNs can support efficient renewable energy management by facilitating
real-time data collection and control of remote installations, like wind farms, located
in offshore or hard-to-reach areas. The remote connectivity achieved through NTNs
ensures energy is harnessed and distributed more efficiently, aligning with goals for
reducing greenhouse gas emissions [22].

There is also a growing trend towards incorporating sustainability into the design
and operation of NTNs themselves. Innovations in technology are gradually reduc-
ing the size and weight of satellite components, which lowers the materials required
and also decreases the fuel requirement needed for launches and daily operations.
The advancements in propulsion and materials science are improving the lifespan of
satellites and ultimately reducing the frequency of launches. There is a need to recycle
older satellites and use them for different applications. The safe de-orbiting of satel-
lites, when they reach their end of life, is also a promising avenue to explore for the
reduction of space debris, and it also minimizes the environmental footprint of NTN's
[23,24]. The integration of sustainable practices in NTNs reduces their ecological
impact, and encourages eco-friendly IoT adoption. Since NTNs reduce dependence
on terrestrial infrastructure and address sustainability challenges, they support global
environmental goals and will, therefore, form a vital role in the road to greener, long-
term strategies for a hyperconnected world [25].

4.4 Energy efficiency in NTNs

Energy efficiency is critical for all communication systems, especially for NTNs
where the lifespan of the equipment is highly energy-constrained. The NTNs’ en-
ergy dependency is driven by innovations in different technological domains. Solar
energy is the most important domain for the NTNs as it drives the space-born and
usually drives the air-born equipment. All the satellites and most of the HAPs and
UAVs are equipped with state-of-the-art solar panels that convert sunlight directly
into electrical energy to meet the power requirements of these systems [14]. Recent
advancements in photovoltaic cell technology have led to increased efficiency and re-
duced weight, resulting in ultra-light materials. These innovations have significantly
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improved the power-to-weight ratio, enhancing the operational longevity and overall
efficiency of NTN platforms [26].

The advanced signal processing algorithms achieved better energy efficiency for
both uplink and downlink data [27]. These innovative error detection and correction
solutions provide better signal integrity with minimum power consumption. Although
the complexity of the system is often increased, the low power requirement makes
them ideal for IoT and NTNs as both sides of the network are energy-constrained
[28]. There are several modulation schemes available in the literature that demon-
strate promising results in achieving energy efficiency, and if they can be imple-
mented, they have the potential to improve the energy efficiency of NTN networks
[14,29,30]. The adaptive communication protocols used in IoT and NTN dynami-
cally adjust the energy used based on the quality of the communication link and data
demands, and also conserve the energy on both the IoT and NTN side of the network
[31]. The novel designs of UAVs also help them achieve better energy efficiency.
Modern UAVs are usually designed with superior aerodynamics and equipped with
lighter materials to reduce drag and energy consumption. The integration of Al results
in intelligent navigation systems that allow for optimized travel paths, and reduce
unnecessary maneuvers, thereby extending the battery life and operational duration
[32]. In the following subsections, we will dive deep into the technologies enabling
NTNs to achieve energy efficiency.

4.4.1 Advanced technologies for energy efficiency

Several emerging technologies, such as beamforming and massive Multiple-Input
and Multiple-Output (MIMO) possess the potential to enhance the energy efficiency
of NTNs. Beamforming is a technology that focuses the concentration of wireless
signals toward a specific direction, resulting in a directional gain. Beamforming pos-
sesses the potential to improve the transmission and reception of signal energy, which
not only improves signal quality but also reduces power wastage in other direc-
tions [33]. Beamforming, when combined with massive MIMO technology, further
enhances the performance of the communication system. Massive MIMO is a tech-
nology where a large number of antennas are embedded in the base station. The
base station serves the different devices simultaneously through spatial multiplexing,
leveraging beamforming for focused signals, and also results in reduced interference
for other nearby devices. The combination of massive-MIMO and beamforming en-
hances the energy efficiency of NTN and IoT networks by focusing the signal power
on the intended users, minimizing energy wastage, and improving the coverage of the
network in the remote areas [34,35].

4.4.2 Energy harvesting

The role of NTNs in enabling IoT devices to leverage energy harvesting technologies
opens a new dimension of sustainability, especially in energy-constrained environ-
ments. Energy harvesting refers to the process by which energy is derived from
external sources and converted to electricity to power IoT devices. These sources
are easily available in the environment, and utilizing them reduces the dependency
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on conventional power sources. Energy harvesting improves the autonomy of devices
and improves the self-sustainability of the devices and the overall network as well
[14,36]. Table 4.3 provides a concise comparison of the solar, kinetic, and thermal
energy harvesting options for NTN-IoT devices, including typical application areas,
advantages, and implementation challenges.

Table 4.3 Comparison of energy harvesting methods.

Energy Source | Application Area | Advantages Challenges
Solar Energy Agricultural fields, | Sustainable power Weather-dependent,
remote areas source, easy to deploy | initial setup cost
Kinetic Energy Urban settings, Utilizes ambient Low energy vield, device
roads, bridges energy, reduces complexity
external power need
Thermal Energy | Industrial Uses temperature Initial setup cost,
environments gradients, reliable in efficiency varies by
high-temp areas environment

Solar energy harvesting

In remote areas, where IoT devices are deployed, such as agricultural fields or wildlife
monitoring areas, solar energy provides a sustainable power source that can keep
devices running indefinitely, depending on weather conditions. The solar panels on
these devices capture sunlight, which is then converted into electrical energy to power
sensors and communication modules [37]. The dependence on solar reduces battery
and fossil fuel-based energy consumption and overall reduces the carbon footprint
of the overall network. The longer life of high-quality solar panels, which is around
twenty years, is a huge contributing factor towards the sustainability of this solution.

Kinetic energy harvesting

Kinetic energy harvesting is the process of converting motion or mechanical vibra-
tion into electrical energy. Most kinetic energy harvesters depend on mechanical-
to-electrical energy converters. Typically, this process consists of three stages. The
first stage, energy capture, involves coupling externally provided motion or vibration
to a mechanical structure, such as a spring or mass, to facilitate energy conversion.
The second stage, energy conversion, transduces the captured mechanical energy into
electrical energy using mechanisms such as electromagnetic induction, piezoelectric-
ity, or electrostatic methods. The third and final stage, energy conditioning and stor-
age, processes and stores the harvested energy in batteries or supercapacitors, ensur-
ing a stable power supply for IoT devices. Several key components are involved in this
process. The important ones among them are energy transducers. Energy transducers
are classified as mechanical, magnetic, and electrostatic. Piezoelectric materials fall
into the first category, converting mechanical stress into electricity using quartz or ce-
ramic elements. Coming to electromagnetic generators utilize the motion of a magnet
through a coil in order to induce an electric current, using Faraday’s law. Finally, the
electrostatic generators work on the principle of converting changes in capacitance
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caused by mechanical motion to generate power. The second constituent in this in-
teraction is the source of vibration, such as ambient vibrations from machinery or
wind, even from user activity in wearable devices, and it provides mechanical energy
to actuate the system. Mechanical structures, such as cantilever beams, resonators,
or springs, amplify the mechanical vibration to improve the capture efficiency of vi-
brational energy. Power management circuits will finally regulate the output voltage
and current to match IoT devices for energy storage in batteries or supercapacitors.
Kinetic energy harvesting is suitable for IoT in NTN scenarios, like satellites, UAVs,
and remote sensors, where ambient motion is rich, such as wind, vibration, or body
movement. It provides a renewable and sustainable power source to reduce the fre-
quency of battery replacement and enhance the reliability of IoT networks [38].

Thermal energy harvesting

Thermal energy conversion is also an emerging trend in which temperature differ-
ences are used to generate electricity. Thermal energy harvesting works by converting
heat into electrical energy using thermoelectric materials and leveraging the temper-
ature difference between two surfaces or regions. The process is primarily based on
the Seebeck effect, a phenomenon where a voltage is generated across two dissimilar
conductors or semiconductors that experience a temperature gradient.

The thermal energy harvesting process is divided into several steps. First, the heat
absorption, where a heat source, such as solar radiation, electronic devices, or nat-
ural geothermal heat, generates thermal energy. Heat collectors capture this energy
and transfer it to the thermoelectric generator (TEG). Second, the creation of a tem-
perature gradient. The TEG has two sides, one exposed to the heat source (hot side)
and the other connected to a heat sink (cold side). A temperature difference is estab-
lished between the two sides, which is crucial for generating electricity. Third, the
electron movement via thermoelectric materials. Inside the TEG, thermoelectric ma-
terials such as bismuth telluride or silicon-germanium alloys facilitate the conversion
of the temperature difference into an electric current. The hot side excites electrons,
causing them to move towards the cooler side, creating a flow of charge. Fourth is
the energy output stage. The resulting voltage from the temperature difference gener-
ates Direct Current (DC) electricity. The amount of electricity is proportional to the
material’s thermoelectric efficiency and the magnitude of the temperature gradient.
The fifth step is power regulation, where the harvested electricity is typically low in
voltage and requires regulation to be usable by IoT devices. A power management
circuit, including voltage regulators and converters, ensures the output is stable and
matches the device’s energy requirements. The last step is energy storage, which is to
provide continuous power, especially when the temperature gradient fluctuates. The
harvested energy is stored in batteries or supercapacitors. This ensures [oT devices
have a reliable energy supply even during periods of minimal heat availability.

Over the years, there have been several enhancements in thermal energy har-
vesting systems however there are several open research challenges that can fur-
ther improve these systems, like the advanced thermoelectric materials with higher
Seebeck coefficients and thermal conductivities improve conversion efficiency. The
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integration of Phase Change Materials (PCMs) which store excess thermal energy
during peak heat and release it during cooler periods, maintains a steady temperature
gradient. The development of hybrid harvesting systems combines thermal energy
harvesting with other energy sources, such as solar or kinetic energy, for higher reli-
ability and efficiency in NTN-IoT networks.

This seamless energy harvesting process ensures that [oT devices in NTNs operate
autonomously in remote or harsh environments, reducing dependency on traditional
power sources and supporting sustainable energy practices [39].

4.4.3 Optimization through low-energy protocols

Beyond enhancing hardware efficiency and incorporating energy harvesting strate-
gies, energy efficiency in NTNs is achieved through the implementation of low-
energy protocols. These protocols are designed to minimize energy consumption
during data transmission and reception. This is crucial for the longevity and sus-
tainability of NTN communication platforms [40—43].

An example of such protocol optimization is the use of LPWAN technologies
in NTNs. LPWAN technologies are specifically designed for long-range communi-
cation between IoT devices while consuming very little power. Integrating LPWAN
technology with NTN infrastructures significantly prolongs the operational life of
individual IoT devices deployed in remote areas, reduces maintenance frequency
due to battery depletion, and ensures continuous data collection and monitoring, all
while maintaining minimal energy usage [44]. There are several subcategories of
Low-Energy Protocols, and we will explore them in detail in the following sections.
Complementing these protocol-level strategies, Table 4.4 summarizes representative
energy-efficient signal-processing techniques, outlining their purposes and the bene-
fits they offer in NTN deployments.

Table 4.4 Energy efficiency techniques in signal processing.

Technique Purpose Benefits

Error Correction Codes | Maintain signal integrity Reduces power use, improves
reliability

Power-saving Minimize power requirement | Increases energy efficiency,

Modulation for data transmission reduces power waste

Adaptive Adjust energy use based on | Optimizes energy consumption,

Communication link quality conserves power

Protocols

Dynamic Power Management (DPM)

These strategies are very important and are considered an integral portion of the
NTN power management system. DPM involves the use of software and hardware
techniques that dynamically adjust the power state of network components based
on current network load and performance requirements. The DPM is used to switch
certain parts of a satellite payload to a low-power state during periods of low commu-
nication activity, thus conserving energy without impacting the overall performance
of the networks [45].
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Efficient network routing

Enhanced routing protocols also contribute significantly to energy conservation in
NTNs. Efficient routing algorithms ensure that data packets sent from source to des-
tination follow the most energy-efficient path, thus minimizing the power consumed
during transmission across networks. The path-finding algorithms, such as Dijkstra’s
algorithm or Bellman—Ford algorithm, are among the most popular in obtaining the
most suitable paths. Suitable route exploration, route selection, and dynamic route
updates are the stages of these algorithms. These routes are calculated not only based
on the shortest path but also take into account current network conditions and energy
profiles of the nodes, optimizing energy use across the network architecture [46,47].

Energy-aware system design

Beyond protocols, the complete design philosophy for NTNs has the potential to
embed energy-aware strategies at various levels of abstraction, which range from
hardware design to operational and management strategies; this includes the use of
materials or components that allow saving energy, or system designs that make more
efficient heat dispersal possible, and leveraging software techniques, which reduce
computational burdens, thus slashing the energy input required by a processing unit
mounted on an NTN platform [48,49].

Implementation of smart sleep schedules

Smart sleep protocols are also employed across IoT and NTNs. These protocols are
especially viable for satellite and UAV-operated networks. The smart sleep protocols
intelligently determine inactive periods of the devices and put these devices into sleep
mode or low-power modes. The sleep mode significantly reduces the power usage of
devices and it is only used when full operation is unnecessary. Smart sleep schedules
are dynamically adjusted based on real-time data usage patterns and predictions of
network demand, optimizing energy utilization [14].

All these techniques, such as low-power protocols, dynamic power management,
efficient network routing, energy-conscious system design, and smart sleep sched-
ules, offer an avenue for NTNs to further their sustainability. The sustainability results
in improved power savings and the improvement of network component life. Such
strategies align with the United Nations’ sustainability vision, but also provide a guar-
antee for NTNs to increase their reliability. The economic impact of sustainability is
huge and results in further deployment and extension of services for IoT networks.
By emphasizing low-energy software and network management techniques, a criti-
cal opportunity is opened to significantly enhance the environmental sustainability
of next-generation network technologies, enabling a more resource-efficient future in
the realm of global communications.

4.5 Case studies and real-world applications

The transformative impact of NTNs in sustainable IoT applications can be best under-
stood through specific case studies that illustrate their deployment and functionality
in various sectors. Each case study showcases the practicability and benefits of NTNs
and contextualizes their role in enhancing IoT-driven sustainability.
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4.5.1 Environmental monitoring

Rainforest Connection (RFCx)' is a San Francisco-based organization that develops a
solution that utilizes innovative hardware, NTNs, and cutting-edge software to enable
effective wildlife and forest conservation. RFCx built hardware, at the core of their
innovative solution, termed “Guardians”, which is fundamental in detection and data
transmission. The Guardian is fabricated from recycled smartphones, making them
very viable, cost-effective solutions that are sustainable. Smartphones have been con-
verted to microphones, picking up sounds like chainsaws, gunshots, or even the call
of animals in the forest. Guardians are also fitted out with extra hardware compo-
nents: solar panels that allow the devices to continuously supply power from remote
locations using renewable sources when traditional energy sources are not available.
These solar panels are very efficient and, therefore, can allow these devices to operate
24/7 without maintenance, even in adverse weather conditions.

It combines NTN-based connectivity solutions, including satellites and HAPs,
whichever solution is geographically feasible to facilitate communication in areas
bereft of terrestrial network coverage. Guardians use terrestrial networks where avail-
able, but, in case of their absence, rely on satellite communication to transmit real-
time audio data to the cloud. The NTNs form a critical link from these remote forest
monitoring systems to the centralized data processing centers. This makes RFCx re-
liably transmit the data from locations considered so out of reach through satellites
to have continuous monitoring in large-scale areas of the forests. By routine, a forest
guard patrols through an area by vehicle or on foot. The work of these guard person-
nel was thus made smooth and effective since one need not patrol physically on the
ground through the areas assigned.

Once the audio reaches the cloud, it is further analyzed on advanced ML and
Al algorithms. The algorithms are engineered to identify shots, chainsaw sounds,
or other animal distress calls associated with specific illegal logging, poaching, or
other harms. The NTN supports this by allowing low-latency data transmission from
Guardians to processing centers, so that possible threats can be identified quickly
and a rapid response facilitated. It does this by distinguishing between all the natural
sounds of the rainforest and those that are artificial, such as chainsaws, gunshots, or
vehicles; thus, the alerts given are highly accurate.

The satellite-based communication system also contributes to RFCx being scal-
able and adaptable. Since NTNs mean an organization could deploy Guardians across
diverse regions — from the dense Amazonian rainforests to isolated areas in Africa
and Southeast Asia — without the use of any ground-based communications in-
frastructure, it enables RFCx to reach large swaths of forests while adjusting their
systems according to varied environments. Incorporating IoT-enabled Guardians with
any NTN creates an ecosystem with a powerful platform for making actionable in-
sights using connectivity and data processing. RFCx works with local authorities,
governments, and communities by giving them access to real-time alerts created

1 https://RFCx.org/.
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by the Guardians. This is further facilitated through the use of cloud computing
services linked to NTN systems. NTNs fill in the gap in connectivity for conserva-
tionists to take quick action and contain deforestation, poaching, and other dangers to
biodiversity. This seamless integration of hardware, NTNs, and Al-driven analytics
underlines the technological sophistication and environmental impact of the RFCx
method. Their work epitomizes how NTNs and 10T could shape the future in the
name of global conservation, offering a replicable, sustainable model for the protec-
tion of natural ecosystems.

4.5.2 Precision agriculture

CropX” is a leading digital agronomy platform that integrates advanced hardware and
software solutions to provide comprehensive farm management. Founded in 2013 in
New Zealand, the company has expanded its expertise globally, offering tools that
aggregate data from various sources to monitor field and crop health effectively.
The CropX system comprises several key components like Soil Sensors, which are
patented spiral-designed sensors that measure soil moisture, temperature, and electri-
cal conductivity, providing real-time data essential for informed irrigation decisions.
Telemetry devices facilitate the wireless data transmission from the sensors to the
cloud-based platform, ensuring seamless integration and accessibility. The Actual
Evapotranspiration (ETa) sensors of CropX measure and monitor the water use of
crops daily in real-time, enabling precise irrigation planning. The rain gauges are
precisely the tipping-spoon rain gauges that capture accurate precipitation data, con-
tributing to effective water management strategies.

The combined data collected is synthesized into a specially designed, user-
friendly application capable of managing multiple farms and fields from a single
account. This holistic approach allows farmers to make data-driven decisions about
irrigation, disease control, nutrition monitoring, and effluent management. While
CropX primarily utilizes terrestrial IoT devices for data collection and transmis-
sion, the integration of NTNs, such as satellite communications, holds the potential
for enhancing connectivity, especially in remote agricultural areas. NTNs can pro-
vide reliable data transmission where traditional cellular networks are unavailable,
ensuring continuous monitoring and management capabilities. The CropX solution
is promoting sustainable agricultural practices. By incorporating advanced technol-
ogy, the company has achieved a 36% reduction in greenhouse gas emissions and a
47% decrease in water usage compared to traditional irrigation methods. These ef-
forts contribute to environmental conservation and support the long-term viability of
farming operations. CropX’s innovative agronomy platform exemplifies how the inte-
gration of IoT technologies can drive sustainable and efficient farming practices. The
potential incorporation of NTNs further enhances these capabilities, offering robust
solutions for modern agriculture.

2 https://cropx.com/.
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4.5.3 Disaster management

The American Red Cross® requires no introduction. It has enormously upgraded its
response to disasters by introducing advanced technologies that allow it to intervene
at the quickest possible time in disaster situations. This technological advancement
has been headlined by the Disaster Services Technology (DST) team that installs
and operates communication networks in disaster areas. The DST team deploys
various equipment, including radios, computer networks, cell phones, tablets, and
laptops, and manages to keep connectivity for the Red Cross operations. This inte-
grated arrangement thus provides great coordination among the response teams and
timely dissemination of information to people in need. The Red Cross uses Geo-
graphic Information Systems (GIS), and UAVs, where the GIS allows analysis and
visualization of data on disaster impact, resource allocation, and logistical planning
for better decision-making during relief operations. These UAVs provide immediate
aerial views of affected areas, thus enabling responders to gauge the extent of dam-
ages, locate areas inaccessible, and effectively marshal assistance efforts.

Central to the Red Cross’s technological framework is the disaster management
system — previously RC View, which was recently replaced by Arc GIS Online*
developed by Esri — an innovative IT support system that integrates real-time data
into a unified platform, offering a comprehensive view of disaster situations. This
system enables the Red Cross and its partners to share visual situational awareness,
manage disaster operations more effectively, and coordinate responses with greater
precision. The organization is also exploring the use of Al to further streamline dis-
aster response. By automating tasks and analyzing data swiftly, Al has the potential
to reduce the need for extensive on-ground personnel, accelerate response times, and
allow teams to focus on mission-critical activities.

Satellites feature in several different initiatives within the disaster response and
preparedness activities of the American Red Cross. Current weather and forecast
monitors, including observations, watches, warnings, and radar graphics from satel-
lite imagery, are available through the organization’s Map, Weather, and Hazard
Catalogs. The Red Cross uses satellite images in its effort to map the most vulnerable
communities using a project called Missing Maps® for risk reduction planning and
assistance. The Red Cross Volunteers examine massive satellite imagery to locate ru-
ral hamlets and villages, then ensure humanitarian organizations reach those in need;
Humanitarian Organizations at the Red Cross encourage each one to join disaster pre-
paredness through the Humanitarian OpenStreetMap Team (HOT)® to utilize satellite
imagery for developing newer, more complete and accurate geographic data. These
initiatives show the commitment of the Red Cross to taking up space technology in
effective disaster management and humanitarian assistance.

3 https://redcross.org/.

4 https://www.esri.com/en-us/arcgis/products/arcgis-online/overview.
5 https:/www.missingmaps.org/.

6 https://www.hotosm.org/.
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Through the integration of these advanced technologies and volunteer efforts, the
American Red Cross has developed a robust system capable of delivering rapid and
effective disaster response. The integration of NTN and IoT technologies empowers
organizations like the Red Cross to enhance disaster management through real-time
connectivity, rapid response, and improved resource allocation, even in the most re-
mote and underserved regions.

4.6 Technological innovations and future directions

In this section, we delve into the dynamic interfacing between NTNs and the 10T,
investigating recent technological innovations and studies developed to improve NTN
and IoT networks. We also discuss promising future research directions aimed at
further integrating and improving NTN into eco-friendly IoT solutions.

4.6.1 Review of current technologies

Recent technological developments have been gradually improving the integration of
NTNs with IoT devices. These improvements are focused on energy optimization and
increased robustness in communications between terrestrial IoT networks and their
non-terrestrial counterparts. We will discuss a few of these solutions in the following
section.

Innovative antenna designs

Antennas in wireless communication play a vital role in both IoT and NTN sys-
tems for data transmission and reception using electromagnetic waves. Compact and
energy-efficient antennas are used in IoT to support low-power devices, while NTNs
require high-gain, directional antennas that maintain reliable communication over
long distances or in remote areas [50]. Recent developments in antenna technol-
ogy represent a significant step forward. Antennas with improved energy efficiency
not only reduce the power requirements for maintaining communications but also
help enhance signal quality with superior directionality [51]. phased-array antennas,
known for their ability to electronically steer the direction of their beam without mov-
ing parts, ensure focused communication that dramatically cuts down the energy lost
in signal spread [52]. This technology is ideal for dynamic environments, like those
encountered in satellite or UAV-based communications, where traditional directional
antennas would require constant mechanical adjustments [53].

Advancements in low-power communication protocols

The low-power communication protocol has been a driver of much development in
IoT and NTN energy efficiency by enabling device communication with minimum
energy consumption. Long-range protocols such as LoRa [54] and Sigfox [55] en-
able IoT devices to send limited amounts of data over long distances and, hence,
are particularly appropriate for NTN applications such as satellite-enabled remote
monitoring. LoORaWAN [56] has enabled the realization of bidirectional wireless



86

CHAPTER 4 Role of non-terrestrial networks in achieving sustainability

communication with very low energy consumption, which allows sensors in agricul-
tural fields to communicate information toward NTN-connected gateways. Another
example is Bluetooth Low Energy (BLE) [57], which enables short-range IoT appli-
cations, such as wearable health devices, to reduce power usage while maintaining
reliable connectivity. Another important development in this regard is Narrowband
IoT (NB-IoT) [58], which enables huge IoT deployment at low power consumption,
allowing devices like smart meters and environmental sensors to function efficiently
for several years on a single replacement of batteries. These protocols are partic-
ularly advantageous in supporting IoT applications in remote or difficult-to-access
areas, because they enable reliable connectivity and long battery life by transmit-
ting small amounts of data over long distances without demanding much power and
ensuring sustainability [59].

4.6.2 Future research directions

As we look to the future, several research initiatives are poised to further cement
the role of NTNs in sustainable IoT applications. These efforts focus on enhancing
network intelligence, reducing environmental impacts, and extending the capabilities
and application scopes of NTN systems.

Integration of Al

Future research is increasingly focusing on harnessing Al to enhance the efficiency
and functionality of NTNs in IoT applications. Al could lead to smarter data pro-
cessing algorithms that predict network loads and adjust energy use accordingly.
Moreover, Al can enhance decision-making processes within IoT devices, allowing
for autonomous operations based on real-time data, which would be particularly use-
ful in dynamic or unpredictable environments [60].

Exploration of advanced materials and technologies

The ongoing fascination with reducing the cost and improving the lifespan of NTNs
has led to research into next-generation materials and battery technologies. Innova-
tions such as graphene-based materials for lighter and stronger satellite structures, or
cutting-edge energy storage solutions like solid-state batteries, are expected to rede-
fine the operational parameters of NTNs. These advancements could lead to smaller,
lighter, and more efficient satellites, UAVs, and IoTs that are cheaper to launch and
operate and have a longer service life [61].

Satellite mega-constellations

The concept of deploying large numbers of smaller satellites in carefully planned con-
stellations offers the potential for global coverage and resilient connectivity for IoT
devices anywhere on the planet. Research into managing these mega-constellations
effectively—and sustainably—concerns both the optimal design for coverage and the
development of sustainable practices for dealing with satellite end-of-life scenarios,
such as through automated deorbiting systems to prevent space debris [62].
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Emerging applications in deep-sea and remote monitoring

The potential for NTNs extends into novel applications such as deep-sea IoT con-
nectivity and real-time environmental monitoring in geographically isolated regions.
Developing communication technologies that can withstand harsh underwater envi-
ronments or provide consistent performance in polar regions represents a leading
edge of current research efforts [14].

As NTNs continue to evolve, their role in enabling a connected, sustainable world
appears increasingly crucial. The ongoing advancements in antenna technology, com-
munication protocols, and the integration of Al, along with the explorations into new
materials and satellite constellation management, underscore a future where NTNs
are pivotal in deploying extensive, eco-friendly IoT solutions globally. This pro-
gressive trajectory highlights the importance of continued innovation and research
in overcoming the existing challenges and unlocking the full potential of NTNs and
IoT networks.

4.7 Policy and regulatory considerations

We now delve into the complicated landscape of policy and regulatory considerations
that surround the deployment and operation of NTNs. These networks are indeed
facing a host of regulatory hurdles that need to be negotiated with care in order to
make sure the solutions are effective and compliant. This section debates specific
policy recommendations that could facilitate the sustainable development of NTNs.

4.7.1 Regulatory challenges

The implementation of NTNs introduces several regulatory challenges, such as spec-
trum management, space traffic management, and cross-border coordination. We will
discuss each one in the following section.

Spectrum management

One of the most critical regulatory challenges for the NTNs has to do with the effi-
cient management of the radio frequency spectrum, which is extremely limited and
hotly contested. Ensuring that NTNs operate seamlessly, causing no interference to
the terrestrial networks nor any other types of non-terrestrial communications, is
highly important [63]. Regulatory bodies like the International Telecommunication
Union spearhead this cause by overseeing how the spectrum will be allocated, among
other factors, and building global standards into place. These are measures put in
place to avoid conflicts, ensure coexistence, and make the spectrum resource avail-
able to all stakeholders equitably [64].

Space traffic management

It is important to cope with the growing need for effective space traffic manage-
ment while satellites continue to multiply, especially under large-scale constellations
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already under deployment by different organizations like SpaceX,” OneWeb,® and
many others. This creates great necessities regarding setting and observing robust
regulatory frameworks that would sort out a few of the critical aspects involving
satellite operations. Key issues also include satellite deorbiting protocols that make
sure non-functional or end-of-life satellites are taken out of orbit safely and sustain-
ably to reduce collision risks and further the creation of debris. Besides, collision
avoidance can be ensured only if safe orbital operations are maintained, which again
requires highly developed tracking systems, reliable communication between satellite
operators, and adherence to predefined maneuvering standards.

All these go hand in hand with regulatory frameworks provided by relevant bodies
such as the International Telecommunication Union and other national space agen-
cies involved in their development and enforcement to encourage the sustainable use
of space. It is critical to their enforcement, not only in terms of mitigating most of
the immediate risks that come with space debris, but also to safeguard the usability of
this environment as a common heritage. It follows that without an adequate manage-
ment regime, there will probably be cascading collision events in effect, something
often termed Kessler syndrome, where such orbits could well become unavailable to
later missions. Rigorous management of space traffic will go hand in glove with sus-
tainable space operation, especially with continuing growth into the satellite-based
application, including NTNs and IoT solutions-appropriately looking after the envi-
ronment for space into the future [65].

Cross-border coordination

The NTNs operate within many different national jurisdictions; any meaningful
cross-border coordination must handle these regulatory and operational challenges
robustly. Some of the central issues include data sovereignty: many nations require
data collected within their borders to be stored, processed, and managed subject to
that nation’s laws and regulations. It will be particularly hard on NTNs since often
they deal with data transferring between satellites, ground stations, and users in differ-
ent countries. The environmental regulations also have many differences depending
on the nation; hence, going into making NTNs compliant with several different stan-
dards over sustainability, emissions, and environmental impacts.

Comprehensive international agreements on the operations of NTN make for
smooth operations. Organizations such as the International Telecommunication
Union (ITU) and regional regulation bodies are very important in making these reg-
ulations agree on a set of global standards. These will help in conflict resolution,
smoothing out data management policies, and enforcing interoperability across bor-
ders as NTNs remain operationally effective and sustainable in their manner [66].

7 https:/www.spacex.com/.
8 https://oneweb.net/.
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4.7.2 Policy recommendations

This section elaborates on some policy recommendations that can effectively address
regulatory challenges to NTNs while contributing to their sustainable development.
The following recommendations seek to achieve a proper balance between tech-
nological development and environmental concerns through innovation and global
coordination.

Incentives for green technology

The policy frameworks by governments have to be worked out that would incen-
tivize firms to adopt or develop green technologies within NTNs; these incentives,
in the form of tax breaks, grants for research and development, and subsidies, act
to encourage them to integrate their NTN infrastructure using energy-efficient tech-
nologies. It is expected that incentives or special regulatory treatment will be given to
the companies deploying satellites or building renewable energy-powered ground sta-
tions using solar, wind, or hybrid systems. Energy-efficient communication protocols,
sustainable manufacturing, and advanced recycling for satellite components are also
encouraged by the policies. If there is an increased innovation in renewable energy
technologies and environmentally friendly design of equipment for NTN, the carbon
footprint from NTN can be reduced. These will be instrumental in bringing in an
environment that will make technological growth keep up with global sustainability
objectives to help NTNs become greener and more efficient in communication [67].

Guidelines for Environmental Impact Assessments (EIAs)

The development of detailed, specific, and standardized guidelines for EIAs con-
cerning NTNs will be very important for the sustainable development of NTNs. The
EIAs should be made to cover all the possible environmental impacts of NTN ac-
tivities, including atmospheric pollution from rocket launches, which would involve
the emission of Greenhouse Gases (GHGs) and particulate matter, and impacts on lo-
cal ecosystems from ground stations, including land use change, noise pollution, and
interference with wildlife habitats. EIAs should contain lifecycle analyses of NTN
infrastructure manufacturing, operation, and end-of-life phases, which will allow
regulators and companies to find the most critical environmental risks. The imple-
mentation of mitigation strategies is allowed, for instance, by the adoption of greener
propellants, renewable energy used in ground stations, or the design of deorbiting
systems that reduce space debris. Incorporating EIAs as a mandatory regulatory re-
quirement will align NTN deployments with global sustainability goals and foster
responsible innovation in the satellite and IoT ecosystem [68,69].

Frameworks for international cooperation

Since the coverage and impact of NTNs are global, robust international frameworks
will be vital for policy harmonization and effective cross-border collaboration. In-
ternational frameworks should, therefore, aim at data sharing and joint monitoring
of environmental and operational impacts of NTNs to make the stakeholders oper-
ating NTNs more transparent and responsible. Unified standards should be set to

________________________
89



90

CHAPTER 4 Role of non-terrestrial networks in achieving sustainability

manage fundamental issues such as radiofrequency spectrum allocation, space de-
bris mitigation, and safe deorbiting of defunct satellites. The same would also apply
to internationally collaborative research undertakings, combining resources and ex-
pertise in advanced development toward sustainable NTN technology. This could be
achieved by jointly working on low-impacting propulsion, optimization of energy
efficiency in NTN operations, and elaboration on a global protocol related to space
debris. An effective regulatory approach that aligns worldwide should foster NTNs
working well while being environmentally friendly, and it creates one path toward
sustainability in satellite communication [70].

The regulatory landscape is complex, and the implementation of effective pol-
icy frameworks will be crucial to make NTN deployment successful and sustainable.
The main regulatory challenges, such as spectrum allocation, space traffic manage-
ment, and cross-border coordination, require comprehensive and forward-looking
strategies. Simultaneously, incentivizing the adoption of green technologies, rigorous
environmental impact assessments, and international collaboration in policy recom-
mendations are critical for embedding sustainability into NTN operations. In that
way, with early mitigations of such challenges, along with the integration of sustain-
able practices, NTNs could be designed to handle ever-increasing global demand for
connectivity without having to make compromises in environmental responsibility
and long-term viability.

4.8 Conclusion

This chapter has examined the role of NTNs in providing a sustainable and greener
future for IoT technologies. NTNs are revolutionizing connectivity and playing a
critical role in the expansion of IoT access into remote and underserved areas, while
promoting environmentally conscious technological deployments. They become ma-
jor enablers of transformation in IoT, offering connectivity solutions that enable
very important applications: environmental monitoring, precision agriculture, disas-
ter management, urban air quality assessment, and maritime surveillance. These use
cases strengthen the real impact that NTNs may have on global goals for sustainable
development by scaling up our capability to collect, analyze, and act on environmen-
tal data. The technological development in NTNss is highly committed to sustainabil-
ity, ranging The integration of NTNs with IoT technologies does not come without
challenges. The regulatory complexities involve spectrum management, space traffic
control, and cross-border coordination. High costs and technical difficulties in de-
ploying and maintaining NTNs also stand in the way of widespread adoption. Such
challenges require collaborative efforts in engineering, environmental science, infor-
mation technology, law, and international relations. Only collaborative approaches
can overcome these obstacles while ensuring ethical, sustainable, and effective NTN
implementations. Such challenges require collaborative efforts in engineering, envi-
ronmental science, information technology, law, and international relations. It is only
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through collaborative approaches that these obstacles can be overcome while ensur-
ing ethical, sustainable, and effective NTN implementations. NTNs hold immense
promise for changing the paradigm of IoT connectivity and fostering global sustain-
ability. However, their eventual success will depend upon sustained innovation, robust
policy frameworks, and international cooperation in accordance with environmental
imperatives. NTNs are indeed a technological milestone, but they also form a corner-
stone in framing [oT strategies that are ecologically sensitive and globally impactful.
The NTNSs, supporting various IoT applications while integrating sustainability, have
opened ways toward a much more connected, equitable, and efficient future. Further
innovation, interdisciplinary collaboration, and policy alignment are all required in
the context of realizing full NTN potential and assuring that IoT advances contribute
toward a sustainable and prosperous future for generations to come.
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CHAPTER

Secure and privacy-aware
solutions for sustainable
loT

Harsh Vivek Shah
School of Computing, University of Glasgow, Glasgow, United Kingdom

5.1 Introduction

The technological advances in the Internet of Things (IoT) domain are transform-
ing modern society by introducing new technologies that improve efficiency across
industries and quality of life [1-5]. IoT refers to a vast network of interconnected
devices that collect, exchange, and process data without human intervention [6].
IoT devices, ranging from simple household items like smart thermostats and fitness
trackers to complex systems such as autonomous vehicles and critical healthcare, as
shown in Fig. 5.1, are deeply embedded in our daily lives. These devices enhance effi-
ciency and quality of life by automating home environments, tracking vital signs, and
optimizing traffic flow and energy consumption in smart city infrastructures [7,8].

However, as IoT adoption grows, so do the associated security challenges. IoT
devices, essentially resource-constrained computers, significantly widen the attack
surface for cyber threats [9—12]. As a result, cyberattacks targeting IoT systems have
surged in frequency and impact. One notable example is the Mirai botnet attack,
which exploited weak IoT security, compromising thousands of devices to orchestrate
one of the largest Distributed Denial of Service (DDoS) attacks in history [13]. Even
seemingly harmless smart devices, like a connected smart coffee machine, can have
vulnerabilities that allow attackers to infiltrate a home network. Once inside, hackers
could manipulate other connected devices, steal sensitive data, or even endanger lives
by tampering with critical medical equipment like pacemakers [14].

Beyond household security risks, IoT vulnerabilities can escalate into large-scale
national threats. Critical infrastructure, such as power grids and oil pipelines, re-
lies on thousands of interconnected sensors and actuators. A cyberattack on these
systems could cause catastrophic disruptions comparable to the impact of conven-
tional weapons [15]. Even indirect attacks, such as exploiting vulnerabilities in
automated thermostats, could have the same effect. Malicious actors could simul-
taneously increase heating in millions of homes and overload the power grid, leading
to widespread power outages.

Given the far-reaching implications of IoT security breaches, robust and efficient
security solutions are essential at every level. One foundational pillar is lightweight
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encryption techniques. While traditional cryptographic methods offer strong protec-
tion, they impose high computational and energy costs that resource-constrained IoT
devices cannot afford. Lightweight encryption techniques address this challenge by
optimizing security for embedded and battery-powered applications without signifi-
cantly degrading device performance [16,17].

Beyond encryption, secure data transmission and aggregation play a crucial role
in IoT security, particularly in data-sensitive environments like healthcare and in-
dustrial automation. IoT-generated data must be protected during transit to pre-
vent unauthorized access or tampering. Innovative approaches such as fog com-
puting and blockchain-based data aggregation help secure real-time communication
while improving efficiency and reducing latency [18,19]. The integration of privacy-
preserving encryption techniques, such as homomorphic encryption and secure multi-
party computation, allows IoT devices to transmit and analyze encrypted data without
exposing sensitive information [20]. By implementing secure transmission frame-
works, IoT ecosystems can mitigate cyber threats while optimizing network perfor-
mance [21-23].

Another important aspect of IoT security is privacy-preserving data analytics. The
increasing reliance on IoT-generated data for decision-making has raised concerns
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regarding user privacy and data exposure. Conventional centralized data process-
ing models expose raw data to potential breaches and unauthorized surveillance. To
counteract this, decentralized and privacy-preserving analytics methods have been
proposed, including homomorphic encryption, federated learning, and anonymiza-
tion techniques [24,25]. These methods enable IoT devices to process and analyze
data securely without compromising privacy. As Artificial Intelligence (AI) and Ma-
chine Learning (ML) become more integrated with IoT, ensuring secure and private
data analytics is imperative for sustainable IoT adoption.

While encryption and secure data handling are crucial, secure authentication
methods form the foundation of reliable IoT security frameworks. Authentication
mechanisms ensure that only legitimate devices and users can access IoT networks,
preventing unauthorized intrusions and attacks. Traditional password-based authen-
tication methods are often insufficient due to scalability and security limitations.
Advanced authentication techniques, including blockchain-based authentication, del-
egated authentication, and Radio Frequency Identification (RFID)-based authentica-
tion, have been introduced to enhance identity verification while maintaining minimal
computational overhead [26-28]. Secure authentication methods are vital in prevent-
ing impersonation attacks and ensuring the integrity of IoT networks.

As the IoT ecosystem continues to expand, addressing security and privacy chal-
lenges remains a priority. A comprehensive security framework must incorporate
lightweight encryption, secure data transmission, privacy-preserving analytics, and
strong authentication mechanisms. By integrating these solutions, we can create a
secure, privacy-aware loT landscape that supports sustainable innovation while miti-
gating cyber threats.

The remainder of this chapter is structured as follows: Section 5.2 explores
lightweight encryption techniques, highlighting cryptographic solutions optimized
for resource-constrained IoT environments. Section 5.3 discusses secure data trans-
mission techniques, including blockchain-based aggregation, to enhance communi-
cation security. Section 5.4 examines privacy-preserving data analytics, focusing on
decentralized approaches such as federated learning and homomorphic encryption.
Section 5.5 delves into secure authentication mechanisms, evaluating advanced iden-
tity verification techniques such as blockchain-based authentication and RFID-based
authentication. Finally, Section 5.6 concludes the chapter.

5.2 Lightweight encryption techniques

The increasing adoption of IoT devices in diverse applications ranging from health-
care and smart cities to industrial automation necessitates the development of efficient
cryptographic solutions that address security challenges while maintaining the re-
source constraints of these devices. With IoT devices operating under constrained
resources such as limited battery life, low processing power, and minimal memory ca-
pacity, traditional encryption methods are often too computationally expensive. Stan-
dard cryptographic algorithms like RSA, AES and DES require significant processing
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Table 5.1 Comparison of different lightweight encryption techniques [31-33].

Encryption Key Size Block Structure | Rounds | Encryp- | Com-
Technique (bits) Size tion puta-
(bits) Strength| tional
Cost
AES 128/192/256 128 SPN 10/12/14| High High
HIGHT 128 64 GFS 32 Medium Low
PRESENT 80/128 64 SPN 31 Medium Low
RC5 0-2048 32/64/128 Feistel 1-255 | Variable | Variable
TEA 128 64 Feistel 64 Medium | Medium
XTEA 128 64 Feistel 64 Medium | Medium
LEA 128-256 128 Feistel 24-32 High High
DES 54 64 Feistel 16 Medium | Medium
TWINE 80/128 64 Feistel 32 Medium Low
Humming- 256 16 SPN 4 Low Very
bird Low
Iceberg 128 64 SPN 16 Medium | Medium
SIMON 64-256 32-128 Feistel 32-72 High Low
SPECK 64-256 32-128 Feistel 22-34 Medium Low
Chaskey 128 128 Feistel 8/16 Medium Low

resources, making them impractical for small IoT devices that must balance secu-
rity with energy efficiency [29]. Lightweight cryptography is specifically designed
to reduce computational overhead while maintaining adequate security levels for
IoT applications. These encryption techniques enable secure communication while
minimizing power consumption, making them ideal for deployment in resource-
constrained IoT environments [14].

Lightweight cryptographic algorithms are primarily classified into block ciphers,
stream ciphers, homomorphic encryption, and chaotic encryption. Block ciphers such
as PRESENT, SIMON, SPECK, Chaskey, and optimized versions of AES-128 for
constrained environments by reducing the key size, block size, and number of rounds,
making encryption operations feasible for battery-powered devices [14,29]. These al-
gorithms are widely used in IoT security due to their balance between security and
performance. Stream ciphers such as Grain, MICKEY, and Trivium provide real-time
encryption of data streams, making them suitable for IoT applications requiring mini-
mal latency and computational overhead like wireless sensor networks and embedded
systems [29]. Table 5.1 shows a comparison of different encryption techniques, in-
cluding key sizes, block sizes, structures, rounds, relative encryption strengths, and
relative computational costs [30].

Homomorphic encryption enables computations to be performed on encrypted
data without requiring decryption, thereby preserving privacy in applications such as
healthcare and secure data aggregation. The Paillier cryptosystem supports additive
homomorphic encryption and is commonly used for privacy-preserving computations
in IoT healthcare environments [34]. Lattice-based homomorphic encryption offers
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additional security advantages by providing resistance against quantum attacks, mak-
ing it a promising technique for future post-quantum IoT security implementations.
The applicability of lattice-based cryptography in IoT environments is particularly
significant due to its computational efficiency and resilience against quantum threats.
The Learning With Errors (LWE) and Ring-Learning With Errors (R-LWE) tech-
niques form the foundation of many lattice-based encryption schemes, offering worst-
case security guarantees [31]. These techniques ensure that cryptographic primitives
remain computationally feasible while providing robust security for IoT applications,
including secure authentication, key exchange, and data encryption [31]. Moreover,
LWE-based encryption schemes have been shown to efficiently support homomor-
phic operations, allowing secure computation on encrypted data without revealing
plaintext information. These properties make lattice-based encryption a viable choice
for securing sensitive data in resource-constrained IoT devices [31].

In addition to homomorphic encryption, chaotic encryption techniques provide
lightweight security solutions for resource-constrained IoT devices. The IEPSBP
framework is a cost-efficient image encryption algorithm based on a parallel chaotic
system that enhances both security and energy efficiency in Green IoT applications
[35]. It utilizes a 16-bit precision-limited chaotic system, known as PSBP, which
combines Piecewise Linear Chaotic Map (PWLCM), Skew Tent Map (STM), and
Bernoulli Map in a parallel configuration. This approach allows for the generation
of high-quality pseudo-random sequences suitable for encryption while maintaining
low computational complexity. Unlike conventional encryption methods that oper-
ate at the bit or byte level, IEPSBP employs row- and column-based permutation
and diffusion techniques, significantly reducing the computational overhead required
for secure data transmission in IoT networks [35]. The algorithm is optimized for
low-power devices, enabling secure image transmission while minimizing energy
consumption, making it particularly suitable for Green IoT applications.

Despite their advantages, several implementation challenges must be addressed.
The trade-off between security strength and resource constraints means that light-
weight cryptographic algorithms must be carefully designed to resist common at-
tacks such as differential cryptanalysis, side-channel attacks, and man-in-the-middle
attacks [29]. For instance, while PRESENT (a lightweight SP-network cipher) pro-
vides strong security with a 31-round encryption process, its small key size (80-bit)
makes it vulnerable to brute-force attacks over time [36]. To address this, hybrid
encryption techniques that combine lightweight symmetric and asymmetric encryp-
tion have been proposed. For example, Elliptic Curve Cryptography (ECC) provides
a lightweight asymmetric encryption alternative with smaller key sizes than RSA
while maintaining comparable security levels. The combination of AES and ECC in
hybrid encryption models ensures faster processing for bulk data encryption, while
leveraging ECC for secure key exchange, thereby balancing security and efficiency in
IoT systems [14]. Such lightweight algorithms and hybrid models provide a scalable
approach to securing large-scale IoT networks, reducing latency while maintaining
end-to-end encryption.
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The development of lightweight cryptographic methods must focus on optimiz-
ing energy consumption, enhancing security resilience, and standardizing crypto-
graphic evaluation metrics. Research into Al-driven security adaptation can enable
the dynamic selection and adjustment of cryptographic schemes based on available
computational resources, ensuring optimal performance in diverse IoT environments.
Additionally, post-quantum cryptography is gaining attention as a potential solution
to future security threats posed by quantum computing advancements. Establishing
universal standards for lightweight encryption techniques will facilitate greater adop-
tion and interoperability, ultimately strengthening the security and sustainability of
IoT systems [19].

5.3 Secure data transmission and aggregation

In modern Internet of Medical Things (IoMT) applications, ensuring the secure
transmission and aggregation of healthcare data is a critical challenge due to the
sensitive nature of patient records and the necessity for real-time monitoring. Tra-
ditional cloud-centric architectures introduce high latency, bandwidth consumption,
and security risks, making them less suitable for real-time and privacy-sensitive ap-
plications. To address these challenges, Fog-assisted data aggregation has emerged as
a promising solution [18]. Fig. 5.2 shows the different layers in the IoT architecture
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lllustration of data transmission between loT devices, Edge Computing, Fog Computing and
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and the data transmission between the layers. Fog computing acts as an intermediary
between edge devices [37] and cloud servers, enabling local processing, encryption,
and compression before transmitting data to the cloud. This approach significantly re-
duces transmission delays, improves efficiency, and minimizes exposure to security
threats. In secure IoT-based healthcare networks, data is often aggregated at the edge
nodes, such as smartphones, wearable devices, or local fog servers, where encryption
techniques like Homomorphic Encryption, Attribute-Based Encryption (ABE), and
Secure Multiparty Computation (SMC) ensure privacy-preserving aggregation [18].

Privacy-preserving aware data aggregation (EPPADA), as proposed by Othman
et al. [38], integrates Homomorphic Encryption to secure medical data aggregation
while minimizing communication overhead and energy consumption. The system
ensures that medical sensors transmit encrypted data, which can be aggregated by
intermediate nodes without decryption, thus maintaining end-to-end confidentiality.
This approach effectively mitigates the risk of data interception and unauthorized
access during transmission. Furthermore, dual-prediction mechanisms are employed
to reduce the number of transmissions by only sending data when deviations from
predicted values occur, significantly lowering bandwidth consumption and energy
usage [38]. This aligns with green computing principles, ensuring sustainability while
enhancing security in IoT-driven healthcare applications.

In IoT-driven healthcare networks, blockchain-based mechanisms for secure data
aggregation enhance privacy, integrity, and scalability. Ahmed et al. propose an
Energy-Efficient Data Aggregation Mechanism (EEDAM) secured by blockchain
[19], which leverages fuzzy similarity clustering and sleep scheduling to optimize
network traffic, reduce data redundancy, and enhance security. This approach groups
sensor nodes with high data similarity to minimize redundant transmissions, while
blockchain technology is used to authenticate and validate aggregated data before
it is stored in the cloud. By integrating edge computing and decentralized architec-
tures, EEDAM enhances scalability, reduces computational overhead, and prevents
single points of failure [8,19,39,40]. Moreover, the use of blockchain-enabled smart
contracts ensures tamper-proof data storage and automated access control, preventing
unauthorized modifications while allowing secure, real-time data retrieval by medical
professionals.

Efficient data compression and deduplication techniques further enhance secure
data aggregation by reducing redundant transmissions and storage costs. As health-
care IoT devices continuously generate vast amounts of real-time data, it is crucial to
employ lightweight and scalable compression techniques such as TTTD-Huffman hy-
brid encoding, Secure Deduplication and Data Dissemination (S-DDD), and Slepian-
Wolf coding-based methods [18]. These techniques allow data to be efficiently com-
pressed at fog nodes, ensuring that only relevant and non-redundant information is
transmitted to the cloud. This approach not only reduces energy consumption and
bandwidth usage, but also enhances real-time analytics and decision-making for
critical healthcare applications. Furthermore, priority-based data transmission frame-
works such as those designed for non-delay-tolerant medical emergencies, allow
urgent data to be transmitted immediately, while non-critical data is compressed and
stored for later retrieval [18]. These strategies optimize network efficiency, reduce un-
necessary data loads, and contribute to the scalability and sustainability of IoT-driven
healthcare ecosystems.
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5.4 Privacy-preserving data analytics

With the increasing reliance on IoT-enabled healthcare systems, preserving data pri-
vacy while enabling efficient analytics remains a pressing challenge. Traditional
cloud-based architectures centralize IoT data, making them susceptible to privacy
breaches and high latency issues. Liang Zhao introduced a fog computing framework
that distributed data analytics across edge devices and fog nodes, reducing reliance
on the cloud and enhancing privacy [24]. Unlike centralized approaches, this method
keeps raw data at the edge, only sharing encrypted gradients and model parameters,
thereby preventing data leakage. A key component of this approach is the homo-
morphic encryption-based privacy-preserving protocol, ensuring that sensitive IoT
data remains secure during analytics processing. The security analysis in the study
demonstrates that an honest-but-curious adversary cannot infer raw data from en-
crypted updates, ensuring privacy without compromising analytical accuracy [24].

The kHealth framework, an IoT-based healthcare system, demonstrates how per-
sonalized health analytics models can be built while maintaining privacy [41]. In
such frameworks, Cryptographic Service Providers (CSP) are proposed as interme-
diary entities that manage secret keys and intermediate computations, reducing the
risk of data exposure to potentially honest but curious service providers. Another
promising approach is SMC, which allows multiple parties (such as hospitals or re-
search institutions) to jointly train machine learning models without revealing their
private datasets [41]. However, SMC requires extensive computational resources and
synchronized participation, limiting its scalability.

Another significant advancement in privacy-preserving IoT analytics comes from
deep learning-based methods. Bi et al. introduced a privacy-isolation zone at the user
end to separate Personally Identifiable Information (PII) from health-related sensor
data before uploading to the cloud [25]. This method ensures that only anonymized
health metrics are processed in the cloud, while privacy-sensitive behavioural data
such as gait patterns or voice characteristics are filtered locally. A non-privacy data
extraction algorithm, implemented via Convolutional Neural Networks (CNNs), en-
hances the security of extracted data while maintaining accuracy in health assess-
ments. The proposed approach is particularly useful in wearable healthcare technolo-
gies, such as smart earphones for posture monitoring, where head motion data must
be separated from identifiable gait signals to prevent unauthorized re-identification
[25]. The combination of deep learning and data isolation mechanisms provides a
scalable, privacy-enhanced framework for sustainable [oT analytics.

While encryption and anonymization techniques offer privacy benefits, they often
introduce computational overhead. The papers reviewed suggest a hybrid approach,
combining lightweight encryption, fog-based distributed analytics, and Al-driven
privacy protection to balance efficiency and security [24,25]. Edge computing and
fog-based privacy-preserving analytics provide a decentralized solution that mini-
mizes data exposure risks while improving real-time processing for sustainable IoT
systems. By reducing reliance on third-party cloud services and implementing secure,
distributed data-sharing protocols, these approaches significantly enhance privacy
protection in real-world IoT applications, particularly in healthcare, smart cities, and
industrial IoT ecosystems [41].
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5.5 Secure authentication methods

Authentication is a fundamental requirement in sustainable IoT systems to ensure
secure and reliable communication between devices, especially in privacy-sensitive
environments like healthcare [42]. Since medical sensor nodes are often deployed
in untrusted environments, they are vulnerable to data tampering, identity spoofing,
and man-in-the-middle attacks. To mitigate these risks, cryptographic schemes like
HMAC-based authentication, mutual authentication protocols, and session key gener-
ation techniques are implemented to validate the integrity of data before aggregation
[18]. Another approach is mutual authentication using hash functions and shared se-
crets, as explored in the Hybrid Logical Security Framework (HLSF), which employs
a three-phase authentication process involving device registration, mutual authenti-
cation, and secure data communication [27]. When a device joins the network, its
credentials are securely registered with a central Inventory Server (IS). During au-
thentication, the client device generates a hash of its identity combined with a nonce
and a shared key before sending an authentication request [27]. The IS verifies the
request and responds with its own hash-based verification, ensuring a bidirectional
authentication mechanism that prevents replay and impersonation attacks [27].

Another promising authentication method for green IoT is blockchain-based au-
thentication, which enhances security through decentralization. The BENIGREEN
authentication scheme uses blockchain technology to validate the legitimacy of sen-
sor nodes before allowing them to participate in data transactions [26]. Instead of
relying on a centralized authentication authority, this scheme assigns each node a
pseudo-identity and dynamically updates authentication keys at predefined time in-
tervals. The authentication process ensures that only verified nodes can communicate
with others, mitigating risks such as Sybil attacks and identity spoofing. Addition-
ally, the system employs certificate revocation to prevent compromised nodes from
accessing the network, further enhancing security [26].

RFID-based authentication is another mechanism that can be integrated into IoT
ecosystems to facilitate secure access control. RFID technology enables automatic
identification and tracking of devices or assets within IoT networks, including smart
agriculture and green IoT applications. A lightweight anonymous RFID authentica-
tion scheme has been proposed to enhance privacy by using pseudo-identities, emer-
gency keys, and cryptographic hash functions [28]. This scheme effectively defends
against common security threats such as replay, cloning, and location-tracking at-
tacks. Moreover, RFID authentication can be combined with cloud-based verification
to ensure scalability and seamless device management across large IoT deployments
[28].

Delegated authentication is another key strategy for securing IoT-based commu-
nication, particularly when data is transported via untrusted public networks [28].
A Semi-outsourcing Privacy-Preserving authentication scheme allows authentication
tasks to be offloaded to intermediate cloud nodes while ensuring the integrity and con-
fidentiality of IoT data [28]. This scheme leverages ECC to enable non-interactive au-
thentication, significantly reducing computational overhead for resource-constrained
IoT devices. By delegating authentication responsibilities to trusted public clouds,
the approach provides a balance between security and efficiency, ensuring that only
legitimate devices gain access to IoT networks while mitigating unauthorized access
attempts [28].
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5.6 Conclusion

The increasing adoption of IoT has enhanced efficiency and connectivity across var-
ious domains while also introducing security and privacy challenges. Addressing
these concerns requires a combination of robust encryption, secure data transmission,
privacy-preserving analytics, and strong authentication mechanisms.

As discussed in this chapter, effective security strategies include lightweight
encryption to balance security and computational efficiency, secure transmission
methods such as fog computing and blockchain-based solutions to protect data in-
tegrity, and privacy-preserving analytics using federated learning and homomorphic
encryption to enable safe data processing. Authentication mechanisms, including
blockchain-based authentication, RFID-based solutions, and delegated authentica-
tion, play a crucial role in preventing unauthorized access and ensuring trust within
IoT ecosystems.

A comprehensive approach to IoT security involves integrating these measures
while adapting to emerging technologies. Future research should focus on scalable
security frameworks, Al-driven threat detection, and post-quantum cryptography to
strengthen IoT resilience. Implementing these strategies will support the sustainable
and secure expansion of [oT applications across industries.
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6.1 Introduction

In the 6G era, there is vast growth in industrial applications, smart cities, Intelligent
Transportation Systems (ITS), smart agriculture, and smart healthcare [1]. All these
applications are governed under the umbrella of Internet of Things (IoT) networks.
For the seamless operation of each application, the IoT ecosystem must ensure both
scalability and sustainability to accommodate the increasing connectivity demands
and long-term efficiency. Traditional IoT architectures rely on fixed, hardware-centric
infrastructures that lead to inefficient power usage, increased operational costs, and
a high carbon footprint. As a next-generation communication paradigm, 6G strides
toward addressing these sustainability concerns by leveraging Artificial Intelligence
(AI), Network Function Virtualization (NFV), Software-defined Networking (SDN),
and Software-defined Radios (SDRs) to build a more energy-efficient, scalable, and
adaptive IoT ecosystem [2].

One of the main challenges in IoT sustainability is high energy consumption.
Many IoT applications, particularly in remote, rural, and industrial environments,
rely on battery-operated devices. These devices need to function for extended pe-
riods with minimal energy usage. Such devices should be capable of operating for
long periods while consuming less energy. Consequently, the widespread deploy-
ment of IoT sensors, edge devices, and gateways necessitates an effective approach
to power management. Inefficient energy utilization increases maintenance costs and
compromises environmental integrity. Additionally, spectrum scarcity and inefficient
resource allocation further limit the potential of IoT networks, especially Multi-Radio
Access Technologies (Multi-RATs) [3]. Multi-RATs include Narrow Band [oT (NB-
I0T), Long Term Evolution for Machines (LTE-M), Long Range (LoRa), and 5G,
operating simultaneously one or more. Traditional hardware-related network solu-
tions are rigid and do not efficiently allocate resources on demand across different
IoT applications, leading to inefficient spectrum usage and hardware redundancy [4].

Design and Analysis of Green and inable IoT Technologies for Future Wireless Communications 1 09
https://doi.org/10.1016/B978-0-44-333000-1.00011-0
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Radio access network with (right) and without (left) virtual radio implementation.

To tackle these sustainability challenges, 6G-enabled Al-driven SDRs and virtu-
alization techniques are the potential alternatives. The integration of 6G and Al in
the domain of virtualization offers adaptive, programmable, and energy-efficient IoT
network solutions. SDRs replace traditional fixed-function radio hardware with re-
configurable, software-controlled systems, enabling seamless adaptation to different
IoT communication standards without requiring separate hardware infrastructures for
each RAT. As a result, it reduces power consumption, enhances spectral efficiency,
and minimizes infrastructure costs. Additionally, NFV and SDN enable the dynamic
allocation of network resources, ensuring that [oT connectivity remains sustainable,
cost-effective, and scalable.

SDR-based virtualization benefits in reducing hardware redundancy. Since a vir-
tual logical network could be created over a single hardware platform. The physical
layer parameters could be adaptive based on the RAT through an SDN. In traditional
IoT deployments, multiple base stations or gateways are required to support different
RATsS, leading to hardware redundancy and excessive energy consumption. By virtu-
alizing SDRs, a single Remote Radio Head (RRH) can dynamically switch between
multiple RATSs (e.g., NB-1oT, LTE, 5G, V2X) based on network demand. Fig. 6.1 de-
picts the SDR-based virtualization to enable each standard. This eliminates the need
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for separate infrastructure for different RATSs. Al-driven dynamic resource allocation
further enhances the sustainability of IoT networks by intelligently managing spec-
trum allocation, transmission power, and network slicing in real time. This enables
IoT applications to efficiently balance energy efficiency, latency, and data throughput
based on contextual requirements [5].

The need for Multi-RAT support in IoT networks is becoming increasingly hot
as heterogeneous IoT network users demand diverse services. These diverse services
include High-Definition (HD) streaming, Virtual Reality (VR), Augmented Reality
(XR), and remote driving. Each service has its own Key Performance Indicators
(KPIs), such as throughput, guaranteed bandwidth, transmission power, and reliabil-
ity. To enable such diverse services, different physical layer technologies are required,
such as Orthogonal Frequency Division Multiplexing (OFDM) / Non-Orthogonal
Frequency Multiple Access (NOMA). Each RAT has its own physical layer design
tailored to its specific requirements [6]. In a typical smart city or industrial IoT
deployment, different IoT applications may require low-power connectivity (e.g.,
NB-IoT, LTE-M), broadband access (e.g., 5G), Ultra-Reliable Low-Latency Com-
munication (URLLC), or integration with satellite-based Non-Terrestrial Networks
(NTN) solutions. However, traditional networking architectures struggle to efficiently
accommodate these diverse requirements. Traditionally, each RAT has its dedicated
physical infrastructure, leading to unnecessary hardware deployment and scalability
issues. For example, fixed infrastructure allocation can be inefficient, as demand for
specific services fluctuates over time. Some services may require more resources at
certain times, while others remain underutilized. By leveraging SDR-based virtual-
ization, IoT networks can achieve seamless multi-RAT support through Al-driven
spectrum management, dynamic RAT selection, and intelligent power optimization
[7].

In this chapter, we explore how SDR-based virtualization can revolutionize IoT
sustainability by enabling dynamic, software-driven network architectures. We begin
by discussing the fundamentals of SDRs and network virtualization in the context
of IoT, followed by an in-depth analysis of Al-driven multi-RAT support, energy-
efficient resource allocation, and network slicing for sustainable IoT networks. Addi-
tionally, we examine the role of Al in optimizing virtualized SDR networks, ensuring
low power consumption, seamless connectivity, and intelligent spectrum manage-
ment. Finally, we highlight key challenges and future research directions for achiev-
ing a green and sustainable IoT ecosystem in 6G and beyond.

6.2 Fundamentals of Software-Defined Radios (SDRs) and
virtualization

The advent of wireless communication has opened the gates for the creation of
more flexible, multidimensional, and power-effective networking techniques. SDRs
are instrumental in bringing about such a change by substituting the conventional
hardware-based radio systems with software-defined reconfigurable architectures [8].
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Whereas traditional radios are designed to work on pre-configured frequency and
modulation modes, SDRs offer the flexibility to modify parameters like frequency
bands, transmit power, and modulation schemes in real-time via software updates.
Such programmability renders SDRs as the perfect choice for multi-RAT use cases,
where one hardware platform can cater to various communication standards like 5G,
NB-IoT, LTE-M, V2X, NTN, and Wi-Fi.

The requirement of sustainability in IoT networks is promoting the use of SDRs
since they lessen the dependency on hardware, decrease infrastructure expenditure,
and enhance spectral efficiency. Through the cognitive radio feature, SDRs can
intelligently sense free frequency bands and dynamically assign resources, hence
guaranteeing maximum spectrum usage while reducing energy consumption. This is
especially important in large-scale IoT deployments, where billions of interconnected
devices demand energy-efficient and scalable communications [9]. SDRs provide on-
demand reconfiguration of IoT networks, adjusting to evolving network conditions
and traffic loads without the cost of hardware upgrades.

To enhance the performance of SDR networks, virtualization technologies such
as NFV and SDN have been proposed as facilitators of sustainable IoT paradigms.
NFV allows the implementation of traditional network functions as software-based
services on standard hardware, thus reducing the need for specialized physical infras-
tructure. By virtualizing network elements like firewalls, routers, and base stations,
IoT networks become more scalable, cost-effective, and energy efficient. Similarly,
SDN decouples the control plane and data plane, managing the networks in a central-
ized way and intelligently steer the traffic [10].

Employing virtualization, an SDR can support multi-RAT environments in a sin-
gle hardware deployment. By combining virtualized SDRs, NFV, and SDN, network
operators can deploy one RRH that can switch dynamically between various commu-
nication standards. This feature provides end-to-end connectivity for IoT use cases
demanding low-power wide-area connectivity (LoRa, NB-IoT), broadband connec-
tivity (5G), or URLLC.

Virtualized SDRs provide several key benefits for green IoT networks, with
power-efficient spectrum utilization being one of the most significant. Al-powered
cognitive networking techniques enable dynamic spectrum allocation, optimizing the
use of frequency resources. Traditional wireless networks often suffer from inefficient
spectrum utilization, where some frequency bands remain underused while others
become overcrowded. Virtualized SDRs address this limitation by sensing real-time
spectrum demand and dynamically allocating bandwidth, allowing IoT devices to
transmit at optimal energy levels.

IoT service demand-based dynamic reconfiguration is another key aspect of SDR
virtualization. IoT applications pose varying communications demands, from low-
power periodic data transfer (smart metering, environmental monitoring) to high-
bandwidth real-time processing (industrial control, autonomous vehicles). Virtual-
ized SDRs can dynamically adapt transmission parameters, power levels, and RAT
selection according to the demands of each IoT application. This flexibility makes
smart cities, healthcare systems, and industrial Internet of Things systems operate
more effectively, consume less power, and lower operational costs.
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Additionally, SDR virtualization enables network slicing and multi-tenancy, in
which multiple IoT service providers use a shared virtualized infrastructure. Each
provider has an isolated, independent network slice tailored to their specific applica-
tion. This enables a cost-effective deployment of IoT networks as the infrastructure
investments can be shared and optimized across various applications and industries

[11].

6.3 Sustainable loT networks with SDR virtualization

The sustainability of IoT networks depends upon optimized resource utilization.
Virtualized SDRs significantly reduce energy consumption through adaptive power
control and intelligent waveform selection. Unlike traditional networks, where ra-
dio transmitters work with fixed-power levels. Further, the integration of Al allows
IoT devices to utilize resources more efficiently. Al-enabled framework distribute the
radio resources fairly among the virtual radios employed over the SDR [12].

SDR virtualization, coupled with Al, supports green network slicing to enhance
IoT sustainability. Demand-oriented IoT resource allocation can be enabled, ensur-
ing that low-power IoT applications receive the minimum bandwidth required, while
high-performance applications obtain sufficient resources without excessive energy
consumption [13].

6.4 Multi-RAT virtualized Remote Radio Head (RRH) for 6G
loT

The rising demand for scalable, energy-efficient, and flexible wireless communica-
tion infrastructure has driven the evolution of Multi-RAT virtualized RRHs [14].
Unlike traditional networks, where each RAT—for instance, NB-IoT, LTE-M, 5G,
V2X, and NTN requires its dedicated radio access infrastructure, thereby leading
to considerable hardware redundancy, high power consumption, and poor spectrum
utilization, software-defined radios (SDRs) and virtualization technologies enable a
single virtualized RRH to flexibly switch multiple RATSs to enhance the efficiency,
sustainability, and cost efficiency in networking. Such shifts will form the basis for
the development of 6G-enabled IoT networks, where the requirements for heteroge-
neous connectivity must be fulfilled with the least possible energy usage and costs
[15].

6.4.1 Concept of a virtualized RRH for loT

A virtualized RRH is characterized as a flexible radio access unit operating over mul-
tiple RATs and dynamically responsive to the communication requirements of IoT
applications [16]. Traditionally, dedicated base stations are designed for certain wire-
less standards, each works on a fixed frequency band and protocol. This often results
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in energy wastage and severely limited scalability. Using SDR-based virtualization,
any RRH can provide support for multiple RATs efficiently, thereby allowing IoT de-
vices to connect whenever needed by using the most efficient connectivity standard
[17].

An I0oT sensor network for smart city development, for example, can very well
use NB-IoT and LTE-M for low-power, long-range communication. Real-time video
surveillance or autonomous vehicles could be supported with 5G or 6G millimeter-
wave communications by switching RRH. The RRH can also incorporate NTN-based
satellite communication for remote communication and to enable continuous con-
nectivity for IoT. This unique capability to dynamically allocate RATSs enables the
operators to optimize infrastructure costs and spectrum efficiency.

Al-driven dynamic RAT selection

The Al-oriented RAT selection is one of the very powerful features of a virtualized
RRH [18]. Different IoT applications have diverse requirements for data rate, latency,
reliable delivery, and energy consumption. Al-based decision-making frameworks
could analyze the network condition, node mobility, traffic load, and existing power
availability and select the most suitable RAT in real time. For example, Al can clas-
sify IoT traffic into different categories:

— Low-power, delay-tolerant applications (e.g., smart meters, environmental sen-
sors) characterized under NB-IoT or LTE-M.

— Ultra-reliable low-latency applications (e.g., autonomous vehicles, remote
surgery) characterized under 5G URLLC.

— High-bandwidth applications (e.g., drone-based video streaming, XR/VR for
IoT) characterized under 6G mmWave or Terahertz bands.

— IoT deployments in remote areas (e.g., maritime IoT, disaster recovery) charac-
terized under NTN (LEO satellites, HAPs, UAV relays).

The adaptive selection of the RAT ensures sustainability towards IoT networks while
giving resilience and scalability for a variety of applications, each configured through
scalable QoS, without wasting energy or over-provisioning resources.

6.4.2 Hardware and architecture of virtualized SDR-based RRH

The implementation of virtualized RRHs involves both SDR hardware along with
Al-enabled network management and virtualization on cloud computing. Unlike tra-
ditional RRHs, which rely on dedicated, static radio hardware, the virtualized SDR-
based RRH consists of flexible radio front-end, reconfigurable baseband processing,
and intelligent spectrum management [19].

Virtualized RRH with dynamic waveform adaptation

Another fundamental capability of a virtualized RRH is its direct adaptability of
the waveforms instantaneously based on the RAT in operation. In a legacy central-
ized system, distinct RAT uses different waveform structures (OFDM in 5@, Single
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Carrier Frequency Division Multiple Access (SC-FDMA) in LTE, and narrowband
modulations in NB-IoT). The RRH, through the use of SDR technology, is free to
dynamically modulate and demodulate the signal, thereby allowing for the use of
many different standards and without a need for hardware modifications [20].

Along with Al-based waveform adaptation, this ensures that higher energy effi-
ciency is maintained, as the most power-efficient transmission mode is selected in
real time according to prevailing network conditions. For example, during low-traffic
conditions, the RRH can adopt low-power waveforms with reduced transmission
bandwidth, conserving energy before resuming normal operational settings when
needed [21].

Efficient spectrum sharing and low-power SDR base stations

Spectrum efficiency is crucial for sustainability in IoT networks. The conventional
usage of pre-allocated spectrum bands in cellular networks leads to inefficient spec-
trums and interference problems. The virtualized RRH allows the dynamic spectrum
access, where idle frequency bands could be reallocated to active IoT devices, thus
reducing the wastage of spectrum while enhancing the overall efficiency of networks
[22].

Low-power software-defined radio base stations can also be established within
the virtualized RRH structure to serve a localized IoT cluster such as smart factories,
connected transportation hubs, and industrial automation zones. These light-weight,
software-defined base stations work from optimized power to severely limit the car-
bon footprint of traditional cell towers while providing custom network slices for IoT
applications.

6.4.3 Use cases of virtualized multi-RAT RRH in loT

Dynamic NB-loT and 6G network allocation

Smart cities rely on various heterogeneous deployments of IoT, involving environ-
mental sensor, traffic management systems, public safety networks, and energy grids
[23]. To fully utilize the resources efficiently, virtualized RRH enables NB-IoT con-
nectivity to the low-data applications and 5G connectivity to high-data applications
such as real-time surveillance.

Multi-RAT support for vehicular communication

To support autonomous vehicles connectivity two major technologies have been in-
troduced such as IEEE 802.11P in 2010 and Cellular Standard C-V2X in 2017. Later,
802.11P evolved to 802.11bd and C-V2X to NR-V2X. To provide interoperability, a
virtualized RF end could be utilized [24]. Also, based on the applications the network
traffic load could be shifted among the technologies. These heterogeneous technolo-
gies could be enabled by virtualization over a single hardware. By enabling dynamic
RAT switching, virtualized RRHs significantly enhance road safety and network sus-
tainability.
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Satellite-based NTN for loT

Many IoT applications demand connectivity in areas that are remote, offshore, or
disaster-prone where terrestrial networks are unavailable. NTN-based IoT commu-
nication, facilitated by LEO satellites, HAPs, and UAV relays, plays a vital role in
ensuring global IoT coverage [25]. A virtualized RRH may integrate satellite-based
RATs that complement terrestrial networks 5G and NB-IoT to allow IoT devices to
seamlessly switch from terrestrial to satellite communication links, as depicted in
Fig. 6.2. As an example, this includes an IoT-enabled maritime monitoring system.
Using NB-IoT connectivity while near coastal areas and switching to satellite-based
NTN when in deep-sea locations. This type of model guarantees continuous connec-
tivity, reduced satellite bandwidth costs, and enhanced power conservation.

Virtulaized Heterogeneous Multi-RAT Technology

LEO Satellite UAV Relay

Virtualized SDR-based RRH

@ loT Devices / Maritime System - (]
£~  e.g. Sensors and Ships

FIGURE 6.2

Virtualized heterogeneous Multi-RAT to support low-latency space—air-ground communica-
tion.

6.5 Al-driven dynamic resource allocation for sustainable
loT SDR networks

The use of artificial intelligence and machine learning in the virtualization of
software-defined radio is an essential step toward energy-efficient, adaptive intelli-
gent resource allocation in sustainable IoT networks. Conventional resource alloca-
tion techniques in wireless networks depend on pre-fixed rules and static policies,
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which yield suboptimal performance, resulting in ineffective spectrum utilization
and high-power consumption [26]. The enormous growth of 6G IoT networks en-
compasses Al-driven dynamic resource allocation, offering real-time optimization,
efficient network slicing, and maximum security, with low-latency, high-reliability
for various IoT applications.

Al techniques such as Reinforcement Learning (RL), Federated Learning (FL),
and deep neural networks further enhance the SDR-based virtualized networks [27].
IoT networks learn from data, adapt to changes, and dynamically deploy resources,
enabling multiple RAT-based SDR networks to be efficient and sustainable. In addi-
tion, Al-based anomaly detection and blockchain-based security framework further
enhance virtualized IoT networks considering reliability and security.

6.5.1 Machine learning for efficient SDR virtualization
Reinforcement Learning (RL) for adaptive radio resource management

RL refers to a machine learning paradigm wherein an agent learns how to achieve its
objective through trial and error by interacting with the environment. Based on real-
time network conditions, SDN-based IoT networks can dynamically allocate radio
resources, like spectrum management and power optimization in real time [27], [28].

Unlike traditional scheduling algorithms that use static spectrum policies, the
dynamic adjustment of transmission parameters, power levels, and frequency alloca-
tions by means of RL-based resource management aims at increasing efficiency while
minimizing energy consumption. For example, in a multi-RAT IoT deployment, RL
can:

— Predict network traffic patterns and provision bandwidth before congestion oc-
curs.

— Modify IoT transmission power in response to proximity to other devices and
interference from the environment.

— Choose the best RAT in terms of energy efficiency (e.g., NB-IoT for low power
consumption, 5G for very high-speed data) in accordance with the demand of
the network.

— Using RL-based SDR virtualization may allow IoT networks to self-optimize
this process in real time, minimizing the need for human intervention and reduc-
ing energy losses and operational costs.

Federated Learning (FL) for distributed Al-based loT networking

FL is a decentralized Al training in which multiple IoT devices and base stations can
collaboratively train AI models without exchanging sensitive data. FL is thus a deter-
minant in preserving privacy, energy efficiency, and Al-based resource management
when applied in the context of SDR-based virtualized IoT networks.

FL permits limited distribution learning on all the IoT edge devices, such that
SDR networks learn using localized data without relying on cloud-based computation
that incurs high latency and energy costs [29]. Some of the advantages of FL in SDR
virtualization include:
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— Decentralized training for artificial intelligence models, which diminishes the
level of congestion in the network and energy usage.

— Spectrum allocation while remaining private, with IoT devices optimizing radio
parameters locally without open exposure of sensitive data.

— Modification of higher priority PLMN selection to include shared Mobile Coun-
try Code (MCC).

— Increased the accuracy of Al models through collaboration with many IoT nodes.

With the implementation of FL-sustained SDR networks, IoT operators are able to
achieve scalable, adaptive, and extremely energy-efficient virtualized IoT connectiv-
ity, especially in smart and city, industrial automation, and remote IoT deployments.

6.5.2 Optimizing loT network slices with Al
Energy-efficient scheduling for loT edge and core networks

Al-enabled scheduling algorithms will allow for efficient, dynamic task allocation in
energy-efficient modes between edge and core network layers in SDR-based virtual-
ized IoT networks [30]. Instead of processing all IoT-generated data on a centralized
cloud server, Al-based scheduling will ensure that only high-priority tasks are relayed
to the core, while routine, low-latency tasks are executed at the edge.

For example:

— ToT sensors in smart cities can process local temperature readings themselves
instead of clouds receiving raw data.

— Industrial IoT (I-IoT) applications can delegate real-time control tasks to SDR-
based edge networks to relieve processing delays.

— V2X networks allow for intelligent switching between depending on low-latency
applications using edge processing or cloud Al inference through an intelligent
system.

Al-enabled performing based processing distributions optimize energy usage and en-
sure low latency and reduced unnecessary data transmission between SDR-enabled
IoT edge devices and centralized cloud networks [31].

Al-based QoS-aware dynamic RAT switching

Quality-of-Service (QoS) needs from various applications in the context of 6G IoT
networks vary widely [32]. Smart agriculture sensors, autonomous vehicles, indus-
trial automation, and AR/VR IoT applications require different levels of data rates,
latency, and reliability. Dynamic RAT switching using Al ensures that:

— Low-power IoT devices maximize energy savings through NB-IoT/LTE-M.

— Ultra-low latency applications (for example, V2X, AR/VR) can switch to 5G or
6G when needed.

— Tasks that require high bandwidth demands (for example, video streaming, Al
inference at the edge) can leverage the higher frequency mmWave/Terahertz
bands.
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The Al-based RAT switching makes real-time traffic analysis, predictive modeling,
and reinforcement learning to connect IoT devices with the most energy-efficient
and QoS-compliant RAT in real time, which leads to optimized spectral efficiency,
minimal energy waste, and smooth connectivity for various IoT applications [33].

6.5.3 Security and privacy in virtualized loT SDR networks
Al-driven anomaly detection for energy-efficient security

With the virtualization of SDRs into the IoT, security threats have become more
complex, such as signal jamming, unauthorized spectrum access, and cyber-attack.
Traditional signature-based Intrusion Detection Systems (IDS) are ineffective in han-
dling the large volume and diverse data generated by SDRs [34]. Al-based anomaly
detection overcomes this, employing:

— Machine learning models trained on network traffic behavior to flag suspicious
patterns.

— An energy-efficient security mechanism to automatically mitigate malicious ac-
tivities with light computational loads.

— A self-adaptive security algorithm that changes over time, dynamically discov-
ering new attack.

Through Al-based security monitoring, virtualized SDRs can keep detecting and mit-
igating threats continuously while consuming less power and a small computational
load.

Blockchain-based secure network slicing for loT and 6G

Network slicing in SDR-based virtualized IoT networks allows the creation of iso-
lated logical networks for different applications [35]. Maintaining slices with security
and privacy turns into a difficult task, mainly due to multi-tenancy and the dynamic
nature of resource allocation. Blockchain technology offers the decentralized and im-
mutable integrity framework for enhancing SDR-based network slicing by:

— Ensuring the resource allocation records are transparent.

— Preventing unauthorized access to the network slices through cryptographic au-
thentication.

— Making use of smart contracts for automatic policy-based execution in network
configuration.

Therefore, blockchain and SDR integration safeguard IoT operators in ensuring se-
cured virtualized networks by preventing them from cyber-attacks.

6.6 Challenges and future research directions

Since SDR-based virtualization are being evolved, some challenges need to be tack-
led to achieve scalable, energy-efficient, and ideally secure IoT networks. While SDR



120 CHAPTER 6 Achieving the sustainability in loT network

virtualization does provide multi-RAT flexibility, spectrum efficiency, and adaptive
resource management, issues related to interference, hardware efficiency, URLLC,
and integration with 6G NTN remain key areas for future research.

This section discusses the major technology-related challenges in deploying SDR-
based virtualized IoT networks and discusses possible research directions that can
help overcome these limitations.

6.6.1 Interference management in virtualized multi-RAT SDR

The prime challenge in SDR-based virtualized networks is interference management,
especially when multiple RATs are operating simultaneously. Unlike in traditional
networks, each RAT operates over pre-defined frequency bands [36]. However, multi-
RAT SDR virtualization allows dynamic spectrum sharing, thereby increasing the
probability of co-channel interference, internal RAT collision, and adjacent channel
leakage.

Challenges

— The coexistence of varied radio access technologies results in interference, low-
ering performance on the SDR platform.

— Adaptive waveform switching for SDRs can generate unwanted harmonics and
intermodulation distortion and lower spectral efficiency.

— Advanced detection and mitigation of noise sources, such as IoT devices, legacy
wireless systems, and NTN communications, need to be developed.

Future research directions

— Al-Powered Interference Prediction: Machine learning models analyze spec-
trum utilization patterns and proactively devise allocations to non-overlapping
resources to different access technologies [37].

— Dynamic Spectrum Access (DSA) Strategies: Cognitive software-defined radio
using artificial intelligence is capable of performing real-time frequency hopping
and adaptive power control to mitigate interference [38].

— Multi-Agent Reinforcement Learning (MARL) for Spectrum Coordination: Al-
based multi-agent frameworks can enable collaborative interference manage-
ment, allowing SDR nodes to autonomously negotiate spectrum access in dense
IoT environments.

6.6.2 Energy-efficient SDR hardware for loT and V2X

Although SDR virtualization reduces hardware dependence, power consumption is
one of the major challenges for IoT edge devices and vehicular networks (V2X).
SDRs for real-time waveform processing require highly accurate Digital Signal Pro-
cessing (DSPs) and Field-programmable Gate Arrays (FPGAs), which in many cases
results in excessive power consumption and thermal dissipation [39].
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Challenges

— Computational overhead increases power consumption on SDR-based IoT de-
vices and reduces battery life.

— The high-energy requirements results in setbacks for deployment in low-power
IoT scenarios.

— Vehicular networks (V2X) need ultra-fast SDR-based signal processing tech-
niques to maintain low latency with energy efficiency.

Future research directions

— AI-Optimized SDR Hardware Acceleration: Machine learning algorithms can
optimize signal processing pipelines, thus reducing computational redundancy
and wastage of energy.

— Building Ultra-Low-Power SDR Chips: Building specialized SDR hardware
with built-in Al acceleration (e.g., neuromorphic computing, Al-driven DSP)
can significantly reduce energy consumption in IoT applications.

— Green SDR Hardware Architectures: Energy-harvesting SDRs that use solar, RF,
or kinetic energy can improve sustainability in remote loT deployments [40].

6.6.3 Al-driven RAT selection for ultra-reliable low-latency loT
(URLLC loT)

With URLLC connectivity for communications, such as that between connected cars,
industrial automation, and mission-critical 10T, requires delays as low as 1 ms and
reliability levels of more than 99.999% [41]. It is essential to apply Al to the selection
of RATs to ensure that communication for URLLC IoT applications occurs through
the most reliable and low-latency service standards at any point in time. However,
achieving real-time Al-based RAT switching while maintaining reliability and energy
efficiency remains a challenge.

Challenges

— Real-time decision-making for RAT selection requires ultra-fast Al inference,
which increases the computational demands.

— Switching between RATS introduces transient latency, which could affect time-
sensitive applications such as autonomous driving and remote surgery.

— Ensuring network reliability in high-mobility environments (such as V2X,
UAVs, and industrial IoT) provides a great challenge when trying to achieve
seamless integration among multiple RATs.

Future research directions

— Deep Reinforcement Learning (DRL) for Real-Time RAT Selection: AI models
trained on large IoT traffic datasets can predict network conditions, allowing for
proactive RAT switching before link degradation occurs.

— Al-Based Proactive Handover Mechanisms: Applying predictive handover tech-
niques based on Al-driven policy (for vehicles, drones, and mobile robots) al-
lows to further improve URLLC reliability.
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— Al-enabled Network Slicing for URLLC Applications: Al-based dynamic net-
work slicing allows prioritization of URLLC traffic above other IoT services to
secure ultra-low-latency connectivity [42].

6.6.4 SDR virtualization for 6G NTN & space communications

NTN, including Low Earth Orbit (LEO) satellites, High Altitude Platforms (HAPs),
and Unmanned Aerial Vehicles (UAV) based relay networks, are becoming integral
components of 6G IoT architectures. SDR virtualization will enable seamless in-
tegration between terrestrial and space-based IoT networks, but still has enormous
challenges to overcome.

Challenges

— Dynamic radio environment in NTN makes SDR-based waveform adaptation
complex, whereas Doppler shifts, propagation delays, and signal blockages vary
for satellite and aerial platforms.

— Limited energy resources in space-based IoT platforms make power-efficient
SDR virtualization critical for extending the lifetime of satellites.

— Interference and spectrum coordination of terrestrial and NTN IoT networks re-
quire Al-aided spectrum-sharing techniques and advanced strategies.

Future research directions

— Al-Driven SDR Virtualization for NTN Spectrum Management: Cognitive SDR
systems driven by Al can adapt to the modulation and coding scheme accord-
ing to dynamic factors like satellite trajectory, weather conditions, and spectrum
availability.

— SDR-Enabled Multi-RAT NTN Connectivity: Virtualized SDRs implemented on
LEO satellites and UAVs can extend cross-domain connectivity by dynamically
switching between NTN 5G, THz communications, and terrestrial [oT networks.

— Energy Efficient SDR Platforms for NTN: Energy-saving techniques include Al-
powered sleep scheduling, dynamic beamforming, and adaptive power control
[43].

6.7 Conclusions

The evolution to 6G-based IoT networks demands scalable, energy-efficient, and
intelligent solutions to cater to the increasing complexity of heterogeneous IoT ap-
plications. SDR-based virtualization and Al-powered resource allocation provide a
breakthrough solution to achieve sustainability demands, enabling dynamic spectrum
utilization, hardware dependency minimization, and power efficiency optimization.
This chapter covers how SDR virtualization is used to develop Multi-RAT interop-
erability for enabling an NB-IoT, LTE, 5G, V2X, and NTN capability using a single
piece of hardware.
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Al-optimized dynamic resource allocation, one of the key enablers of SDR-based
sustainable IoT, dynamically optimizes network slicing, RAT selection, and energy-
aware scheduling. RL-FL integrated solution supports real-time adaptation to net-
work conditions, ensuring low-latency, high-reliability connectivity for autonomous
vehicle, industrial automation, and smart city infrastructure use cases. Al-aided in-
terference management and waveform adaptation also optimize spectrum efficiency,
ensuring seamless communication in IoT-rich environments. Though it has benefits,
some challenges still exist, such as handling interference in virtualized multi-RAT
SDRs, enhancing energy efficiency in hardware implementations, providing ultra-
reliable low-latency communication (URLLC) for mission-critical use cases, and
incorporating SDR virtualization into 6G NTN-based IoT deployments.

Future work should concentrate on the design of ultra-low-power SDR chips,
Al-driven proactive RAT switching, and blockchain-secured network slicing for
improved network security, power efficiency, and decentralized trust management.
Through evolving 6G networks, SDR virtualization, Al automation, and NTN-based
connectivity will shape the future of green IoT ecosystems. Self-optimizing, intel-
ligent, and energy-efficient SDR architectures, when incorporated into future IoT
infrastructures, have the potential to achieve seamless global connectivity, carbon
footprint reduction, and enhanced network resilience to establish a greener, smarter,
and adaptive future IoT.
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7.1 Introduction

In the past years, there has been an increasing demand of IoT devices in various ar-
eas such as smart applications and industrial automation. With this increase brings
a challenge to produce energy and spectral efficient solutions for long-term sustain-
ability. This section explores and identifies, deep reinforcement learning (DRL) based
solutions to identify optimized solutions in terms of energy and spectrum efficiency.

7.1.1 Background and motivation

The paradigm shift from 5G to 6G era enabled concepts such as self-organizing net-
works (SONs) and self-sustainable networks (SSNs). Applications like smart cities,
ultra-massive machine-type communication (umMTC), and ubiquitous instant con-
nectivity are now building on these advancements being brought up by the 6G regime.
In this context, the Internet of things (IoT) [1] enables intelligent communication with
multiple objects interacting with each other seamlessly. This has interconnected rang-
ing of areas from healthcare to agriculture, by enhancing decision making accuracy
and increasing efficiencies. With the growth of IoT devices, there is an increasing
demand of higher data rates, connectivity and reliability. The arrival of 6G networks
is set to revolutionize IoT while supporting countless devices and applications.

In earlier generations, orthogonal frequency division multiple access (OFDMA)
[2] has been widely used in various IoT and 6G models and applications. In OFDMA,
bandwidth is divided into orthogonal subcarriers. Each subcarrier is assigned to a sin-
gle user at any given time, minimizing inter user interference and providing flexibility
in resource management. However, a major drawback of OFDMA is the strict or-
thogonality of the limited number of subcarriers that can be used simultaneously.
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6G-enabled loT ecosystems.

To overcome these limitations, non-orthogonal multiple access (NOMA) [3] has
emerged as a promising solution. It offers superior spectral and energy efficiency,
particularly in environments with diverse user requirements. NOMA uses power do-
main multiplexing and successive interference cancellation (SIC) at the receiver. This
allows multiple users to share the same spectrum resources efficiently. This approach
not only increases the number of supported users, but also improves spectrum utiliza-
tion. A comparative analysis in [4] demonstrates that NOMA outperforms OFDMA
in both spectral efficiency (SE) and energy efficiency (EE) under various network
configurations (Fig. 7.1).

Recent studies have explored the integration of NOMA with cognitive radio (CR)
to improve SE and EE. In [5], a framework integrating CR-NOMA with simultaneous
wireless information and power transfer (SWIPT) is proposed, focusing on improv-
ing SE by optimizing the sensing sub slot. Similarly, [6] examines downlink multiple
input multiple output (MIMO) NOMA systems, leveraging different linear beam-
forming strategies to enhance power allocation across user clusters, thereby achieving
maximum sum of SE. Moreover, [7] proposes an energy harvesting (EH) incremen-
tal relaying NOMA protocol (IR-EH-NOMA) and analyzes its throughput. It derives
analytical expressions for throughput under delay-limited transmission, considering
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imperfect SIC and optimal power splitting at the relay. In addition, the authors in
[8] focused on optimizing throughput in IoT networks by introducing a power al-
location strategy tailored for NOMA systems. They used Lagrange multipliers and
Karush—Kuhn-Tucker (KKT) to optimize channel capacity while catering constraints
like Nakagami-m fading channels. Though efficiency, these methods face significant
challenges, including high complexity and increased power consumption by users.
Therefore, with growing advancements in intelligent machines learning solutions, it
is important to integrate existing transmission models into these solutions. In this
context, DRL [9] has proven to be a game changer, helping IoT systems manage the
dynamic and complex demands of modern networks effectively.

7.1.2 Challenges in supporting sustainable loT devices

The rise of IoT devices has changed industries, making communication and automa-
tion smoother. But keeping these devices sustainable is tough due to energy limits,
limited spectrum, and environmental concerns. As the demand for connected devices
grows, solving these problems is key for future IoT networks. Many IoT devices in
remote areas rely on batteries, making energy efficiency a top concern. It’s hard to
recharge or replace batteries regularly.

While techniques like energy harvesting and power efficient protocols have been
tried, their use is tricky because of different environmental factors and device limi-
tations. The rapid growth of IoT devices adds to the problem of spectrum shortage.
Traditional methods can not keep up with the increased data demands, causing con-
gestion and lower service quality.

Implementing previous solutions means dealing with issues like interference and
meeting regulations. As IoT networks expand to billions of devices, ensuring de-
vices from different manufacturers work together gets harder.Efforts to standardize
are ongoing, but differences in protocols and technologies make it hard to integrate
smoothly. To solve these challenges, researchers are exploring new solutions like
energy-efficient protocols, adaptive spectrum sharing, and machine learning-based
optimization. One promising approach in this area is DRL, which can handle the
dynamic and complex challenges in IoT networks.

7.1.3 Role of energy and spectrum efficiency in loT

Despite many advancements, the rapid growth of IoT devices and the rising demand
for high data rates and energy-efficient communication create big challenges. The
combination of spectrum shortage and energy limits requires new solutions to im-
prove EE and SE. In this regard, both EE and SE are key issues in the growing IoT
landscape. SE, which measures how well bandwidth is used, is important for meet-
ing the increasing data demands of IoT systems. At the same time, EE ensures that
devices can operate sustainably by maximizing data transfer while using less energy.
Balancing these two factors is essential for building the future communication net-
works.
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7.1.4 Relevance of DRL based algorithms

Integrating DRL into wireless communication networks offers a new way to solve
key challenges like energy efficiency, spectrum optimization, and smart resource al-
location. DRL uses neural networks and reinforcement learning to model complex
decisions without relying on preset assumptions or fixed optimization models.

This adaptability is crucial in the fast-changing environment of IoT networks,
where the number of devices is growing rapidly, causing dynamic network condi-
tions. Unlike traditional methods that may lose efficiency as networks change, DRL
learns from real-time data and makes decisions that improve network performance.

DRL algorithms are also great for managing different quality of service (QoS)
needs in mixed networks. They help distribute resources fairly across devices with
varying data, latency, and energy needs, improving efficiency and user experience.

In cases with EH and spectrum sharing, DRL helps with task scheduling, channel
selection, and power allocation. It adjusts to external interference and traffic changes,
keeping communication strong and secure. DRL is key to next-generation wireless
networks, enabling smart automation and efficient resource management for large-
scale IoT deployments.

7.2 Overview of sustainable loT devices

Sustainable IoT devices are key to modern technology, designed for low power use
and efficient resource management. They aim to reduce environmental impact while
supporting the growing need for connected services. This section highlights the main
features, challenges, and trends shaping sustainable IoT networks.

7.2.1 Characteristics of sustainable loT

Sustainable IoT systems are designed for efficiency and minimal environmental im-
pact. One key feature is EE. As noted in [10], the growth of IoT demands low power
sensors that can operate reliably and sustainably. Traditional battery-powered sen-
sors face limitations in lifespan and performance, but EH technology offers a more
eco-friendly option by extending sensor life and lowering maintenance costs.

Another important aspect is resource optimization. This includes lightweight
communication, data compression, and edge computing to reduce energy use and
improve response times. [11] presents an edge computing model for IoT applications
like precision agriculture, e-health, and smart homes. It introduces a task offloading
mechanism that distributes tasks among devices, helping reduce resource use while
meeting QoS needs. Evaluations show its effectiveness in optimizing resource usage.

Scalability and interoperability are also essential for various IoT applications. [12]
looks at the balance between interoperability and performance in IoT platforms by
analyzing FIWARE, ThingsBoard, and Konker. It assesses their scalability, response
times, and resource usage in smart city and smart health contexts. The study finds
that interoperability does not significantly impact platform performance.
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7.2.2 Energy and spectrum constraints in loT networks

The rapid growth of IoT devices has created major challenges in energy manage-
ment and spectrum use. IoT devices run on small batteries that are hard to replace or
recharge, especially in remote areas like factories, farms, or monitoring sites. At the
same time, more devices are competing for limited bandwidth, making it harder to
maintain efficient communication.

7.2.2.1 Energy constraints in loT networks

Unlike traditional systems with constant power, IoT devices need smart energy man-
agement to last longer and reduce maintenance. Efficient communication protocols
help save battery by cutting down unnecessary data transmissions and idle time.
Techniques like data aggregation, adaptive compression, and optimized packet sizes
reduce communication overhead. Sleep scheduling lets devices switch between ac-
tive and low-power states. EH uses ambient sources like solar, thermal, vibration, or
RF signals to recharge batteries, extending device life and improving sustainability.

7.2.2.2 Spectrum utilization challenges

Effective spectrum use is key to maintaining IoT network performance as device den-
sity grows. The varied data rate and latency needs of IoT applications make spectrum
allocation difficult. Interference, poor spectrum sharing, and underused frequencies
worsen the problem. To tackle these challenges, strategies like cognitive radio, dy-
namic spectrum allocation, and cooperative communication are used. These help IoT
systems adapt to changing spectrum conditions, improve sharing, and reduce inter-
ference.

7.2.2.3 Balancing energy and spectrum efficiency

Balancing energy and spectrum efficiency requires smart resource management that
adapts to network conditions and demands. Machine learning and optimization al-
gorithms are increasingly used to improve decision-making in energy and spectrum
management. These methods optimize transmission schedules, choose the right com-
munication channels, and balance power use with reliability. In many algorithms one
of the major drawback is the inverse proportional relation between energy and spec-
trum efficient solutions. Optimizing one often degrades the other. Therefore, there is
a need of solutions which aims to optimize both the solutions.

To ensure scalability, reliability, and sustainability, addressing energy and spec-
trum challenges is key for IoT networks. With innovative designs and adaptive strate-
gies, IoT systems can be more efficient and resilient, meeting the growing needs of a
connected world.

7.3 Fundamentals of Deep Reinforcement Learning (DRL)

This section explores the fundamental concepts of DRL.
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7.3.1 Basics of Deep Learning (DL)

Deep learning (DL) is a branch of machine learning (ML) that uses multi layered
neural networks (NNs) to automatically extract complex features from raw data. This
ability has led to DL’s success in areas such as image recognition, natural language
processing (NLP), autonomous systems, and strategic game playing.

Inspired by the human brain, neural networks consist of layers of connected ar-
tificial neurons. These neurons exchange information through weighted connections,
which are adjusted during training using methods like backpropagation and gradient
descent optimization.

This iterative refinement helps DL models learn and represent data at different
levels of abstraction, capturing complex patterns and relationships that traditional al-
gorithms often miss. These hierarchical feature representations make DL effective at
solving challenging Al problems. Fig. 7.2 (a) shows a schematic of a DL framework,
illustrating the flow of data through hidden layers to output generation.

7.3.2 Basics of Reinforcement Learning (RL)

Reinforcement learning (RL) [13] is a type of machine learning where an agent
learns to make decisions by interacting with an environment. The agent takes ac-
tions, receives feedback in the form of rewards or penalties, and learns to optimize its
behavior to maximize cumulative rewards over time. Key components of RL include:

* Agent: The decision maker that takes actions in the environment.

* Environment: The external system with which the agent interacts, providing ob-
servations and rewards.

» State: The current situation or configuration of the environment that the agent
observes.

» Action: The decision made by the agent to interact with the environment.

* Reward: Feedback given to the agent after an action is performed, guiding learning
towards better outcomes.

* Policy: The strategy or mapping from states to actions, aiming to maximize cu-
mulative rewards.
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* Value Function: A function estimating the long-term rewards of states or actions,
guiding the agent’s decisions.

The goal of RL is to learn an optimal policy that maximizes cumulative rewards
through trial and error. The agent updates its knowledge from experiences to adapt
its actions. In RL, also known as an experience-driven approach, no prior data is
given for learning. Instead, the agent gains knowledge by interacting with the envi-
ronment. Through a series of actions, the agent receives rewards or penalties based
on the outcomes of its decisions [14], generating data in real time through these inter-
actions. The environment in an RL framework is typically modeled mathematically,
with them Markov decision process (MDP) [15], [16] being the most commonly em-
ployed model. The primary objective is to derive an optimal policy that maximizes
cumulative rewards (or minimizes cumulative penalties) over a specified future time
horizon, taking into account the agent’s current state. Fig. 7.2 (b) illustrates the fun-
damental components of an RL setup.

7.3.3 Introduction to DRL

Deep RL (DRL), first introduced in [17], integrates DL with RL, forming the ba-
sis of its nomenclature. Traditional RL methods are effective for problems involving
limited state and action spaces. However, real-world scenarios often encompass high-
dimensional and continuous state and action spaces, posing significant challenges for
traditional RL approaches as determining an optimal policy becomes increasingly
complex. DRL was developed to overcome these limitations by efficiently addressing
high-dimensional applications and enabling learning in continuous spaces. In DRL,
the RL component involves a self-learning agent that aims to maximize long-term
rewards without requiring prior knowledge of the underlying system model. Mean-
while, inspired by biological NNs, DL has advanced significantly in managing the
complexities of high-dimensional environments. By combining these approaches,
DRL effectively mitigates the curse of dimensionality through efficient feature ex-
traction.

DRL methods are predominantly applied to sequential decision-making tasks [ 18],
where an agent must make a series of decisions to solve a given problem effectively.
The objective in such tasks is to identify a sequence of decisions that maximizes the
expected cumulative future reward. Sequential decision-making problems are well-
modeled using MDPs, which satisfy the Markov property, implying that the next state
depends solely on the current state, with outcomes being partially random and par-
tially under the agent’s control. The following discussion delves into the fundamental
concept of MDPs and their role in shaping and facilitating the DRL framework.

7.3.3.1 Markov Decision Processes (MDPs)

An MDP is a discrete-time stochastic control process commonly represented as a
tuple, (S, A, T,, R;), where:

* S represents the finite set of states in the environment,
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* A denotes the action space,

» T, represents the probability that action a taken at time ¢ in state s leads to a
transition to state s at time ¢ + 1, and

* R, denotes the immediate reward obtained after action a, facilitating the transition
from state s to s’.

The agent’s goal in an MDP is to interact with the environment across different time
steps to find an optimal policy, 7*, which maps states to actions to maximize the
cumulative reward over the long term. The policy 7 can be deterministic, providing a
single state-to-action mapping, or stochastic, offering a probability distribution over
all possible actions.

An MDP may operate under a finite or infinite time horizon. In a finite time hori-
zon MDP, the optimal policy 7* maximizes the expected total reward, represented
as:

T
m;lx]E{Zr,(s,,n(s,))}. 7.1y
=0
For an infinite time horizon MDP, the objective is to maximize the expected dis-
counted total reward:
o
maxE{ 3 yriGsr 7s0) |, (7.2)

t=0

where y € [0, 1] is the discount factor, determining the relative importance of future
rewards compared to immediate rewards. A discount factor of y = 0 results in a
“myopic agent” that prioritizes instant rewards, whereas y ~ 1 incentivizes long-
term reward maximization.

Depending on the application, MDPs can be classified as fully observable
(FOMDP) or partially observable (POMDP) [19]. In an FOMDP, the agent has full
access to the environment’s states. Conversely, in a POMDP, the agent only has par-
tial access to the states, introducing additional complexity. A POMDP is typically
represented as (S, A, T,, Ry, §2, O), where:

* 2 denotes the set of partial observations accessible to the agent, and
* O represents the transition probabilities of partially observable states from s to s’.

A belief set, consisting of probability distributions over states, is maintained in a
POMDP. The agent selects an action a based on its belief b(s), transitions to the next
state s’, and receives the reward r € R, along with the current observation o € O. The
agent then updates its belief about the new state s’ using the following equation [19,
20]:

p(ols,a,s") 3 p(s'ls,a)b(s)
Zs,s’ p(0|sv a, S/)p(s/|ss Cl)b(s) ’

where p(ols, a, s”) denotes the probability of receiving observation o given that the
agent takes action a in state s and transitions to state s’, and p(s’|s, a) represents

bo(s") =

(7.3)
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the probability of transitioning to state s’ from state s upon taking action a. The
corresponding reward R, is provided through the immediate reward function. Similar
to MDPs (or FOMDPs), agents in POMDPs seek an optimal policy 7* to maximize
the expected long-term cumulative reward:

m;le[ Zyr,(s,,n*(st))}. (7.4)

t=0

7.3.4 Classification of DRL models

Given the wide array of applications of DRL, various DRL algorithms have been
developed, categorized based on their reliance on predefined models or their ability
to function without them. Accordingly, DRL techniques can be broadly classified into
the following.

7.3.4.1 Model-based methods

Model-based DRL methods begin by constructing a model of the environment us-
ing feedback from the agent’s interactions. This model is then employed to predict
the outcomes of actions on states and rewards, thereby enabling the derivation of an
optimal policy. Examples of model-based methods include AlphaZero [21], model-
based RL with model-free fine-tuning (MBMF) [22], imagination-augmented agents
(I2A) [23], and Monte Carlo tree search (MCTS) [24]. These methods offer lower
sample complexity by reducing the need for extensive interaction with the environ-
ment. However, their reliance on potentially inaccurate models can lead to suboptimal
policies and reduced accuracy.

7.3.4.2 Model-free methods

In contrast, model-free DRL methods directly interact with the environment to learn
optimal policies or value functions, eliminating the need for explicitly modeling the
environment’s dynamics. These methods are further classified into the following sub-
categories:

7.3.4.3 Value-based methods

Value-based DRL methods focus on learning a value function, such as the state-value
function V7 (s), rather than directly storing a policy 7 (s). The state-value function
represents the expected cumulative reward for each state under a given policy 7 and
is defined as V7 (s) : S = R,. Its mathematical expression is:

Vi(s)=>_ P(r|r,$)G(1), (7.5)

where P(t|m, s) represents the probability of trajectories given the initial state s and
policy 7, and G(7) = ZzT:O yre(ss, w(sy)). The optimal state-value function is given
by:

V*(s) =max V" (s),Vs € S. (7.6)
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The action-value function Q7 (s, a) maps a state-action pair to its long-term ex-
pected reward:

Q" (s,a): S x A= Ry, (7.7)

and is mathematically expressed as:

Q" (s,a)=)_ P(t|m.5.a)G(T). (7.8)

The optimal action-value function is:

Q*(s,a):m;lx 0" (s,a),Vs € S,VYa € A. (7.9)

The agent’s objective in value-based DRL is to derive an optimal policy 7* that
maximizes expected cumulative rewards:

7*(s) =max V" (s),Vs € S. (7.10)

For an optimal Q-value function, the corresponding optimal policy is:

n*:r;leaz‘( 0*(s,a),Vs € 8S. (7.11)

In practice, finding an optimal policy involves approximating the optimal action-
value function using methods like temporal difference (TD) learning or Monte Carlo
(MC) estimation. MC methods, while yielding lower bias, require full episodes for
updates and are suitable for episodic MDPs. TD methods, which leverage the Markov
property, allow online updates after every decision epoch and are more flexible, mak-
ing them widely used in contemporary DRL algorithms. Examples of value-based
methods include Q-Learning (QL) [25], Deep Q-Learning (DQL) [26], and Rain-
bow [27].

7.3.4.4 Policy-based methods

Policy-based DRL methods directly optimize policies without relying on value func-
tions. These methods refine policy parameters iteratively using gradient-based opti-
mization. The objective is to maximize the long-term reward:

J(©) =ZP(I|779)G(7:), (7.12)

where P(t|my) represents the trajectory probabilities under policy my. The policy
gradient is:

Vo J(0) = Py, [G(r|s,a)Vglnrr9(a|s)], (7.13)

and the updates are performed as:

1 =0, + By'[ G(lsi, a) Vo Inma aylsn) | (7.14)



7.3 Fundamentals of Deep Reinforcement Learning (DRL) 137

The examples of policy-based methods include REINFORCE [28], trust region policy
optimization (TRPO) [29], and proximal policy optimization (PPO) [30].

7.3.4.5 Actor-critic methods

Actor-critic methods integrate value-based and policy-based approaches. The actor
network selects actions, while the critic network evaluates them. The actor updates
policies based on feedback from the critic, which estimates value functions. Ex-
amples include asynchronous advantage actor-critic (A3C) [31], deep deterministic
policy gradient (DDPG) [32], and soft actor-critic (SAC) [33]. Table 7.1 summarizes
the different categories of the DRL models.

7.3.5 Advantages of DRL for loT applications

Deep RL has emerged as a transformative approach for optimizing complex, dynamic
systems, making it particularly advantageous for IoT applications. By leveraging
the power of neural networks to approximate policies and value functions, DRL fa-
cilitates efficient decision-making in environments with significant uncertainty and
variability.

One of the primary strengths of DRL lies in its capability to handle high-
dimensional state and action spaces. Traditional optimization techniques, such as
linear programming or heuristic-based methods, struggle with scalability and hetero-
geneity in IoT networks. These networks consist of many devices operating under dif-
ferent protocols and standards. DRL algorithms address these challenges by learning
directly from the environment, without needing predefined models. This model-free
approach allows DRL to handle complex interactions between IoT devices, ensuring
stable performance even in dynamic situations.

IoT networks often face unpredictable changes, such as fluctuating traffic, varying
latency, and energy constraints. In this context, DRL adapts well to real world con-
ditions. Unlike traditional methods, which require re-optimization under changing
conditions, DRL continuously updates its policies based on rewards and state transi-
tions. This allows IoT systems to adjust to the evolving conditions, such as shifting
communication schedules, balancing loads, or redistributing resources, etc.

Another advantage of DRL in IoT is its support for multi objective optimiza-
tion. It can balance competing goals like energy efficiency, latency, throughput, and
QoS. By adjusting rewards, DRL can prioritize specific objectives while maintaining
overall system performance. For example, in energy-limited IoT networks, DRL can
optimize data throughput while minimizing power consumption, ensuring sustainable
operation.

Additionally, DRL can be improved with techniques like transfer learning and
meta-learning. These methods speed up training and improve generalization across
different IoT scenarios by using pre-trained models or knowledge from similar tasks.
This is useful in IoT applications with changing topologies or dynamic environments,
where retraining from scratch would be too costly.
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Table 7.1
Algo.

QL

DAL

PDQL

DDQL

ADQL

Dis-DQL

Due-DQL

DQLNN

Rainbow

SARSA

REIN-

FORCE

TRPO

Summary of DRL algorithms.

Key Characteristics

Applications

Value-Based DRL Algorithms

A TD learning algorithm tailored for discrete
state and action spaces, which iteratively
refines action-value estimates to converge
toward the optimal policy.

Employs DNNs to approximate the
Q-function, enabling efficient learning in
high-dimensional state spaces.

Prioritizes experiences with significant TD
errors, assigning them higher replay priority
to improve sample efficiency and speed up
learning.

Mitigates Q-value overestimation by using
two distinct networks to independently
estimate target and current Q-values,
enhancing stability and performance.

A parallelized DQL approach where multiple
agents interact with separate environment
instances, accelerating learning through
asynchronous Q-network updates.
Distributes the training process across
multiple machines, enabling faster training
and better scalability for larger
environments and datasets.

Breaks the Q-value into an advantage
function and a state value function,
improving learning efficiency and yielding
more precise Q-value approximations.
Introduces noisy layers into the neural
network, dynamically adjusting exploration
strategies to enhance learning efficiency.
Combines advanced techniques like PER,
DQL, dueling networks, and noisy layers to
achieve cutting-edge performance in DQL.
An on-policy TD learning algorithm that
updates action values using outcomes from
its own actions, factoring in the next action
and its corresponding reward.

Applied in robotics, industrial
automation, gaming, and
finance.

Appropriate for MDPs that
involve discrete state and action
spaces.

Appropriate for MDPs
prioritizing experiences.

Used in gaming, robotics, and
finance, with effective DQ-value
estimation for decision-making.

Effective for managing
asynchronous updates in
distributed environments.

Excels at capturing uncertainty
and enhancing performance in
stochastic environments.

Effective for MDPs with large
action spaces.

Appropriate for MDPs with large
action, and state spaces.

Ideal for complex problems with
high-dimensional state and
action spaces and uncertainty.
Used in discrete state-action
spaces for on-policy learning
and optimal policy
convergence.

Policy-Based DRL Algorithms

Leverages deep neural networks to train
the policy function, optimizing it by directly
estimating gradients based on received
rewards.

Imposes constraints on policy updates to
maintain stability and prevent large,
destabilizing changes, thereby ensuring
reliable optimization.

Appropriate for problems with
discrete action spaces.

Effective for large-scale
continuous control problems.

continued on next page
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Algo.
PPO

A2C

A3C

SAC

DDPG

CER-

DDPG

PER-
DDPG

MADDPG

TD3

RDPG

D4PG

7.3 Fundamentals of Deep Reinforcement Learning (DRL)

(continued)

Key Characteristics

Utilizes a clipped surrogate objective
function to regulate policy updates,
avoiding large, disruptive changes and
fostering stable improvement.

Applications

Effective for high-dimensional or
continuous action spaces, like
robotics and games.

Actor-Critic DRL Algorithms

Merges policy gradient and value-based
approaches by concurrently learning action
selection and value estimation, boosting
efficiency and training stability.

Combines policy gradient and value-based
methods with multiple parallel agents,
enhancing sample efficiency and stability
via asynchronous updates.

Incorporates entropy regularization into
stochastic policies and value function
learning, fostering exploration and
robustness in continuous action spaces.
Designed for continuous action spaces,
using deterministic policy gradients and
experience replay for stable and efficient
learning.

Builds on DDPG by prioritizing recent
experience tuples in batch selection,
improving sample efficiency and learning
stability.

Combines prioritized experience replay with
DDPG, assigning higher replay priority to
experiences with larger TD errors.
Adapts DDPG for multi agent scenarios,
enabling centralized training and
decentralized execution to support
cooperation in complex environments.
Utilizes twin critics and delayed policy
updates to stabilize training and enhance
policy robustness.

Incorporates RNNs into the policy network
to learn deterministic policies in sequential
or time-sensitive observation settings.

Enhances DDPG by integrating
distributional RL techniques and
parallelized training across multiple actors,
enabling efficient exploration in expansive
continuous action spaces.

Appropriate for problems with
continuous action spaces.

Ideal for problems needing
asynchronous training for
efficient exploration.

Appropriate for problems
requiring stable learning and
robust exploration.

Used for continuous action
spaces needing stable learning
and efficient exploration.

Used where sample efficiency
and fast convergence are
crucial.

Beneficial for problems requiring
improved sample efficiency and
faster convergence.

Appropriate multi agent
problems in complex
environments.

Ideal for continuous action
spaces where stability and
robustness in learning are key
for efficient exploration and
decision-making.

Effective for sequential
decision-making with crucial
temporal dependencies in
time-sensitive scenarios.
Used in continuous action
spaces where stability and
robustness in learning are
crucial for efficient exploration
and decision-making.
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DRL also supports cooperative and distributed decision-making in IoT systems.
In multi-agent networks, DRL can coordinate actions among devices, leading to col-
laborative strategies that improve overall system efficiency. Algorithms like multi
agent DDPG (MADDPG) are used to optimize tasks such as spectrum allocation,
resource sharing, and task offloading.

Finally, advancements in DRL frameworks, such as model-based DRL and actor-
critic methods, enhance its effectiveness in IoT. Model-based approaches simulate
IoT environments to predict outcomes and optimize actions, reducing trial-and-error.
Actor-critic methods combine policy-based and value-based learning to speed up
training and improve stability.

7.4 DRL-based algorithms for energy and spectrum
efficiency

Energy and spectral efficiency are key to sustainable 10T systems, with EH and power
management being important factors. DRL based algorithms have shown great poten-
tial in optimizing these areas by learning strategies in real time. This section looks
into how DRL can improve EE in IoT networks, with supporting case studies.

7.4.1 DRL in EH systems

Recent advances in machine learning, especially DRL, have shown great potential.
Smart solutions with optimised resource allocation, high spectrum management, and
great security protocols can be build using DRL-based algorithms in IoT systems.
With billions of devices expected to be interconnected, this capability is essential
to ensure sustainable operation, efficient resource utilization, and meet the stringent
QoS requirements of modern IoT applications. By leveraging DRL, IoT networks
can adapt to the dynamic and complex nature of wireless communication environ-
ments, paving the way for more efficient and sustainable future networks. Example,
[34] presented a DRL-based framework to enhance the throughput of a stationary
secondary user within a CR-NOMA communication system, where the secondary
user performs EH and data transmission during the primary user’s time slot. Expand-
ing on this foundation, [35,36] investigated self-sustaining IoT networks powered by
wireless communication, utilizing EH and RF-EH diversity-combining techniques.
Their approach incorporated a QoS-aware NOMA scheme for uplink transmissions,
optimizing both linear and non-linear EH models, duration and transmission power
through DRL to maximize the sum rate of a stationary secondary node. Similarly,
[37,38] proposed an energy-efficient communication protocol tailored for resource-
constrained IoT networks. By employing DRL, specifically the CER-DDPG algo-
rithm, they achieved throughput maximization for the secondary sensor. Building on
this model, [39] further optimized the network’s SE using DRL to manage EH and
data transmission in a CR-NOMA framework. [40] further improved the model by in-
corporating mobility for the secondary user using a random waypoint model, making
it more applicable to real-world scenarios.
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7.4.2 Spectrum and energy allocation via DRL

Spectrum scarcity is a critical challenge in IoT networks, especially with the prolif-
eration of ultra-massive machine-type communication (umMTC). DRL-based frame-
works provide innovative solutions for spectrum efficiency by:

* Enabling dynamic spectrum access in cognitive radio (CR) systems, where devices
opportunistically utilize underused spectrum bands.

* Optimizing NOMA schemes by dynamically adjusting power allocation and user
clustering strategies.

* Enhancing spectral reuse through intelligent channel assignment and interference
management.

* Optimizing power allocation and scheduling to minimize energy consumption
without compromising performance.

* Determining the optimal time allocation for EH and data transmission in energy-
constrained scenarios.

* Dynamically redistributing traffic loads among IoT devices to avoid overburden-
ing specific nodes, reducing overall energy consumption.

7.4.3 Case studies

In this section, we present two case studies related to EE and SE of IoT systems.

7.4.3.1 Background and motivation

As the demand for low-power sensing grows, modern wireless networks face signif-
icant challenges in accommodating additional devices while simultaneously maxi-
mizing SE and EE. Traditional wireless infrastructures struggle to meet these dual
demands due to the constrained energy resources of low-power devices and the inef-
ficient utilization of available spectrum. To overcome these challenges, EH-enabled
symbiotic radio has emerged as a promising approach, enabling secondary devices
to coexist with primary wireless systems. By leveraging RF-EH and opportunistic
spectrum sharing, EH-enabled symbiotic radio provides a sustainable and efficient
solution, addressing both SE and EE requirements, and aligning with the vision of
future wireless networks.

In this case study, we explore an innovative framework that tackles the complex-
ities of optimizing EH-enabled symbiotic radio in dynamic environments character-
ized by nonlinear EH circuitry and pre-scheduled operations of primary devices. The
proposed framework employs advanced techniques to achieve a balanced enhance-
ment of SE and EE, ensuring sustainable operation while maintaining the commen-
salistic relationship between secondary and primary systems.

7.4.3.2 System model: overview of EE optimization

As illustrated in Fig. 7.3, we analyze a wireless IoT network configuration consisting
of a central base station (BS) and J pre-scheduled primary IoT devices, denoted
as M, where 1 < j < J. The primary devices communicate using a time division
multiple access (TDMA) mechanism, where each device is assigned a dedicated time
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FIGURE 7.3
[llustration of the considered loT network.

slot of T seconds within a frame duration of NT, given that N > J. The scheduling
of these devices operates such that during the k-th time slot, labeled #; and satisfying
1 <k < N, the j-th primary device is active. Here, j is determined by the relation
((k—1) & J) + 1, with & representing the modulo operation.

In this configuration, an energy-constrained device, referred to as the EH-enabled
symbiotic radio, transmits sensor data to the BS during the time slots allocated to
primary devices. The EH-enabled symbiotic radio employs the CR-NOMA method,
which enables its transmissions to coexist with those of the primary devices while
ensuring that their QoS requirements are met. This QoS guarantee is achieved through
a QoS-driven SIC decoding order, ensuring that the EH-enabled symbiotic radio’s
signal is decoded first in the SIC process [41].

A unique feature of the EH-enabled symbiotic radio is its ability to harvest energy
from the uplink RF transmissions of primary devices. For example, in the k-th time
slot, where #; is identical for all k, the EH-enabled symbiotic radio dedicates the
initial 74T seconds to data transmission and the remaining (1 — 7;)7T seconds to
EH, where 7 € [0, 1] is the time-sharing coefficient. To simplify notation, let the
primary device scheduled at time #; be represented as My, where My = M and j =
((k—1) & J) + 1. Henceforth, k will denote both the time slot and the corresponding
primary device. The channel gain between the EH-enabled symbiotic radio and the
BS during the k-th time slot is denoted as gx. Additionally, for the k-th primary
device, its channel gains to the BS and EH-enabled symbiotic radio during the k-
th time slot are denoted as g and g0, respectively.

We assume that the EH-enabled symbiotic radio starts communication with a fully
charged battery and has prior knowledge of the channel state information (CSI) of
each primary device transmitting at time #;. Let I'; denote the energy stored in the
EH-enabled symbiotic radio’s battery at time #;. The total transmission energy of the
EH-enabled symbiotic radio is constrained by I, expressed as:

o T (2% + 1) < Ik, (7.15)

where X represents the fixed RF circuit power and signal processing power of the
EH-enabled symbiotic radio, accounting for the constant energy consumption of RF
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operations, and £ denotes the EH-enabled symbiotic radio’s transmit power at time
Ik

The total energy available in the EH-enabled symbiotic radio’s battery at time
tx+1 1S given by:

Tipr =min{ [+ (1 = T Perac(20Igko = %l (B + 1), T}, (7.16)

where @pr,c(£2x) represents the practical nonlinear EH model of the EH-enabled
symbiotic radio, £2; is the transmit power of the k-th primary device, and . de-
notes the maximum battery capacity of the EH-enabled symbiotic radio.

The system’s nonlinear EH model is expressed as:

B3 (eﬂlf}k — 1)

P Q =,
xt (%) P12 4 P12

(7.17)

where B1, 82, and B3 are parameters defining the EH circuit characteristics. The time-
sharing coefficient 7; determines the portion of a time slot allocated to transmission,
with the remainder dedicated to EH.

7.4.3.3 Problem formulation

This section formulates the mathematical model for maximizing the EE and frames
it within a DRL context.

The data rate achieved by the EH-enabled symbiotic radio during time # is de-
fined as:

, 212k
R; = t¢lo 14+ ——. (7.18)
g2< T+ Qulgil

The order of SIC decoding follows the definition in (7.18), where the EH-enabled
symbiotic radio’s signal is decoded first, and the scheduled primary device’s signal
is decoded subsequently. This ensures the QoS requirements for primary devices. To
achieve the objective of maximizing the EE of the EH-enabled symbiotic radio, the
EE at the k-th time slot is expressed as:

Qilgk)?
. rklog2(1 + —2>
(e, ) = X”Qk‘gk' , (7.19)

where the numerator represents the instantaneous data rate of the EH-enabled symbi-

otic radio, and the denominator is the total power consumed, with A denoting the total

average power consumed for transmission. This formulation ensures that the QoS of

the scheduled primary device is satisfied as the EH-enabled symbiotic radio’s signal

is decoded without interference. The optimization parameters in (7.3) are t; and 2.
The EE maximization problem is then formulated as:

N
maximize ~ E{Y o Ti(ni. 20) (P1)
ks $2% k=1
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: Bs[ef 2 —1] 2
Tip1 = mm{(l - rk)T[m 1,0l

s.t. (7.20)
_TkT(Qk + )\) + Iy, Fmax}7

Ry > wx, (7.21)
o T (2 + 1) < Ik, (7.22)
0 < 2% < 2max, (7.23)
O=7u =1 (7.24)

In Problem (P1), E{-} represents the expected sum of discounted energy efficien-
cies of the EH-enabled symbiotic radio, where « is the discount factor prioritizing
long-term rewards. The term Ry = log (1 + $2¢|h |2) denotes the data rate of the k-th
primary device, and y; represents its minimum required rate. Constraint (7.20) de-
fines the total energy in the EH-enabled symbiotic radio’s battery at time # 1, while
Constraint (7.21) ensures QoS for the primary devices. Constraint (7.22) limits the
total energy consumed by the EH-enabled symbiotic radio to its available energy at
time #, and Constraints (7.23) and (7.24) restrict the EH-enabled symbiotic radio’s
transmit power and time-sharing coefficient, respectively.

Problem (P1) is non-convex due to: (i) the non-convex nature of the long-term EE
function in the objective, (ii) the non-affine structure of Constraint (7.20), and (iii)
the bilinear term in Constraint (7.22) involving optimization variables. The need for
timely EH and transmission decisions under resource constraints motivates the use of
RL, while the continuous action space makes the problem suitable for the modified
DDPG (MDDPG) algorithm. However, the varying ranges of optimization variables
in Constraints (7.23) and (7.24) necessitate additional processing.

To address these challenges, we employ a primal decomposition approach, split-
ting Problem (P1) into a two-layer optimization problem:

Introducing the energy fluctuation parameter Ik, defined as the difference be-
tween harvested and consumed energy:

B3 [eﬁlgk — 1]

— BalePr —1] ) oA
fi=a rk)T[eﬁ19k+eﬂlﬂz}|hk,o| wT (2% +1). (7.25)

This parameter indicates an energy deficit (I <0) or surplus (I, > 0) at time #.
Accordingly, for a given I}, maximize instantaneous EE:

maximize Ty (tk, £2%) (P2)
T 2k
~ palel % —1] 2
Fe={- T")T[ AT oBifs | Mol (7.26)

— T (2 +A),
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(7.21), (7.22), (7.23), (7.24), (7.27)

and the second layer optimization problem is given by:

N
maximize  E{Y g Ti(ni. ) (P3)
T k=1
st T =min{1“max, i +Fk}, (7.28)

which has been formulate following [42].

The solution approach to this problem is divided into two phases. In the first
phase, convex optimization is employed to derive closed-form expressions for the
optimization variables for a given I in Problem (P2). Consequently, the optimal
solution is expressed as functions of Tk in Problem (P2), i.e., r,j (k) and .Q,f (I).
In the second phase, the MDDPG algorithm is utilized to solve Problem (P3), while
incorporating the optimal solutions derived in the first phase. Using these closed-form
expressions, Problem (P3) can be reformulated as follows:

N

maximize E{ > B T It (). 25 () } (P4)
T k=1

st Tepr= min{Fmax, [+ Fk}. (7.29)

This reformulation highlights that the EH-enabled symbiotic radio’s action is to se-
lect I}. Problem (P4) is a single-variable function, and the continuous nature of the
parameter of interest, fk, makes this one-dimensional, continuous action space op-
timization problem particularly suited for a DRL algorithm such as the MDDPG
algorithm.

The closed-form solutions are given as:

_ 1 — o (I})Tas[efr$% — 1 2 I
_Q]’:(Fk) _ |:( k( %)) 053[6 ) ]|gk,0| i| _ _k —2, (7.30)
(eP1% + PP T (N)T T ()T
and
() = mln{@,ll if R = vk (7.31)

otherwise,

X1—X2

=1y —
eUO(e =x XS))+1+X1+X3—1

where@:max{fk,llf},forsz , and

X+T[A+Qmax](eﬁ19k +ePiB2)’ X

’

{ X — (P92 4 PP [, [fk + [‘k](eﬂlﬂk + eP1P)
¥ =ma
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with X =T a3 [eﬁlgk — 1] |gk,0|2. The expressions for x1, x2, and x3 are given by

& PTBs[eP % — 1] gk o]

(7.32)
YT (1 + $218kl%)
where ¥ = P19  oP1F2
=152
SR (7.33)
T(1+ $2|gkl*)
and
Ale 2
(1 + $2¢18k17)
Using the above closed-form expressions, the reward parameter is defined as
_ Sk NS, 12
L golegy (14 SDIEL)
I (t (T, 825 (T)) = ; (7.35)

7.4.3.4 Performance evaluation

The effectiveness of the proposed strategy was validated through extensive simu-
lations. The learning efficiency analysis evaluates the performance of the proposed
MDDPG algorithm in comparison to the baseline DDPG algorithm and non-DRL
methods, including the random and greedy approaches, focusing on episodic reward
(or EE) and sum rate. The greedy method prioritizes data transmission by using
all available energy before initiating EH, setting the transmission power to $2max
and computing t; as 7z = min{l, Wﬁ“x} In contrast, the random method fixes the
transmit power at I« and selects 7; randomly from a uniform distribution within
a predefined range. The analysis highlights the convergence performance of these
algorithms under both non-linear and linear EH dynamics. As shown in Fig. 7.4,
episodic reward decreases by approximately 30% for the non-linear EH model across
all learning methods, reflecting the complexity of practical EH scenarios with in-
herent non-linearities. Nevertheless, the proposed MDDPG algorithm outperforms
both DDPG and non-DRL methods for the non-linear EH model, achieving a higher
episodic reward upon convergence. Moreover, the MDDPG algorithm exhibits faster
convergence than the DDPG, particularly in the case of the linear EH model.

7.4.3.5 System model: overview of SE optimization

This system operates similarly to the model described above, where the primary IoT
devices, M, transmit data in a cyclic TDMA scheme. In each time slot, a secondary
device employs the CR-NOMA technique to transmit its data while ensuring co-
existence with the primary devices. However, unlike the EH-enabled symbiotic radio,
which uses a nonlinear EH model, the secondary IoT device, denoted as M in this
model operates under a linear EH model. This change simplifies the energy harvesting
process while maintaining the overall network functionality and QoS requirements.
The following assumptions are made at the beginning of each transmission:
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Comparison of episodic rewards (or EE) for EH-enabled symbiotic radio using the proposed
MDDPG algorithm and baseline methods under both linear and non-linear EH models, with
parameters J =2, A =0 dBm, and £2; =30 dBm.

* The secondary IoT device has full knowledge of the CSI.
* The secondary IoT device’s battery is fully charged at the start of the communica-
tion.

Taking these assumptions into account, the energy available at the beginning of
the next time slot is calculated as follows:

Ty =min{ (1 = 70T @ulgeol® = %l B + I T} . (7.36)
where I},,, represents the upper limit of the secondary device, n is the EH coeffi-
cient, and §2; and £2; represents transmit power of My and M respectively. Under
the energy constraint, the secondary device transmit power is restricted to the energy
stored in its battery, as

T 2k < T} (7.37)
Therefore, the SE of the network at the k-th time slot is given by [43],
Ri + Ry
k=—7—, (7.38)

B
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In Eq. (7.38), R and Iék denote the data rates of M and M , at the k-th time slot,
respectively. As in [52], they are given by

- 28 1?
R, =1t.Blo 14—, (7.39)
£ ( gl o
and
2k lgk)?
Ry =Blog, | 1+ , (7.40)
o

respectively, where o represents the noise power.

7.4.3.6 Problem formulation

Our primary objective here is to optimize the system’s overall SE, therefore, the SE
maximization problem is defined as

maximize
Tk, 2

’

[thlogz (1+ 28l ) + Rk:|
B
s.t. Cl: Iy = min{Fnax, O},

C2: B T2k — I <0,

C3:0<t <1,

C4: 0 < 2 < 2,

(7.41)

where S~2sm denotes the maximum transmit power of the secondary device, and
Q =1 —1)Tns2 |§k|2 — Tk T2k + I'}.. Constraint C'1 ensures that the energy level
of the secondary device’s battery at time slot k + 1 does not exceed its maximum
capacity while considering harvested energy. Constraint C2 guarantees that energy
consumption during the k-th time slot does not surpass the available battery energy,
thereby maintaining a non-negative battery level per C1. Constraint C3 ensures that
the time-sharing coefficient t; remains within the valid range of O to 1. Lastly, con-
straint C4 limits the secondary device’s transmit power to be within the range of 0 to
2m, representing its maximum allowable transmit power.

The optimization problem in (7.41) is non-convex due to the non-affine nature
of C1 and the presence of variable multiplications in C2. Since the optimization
variables take continuous values, solving Problem (7.41) is possible using the DDPG
algorithm. However, applying DDPG directly presents significant challenges due to
the wide range of optimization variable values. To address this, Problem (7.41) is
decomposed into two subproblems for effective handling.

The first subproblem introduces an energy fluctuation parameter I This param-
eter signifies the variance between the energy utilized and the energy gathered at the
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k-th time slot.

maximize
Tk, 2k

st. Cl: f=0,
C2, C3, C4in (7.41),

)

_(2 ~ 12
[kalogz (1+ 28) + }
B
(7.42)

where f = (1 — t)TnQel@k|* — wT 2k — [k, and Tk = (1 — 1) Tns2|gk|> —
wT 2. In (7.42), T} represents the energy surplus during the k-th time slot. As a
result, Problem (7.42) is solved using convex optimization techniques, allowing ex-
plicit formulas to be derived for a given fk. These formulations, as discussed in [34],
yield closed-form solutions for the problem, expressed as follows:

(A =OTns2%lal> I

e A
Iy = 7 T (7.43)
and
7 (I) = min {1, max { 1, f2}}, (7.44)
where f] = ewo(@_l(:ll_*]ii T while wq(.) represents the Lambart-W -function,
s 252 As 12 A =2 A
= Lo X2 = T e nd fo :maxil ~ TG Tath e 4Ty }

As our goal is to maximize the SE of the system, the second subproblem is given
by

o Q (Fo)la
X il[fk (Fk)Blng <1+m +Rk:|
14
1

maximize

A ’ (7.45)

B

i=

S.t. Fk+1=min{1’max, Fk—l-f'k],

where y denotes the discount factor, which ranges between 0 and 1. We can observe
that Problem (7.45) is a univariate, continuous-valued function, suitable for solution
using the DDPG algorithm.

7.4.3.7 Performance evaluation

To integrate the DDPG algorithm into our system model, the state comprises the
channel gains and the current battery level of the secondary device, while the ac-
tion corresponds to Ik, and the reward is defined by the SE. We evaluate the DDPG
algorithm’s performance by benchmarking it against traditional greedy and random
strategies. In these baseline approaches, the transmit power of M is kept constant at
2k, while the time-sharing coefficient 7y is determined differently:
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Comparison of episodic rewards (or SE) for secondary loT device using the proposed DDPG
algorithm and baseline methods under linear EH models, with parameters J =2, A =0dBm,
and £2;, =30dBm.

This comparison allows us to assess the efficiency and adaptability of DDPG in
optimizing system performance over conventional methods. Fig. 7.5 presents a com-
parison of episodic rewards in terms of SE for the DDPG algorithm and benchmark
methods, namely the greedy and random approaches, over multiple episodes. The
figure clearly demonstrates that the DDPG algorithm consistently achieves superior
rewards compared to the benchmark strategies. Notably, the DDPG approach exhibits
signs of convergence after approximately 20 episodes, indicating that any further
gains in episodic rewards become marginal. This observation highlights the DDPG
algorithm’s ability to learn and stabilize its performance efficiently, surpassing the
other methods in effectiveness.

7.5 Implementation and practical considerations

While DRL based solutions have clear benefits, implementing them in practice comes
with challenges like high computational demands, scalability issues, and real-time
adaptability. This section focuses on practical factors such as tuning parameters,
training methods, and deployment strategies to make DRL work effectively in real-
world IoT networks.
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7.5.1 Computational complexity and scalability

Implementing DRL in real world IoT networks faces significant challenges, with
computational complexity being a primary concern. DRL algorithms rely on deep
neural networks for policy optimization, which requires processing large datasets
and demands high computational resources. Training these models can be both time
consuming and resource-intensive.

Scalability is another major issue. As IoT networks grow, the number of devices
and sensors increases, making the problem more complex. DRL models trained in
small scale environments often struggle to adapt to larger, dynamic networks, limiting
their effectiveness in real-world applications.

To tackle these challenges, techniques like model pruning, parallel training, and
the use of specialized hardware like GPUs and TPUs can help reduce computational
demands. Research into algorithm optimization and distributed learning is also ad-
vancing to improve the scalability of DRL for IoT systems.

7.5.2 Training and convergence challenges

DRL model training has many convergence issues. A drawback of RL is that the
learning can vary from hundreds to millions episodes. The traditional DRL ap-
proached require millions of interactions with the environment for the agent to learn
the optimized action. Applying this to real-time applications can be highly imprac-
tical. Furthermore, the highly dynamic real-world environment, causes the agent to
take time to learn the correct actions and bring stability in its processes.

Other than this, exploration and exploitation trade off is also a major concern.
Too much exploration leads to inefficiency in training. On the other hand, excessive
exploitation of known policies can prevent the model from adapting to changes in the
environment. Balancing these two aspects is crucial for the model’s success.

To mitigate these challenges, techniques such as reward shaping, curriculum
learning, and experience replay are used to improve the stability and speed of con-
vergence. Additionally, adaptive learning rates and multi-agent systems are being
explored to handle complex, multi device environments.

7.5.3 Deployment in real-world loT scenarios

Implementing DRL in real-world scenarios involves more than just achieving good
algorithmic performance. As the environment keeps changing, adapting to it comes
difficulty and requires more time to train. With frequent changes in terms of devices,
behaviors and network condition, IoT network usually become extremely dynamic.
DRL models must continuously adjust to maintain optimal performance.

Secondly, real-time deployment also faces latency challenges. Many IoT appli-
cations require quick decision making, but the computational demands of DRL can
cause delays. These delays can be unacceptable in time-sensitive scenarios. Ensuring
that DRL policies run efficiently in real time is essential for such applications.

Another challenge is integrating DRL solutions into existing IoT setups. This re-
quires hardware upgrades and software modifications to support deployment. Edge
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computing and federated learning offer practical solutions. They enable DRL algo-
rithms to operate on distributed devices with low latency, improving efficiency and
adaptability.

7.6 Future directions

DRL has great potential to improve IoT systems, but several challenges still need to
be addressed. Technologies like reconfigurable intelligent surfaces (RIS) [44], feder-
ated learning, and edge computing offer new possibilities for advancing DRL-based
solutions. This section highlights key areas for future research to support the devel-
opment of more sustainable IoT networks.

7.6.1 Integration with emerging technologies (e.g., RIS,
backscatter, MEC)

As IoT continues to grow, technologies like RIS, backscatter communications [45],
and MEC are emerging as key components of next-generation IoT networks. These
technologies offer new ways to improve the performance of DRL based solutions.

Reconfigurable Intelligent Surfaces (RIS): by modifying radio waves propaga-
tion RIS, can adjust the wireless environment. This way, if combined with DRL
algorithms, RIS can help optimize signal strength, reduce interference, and improve
energy efficiency. RIS and DRL together can enhance the reliability and efficiency
of communication in large IoT networks, by controlling the environment in real
time based on network conditions. For example, [46] highlights a RIS-assisted aerial
NTNs integrate UAVs and HAPs with RIS to enhance wireless communication by op-
timizing signal propagation for better coverage and reliability. This study highlights
how DRL, specifically H-PPO, can optimize these networks in a CoMP-NOMA sce-
nario.

Backscatter Communications: By reflecting existing signals instead of generat-
ing new ones this technique allows devices to transmit data. Combining backscatter
communications with DRL can help save energy, especially in battery-powered IoT
devices. Similarly, DRL models can also adjust communication strategies to optimize
backscatter performance under different environmental conditions. For example, [47]
explores optimizing the sum rate for energy-harvesting IoT devices in a CR-NOMA-
assisted backscatter network using the DDPG algorithm. This approach improves
reflection coefficient management, ensuring QoS for primary devices and efficient
performance for passive IoT nodes.

Mobile Edge Computing (MEC): MEC enables data processing closer to the edge
of the network, reducing reliance on cloud computing. Integrating DRL with MEC
can lead to faster decision-making in IoT applications. For instance, [48] explains
how MEC enhances IoT performance by offloading tasks closer to User Equipment
(UE), while DRL aids decision making in dynamic environments. By using edge
servers, DRL models can process data locally, reducing delays and improving sys-
tem performance. This is especially important for time-sensitive applications like
autonomous vehicles and real-time healthcare monitoring.
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7.6.2 Federated and distributed DRL for loT

Federated learning (FL) and distributed DRL (DDRL) allow training models without
centralizing data, making them suitable for IoT networks spread across large areas.
This approach avoids the need to send all data to a central server.

In federated DRL, IoT devices work together to train a shared model while keep-
ing their data local. This reduces communication requirements and protects privacy
since sensitive data is not transmitted. Future efforts can focus on improving how
updates are aggregated and addressing challenges from non-uniform data distribu-
tions. Example [49], a DRL-based management mechanism is proposed to select
trustworthy devices, improving FL. model accuracy by 20 percent with fewer train-
ing iterations. This model aims to improve the security challenges from malicious or
resource-limited devices.

DDRL involves multiple agents learning from different parts of the environment.
This approach enables scaling in IoT networks by allowing devices to explore and
share insights independently. It helps reduce training times and improves model re-
liability, making it useful for real-time applications requiring quick adjustments. In
[50], a DDRL-based computation offloading scheme is proposed to improve QoE
in edge computing. Simulations show it outperforms existing methods with higher
rewards and lower variability.

7.6.3 Security and privacy considerations

When using DRL algorithms that depend on large datasets, security and privacy are
essential for IoT systems. However, protecting data and ensuring DRL model in-
tegrity are key challenges.

Data Privacy: IoT devices gather large amounts of sensitive data, raising privacy
concerns. Methods like differential privacy, homomorphic encryption, and secure
multiparty computation can help protect data during DRL training and use.

Adversarial Attacks: DRL systems can be targeted by attacks that disrupt learning
with false information or environment manipulation. Research should focus on mak-
ing DRL more resistant to these attacks using techniques like adversarial training and
anomaly detection.

Secure Communication: IoT devices face threats like data interception and unau-
thorized access. Secure communication between devices and DRL models is vital,
especially in distributed learning setups. Tools like TLS and blockchain [51] can help
ensure data security and integrity.

7.6.4 Towards fully sustainable loT networks

The long-term sustainability of IoT networks relies on reducing resource use, lower-
ing environmental impact, and ensuring long-lasting systems. DRL can help achieve
these goals by improving energy use, resource management, and overall performance.

Energy Efficiency: DRL can optimize energy use in IoT devices by adjusting
transmission power, scheduling tasks, and managing network resources. This is cru-
cial for battery-powered devices, as better energy management extends their lifetimes
and reduces battery replacements.
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Environmentally Friendly IoT: Future [oT systems need to be energy efficient and
eco-friendly. DRL can help create power-saving communication protocols, efficient
network designs, and energy-aware hardware. It can also optimize the use of renew-
able energy sources like solar power, ensuring sustainable operation of IoT devices.

Circular Economy: Sustainability also involves managing the lifecycle of IoT
devices. DRL can support smart recycling systems where devices decide when to up-
grade or replace parts. This helps promote a circular economy by focusing on reuse,
recycling, and reducing waste.

7.7 Conclusion

This chapter explored the integration of DRL algorithms for optimization of energy
and spectrum efficiency for IoT networks. The chapter focused on DRL ability to
address the complex and evolving challenges of modern IoT deployments. We ex-
amined the characteristics and constraints of IoT devices. Beside this we emphasized
on the importance of energy and spectrum management to ensure the long-term vi-
ability of these networks. DRL-based algorithms, with their ability to learn from
dynamic environments, offer promising solutions to many challenges. By leveraging
algorithms like DDPG, TD3, PPO, and SAC, these approaches optimize energy con-
sumption and spectrum utilization in real time, driving greater network performance
and sustainability.

However, as highlighted in the practical considerations, there remains several
challenges. These challenges include computational complexity and scalability.
Moreover, we discussed how the integration of DRL algorithms with technologies
such as RIS, MEC, and FL has the potential to further enhance the capabilities of
DRL for IoT. DRL-based algorithms addresses the evolving needs of diverse applica-
tions while ensuring that the underlying infrastructure remains secure and efficient.
The future of IoT networks lies in the continued development of intelligent, sus-
tainable, and efficient solutions. DRL-based algorithms, pave their way for greener
and efficient future, with their ability to optimize both energy and spectrum use.
Ultimately, these efforts will contribute to the realization of fully sustainable IoT
networks that are capable of meeting the growing demands of the digital world while
minimizing their environmental impact.
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8.1 Introduction

An interconnected network of physical devices embedded with sensors, connectivity,
and processing power capable of collaboratively exchanging data through the Inter-
net forms the basis of the Internet-of-things (IoT). The idea of densely connected
small devices has garnered significant attention since its inception in 1999 [1]. This
growing interest is further indicated by the 934.2 billion dollar expected worldwide
total annual revenue from the IoT industry [2]. According to some estimates, 127
IoT devices are added to the Internet every second, and 125 billion IoT devices are
expected to be connected to the Internet by the end of 2030 [3]. These projections
indicate a massive increase in the connection load on the existing communication in-
frastructure. In addition to the communication overhead, the power consumption of
such a large number of devices in dense deployments is a major concern in academia
and industries in the design of next-generation systems [4].

In addition to the exponential increase in the number of IoT devices that are
expected to be operational in the coming years, the support of the growing IoT land-
scape in its entirety requires the assimilation of sensing functionality inside the IoT
devices. As these IoT devices must be able to sense the environment around them, the
concept of integrated sensing and communication (ISAC) has been put forward as the
way to enable the functional feasibility of IoT systems [5]. ISAC is expected to en-
able the sensing of the surrounding environment using either a monostatic or bistatic
configuration. In both these configurations, the communication signals can be used
for information transmission and environmental sensing. Environmental sensing from
information-bearing signals is a complicated procedure involving more processing,
complex interference cancellation, and waveform optimization, etc. Due to these rea-
sons, energy-efficient designs are starting to be explored in the literature to make the
adoption of ISAC-enabled systems more practically feasible, especially in the context
of IoT [5].
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As wireless communication infrastructure becomes more ubiquitous and reli-
able, and machines and processes become more complex, intelligent automation of
these processes not only becomes more feasible but also necessary. The optimal
use of resources in production, logistics, and many other industrial processes in-
creases efficiency and reduces workload on human workers who may have otherwise
been overworked in the management of menial tasks. Owing to the advances en-
abled through automation, machine-to-machine (MTM) communication has become
one of the main design focuses of modern communication systems [6]. The na-
ture of communication between machines varies significantly from human-to-human
(HTH) communications owing to their focus on short but frequent messages with
an enhanced focus on reliability rather than bandwidth. As the scale of deploy-
ment and latency sensitivity of IoT in the industry is much different from typical
HTH communications, the optimization of these systems plays an important role
in their feasibility within such industrial environments. In addition to the afore-
mentioned challenges, the move towards green IoT demands the efficient use of
resources in order to maximize utility, limit power consumption, and reduce CO2
emissions [7].

To fulfill the objectives required for the optimal functioning of IoT networks in
the presence of energy constraints, every aspect of IoT systems, from design to im-
plementation and operation, has to be optimized. This objective can only be fulfilled
after a comprehensive understanding of the mindset, designs, and algorithms involved
throughout the process. Understanding the bottlenecks and optimization variables
involved in the problem can have a significant impact on the quality of the optimiza-
tion performed for the desired functioning of the system. Therefore, in this chapter,
we highlight the techniques and steps typically involved in the optimization of a
system, including a primer on optimization, the structure of an optimization prob-
lem, and types of optimization paradigms. We then move towards the introduction
of optimization in green [oT and the opportunities typically exploitable in the design
and optimization of green IoT networks in terms of typical wireless communication
technologies. We then finally move towards communication protocols that can be
employed for the optimal functioning of a green IoT architecture. Finally, the chap-
ter is concluded by providing insights learned from the comprehensive treatment of
the techniques and protocols mentioned in the chapter. Possible future directions are
also mentioned that may be undertaken to explore feasible optimization opportuni-
ties.

8.2 Optimization

Optimization is the process of determining the most favorable solution to a given
problem from a set of feasible alternatives, based on a defined objective and sub-
ject to constraints. The objective of optimization may be to maximize or minimize
a particular quantity in order to obtain the best performance. The process is cen-
tral to many disciplines, providing a systematic framework for decision making and
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operational improvement in complex systems. By systematically exploring solution
spaces within the defined constraints, the best solution that satisfies the objective can
be identified. Constraints typically represent limitations or requirements, such as re-
source availability, physical boundaries, or operational rules that must be satisfied for
the solution to be feasible.

Optimization algorithms are employed when explicit solutions cannot be directly
computed due to the complexity of the problem or time constraints. These algorithms
iteratively refine candidate solutions and converge toward the optimal outcome by
evaluating and improving upon intermediate results. The field of optimization encom-
passes a wide range of methodologies and techniques that are best suited to specific
types of problems.

Optimization is integral to various applications ranging from engineering design
and supply chain management to financial planning and medicine. By ensuring op-
timal decisions, system operations can be enhanced and made more efficient across
diverse domains.

8.2.1 Types of optimization problems

Optimization problems can be broadly classified into either constrained or uncon-
strained optimization problems based on the presence or absence of constraints.
These classifications provide a foundational structure for formulating and solving
optimization problems in various applications.

Unconstrained optimization problems

In unconstrained optimization, the objective is to find the optimal solution without
any constraints on the decision variables. The domain of a decision variable is de-
fined as the set of all of the values a variable can take, and this set can be either finite
or infinite. The formulation of an unconstrained optimization involves minimizing
or maximizing an objective function f(x) over the entire domain of the decision
variables. These problems are simpler to solve as there are no additional constraints
to consider while searching for the solution. Common methods for solving uncon-
strained problems include gradient-based techniques such as gradient descent, New-
ton’s method, and quasi-Newton methods. These approaches rely on the smoothness
and differentiability of the objective function and therefore struggle with problems
not possessing these properties.

Constrained optimization problems

Constrained optimization problems involve additional restrictions, expressed as
mathematical equalities or inequalities, that the solution must satisfy. Mathemati-
cally, these problems are formulated as:

minimize f(x)
subjectto gi(x) <0,i=1,...,m,
hj(x)=0, j=1,...,p,



162

CHAPTER 8 Optimizing techniques to support the development

where g; (x) and h j (x) represent the inequality and equality constraints, respectively.
Constraints define a feasible domain within which the decision variables can exist.
Constrained problems are inherently more complex than their unconstrained counter-
parts, as the constraints may introduce non-linearities or limit the feasible decision
space.

Constrained optimization techniques include methods that transform the problem
into an unconstrained form, such as penalty methods, barrier methods, etc., which
prevent exploration of the space outside the constraints, or those that deal directly
with constraints, such as interior-point or augmented Lagrangian methods. These ap-
proaches ensure that the solution satisfies all imposed constraints while optimizing
the objective function.

The distinction between constrained and unconstrained problems is fundamental
in optimization, influencing the selection of solution techniques and the complexity
of the problem. While unconstrained optimization focuses purely on the properties
of the objective function due to the absence of constraints, constrained optimization
problems require a balance between objective optimization and constraint satisfac-
tion, making them crucial in real-world applications where restrictions are inevitable.

8.2.2 Structure of an optimization problem

An optimization problem is mathematically represented by an objective function,
decision variables, and constraints. A general form of an optimization problem is
given by

minimize  fp(x)
subjectto  fi(x) <b;, i ={l,...,m},

where x € R" denotes the decision variables, fy(x) : R” — R is the objective func-
tion, and f;(x) : R* — R are the functions defining the constraints. The constraints
restrict the original domain of the decision variables to specify a smaller domain, of-
ten denoted as F, which represents all x that satisfy the constraints. A solution x* is
said to be optimal if it lies within the feasible domain and minimizes (or maximizes)
the objective function compared to all other values in that domain. It is important to
note that in the case of constrained optimization problems, the global optimum over
the entire domain may be different from the optimum in the constrained domain of
the decision variables. A mathematical structure is crucial for classifying optimiza-
tion problems, such as linear, quadratic, or nonlinear, and for determining appropriate
solution methods.

Objective

The objective of an optimization problem is the function fp(x) that numerically
quantifies the goal to be achieved. For a minimization problem, the objective of the
algorithm is to find a decision vector x* such that fy(x*) < fo(x) for all x € F, where
F represents the feasible region. The cases involving function maximization can be
handled by minimizing the negative of the function, i.e., — fy(x). The properties of
the objective function, such as linearity, convexity, differentiability, and smoothness,
significantly affect the complexity of the problem and the algorithms required to solve
it.



8.2 Optimization 163

Metrics

Metrics are quantitative measures that evaluate the quality of solutions to optimiza-
tion problems. The most commonly used metric is the value of the objective function
at the optimal point, fp(x*), which indicates how well the solution satisfies the prob-
lem’s goal. However, in some use cases, the constraints involved in the optimization
problem must be strictly met, e.g., power constraints on transmit antennas, load bal-
ancing in network traffic, etc., to keep the system stable and operational. Constraint
satisfaction metrics, employing residuals of f;(x) — b; for inequality constraints or
hj(x) for equality constraints can also be used to measure the performance of an
optimization algorithm. In multi-objective optimization, metrics such as Pareto dom-
inance, Pareto front distance, or hypervolume are used to assess trade-offs among
competing objectives. Metrics are also used to define stopping criteria, convergence
rates, and computational efficiency.

Constraints

Real-world systems are inherently subject to constraints that must be taken into ac-
count to ensure reliability and stability. These limitations are effectively modeled in
constrained optimization problems, where constraints explicitly define the allowable
values of decision variables. Mathematical optimization provides a rigorous frame-
work for incorporating these limitations as constraints, ensuring that solutions remain
feasible within the defined operational bounds.

Constraints delineate the feasible region in which decision variables can exist, and
the optimal solution must be obtained within this region. Formally, constraints can be
categorized into:

— Equality Constraints: Requiring decision variables to satisfy specific exact rela-
tionships, represented by equalities.

— Inequality Constraints: Restricting decision variables to meet upper or lower
bounds or other limiting conditions, represented by inequalities.

Constraints can be linear or nonlinear, and their interaction determines the geom-
etry of the region formed by the feasible set. For instance, linear constraints form
polyhedra, while nonlinear constraints often result in curved boundaries. Proper han-
dling of constraints is crucial for problem formulation and solution, as setting loose
constraints may affect the stability of complex systems and overly restrictive con-
straints might explude the optimal solution.

Decision variables

Decision variables x = (x1, x2, ..., x;) € R” are the variables that need to be de-
termined to solve the optimization problem. They serve as parameters for both the
objective function and the constraints, with their values influencing the value of the
metrics as well. Decision variables can belong to either continuous spaces or discrete
spaces, each possessing different properties.

Discrete Spaces: A discrete space consists of elements that are distinct, and
countable. They correspond to decision variables that can only take specific values,
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e.g., integers or categorical values. These spaces are encountered in scheduling, or
routing problems where the solutions involve selecting from a finite or countable set
of possibilities. The set of integers {1, 2, 3, ...} or the set of antennas to select for
transmission are problems with discrete decision variables.

Continuous Spaces: In contrast, a continuous space is characterized by values
within a specified range or domain of real numbers. Decision variables in continuous
spaces are not restricted to discrete levels. These spaces are frequently used in prob-
lems involving real-valued functions, such as beamforming optimization and power
allocation, etc. The interval [0, 1] or the entire Euclidean space R" are continuous in
nature.

Mixed-integer optimization problems involve both types of variables and are gen-
erally more complex. The domain boundaries of the decision variables are often
explicitly specified by constraints, such as bounds / < x <u, where /, u € R".

8.2.3 Complexity of optimization problems

The complexity of an optimization problem is determined by the nature of its ob-
jective function, constraints, and metrics. Problems with linear objectives and con-
straints, called linear programming (LP) problems, are efficiently solvable in poly-
nomial time using algorithms such as the simplex method or interior-point methods.
For example, we have

minimize ¢ x

subjectto  Ax <b,

x>0,

where the variables c € R*, A € R™*", and b € R™ form a linear programming prob-
lem with a linear objective and linear constraints.

Quadratic programming (QP), where the objective function is quadratic and con-
straints are linear, also allows polynomial-time solutions if the objective function is
convex. For instance,

1
minimize ExTQx +c'x subjectto Ax <b

is a quadratic programming problem, where Q is a positive semidefinite matrix. The
term x ' Qx makes the objective function quadratic.

In contrast, nonconvex optimization problems, such as those with multiple lo-
cal minima or combinatorial structures, are often NP-hard. These problems require
heuristic or approximate methods, such as genetic algorithms or simulated annealing,
for practical solutions. Combinatorial optimization problems, like the traveling sales-
man problem (TSP), are also non-convex and NP-hard. The dimensionality of the
problem and the sparsity of constraints further influence computational complexity.
Examples of these constraints can be found in the literature on user association and
resource allocation optimization [8].
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8.2.4 Types of optimization solutions

An optimum is determined by identifying the minimum or maximum value of an
objective function within the domain of the decision variables. Since the optimum
must represent the extremum value achievable within the feasible region, optimiza-
tion algorithms can be categorized into two classes based on the nature of the optimal
solution they identify. These classes are:

— Global Optimization
— Local Optimization

Global optimization

Global optimization focuses on identifying the best solution across the entire search
space. Unlike local optimization, it avoids being confined to local optima and is
particularly important for problems with multi-modal or highly complex response
curves, where multiple local optima exist.

Techniques for global optimization, including simulated annealing and genetic
algorithms, emphasize the exploration of the decision space. These methods utilize
random, population-based, or probabilistic approaches to ensure broad coverage of
the solution space. Global optimization is essential for problems where finding the
true global optimum is critical, even at the cost of high computation.

Local optimization

Local optimization seeks the best solution within a restricted neighborhood of a ran-
dom starting point. It assumes that the objective function behaves consistently and
allows for iterative refinement of the solution using information such as gradients
and curvatures. Typical gradient-based optimization techniques such as Newton’s
method and quasi-Newton methods are widely used to solve problems with these
assumptions.

Local optimization is computationally efficient as compared to global optimiza-
tion, and effective when applied to smooth and convex problems where any local
minimum is guaranteed to be a global minimum. However, it may fail in non-convex
or multi-modal landscapes, where solutions may converge to a local optimum that
may not be globally optimal.

8.3 Types of optimization frameworks

Optimization techniques can be broadly classified based on various criteria, such as
the nature of the problem, the structure of the optimization space, and the methodol-

ogy.

8.3.1 Mathematical optimization

Mathematical optimization focuses on systematically identifying the best solution
to a problem by maximizing or minimizing an objective function within defined
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constraints. Unlike other techniques that may rely on approximate and often problem-
specific strategies or on learning patterns from data to make predictions or decisions,
mathematical optimization provides exact or provably optimal solutions when the
problem structure allows and models objectives and constraints for decision making.

Convex optimization

Convex optimization addresses problems where the objective function is convex, and
the feasible region forms a convex set. A convex function is defined as a function
in which the intermediate values between two function values are always lower than
or equal to the line connecting the two function values. This property guarantees
that every local minimum is also a global minimum. The mathematical structure of
convex optimization problems allows for the development of efficient algorithms,
such as gradient descent and interior-point methods.

— Examples: Linear programming (LP), Quadratic programming (QP), Semidefi-
nite programming (SDP), etc.

— Advantages: Global optimum is guaranteed due to convexity.

— Techniques: Gradient descent, interior-point methods, etc.

— Applications: Beamforming, power allocation, etc.

Non-convex optimization

Non-convex optimization deals with problems where the objective function or con-
straints lack convexity, leading to multiple local optima. Unlike convex optimization,
there is no guarantee that a local minimum is a global minimum. Non-convex prob-
lems rely on effective methods to explore the solution space and escape local optima.
To address the problem of premature convergence, techniques such as simulated an-
nealing allow for probabilistic “jumps” that explore regions beyond the current local
solution, mimicking the physical process of cooling metals. Similarly, Genetic algo-
rithms leverage evolutionary principles, such as selection and mutation, to explore
diverse regions of the solution space. These methods, aim to balance optimal search
and solution refinement to achieve robust results.

— Examples: Non-linear programming, combinatorial optimization, etc.

— Challenges: Fine-tuning to find the global optimum, computationally expensive,
etc.

— Techniques: Simulated annealing, genetic algorithms, branch and bound, etc.

— Applications: Antenna selection, cell user association, etc.

Stochastic optimization

Stochastic optimization incorporates randomness into the optimization process or
directly into the problem formulation, enabling the handling of uncertainties, and
incomplete or noisy information. Instead of relying on precise function evaluations,
these methods work with noisy or sampled data to iteratively improve solutions. A
method called stochastic gradient descent (SGD) updates the solution using small
random subsets of data (mini-batches), reducing the computational cost while main-
taining significant convergence properties. These methods are particularly effective
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for large-scale problems where deterministic approaches are computationally pro-
hibitive. Stochastic optimization techniques are often sensitive to optimization pa-
rameters like learning rate and stopping criteria therefore appropriate parameter se-
lection is one of the challenges involved in stochastic modeling and optimization.

— Examples: Stochastic gradient descent (SGD), particle swarm optimization
(PSO), Monte Carlo methods, Bayesian optimization, etc.
— Challenges: Convergence issues in complex scenarios, sensitivity to hyperparam-
eters (e.g., learning rates), and computational overhead in large-scale systems.
— Techniques: Mini-batch stochastic gradient descent, Markov Chain Monte Carlo
(MCMC), Gaussian process-based Bayesian optimization, etc.
— Applications:
Dynamic spectrum allocation in cognitive radio networks.
Power control in massive MIMO systems.
User scheduling and beamforming optimization.
Resource allocation in ultra-dense networks.
Channel estimation in IoT-enabled networks.

Combinatorial optimization

Combinatorial optimization focuses on problems where the objective is to find the
best solution from a finite or countably infinite set of feasible solutions, often char-
acterized by discrete decision variables and complex constraints. The large solution
spaces of combinatorial problems make exhaustive search impossible, and special
optimization techniques have to be developed to efficiently explore the solution
space. Techniques including integer dynamic programming and dynamic program-
ming might be able to tackle smaller problems, but for large solution spaces, meta-
heuristic algorithms have to be employed to find a feasible solution within reasonable
time bounds.

Combinatorial optimization is well suited for problems with a structure consisting
of discrete elements, such as graphs. These methods are sensitive to problem-specific
factors such as the structure of the feasible region, the behavior of the cost function,
and the complexity of the constraints, which influence the choice of algorithm and its
effectiveness.

— Examples: Scheduling problems, resource allocation, routing optimization, etc.
— Challenges: Large solution spaces, NP-hard complexity, difficulty in finding
globally optimal solutions, and computational infeasibility for real-time applica-
tions.
— Techniques: Integer programming, branch and bound, dynamic programming, ge-
netic algorithms, greedy algorithms, etc.
— Applications:
Frequency assignment in wireless networks.
User association in heterogeneous networks.
Beam selection in millimeter-wave MIMO systems.
Optimal routing in ad-hoc and sensor networks.
Subcarrier and power allocation in OFDMA systems.
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8.3.2 Heuristic and metaheuristic techniques

Heuristic and metaheuristic techniques focus on efficiently finding near-optimal so-
lutions to complex optimization problems, particularly where exact methods are
computationally infeasible due to the size or structure of the problem. Unlike mathe-
matical optimization, which relies on rigorous modeling of objectives and constraints,
heuristic and metaheuristic methods use approximate, problem-independent strate-
gies (in the case of metaheuristics) inspired by nature, physics, or random processes
to optimize complex systems.

Heuristic methods

Heuristic methods are approximate strategies designed to produce good solutions
within reasonable timeframes, especially for complex problems where exact solutions
are infeasible. These methods rely on intuitive rules or insights about the problem
structure rather than rigorous mathematical formulations. Hill climbing is one notable
example of heuristic methods, in which the algorithm iteratively adjusts the current
solution by evaluating neighboring solutions and moving toward the one with the
highest improvement. While heuristic methods are not guaranteed to find the optimal
solution, they are highly desirable for quickly obtaining optimized results that may
prove to be much better than random selection. They often form the foundation for
more advanced optimization frameworks by providing initial solutions or guidance.

— Examples: Hill climbing, greedy algorithms, random search, etc.
— Challenges: Prone to getting stuck in local optima, lack of scalability for complex
problems, and no guarantee of global optimality.
— Techniques: Constructive heuristics, neighborhood-based search, iterative im-
provement, etc.
— Applications:
Channel allocation in wireless networks.
Beamforming vector selection in MIMO systems.
Resource scheduling in edge computing environments.
Frequency planning in cellular networks.
Pathfinding in ad-hoc and sensor networks.

Metaheuristic methods

Metaheuristic methods are generalized frameworks that enhance heuristic approaches
by introducing mechanisms to explore the solution space more systematically. For
instance, genetic algorithms simulate natural selection by evolving a population of
candidate solutions utilizing crossover and mutation. Simulated annealing, inspired
by the cooling process of metals, probabilistically accepts worse solutions to escape
local optima early in the process. Other methods, such as particle swarm optimiza-
tion, model collective behaviors to guide search efforts. Metaheuristics provide a
versatile toolkit for tackling diverse and complex optimization problems while being
adaptable to a wider class of problems than heuristic algorithms at the cost of added
complexity.
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— Examples: Genetic algorithms (GA), simulated annealing (SA), particle swarm
optimization (PSO), ant colony optimization (ACO), differential evolution (DE),
etc.

— Challenges: High computational cost for large-scale problems, risk of premature
convergence, difficulty in parameter tuning, and lack of problem-specific guaran-
tees.

— Techniques:

Population-based techniques (e.g., GA, PSO, DE).
Trajectory-based techniques (e.g., SA, ACO).
Hybrid metaheuristics that combine elements of multiple algorithms.

— Applications:

Power allocation in heterogeneous networks.

Beamforming optimization in massive MIMO systems.
Resource allocation in multi-access edge computing (MEC).
Spectrum sharing in cognitive radio networks.

Clustering in wireless sensor networks.

8.3.3 Machine learning-bhased optimization

Machine learning-based optimization leverages the predictive and adaptive capabil-
ities of machine learning models to guide the search for optimal solutions. Unlike
traditional mathematical optimization, which relies on explicit models of objectives
and constraints, machine learning-based approaches learn patterns and relationships
directly from data. These techniques are particularly effective when the problem
structure is not fully known or the problem is too complex to model using classical
approaches. By integrating data-driven insights into the optimization process, ma-
chine learning can significantly reduce the effort required in classical modeling while
also providing comparable or better optimization results.

— Examples: Supervised learning for optimization, deep learning-based optimiza-
tion, Bayesian optimization, etc.

— Challenges: High computational complexity, requirement for large datasets, sus-
ceptibility to overfitting, lack of interpretability, and difficulty in convergence for
complex wireless environments.

— Techniques:

Deep reinforcement learning (e.g., DDPG, PPO).
Bayesian optimization for hyperparameter tuning.
Supervised learning for predictive optimization.
Transfer learning for dynamic network adaptation.
Federated learning for distributed optimization.

— Applications:

Dynamic spectrum allocation in cognitive radio networks.
Power control in energy-efficient communication systems.
User scheduling in multi-user MIMO systems.

Resource allocation in ultra-dense networks.
Beamforming optimization in millimeter-wave systems.
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Gradient-based optimization

Gradient-based optimization uses derivatives to guide the search for optimal solutions
in continuous spaces. For convex problems, gradient-based methods like gradient de-
scent or Newton’s method are highly efficient, converging to the global minimum.
Differential objective functions are necessary for the proper functioning of these
techniques, therefore the design of smooth and differentiable objective functions is
of significant interest in this domain of optimization. Proper tuning of parameters,
such as learning rates or step sizes, is critical for achieving a balance between con-
vergence speed and stability. Advanced variants, such as adaptive moment estimation
(Adam), incorporate momentum and adaptive learning rates to enhance performance
in complex problems.

— Examples: Gradient descent, stochastic gradient descent (SGD), conjugate gradi-
ent method, Newton’s method, quasi-Newton methods, etc.

— Challenges: Dependence on the differentiability of objective functions, sensitivity
to initial conditions, risk of convergence to local optima in non-convex problems,
and computational inefficiency for high-dimensional systems.

— Techniques:

Adaptive gradient methods (e.g., Adam, RMSprop).
Momentum-based optimization techniques.
Line search and trust-region methods for step size optimization.

— Applications:

Beamforming optimization in massive MIMO systems.
Power allocation in multi-user communication networks.
Resource allocation in OFDMA-based networks.

Gradient-free optimization

Gradient-free optimization methods are designed for situations where gradients are
unavailable, unreliable, or expensive to compute. These methods rely on sampling
and evaluating the objective function directly, making them suitable for black-box
problems where the internal structure of the function is unknown. Techniques like
Bayesian optimization model the objective function probabilistically, using prior
evaluations to guide exploration and exploitation. While these methods are com-
putationally intensive, they are robust to noisy, non-differentiable, or multi-modal
functions, making them effective for a broad range of optimization challenges, even
in fields employing machine learning algorithms.

— Examples: Bayesian optimization, random search, genetic algorithms (GA), par-
ticle swarm optimization (PSO), evolutionary strategies, etc.

— Challenges: High computational complexity for large solution spaces, slower
convergence compared to gradient-based methods, sensitivity to algorithmic pa-
rameters.

— Techniques:

Bayesian optimization with Gaussian processes for black-box functions.
Evolutionary algorithms (e.g., genetic algorithms, differential evolution).



8.4 Optimization in Green loT 171

Metaheuristics (e.g., simulated annealing, particle swarm optimization).
Direct search methods (e.g., Nelder-Mead, pattern search).

— Applications:
Beamforming optimization in multi-user MIMO systems without analytical
gradients.
Resource allocation in non-differentiable energy-efficient communication sys-
tems.
UAV placement and trajectory optimization in IoT-enabled wireless systems.

Reinforcement Learning (RL)

Reinforcement learning is an optimization framework where an agent learns to make
sequential decisions by interacting with its environment. Unlike other optimization
methods, RL focuses on maximizing long-term cumulative rewards rather than a sin-
gle objective. The agent explores actions, observes outcomes, and adjusts its strategy
based on the feedback from the environment. Techniques like Q-learning use value
functions to estimate the expected rewards of actions in discrete spaces, while pol-
icy gradient methods directly optimize the policy governing action selection and are
more suitable for continuous space problems. RL is particularly effective in complex
and dynamic environments with stochastic feedback.

— Techniques: Q-learning, policy gradient methods.
— Applications: sum-rate maximization, path planning, resource allocation, etc.

8.3.4 Multi-objective optimization

Multi-objective optimization addresses problems involving multiple conflicting ob-
jectives that must be optimized simultaneously. Rather than seeking a single optimal
solution, these problems yield a set of Pareto-optimal solutions, where improving
one objective requires compromising another. The Pareto frontier represents these
trade-offs, allowing decision-makers to evaluate and select solutions based on their
priorities.

— Techniques: Pareto optimization, NSGA-II (Non-dominated Sorting Genetic Al-
gorithm).

— Applications: Quality of service (QoS) vs Resource Utilization, Throughput vs
Interference, etc.

8.4 Optimization in Green loT

In this section, we will introduce optimization in the context of green IoT. In particu-
lar, the allocation of network resources is an important aspect of effective network
management, especially in wireless networks where resources such as frequency,
bandwidth, and channel access are scarce. The reuse and optimal distribution of these
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Table 8.1 Technical differences.

Aspect Convex Op- | Reinforcement | Heuristic Metaheuristic
timization Learning Methods Methods
Nature Deterministic, | Stochastic, Problem- General-purpose,
analytical environment- specific, framework-driven
based heuristic-driven
Objective Convex Reward Any Any
Function maximization
Search Continuous, Sequential, Discrete/contin- | Discrete/continu-
Space convex dynamic uous ous
Optimality Global No guarantees No guarantees | Near-optimal
Guarantee optimum solutions
Computa- Moderate High (training Low to Moderate to high
tional Cost over time) moderate
Scalability High Problem- High High
dependent
Applications Engineering, | Robotics, Al Scheduling, Complex and
economics basic global
optimizations optimizations

resources are necessary for enhancing network operation. For this reason, design-
ing efficient resource allocation mechanism is crucial in multiple access systems,
as it governs the management of both radio resources and interference, ensuring
high-speed and reliable communication. In this context, next-generation multiple
access (NGMA) has gained significant attention. From 1G to 5G, multiple access
technologies have evolved with the goal of allocating orthogonal radio resources to
users, thereby preventing multi-user interference. However, in conventional orthogo-
nal multiple access (OMA) methods such as time division multiple access (TDMA),
frequency division multiple access (FDMA), code division multiple access (CDMA),
and orthogonal frequency-division multiple access (OFDMA), each user is assigned
an individual orthogonal resource, which limits the number of users supported and
reduces spectral efficiency (Table 8.1).

The next generation of communication systems aims to enhance user experience
by supporting advanced applications and services like industrial automation, smart
cities, virtual and augmented reality, remote medical surgery, autonomous vehicles,
and unmanned aerial vehicles (UAVs). These emerging services introduce demanding
requirements, including low latency, high data rates, massive connectivity, high reli-
ability, and varied quality of service support. The massive connectivity needs in 5G
and beyond are largely driven by the rapid expansion of IoT devices. Notably, 6G net-
works are expected to support a connection density of 107 devices/km?, 1000 times
higher than 4G and 10 times higher than 5G. However, traditional OMA schemes,
which allocate distinct resource blocks (e.g., time and frequency) to individual users,
face challenges in accommodating a larger number of devices. Specifically, since
each orthogonal resource in OMA is assigned to one user, the maximum simultane-
ous user capacity is limited by the number of available resources, restricting spectral
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efficiency. Additionally, low-rate IoT users requiring minimal resources may occupy
an entire resource block, leading to further inefficiency in spectrum utilization.

In contrast, non-orthogonal multiple access (NOMA) and rate-splitting multiple
access (RSMA), using superimposed coding and successive interference cancella-
tion (SIC), allow the same radio resource to be shared by multiple users, increasing
spectral efficiency compared to OMA. Specifically, NOMA leverages superposition
coding (SC) at the transmitter to layer user signals by power levels and applies SIC at
the receivers, effectively managing multi-user interference by decoding other users’
signals. On the other hand, RSMA is based on the rate-splitting concept, where user
messages are divided into common and private parts, enabling partial interference
decoding, while treating some interference as noise. With their strong interference
management capabilities, NOMA and RSMA are promising next-generation multi-
ple access (NGMA) technologies for supporting massive IoT connectivity.

In addition, because of their remarkable compatibility with other technologies,
NOMA and RSMA have been combined with techniques such as mobile edge com-
puting (MEC) and simultaneous wireless information and power transfer (SWIPT)
for IoT networks. Additionally, the flexibility of NOMA and RSMA is ready to sup-
port emerging applications such as cell-free massive multiple-input multiple-output
(CF-mMIMO), reconfigurable intelligent surfaces (RIS), and backscatter communi-
cations (BackCom). Thus, NOMA and RSMA represent a promising approach for
resource allocation in 6G that will transform the physical (PHY) and lower medium
access control (MAC) layers in wireless communication network design. In this con-
text, we have comprehensively investigated studies on NOMA- and RSMA-enabled
resource allocation algorithms for green IoT networks. Further, we also describe the
functional layers where optimization algorithms can be employed to enhance the op-
erational feasibility of NOMA- and RSMA-assisted green IoT, followed by sections
that focus on different technologies and paradigms where optimization would help in
the development of feasible architectures supporting green IoT.

8.4.1 Network architectures

The rapid expansion of IoT brings significant concerns related to energy consumption
and sustainability [9]. This challenge has driven the development of green IoT — a
paradigm focused on minimizing the energy footprint of IoT systems while maintain-
ing their efficiency and performance. In order to achieve green IoT, it is essential to
explore network architectures that prioritize energy efficiency and implement various
optimization techniques aimed at reducing the carbon footprint of IoT ecosystems.
Green loT network architectures prioritize energy efficiency and sustainability by
adopting solutions such as fog computing, edge computing, and Low-Power Wide-
Area Networks (LPWANSs). These architectures optimize data processing, trans-
mission, and storage to significantly reduce energy consumption while maintain-
ing performance. This is essential for sustainably scaling IoT systems, minimizing
their carbon footprint, and meeting environmental goals [10]. Additionally, optimiz-
ing network architectures to reduce energy consumption lowers operational costs.
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Energy-efficient networks reduce the need for frequent battery replacement, and by
processing data locally, they minimize data transmission costs, which can otherwise
be significant due to high bandwidth requirements, data center usage fees, and en-
ergy consumed during transmission. This helps organizations reduce maintenance
costs and improve the financial feasibility of large-scale IoT deployments.

Green IoT architectures, such as fog and edge computing, enable efficient man-
agement of large-scale IoT deployments by distributing processing power closer to
the devices [11]. This reduces the need for centralized cloud data centers, thereby
reducing bandwidth consumption, latency, and power consumption. Additionally,
LPWANSs and other low-power communication protocols enhance the scalability of
IoT networks, allowing them to accommodate billions of devices [12] with mini-
mal environmental impact. By leveraging these architectures, IoT systems can handle
massive data traffic and ensure high performance without excessive energy use. As
IoT expands globally, these solutions enable networks to grow sustainably, ensuring
both environmental and operational efficiency.

Green IoT network architectures improve reliability and performance, particu-
larly in time-sensitive applications such as autonomous vehicles or industrial au-
tomation. Edge and fog computing reduces data transfer distances, lowering latency
and enhancing response times, resulting in faster, more responsive networks. More-
over, energy-efficient architectures such as Software-Defined Networking (SDN) and
Network Function Virtualization (NFV) allow for real-time adaptation to dynamic
network conditions, adjusting resources, rerouting traffic, and modifying device op-
erations based on energy availability or traffic changes [13]. This adaptability ensures
efficient energy use and optimal performance, enhancing network resilience and ver-
satility in fluctuating environments.

As IoT networks grow, the demand for efficient, scalable, and sustainable archi-
tectures becomes critical. Green IoT systems future-proof ecosystems by ensuring
that network expansion does not result in unsustainable energy consumption. By in-
vesting in energy-efficient architectures today, organizations can prepare for future
performance requirements while meeting stricter environmental and regulatory stan-
dards. These architectures help reduce carbon footprints, ensure compliance with
regulations on energy use and e-waste regulations, and support long-term sustain-
ability goals. Proactively adopting green IoT solutions ensures that IoT ecosystems
remain viable and adaptable to future environmental and technological challenges.

Network architectures in Green loT

Several network architectures are being developed and researched with the goal
of creating a more energy-efficient IoT. These architectures typically focus on the
following key areas: data processing, communication protocols, and resource man-
agement.

— Fog Computing and Edge Computing Architectures: Traditional cloud-based
IoT architectures often suffer from high latency and increased energy consump-
tion due to the need to transfer large volumes of data to centralized cloud servers
[14]. To address this issue, fog computing and edge computing architectures have
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gained prominence. In these architectures, data processing occurs closer to the
source of the data, such as IoT devices or local edge servers, reducing the need for
long-distance data transfers and thereby reducing energy consumption [15].

Fog computing involves the deployment of intermediate layers between IoT de-
vices and cloud data centers, enabling localized data processing [16]. This archi-
tecture is critical to reduce the bandwidth load on central servers and minimizing
the power required for long-range data transmissions. By processing data locally,
fog computing can offload energy-intensive tasks from both the IoT devices and
the cloud, thus reducing the overall energy consumption.

Similar to fog computing, edge computing brings the processing power even
closer to IoT devices, typically at the device or gateway level [17]. This en-
ables real-time data processing and analytics, significantly reducing the latency
and energy costs associated with cloud-based architectures. Edge computing also
reduces the energy consumed by data transmission, as only relevant data is sent to
cloud servers when necessary.

Both fog and edge computing architectures offer substantial energy-saving po-
tential by minimizing the reliance on centralized data centers. They also improve
the scalability of IoT networks by distributing computational workloads, making
these architectures central to the development of Green IoT systems.
Software-Defined Networking (SDN) and Network Function Virtualization
(NFYV): Software-Defined Networking (SDN) and Network Function Virtualiza-
tion (NFV) have emerged as transformative approaches to network management,
enabling greater flexibility, efficiency, and energy savings in IoT networks [18].
They can help IoT networks achieve significant energy savings through more ef-
ficient resource management, dynamic routing, and the reduction of idle network
functions.

In SDN, the control plane is separated from the data plane, allowing for central-
ized network management and more efficient routing of data. This is particularly
important for Green IoT, as SDN can dynamically optimize network resources and
routes based on real-time traffic patterns, reducing unnecessary energy consump-
tion [19]. SDN also allows for the intelligent allocation of resources to different
devices, which can help ensure that energy is used efficiently across the network.
NFV complements SDN by virtualizing network functions (such as firewalls, load
balancers, and routers) and running them on general-purpose hardware instead
of dedicated, energy-hungry devices. NFV reduces the hardware footprint of IoT
networks, thereby lowering both capital and operational energy costs. The abil-
ity to virtualize and scale network functions dynamically also improves energy
efficiency, as resources can be provisioned on demand rather than kept running
continuously.

Low-Power Wide-Area Networks (LPWANSs): Low-Power Wide-Area Net-
works (LPWANS) are a category of wireless IoT communication standards that
aim to reduce architectural requirements, specifically for energy-constrained IoT
applications [15,16]. These networks, which include technologies such as Lo-
RaWAN, Sigfox, and Narrowband IoT (NB-IoT), are optimized for long-range
communication with minimal energy consumption [20].
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LoRaWAN is a popular LPWAN technology that supports low data rates and
long-range communication. It is widely used in smart agriculture, environmen-
tal monitoring, and smart cities [21] due to its ability to connect a large number
of low-power devices over long distances. The architecture of LoRaWAN is opti-
mized to minimize power consumption, making it ideal for battery-powered IoT
devices that require infrequent communication with the network [22].

Sigfox is another LPWAN technology that focuses on ultra-narrowband com-
munication, enabling energy-efficient transmission over long distances. Sigfox
is designed for applications where small packets of data are sent intermittently,
making it well-suited for remote sensing and monitoring applications. NB-IoT is
a cellular-based LPWAN technology that leverages existing LTE infrastructure to
provide wide coverage and low power consumption. It is highly energy-efficient
and is optimized for IoT applications that require reliable, low-cost communica-
tions with limited data throughput.

LPWAN:S are essential for Green IoT because they enable large-scale IoT deploy-
ments without the high energy consumption typically associated with wireless
communication technologies such as Wi-Fi or cellular networks. By optimizing
communication protocols and focusing on low-power transmissions, LPWANs of-
fer a promising solution for sustainable IoT networks.

Optimization Green loT network architectures

While the aforementioned network architectures are inherently designed to improve
energy efficiency, further optimization is needed to maximize their sustainability.
Following are some of the optimization techniques critical to enhancing the energy
efficiency of these architectures.

Energy-Aware Routing Protocols: One of the most significant sources of energy
consumption in IoT networks is the data transmission process. Traditional routing
protocols are not optimized for energy efficiency, often leading to unnecessary
transmissions and energy wastage. To address this, energy-aware routing protocols
have been developed.

Energy-aware routing protocols optimize the path that data takes through the net-
work by considering the energy levels of devices and nodes. These protocols aim
to minimize the energy consumed during data transmission and ensure that no sin-
gle node is overburdened, which could lead to premature battery depletion [23].
Techniques such as multi-hop routing, where data is transmitted through multi-
ple intermediate nodes rather than directly to a central hub, can further reduce
transmission power requirements.

Sleep Scheduling and Duty Cycling: For battery-powered IoT devices, sleep
scheduling and duty cycling are crucial for reducing energy consumption. These
techniques involve periodically putting devices into low-power sleep modes when
they are not actively transmitting or receiving data. By reducing the active time of
IoT devices, significant energy savings can be achieved.

In duty cycling, devices alternate between active and inactive states based on pre-
defined schedules or triggers. Optimization algorithms can be applied to determine
the ideal duty cycles for different devices, balancing energy savings with the need
for timely data collection and transmission.
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— Data Aggregation and Compression: Data transmission is one of the most
energy-intensive operations in IoT networks. To reduce the energy consumed by
communication, data aggregation, and compression techniques can be employed.
In data aggregation, multiple data packets from different sensors are combined
into a single packet before being transmitted, reducing the total number of trans-
missions required. Similarly, data compression algorithms can be used to mini-
mize the size of the transmitted data, further reducing energy consumption [24].
Fog and edge computing architectures are particularly well suited to implement
these optimization techniques, as they have the computational power to perform
data aggregation and compression close to the data source, thus reducing the en-
ergy overhead associated with long-distance transmissions to the cloud.

— Machine Learning for Energy Optimization: Machine learning (ML) tech-
niques have emerged as powerful tools for optimizing energy efficiency in Green
IoT architectures. ML algorithms can analyze data on network traffic, device en-
ergy consumption, and environmental factors to predict future energy needs and
optimize resource allocation dynamically. By leveraging historical data, ML mod-
els can intelligently adjust communication protocols, routing paths, and device
duty cycles to minimize energy consumption without compromising performance.
For example, reinforcement learning algorithms can be used to dynamically ad-
just the configuration of IoT networks based on real-time feedback, ensuring that
energy is used efficiently in response to changing network conditions.

8.4.2 Resource allocation

SIC decoding order

In NOMA and RSMA systems, the SIC decoding process is crucial for allowing
multiple users to share the same radio resource by eliminating interference from other
users’ signals [25]. The order of SIC decoding plays a significant role in resource
allocation performance. For single-cell NOMA, the decoding order is determined by
the channel-to-noise ratio (CNR) [26], whereas in multi-cell NOMA, it is based on
the signal-to-interference-plus-noise ratio (SINR), making the optimal solution more
complex. To address this, a joint approach for SIC decoding and resource allocation
using deep neural networks (DNN) is proposed for multi-cell NOMA [27]. However,
even with an optimal order, decoding errors may still occur, requiring strategies to
mitigate them.

RSMA, on the other hand, reduces the SIC decoding errors seen in NOMA, partic-
ularly as the number of users increases. In the basic RSMA model, known as 1-layer
RSMA, only one round of SIC is required, which helps reduce errors while offer-
ing comparable or superior resource allocation performance to NOMA. Despite this,
RSMA still faces challenges related to high complexity and error propagation dur-
ing the SIC process. To tackle these issues, new receiver designs are being proposed
for RSMA, that provide more options in terms of complexity and performance be-
yond the conventional SIC receiver [28]. While the 1-layer RSMA scheme shows
advantages over traditional schemes such as OMA and NOMA, in high-throughput
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SIC decoding procedure for two-user cases of NOMA and RSMA.

scenarios, schemes like rate splitting and common message decoding (RS-CMD),
which perform multiple SIC processes, should be explored. This enhanced flexibility
and message splitting capability lead to improved bit error rates [29]. Future studies
will focus on optimizing the SIC decoding order in RS-CMD systems.

Power allocation

Power allocation is considered a critical aspect of resource allocation, as it is closely
tied to the dynamically changing, time-varying nature of wireless channels. For this
reason, it mostly considers MEC, SWIPT, and UAV scenarios, where efficient power
management is critical. Similarly, in IoT networks, the large number of users in-
creases the need for efficient power allocation, even with the advantages of NOMA
and RSMA. Specifically, various power allocation algorithms are developed to op-
timize key performance metrics such as spectral and energy efficiency, which are
essential in NOMA- and RSMA-enabled IoT network systems. As a result, recent
studies have analyzed the optimal conditions for power allocation coefficients in these
systems [26,30]. However, applying traditional iterative algorithms for power alloca-
tion in dense IoT networks can lead to high complexity. To address this issue, deep
learning-based power allocation algorithms have been introduced, significantly re-
ducing complexity while maintaining performance close to the optimal solution [31].
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This approach improves system metrics and enables rapid decision-making, result-
ing in more efficient resource allocation for a sustainable and seamless green IoT
network.

Beamforming

In the SIC decoding process, IoT devices are typically grouped into clusters to reduce
error probability and signal processing load, a technique known as user clustering.
SIC is then applied only within each cluster. However, inter-cluster interference per-
sists between clusters, negatively impacting system performance. To address this
problem, spatial beamforming is commonly employed at multi-antenna base station
scenarios such as CF-mMIMO systems. Beamforming works by adjusting the signals
from antenna array elements to create constructive interference at specific angles and
destructive interference at others. As a result, beamforming in NOMA and RSMA-
enabled IoT networks proves to be highly effective and robust in maximizing energy
efficiency for large-scale IoT systems [32,33].
Stream 1 B

Antenna array

Beamforming )
n precoding

Stream 2

UE2

Base station
FIGURE 8.2
Beamforming system model for the multiuser MIMO beamforming.

Channel access (MAC)

Medium Access Control (MAC) protocols are fundamental to the efficient operation
of wireless networks. In wireless networks, MAC protocols manage access to the
shared communication medium, ensuring that data transmission between nodes oc-
curs without collision and with minimal interference. Techniques like time-division
multiple access (TDMA), code-division multiple access (CDMA), and contention-
based protocols such as IEEE 802.11 have been developed for managing medium
access in voice and data networks. A key challenge in these networks is ensuring
fairness, reducing latency, and maximizing throughput, while maintaining efficient
use of bandwidth.

For the Internet of Things (IoT) network, however, the focus shifts toward en-
ergy efficiency due to the limited power resources of IoT nodes, which are often
battery-operated. In many IoT applications, replacing or recharging batteries is ei-
ther impractical or impossible, making energy conservation the primary concern. As
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a result, the design of MAC protocols for IoT networks must prioritize prolonging
network lifetime. To meet this challenge, protocols are designed with mechanisms
that address key sources of energy waste: collisions, overhearing, and idle listening.

Collisions, which occur when two nodes transmit simultaneously, result in packet
corruption and retransmission, thereby wasting energy and increasing latency. Over-
hearing happens when a node listens to packets intended for other nodes, consuming
energy needlessly. Finally, idle listening, in which nodes remain in a listening state to
detect possible transmissions even when there is no traffic, is particularly detrimental
in sensor networks. Idle listening consumes more energy than the other factors of
energy waste.

At the same time, IoT applications introduce new requirements, not only for en-
ergy efficiency, but also for the evolution of the MAC protocol. The wide variety of
IoT devices—ranging from wearable sensors and home automation systems to large-
scale industrial applications—means that [oT networks must be flexible and scalable.
Moreover, IoT networks often have unique demands such as long-range communica-
tion, low power consumption, and robust performance in dynamic environments. For
example, forest fire monitoring applications demand very large deployments, high re-
liability, and high density of sensors. In contrast, a body sensor network should have
a maximum latency of 125 ms for medical applications and 250 ms for non-medical
applications such as healthcare [34-36]. It should also be low power consumption,
low overhead, and adaptable to various topologies.

Moreover, especially in dense environments like smart cities or industrial IoT
(IIoT) systems, the MAC layer must ensure efficient communication without exces-
sive delays or collisions. In such scenarios, MAC protocols can employ techniques
such as duty cycling, where nodes switch between active and sleep states to conserve
energy, while maintaining network connectivity. Additionally, collision avoidance
mechanisms are critical in IoT networks to prevent interference and ensure reliable
data transmission across multiple devices.

In conclusion, the evolution of MAC protocols for IoT networks highlights the
need for specialized designs that cater to the unique challenges of each applica-
tion, whereas traditional MAC protocols focus on optimizing throughput, latency, and
bandwidth utilization. In the IoT domain, MAC protocols must be flexible, scalable,
and adaptable to diverse application requirements, balancing power consumption,
transmission range, and data rate needs. As IoT continues to expand into new areas
like smart cities, healthcare, and industrial automation, MAC protocols will remain
at the forefront of ensuring efficient, reliable, and energy-conscious communication.

MAC protocol and optimization method

One of the primary challenges in IoT network design is balancing the trade-offs be-
tween transmission range, delay, and data rates, as shown in Fig. 8.3 and Fig. 8.4,
low power wide area network (LPWAN), such as LoRa and Sigfox, are optimized
for long-range communication with minimal power usage, but they offer lower data
rates compared to short-range networks. In contrast, wireless personal area networks
(WPANSs) such as IEEE 802.15.4, which underpins Zigbee, prioritize short-range
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Relationship between energy consumption and latency.

communication with higher data rates and energy efficiency, making them suitable
for home automation and industrial control systems.

To efficiently address various requirements such as data rate, delay, latency,
network efficiency, and connectivity, different MAC protocols tailored to network
characteristics are required. This section briefly describes the MAC protocols used
in BLE, NB-IoT, Zigbee, LoRa, and Sigfox. Additionally, optimization techniques
based on the characteristics of these MAC protocols are discussed.

— ALOHA: As shown in Fig. 8.5, Aloha is a random access protocol, which means
that devices decide autonomously when to transmit over the shared channel. An
important feature of this method is that a device does not check if the channel is
free before transmitting. Devices transmit data as soon as they are ready, without
checking whether other devices are transmitting.
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The protocol operates as follows: Devices transmit data as soon as they are ready.
If two devices transmit simultaneously, a collision occurs. In such cases, the re-
ceiver fails to send an acknowledgment (ACK), signaling a collision. The sender,
upon not receiving an ACK, realizes a collision has occurred and waits for a ran-
dom backoff time before retransmitting. This strategy reduces the likelihood of
repeated collisions [37]. This slotted version of ALOHA is called S-ALOHA [38].
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Example of ALOHA and S-ALOHA.

Pure Aloha has a maximum throughput efficiency of approximately 18.4%, pri-
marily due to frequent collisions and retransmissions. Slotted Aloha improves
upon Pure Aloha by introducing time slots. Devices can only transmit at the start
of a time slot, reducing the chance of collisions. Slotted Aloha achieves up to
36.8% efficiency, nearly double that of Pure Aloha. Aloha’s design is straightfor-
ward, making it easy to implement. Due to their simple structure and low cost,
LoRa and Sigfox use a MAC protocol based on ALOHA. However, the downside
is that as the number of devices in the network increases, the number of collisions
and retransmissions also increases, making the network less scalable.

In [39], Metzner et al. analyzed a system with two transmit power groups: high
and low. Packets transmitted with high power can be successfully decoded even
when low-power packets are present. However, if multiple packets from the same
power group are transmitted simultaneously, none can be decoded. As a result,
packets sent with high transmit power gain higher priority and achieve greater
throughput compared to those transmitted with low power.

Lee et al. introduced an algorithm designed to enhance the scalability of Lo-
RaWAN by efficiently scheduling spreading factors (SFs), frequency channels,
and time slots for wireless links between end nodes and gateways in [40]. This
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algorithm is activated upon receiving a scheduling request message from a de-
vice. Initially, the algorithm allocates an appropriate SF based on the device’s
received signal strength. Subsequently, it assigns a frequency channel and a time
slot. Compared to the ALOHA protocol used for LoRaWAN uplink transmissions,
the proposed method demonstrated significant improvements, with simulation re-
sults indicating over a 60% increase in the number of end devices that can be
connected to a single gateway.

In addition, in [41], Polonelli et al. optimized LoRaWAN communication by im-
plementing a S-ALOHA variant over the standard pure-ALOHA protocol. To
ensure slot alignment across all end nodes, a lightweight synchronization method
specifically designed for LoRaWAN devices was employed. This approach had
minimal impact on the devices’ power consumption, while theoretically doubling
network throughput and reducing packet collisions by 26% in a real-world de-
ployment with 24 nodes.

On the other hand, various backoff algorithms for optimizing retransmission rates
have been proposed in [42,43] to maximize the throughput of unslotted ALOHA
systems. Van der Vleuten et al. [42] leverages information about the number of
backlogged devices. An observation period is required to estimate backlog infor-
mation. Seo et al. [43] proposed a particle filter (PF) algorithm to estimate the
number of backlogged devices by monitoring idle period durations.

Additionally, studies in [44—46] apply multipacket reception (MPR) techniques to
unslotted ALOHA systems. MPR-capable systems can decode multiple packets
simultaneously using advanced signal processing methods, such as successive in-
terference cancellation (SIC). Specifically, interference can be partially mitigated
to enable successful decoding even when packets are transmitted during an ongo-
ing transmission.

Carrier Sense Multiple Access: CSMA, developed in the early 1970s, is a pro-
tocol designed to improve the efficiency of random access communication by
introducing carrier sensing. It is widely used in wired networks such as Ether-
net and can also be applied to wireless networks such as Zigbee. The fundamental
concept of CSMA is carrier sensing. Before transmitting, a device checks whether
the communication channel is free. If the channel is clear, the device transmits
immediately. If the channel is busy, the device waits until the channel becomes
available.

As described in Fig. 8.6, the protocol operates as follows: Devices check whether
the channel is idle before transmission.

If the channel is busy, the device waits and periodically checks again. If a col-
lision occurs, the device stops transmitting and waits for a random backoff time
before attempting to retransmit. Different variations of CSMA employ distinct
algorithms to decide when to begin transmission over a shared medium. The pri-
mary differentiator among these algorithms is their level of aggressiveness or
persistence in initiating transmission. More aggressive algorithms tend to start
transmission sooner and make more efficient use of the available bandwidth. How-
ever, this increased utilization often comes with a higher risk of collisions with
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other transmitting devices. Probabilistically, they can be categorized into three
main categories 1-persistent, non-persistent, p-persistent [47].

1-persistent CSMA is considered an aggressive transmission algorithm. When the
transmitting node is ready to send data, it first checks the transmission medium to
determine if it is idle or busy. If the medium is idle, the node transmits immedi-
ately. If the medium is busy, the node continues to monitor it until it becomes idle,
at which point it transmits the frame without any further conditions. In the event
of a collision, the sender waits for a random period before attempting to retrans-
mit using the same procedure. This method is commonly used in CSMA/collision
detection (CD) systems, such as Ethernet.

Non-persistent CSMA is a less aggressive transmission algorithm. When the trans-
mitting node is ready to send data, it first checks whether the transmission medium
is idle or busy. If the medium is idle, it transmits immediately. If the medium
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is busy, the node skips to the final random waiting step of 1-persistent CSMA
before restarting the entire logic cycle. Unlike 1-persistent CSMA, it does not
continuously monitor the busy channel in an attempt to transmit, which is why
it is considered non-persistent. This method reduces the chance of collisions and
increases overall throughput, but it incurs a longer initial delay compared to 1-
persistent CSMA.

p-persistent CSMA lies between 1-persistent CSMA and pure non-persistent
CSMA in terms of behavior. In this protocol, when the node is ready to trans-
mit, it first checks the channel. If the medium is idle, the transmission proceeds
immediately. If the medium is busy, the node waits until the channel becomes
idle and then transmits with a probability p. If it does not transmit(i.e., 1 — p), the
node waits for a random period before attempting the process again, with the same
probability. This probabilistic backoff continues until the frame is transmitted, or
if the medium becomes busy again, in which case the node restarts the entire pro-
cedure. p-persistent CSMA is commonly used in CSMA/collision avoidance (CA)
systems, including Zigbee and other packet radio systems.

In [48], the authors introduced a memorized backoff scheme that utilizes the ex-
ponentially weighted moving average (EWMA) method to dynamically adjust the
contention window size. This adaptive approach enables more efficient handling
of network congestion by smoothing past transmission outcomes and optimizing
the backoff interval based on recent network conditions.

In [49], the authors derived contention window sizes optimized for both energy ef-
ficiency and delay performance as functions of the number of contending devices.
This optimization addresses the critical trade-off between collision probability and
idle listening time, where a larger contention window reduces collisions but in-
creases idle listening, and a smaller window lowers idle time but raises the risk of
collisions.

Jing et al. [50] optimized network throughput using an analytical model formu-
lated through convex optimization and proposed an adaptive backoff mechanism
to maximize performance. This algorithm is based on an approximate and simple
Markov model to achieve adaptive backoff for maximum throughput.

Shakir et al. [51] proposed a hybrid node prioritization technique based on IEEE
802.15.6 CSMA/CA. By prioritizing nodes based on the power and size of the
contention window and restricting channel access according to their priorities, the
proposed technique reduces the average backoff time for channel access and mini-
mizes the number of retransmissions. The authors provide experimental results on
various network metrics such as throughput, bandwidth efficiency, energy usage,
and network lifetime.

Multiple Access: Efficient allocation of communication resources is critical in
communication systems. For certain applications, there are constraints on contin-
uous connectivity and quality, and the allocation of dedicated resources to specific
users is commonly referred to as multiple access. Dedicated channels can be ob-
tained by partitioning resources, typically using time, frequency, or code.
Frequency-division multiple access (FDMA) is a method of assigning different
frequency channels to each user by organizing non-overlapping channels along the
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frequency axis. Guard bands are often set up to compensate for interference from
channels in the frequency band, imperfections in filters, spectrum spreading due
to Doppler, etc. It is also commonly used for analog signals, but can be used for
both analog and digital signals. Unlike FDMA, TDMA organizes non-overlapping
channels along the time axis, so that each user is assigned a different timeslot
that repeats periodically. The advantage of TDMA is that by assigning multiple
timeslots, the effect of assigning multiple channels can be achieved. However,
in periodically repeating timeslots, the channel characteristics can change from
period to period, making channel estimation techniques such as equalization es-
sential in each period.
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These methods have been widely used as core technologies in communication
systems, with various techniques such as orthogonal frequency division multiple
access (OFDM), frequency division duplexing (FDD), and time division duplex-
ing (TDD). In particular, OFDM has been a crucial technology in LTE systems,
where it utilizes a large number of orthogonal subcarriers to significantly increase
data transmission rates and effectively mitigate the challenges posed by multipath
fading. Additionally, narrowband IoT (NB-IoT) is designed to be suitable for [oT
environments with a focus on low power consumption and cost-efficiency, follow-
ing the architecture of LTE systems. As a result, the MAC protocol of NB-IoT
adopts the single carrier frequency division multiple access (SC-FDMA), which
is also a key feature of LTE [52].

Time allocation

With the rapid advancement of smart grid services such as demand response, preci-
sion load control, and advanced metering infrastructure, each IoT device generates
a large volume of computation-intensive and delay-sensitive tasks such as demand
response, precision load control, and advanced metering infrastructure. However, as
the number of devices grows exponentially, the conflict between massive connectivity
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demands and limited spectrum resources becomes more pronounced. Multi-timescale
resource allocation, as noted in [53], significantly reduces interactions and signaling
overhead, ensuring reliable service delivery for large-scale connectivity. Therefore,
optimizing resource block allocation in each timeslot is crucial for effective task
splitting. This time slot allocation enables seamless resource distribution and task
splitting, optimizing factors like energy consumption, queuing delay, queue backlog,
and connection success rate in massive IoT networks.

Subchannel allocation

Many studies on NOMA-enabled IoT networks have focused on enhancing resource
allocation to efficiently support large-scale connectivity of IoT devices, which can be
an effective solution for ultra-dense network scenarios. To accommodate a high num-
ber of users, multicarrier NOMA (MC-NOMA) has been introduced, where users
are assigned to different subchannels, each acting as an isolated resource block. In
MC-NOMA, proper management of subchannel allocation is crucial to fully exploit
the multiplexing gain from the fading channel. Various strategies for subchannel al-
location, such as heuristic approaches, greedy algorithms, genetic algorithms, and
matching algorithms, have been proposed. However, these methods often fall short
due to the complexity of mixed-integer nonlinear programming (MINLP) problems.
In response, [31] presents a mathematical analysis of optimal power allocation and
reformulates the joint subchannel and power allocation problem in MC-NOMA into
a binary decision problem for subchannel allocation, which can be easily integrated
into heuristic algorithms. This reformulation allows the proposed scheme to effec-
tively support massive IoT connectivity while maintaining feasible complexity in
real-world applications. This work is anticipated to inspire future studies on efficient
resource allocation in more complex network environments.

Coordinated multi-point transmission

To cope with the rapid increase in network traffic, the deployment of heterogeneous
networks (HetNets) has emerged as a promising approach. HetNets help address the
growing number of network devices and the rising demand for massive IoT network
services. In HetNets, coordinated multi-point (CoMP) transmission has been intro-
duced to improve both coverage and energy efficiency. CoMP transmission allows
heterogeneous base stations to work together at the symbol level to transmit data to a
user. CoMP methods are generally categorized into three types: dynamic point selec-
tion, coordinated scheduling/beamforming, and joint transmission. Given the strong
potential of NOMA and RSMA, incorporating these CoMP techniques has demon-
strated their ability to meet the diverse user requirements of future communication
networks.

Rate splitting

In RSMA, the transmitted message is divided into a common message and a pri-
vate message. The common message is decoded by multiple users, while the private
message is intended for and decoded by a specific user. By adjusting the division
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FIGURE 8.7

Multi-cell-based CoMP transmission.

between common and private messages, it is possible to manage both the compu-
tational complexity and the data rate achieved by RSMA. However, implementing
RSMA in wireless networks poses several challenges, including how to optimally
split the common and private messages, managing resources for efficient private mes-
sage transmission, and ensuring synchronization during message transmission. To
address these challenges, an optimal rate allocation for a fixed common message is
derived based on mathematical analysis [30]. This approach enables seamless spec-
tral efficiency for users in RSMA-assisted IoT networks [54].

Machine learning

Recently, to overcome the high complexity of traditional approaches in practical
applications such as voice and image recognition, language interpretation, and se-
mantic analysis, various machine learning-based resource allocation techniques have
been developed, enabling efficient management of large and complex data sets. In
particular, deep learning, through the use of pre-trained DNN, can deliver supe-
rior performance without requiring an iterative convergence process, which can be a
promising solution for traditional resource allocations. Machine learning algorithms
are categorized into three types based on their training strategies: supervised learn-
ing, unsupervised learning, and reinforcement learning. Given its ability to reduce
the challenges of iterative algorithms, many deep learning-based resource allocation
methods have been proposed. Moreover, due to the SIC decoding process in NOMA
and RSMA, optimizing resource allocation is generally more challenging than in
conventional OMA. As a result, DNN-based training algorithms are essential for ad-
dressing the optimization challenges in NOMA and RSMA-enabled IoT networks,
which tend to introduce significant complexity in practical scenarios [31,55].
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8.4.3 IRS

The unprecedented demand for ubiquitous wireless services and high-quality data
poses significant challenges for existing cellular networks. Applications such as rate-
centric enhanced mobile broadband (eMBB), ultra-reliable low-latency communica-
tions (URLLC), and massive machine-type communications (mMTC) have shaped
the design targets for 5G systems. In contrast, 6G wireless communication systems
aim to be transformative, focusing on applications like data-driven, instantaneous,
ultra-massive, and pervasive wireless connectivity, as well as integrated intelligence.
To support these advanced applications, innovative transmission technologies are re-
quired. Reconfigurable intelligent surfaces (RISs) consist of a 2D array of reflective
elements designed to adjust the phase and amplitude of incident signals [56]. Given
their ability to actively reshape the wireless environment, RISs have garnered signif-
icant interest as a solution to various challenges across diverse wireless networks.
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FIGURE 8.9
An illustration of RIS-assisted wireless systems.
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For their superior functionality, RIS-enhanced IoT networks are viewed as a
promising technology for 6G, particularly useful in intelligent wireless sensor net-
works, smart agriculture, and intelligent manufacturing. Additionally, RISs can align
users’ channel directions, reinforcing the potential for NOMA and RSMA technol-
ogy implementation. Further, RIS can create a virtual line-of-sight (LoS) link in
NOMA and RSMA systems. Therefore, combining the benefits of RIS with NOMA
and RSMA technologies is crucial for advancing future IoT networks [55,57]. How-
ever, research on RIS-enhanced wireless networks remains in the early stages, with
substantial room for contributions in areas like channel state information (CSI) ac-
quisition and Pareto optimization for balancing multiple objectives.

8.4.4 AmBS / hackscatter

BackCom technology, leveraging passive radio frequency (RF) identification (RFID),
has become a promising approach for IoT systems. A standard BackCom system
consists of three key components: a signal source, a backscatter transmitter with an-
tennas, and a backscatter receiver. In BackCom, there are two path-loss effects to
consider: one from the signal source to the backscatter transmitter and another from
the transmitter to the receiver. Enhanced configurations across these components
can help reduce or compensate for path loss, boosting communication performance.
Many studies have explored ambient backscatter communications, covering system
design, coherent, semi-coherent, and non-coherent signal detection, coding, and mod-
ulation. Extensive research has also focused on energy harvesting within backscatter,
addressing energy harvesting module design, system design, and analysis. Given its
low cost and flexibility, ambient backscatter with energy harvesting offers a viable
solution for future low-power, widespread communications, including IoT applica-
tions.

Due to its compatibility, BackCom is often integrated with RIS to extend cell
coverage. The BackCom RIS-NOMA-based system discussed in [13] has been ex-
tensively studied, demonstrating that this approach significantly improves the per-
formance of IoT devices. Despite significant progress in BackCom research, further
advancements are needed to meet the practical demands of future green and ubiqui-
tous communication, especially in IoT applications. Four primary challenges persist:
data transmission rate, coverage, energy efficiency, and deployment cost. To address
these, future BackCom systems should integrate essential techniques such as energy
harvesting, backscatter relays, full-duplex communication, millimeter-wave commu-
nications, hybrid backscatter, and quantum communications.

8.4.5 CF-mMIMO

The IoT requires low power usage, extremely low latency, and support for numerous
devices. CF-mMIMO is a strong candidate for achieving ultra-low latency by mini-
mizing the distance between access points (APs) and devices, thus reducing power
consumption. NOMA’s high connectivity potential is well-suited to IoT needs, and
when combined with CF-mMIMO, it enhances system spectral efficiency through
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non-orthogonal transmission. Notably, NOMA and RSMA can be used for both
fronthaul and backhaul links. In the fronthaul, where APs communicate with users
wirelessly, NOMA and RSMA serve as effective user access methods. In backhaul, if
the AP-CPU connection is wireless, NOMA and RSMA can facilitate access for both
uplink and downlink. Although NOMA and RSMA improve spectral efficiency, they
introduce complexity, particularly in designing efficient resource allocation mecha-
nisms for NOMA and RSMA-based CF-mMIMO networks.

The CF-mMIMO architecture is pivotal for its potential to revolutionize future
mobile networks by resolving challenges faced by cell-edge users and the uneven
coverage typical of current cellular networks. It also enhances network performance
by boosting connectivity, signal strength, interference control, and macro-diversity.
Research, including the study of estimator impacts on system spectral efficiency, has
laid a foundation for further work to maximize the potential of CF-mMIMO sys-
tems research examines a wide array of issues within CF-mMIMO networks, such
as system models, communication techniques, channel estimation, pilot contami-
nation, deployment challenges, and downlink potential. Additionally, applications
and avenues for future research are highlighted, promising advancements for next-
generation solutions.

8.5 Conclusion

The evolution of the Internet of Things (IoT) has ushered in a transformative
paradigm within the domain of wireless communications, presenting unprecedented
opportunities for enabling intelligent automation across diverse industries. By facil-
itating massive interconnectivity, IoT systems have the potential to redefine opera-
tional efficiencies and processes, paving the way for fully automated, data-driven en-
vironments. Central to this revolution is the concept of machine-to-machine (M2M)
communication, which underpins the functionality of IoT systems. The requirements
and capabilities of M2M communications have been effectively addressed through
the development of massive, interconnected networks, marking a significant mile-
stone in the advancement of communication technologies.

Market trends unequivocally underscore a growing demand for IoT systems,
driven by their ubiquity and potential to seamlessly integrate into various facets of
daily life. However, the large-scale deployment of IoT systems introduces critical
challenges, particularly in terms of energy efficiency, scalability, and sustainability.
These challenges necessitate focused optimization efforts to ensure the practical fea-
sibility of Green IoT systems. Green 10T, as a paradigm, emphasizes the efficient use
of resources and minimal environmental impact, making optimization a fundamental
requirement for its widespread adoption and long-term viability.

In this chapter, we systematically introduced foundational concepts integral to
the design and realization of Green IoT systems. The discussion encompassed oppor-
tunities and challenges that are pivotal in making these extensive networks feasible
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and sustainable. Furthermore, we identified emerging technologies, such as reconfig-
urable intelligent surfaces (RIS) and backscatter communications, that hold immense
potential in enhancing the performance and energy efficiency of Green IoT systems.
These technologies, when integrated into IoT networks, can play a transformative role
in achieving cohesive, adaptive, and high-performance communication architectures.

Looking forward, the synergy between Green IoT systems and enabling tech-
nologies is expected to form the backbone of next-generation intelligent networks.
This convergence will not only address the operational and environmental challenges
of IoT deployments but also open new avenues for research and development. The
practical realization of these systems, driven by increasing consumer demand and
market dynamics, underscores the need for continued exploration of optimization
techniques and resource allocation strategies. Ultimately, Green [oT systems, coupled
with advanced technological solutions, will be instrumental in shaping the future of
intelligent, sustainable, and connected ecosystems.
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9.1 Introduction

The Internet of Things (IoT) has transformed global connectivity by integrating phys-
ical objects with sensors and software to facilitate data exchange, driving efficiency
and performance across several domains. The concept of the IoT was formalized by
British technologist Kevin Ashton in 1999, envisioning a global network of intercon-
nected devices capable of autonomous communication without human intervention.
The advancement of high-speed internet, ubiquitous smartphone and wearable adop-
tion, and the development of communication protocols have facilitated the rapid
expansion of IoT. As a result, IoT has evolved into a vast ecosystem encompassing
billions of interconnected devices across diverse domains, including personal, resi-
dential, industrial, and urban environments. On an individual level, [oT systems in-
clude health and lifestyle tracking to improve quality of life. The Healthcare Internet
of Things (H-IoT) revolutionizes healthcare by enabling remote patient monitoring,
personalized treatment, and improved diagnostics. Wearable devices track vital signs,
activity levels, and sleep patterns, transmitting data to healthcare providers for contin-
uous monitoring. [oT facilitates telemedicine, allowing patients to receive care from
remote locations. Smart pills with embedded sensors track medication adherence, and
connected medical equipment enhances hospital efficiency and patient outcomes. Key
applications of IoT in the residential sphere or “smart homes” include smart systems
such as adaptive lighting systems that adjust to ambient light levels or mood settings,
smart thermostats that optimize energy consumption based on occupancy and user
preferences, and connected security systems with real-time monitoring through cam-
eras and sensors. Additionally, IoT facilitates predictive maintenance in household
appliances and integrates voice-activated assistants for seamless task management.
These innovations collectively contribute to developing intelligent and automated
living environments. The Industrial Internet of Things (I-IoT) enhances productivity,
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safety, and efficiency through sensor-equipped industrial facilities, which enable pre-
dictive maintenance, minimizing downtime and costs. Real-time monitoring and an-
alytics optimize production, supply chain management, and inventory control, while
automation and robotics improve operational efficiency, safety, and product quality in
manufacturing and industrial environments. IoT enhances agricultural efficiency by
optimizing resource use and increasing yield. Soil sensors enable precise irrigation
and fertilization through real-time moisture, nutrients, and temperature data. Drones
and satellite imagery monitor crop health and detect issues early, while livestock
tracking improves animal health, location monitoring, and overall productivity. Smart
governance leverages IoT to facilitate data-driven decision-making, improve public
services, and enhance citizen engagement through digital platforms. IoT supports
intelligent transportation by enabling real-time traffic monitoring, adaptive traffic
signal control, and smart parking solutions, optimizing mobility and reducing con-
gestion. Security is strengthened through IoT-based surveillance, predictive policing,
and emergency response systems, ensuring safer urban environments. Furthermore,
IoT enhances essential services such as waste management, energy distribution, and
water supply by enabling predictive maintenance and efficient resource allocation.
Networks of sensors detect air and water quality, radiation levels, and weather condi-
tions. IoT devices can monitor deforestation levels, glacier movements and melting
rate, and wildlife habitats, providing data essential for environmental protection and
climate research. Collectively, these advancements contribute to the sustainability,
efficiency, and resilience of our human habitation and ecosystems.

The rapid expansion of the IoT offers significant benefits; however, it also raises
critical concerns regarding environmental sustainability. The energy consumption
required to power billions of connected devices, the increasing strain on data cen-
ters, and the growing volume of electronic waste (e-waste) contribute to ecological
challenges. According to the International Energy Agency (IEA), data centers and
data transmission networks accounted for approximately 1% of global electricity
consumption in 2022, with projections indicating continued growth as IoT adop-
tion increases [1]. Additionally, the International Telecommunication Union (ITU)
reports that global e-waste reached 62 million metric tons in 2022, with only 22.3%
being formally recycled [2]. The World Health Organization (WHO) reports that the
informal dumping of waste leads to adverse health effects, especially in women and
children [3]. In response to these concerns, the Green Internet of Things (G-1oT)
has emerged as a sustainable alternative that integrates energy-efficient technologies,
eco-friendly materials, and optimized data processing strategies to mitigate [oT’s en-
vironmental impact. G-IoT focuses on reducing the environmental impact of IoT
technologies through key strategies like energy-efficient communication and data
processing protocols, using sustainable materials to manufacture sensors and com-
munication devices, and improving lifecycle management. Energy-efficient devices,
powered by low-power designs and energy harvesting methods such as solar and ki-
netic energy, help to minimize electricity consumption. Optimized communication
protocols like Zigbee, LoORaWAN, and NB-IoT further reduce energy use during data
transmission. Sustainable manufacturing practices emphasize using eco-friendly ma-
terials, such as biodegradable and recyclable components, and cleaner production
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methods to reduce emissions. G-IoT also promotes design for longevity, encourag-
ing modularity to extend device lifespans and prevent e-waste. Responsible recycling
and disposal systems reclaim valuable materials and mitigate environmental harm.
IoT applications in environmental monitoring and resource optimization further sup-
port sustainability by tracking pollution, conserving resources, and enhancing energy
and water efficiency. By integrating these approaches, G-IoT aims to minimize the
ecological footprint of IoT devices while supporting sustainability and conservation
efforts across industries.

Artificial Intelligence (Al) is critical in enhancing the performance and reliabil-
ity of wireless communication systems in the IoT domain. Al techniques such as
supervised learning and deep neural networks are used for tasks like channel estima-
tion, which improves real-time prediction of channel responses, and beamforming,
which optimizes signal transmission to reduce interference. Reinforcement learning
(RL) is also applied in dynamic resource allocation, ensuring efficient utilization of
spectrum and bandwidth based on users’ data rate requirements and channel con-
ditions. Furthermore, Al facilitates data acquisition and pre-processing from IoT
sensors, followed by pattern recognition through deep learning (DL) algorithms to
detect anomalies and predict trends. Al-driven predictive models analyze data from
IoT devices to anticipate potential failures, enabling proactive actions that enhance
operational efficiency. These techniques collectively contribute to advancing smarter,
more efficient wireless communication networks for [oT.

This chapter presents an overview of G-1oT, its definition, architecture, and key
enablers. It primarily focuses on the role of Al in supporting its development within
the constraints of sustainability and compliance with the quality of service (QoS).

9.2 Green-Internet of Things

G-IoT refers to designing, deploying, and operating IoT systems that focus on en-
ergy efficiency, reduced carbon emissions, and sustainable practices. G-IoT aims to
minimize the environmental impact of IoT systems while maintaining their function-
ality and scalability. G-IoT can be pivotal in advancing several of the United Nations
Sustainable Development Goals (UN-SDGs). Goal 7 — Affordable and Clean En-
ergy — optimizes energy usage and integrates renewable sources like solar and wind
through smart grids and energy management systems. G-1oT supports efficient en-
ergy distribution and consumption by leveraging the smart grid paradigm. For Goal
9 — Industry, Innovation, and Infrastructure — G-IoT contributes by improving in-
dustrial sustainability with eco-friendly technologies and optimized processes, while
real-time monitoring ensures resilient infrastructure. In alignment with Goal 11 —
Sustainable Cities and Communities — G-IoT supports smart mobility, pollution
management, and urban planning through data analytics, fostering efficient and sus-
tainable urban development. In relation to Goal 12 — Responsible Consumption
and Production — G-IoT encourages sustainable consumption by promoting circular
economy models, improving supply chain transparency, and empowering consumers
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with data on environmentally conscious choices. Finally, in line with Goal 13 —
Climate Action — G-IoT facilitates climate monitoring and mitigation by providing
data on emissions and climate predictions and offering early warning systems for
natural disasters. Overall, G-IoT drives progress in sustainability and environmental
stewardship across diverse sectors, demonstrating its alignment with the UN SDGs.
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FIGURE 9.1
A General loT architecture framework.

The advancement of green IoT necessitates robust standardization frameworks
and collaborative global initiatives to address energy efficiency challenges across het-
erogeneous networks and devices. A general IoT system architecture can be drawn
up from recommendations from the Institute of Electrical and Electronics Engineers
(IEEE) [4] and the International Telecommunication Union (ITU) [5] as illustrated
in Fig. 9.1, which considers existing IoT architectures [6]. Efficient protocols and
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technologies support each layer of this architecture, some of which are standard-
ized. Several standardization and innovation efforts have begun since the inception of
IoT. Earlier research efforts like the Energy Aware Radio and neTwork tecHnologies
(EARTH) project pioneered energy-efficient broadband systems by optimizing net-
work architectures and adaptive management strategies, reducing operational energy
consumption by 50% while maintaining quality of service (QoS) [7]. Toward Real
Energy-Efficient Network Design (TREND) project evaluates and proposes energy-
saving potentials in network protocols and architectures, emphasizing scalable solu-
tions for IoT ecosystems [8]. The GreenTouch Consortium proposed an end-to-end
network power model to evaluate energy consumption and minimize the carbon foot-
print through innovations in spectrum efficiency and low-power hardware design in
optical networks [9]. Japan’s Green IT Initiative was among the pioneering initiatives
that prioritized environmental protection while achieving economic growth using in-
formation technology (IT) [10]. Standardization bodies such as the IEEE Technical
Subcommittee on Green Communications and Computing (TSCGCC) and the Inter-
net Engineering Task Force (IETF) have established the IPv6 over Low-Power Wire-
less Personal Area Networks (6LoWPAN) [11] and Routing Over Low-Power and
Lossy Networks (ROLL) [12], respectively, enabling energy-aware communication
in resource-constrained IoT devices. Radio Frequency Identification (RFID) innova-
tions by government agencies, industry, and non-profits promote sustainable designs
such as biodegradable RFID tags, energy-harvesting sensor nodes, and broader oper-
ating frequency ranges.

The key technologies pushing energy efficiency in G-IoT were explored in [13].
These enablers can be classified into three categories: green tags, green sensing tech-
nologies, and green internet technologies as illustrated in Fig. 9.2. Green tags like
RFID and Near-Field Communication (NFC) are foundational for G-IoT. RFID tags.
RFID tags are essentially microchips, which are passive devices that harvest energy
for their operation from an RFID reader, while NFC, being active, is powered by a
battery. RFID can identify and track objects without a direct line of sight. NFC op-
erates at a shorter range of up to 20 cm and is particularly customer-oriented due
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FIGURE 9.2
Enabling technologies for G-loT.
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to its integration into mobile devices, allowing for seamless interaction with hyper-
connected environments. These devices are used to monitor vehicle emissions, track
waste disposal, waste management and recycling, and energy management systems
in buildings and public spaces. However, the enormous number of these tags used
in such applications may contribute to e-waste. Therefore, paper-based, printable, or
biodegradable RFIDs are proposed as a potential solution. The sheer number of these
devices may increase the complexity of such systems.

The second category, green sensing technologies, includes Wireless Sensor Net-
works (WSNs), which are critical for enabling IoT applications in environmental
monitoring, industrial automation, and smart cities. WSNs comprise sensor nodes
that collect data from the environment and communicate it to a central base station or
a sink. These networks are typically characterized by low-power, low-bit-rate com-
munication and energy-efficient protocols. They are primarily based on the IEEE
802.15.4 standard. WSNSs can leverage energy harvesting techniques, such as solar,
kinetic, and thermal energy, to power the sensing nodes, reducing the reliance on
batteries and minimizing environmental impact. However, true battery-free opera-
tion has yet to be achieved. Furthermore, As the number of IoT devices increases,
spectrum congestion and interference will become significant issues. Cognitive Ra-
dio (CR) technologies, which allow devices to select communication channels dy-
namically, are being explored to ensure efficient spectrum utilization. Protocols like
6LoWPAN and ZigBee are designed to optimize energy usage in low-power devices,
enabling seamless integration into the IoT ecosystem.

Finally, the third enabler—green internet technology—includes several innova-
tive solutions to support energy-efficient operations without compromising perfor-
mance. Cloud computing is pivotal in G-IoT by providing scalable, on-demand
computing resources and storage. Additionally, edge computing further improves
the performance of G-IoT systems, offering some of the advantages of cloud com-
puting. This shift from on-device infrastructure to remote services reduces energy
consumption by consolidating resources in centralized or distributed, energy-efficient
data centers or devices [14]. However, the energy demands of data centers remain a
concern, necessitating further innovations in low-power processing hardware, effi-
cient data processing algorithms, and lightweight software. Using renewable energy
to power and cool data centers is a significant step towards sustainable technology.
There are efforts to develop cooling systems for data centers to maintain stable per-
formance with a minimal carbon footprint.

Al is becoming integral to wireless network design and deployment and has be-
come a key enabler of G-IoT. It plays a crucial role in improving the efficiency and
functionality of IoT systems. Al is primarily used to process and analyze large vol-
umes of data generated by IoT devices, thus enabling real-time decision-making and
automation. This is particularly important in G-IoT, where energy consumption and
resource management are critical. For instance, Al algorithms can optimize energy
usage in smart grids, reducing waste and promoting sustainability. The decision sup-
port capability is vital for predictive maintenance, where Al algorithms can predict
equipment failures and schedule maintenance activities, thereby reducing downtime
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and extending the lifespan of devices. This improves operational efficiency and min-
imizes the environmental impact by reducing the need for frequent replacements and
repairs. Al enhances the security of IoT systems by detecting and mitigating potential
threats, such as cyber-attacks and data breaches. This is crucial for maintaining the in-
tegrity and reliability. Additionally, Al can enhance user experience and accessibility,
making it easier for network designers and administrators to interact with intelligent
environments. Al-driven automation reduces the need for human intervention in rou-
tine tasks, allowing for more efficient and sustainable operations [15], [14].

9.3 Atrtificial intelligence models for Green-Internet of
Things

Al is a key enabler of G-IoT by improving data management, energy efficiency,
security, and decision-making across various application domains. Al-driven ma-
chine learning (ML) and DL techniques facilitate the analysis of vast amounts of
IoT-generated data, enabling efficient data filtering and reducing redundancy. Al
minimizes bandwidth usage and improves response times by optimizing the data of-
floading mechanisms and processing data at the network edge. Additionally, Al plays
a crucial role in energy optimization by monitoring real-time power consumption and
performing predictive analysis to adjust energy usage dynamically. ML models can
anticipate environmental conditions and system load variations, allowing IoT devices
to optimize power allocation and minimize energy waste. Beyond efficiency improve-
ments, Al enhances the security and reliability of IoT networks. Artificial neural
networks (ANNs) and Al-driven anomaly detection systems can identify potential
cyber threats, enabling proactive security measures. The use of federated learning
(FL) ensures the security of data by leveraging its capacity for “distributed learn-
ing”, which shares the learning parameters without requiring the transfer of data
between the nodes and sink in an IoT system. Al is also instrumental in optimizing
fog and edge computing architectures, alleviating the computational burden on cloud
data centers. By distributing data processing closer to the source, Al mitigates net-
work congestion, reduces latency, and improves system responsiveness, particularly
in applications requiring real-time decision-making. This further reduces the burden
on communication networks, significantly improving energy and spectral efficiency.
Furthermore, Al can proactively perform predictive maintenance to enhance IoT de-
vices’ reliability and longevity. Al minimizes downtime and reduces maintenance
costs by identifying anomalies and diagnosing faults before they lead to failures.
Therefore, Al integration into G-IoT fosters an energy-efficient, secure, and scalable
ecosystem, ensuring the sustainable deployment of 10T technologies across diverse
applications [16]. Based on the discussion presented in [16], the key Al models that
enable G-10T can be grouped under the following categories:

1. Supervised learning models.
2. Unsupervised learning models.
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Semi-supervised learning models.
Deep learning models.
Reinforcement learning models.
Federated learning models.

ook w

In general, we can classify the Al into three broad functional categories, further
divided into sub-categories, as illustrated in Fig. 9.3. A summary of the key ideas and
applications of these models in G-IoT system are tabulated in Table 9.1.
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Processing
Computer Vision
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Machine Learning Reduction
Behavior Reinforcement Learning

Autonomous Intelligent
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FIGURE 9.3

Functional classification of Al. ML models can be further classified on the basis of the learn-
ing models.

9.3.1 Supervised learning

Supervised learning (SL) [17] is a type of ML in which a model is trained on la-
beled datasets containing samples of input data paired with a label. The model learns
from these labeled samples to make accurate predictions or classifications of unseen
samples or test data. During the training process, the model iteratively adjusts its
parameters to minimize the difference between the predicted and actual labels us-
ing techniques such as regression and classification. SL is primarily used for pattern
recognition, predictive modeling, and decision-making tasks.

SL models can be used in G-IoT applications by leveraging historical data for
accurate predictions and decision-making. In energy consumption optimization, SL
models can predict energy demand based on past usage patterns, optimize power con-
sumption in smart grids and buildings, and automate electrical systems to minimize
energy waste. Additionally, in predictive maintenance, these models detect poten-
tial faults in IoT-connected devices before failures occur and utilize sensor data to
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Table 9.1 Al Models with their working principles, their applications, and key
benefits in G-loT summarized.

Al Model

Super-
vised
Learning

Unsuper-
vised
Learning

Semi-
supervised
Learning

Reinforce-
ment
Learning

Federated
Learning

Working
Principle
Trains models on
labeled datasets
to predict or
classify unseen
data.

Analyzes
unlabeled data to
find hidden
patterns,
structures, or
relationships
within datasets.

Combination of
small labeled
datasets with
large unlabeled
datasets for better
efficiency.

An agent learns by
interacting with its
environment and
receiving rewards
or penalties for its
actions.

Trains models
locally on devices
with only model
parameters
shared with a
central server.

Applications

— Energy consumption
optimization

— Predictive maintenance in
loT devices

— Environmental monitoring
and pollution control

— Smart agriculture

— Traffic management

— Energy distribution
optimization

— Predictive maintenance

— Environmental monitoring
— Smart agriculture

— Smart city traffic and public
transport analysis

— Predictive modeling for
energy usage

— Load balancing in smart
grids

— Energy optimization in
residential/commercial
settings

— Applications in smart cities,
smart agriculture, and smart
living

— Resource Allocation

— Routing and congestion
control

— Sustainable agriculture

— Traffic management

— Wireless communication
optimization by CSlI
prediction and resource
allocation

— Predicting real-time
network traffic flows

— Energy-efficient
communication

— Secure loT applications

Key Benefits

— Optimal decision-making
— Reduced energy waste

— Enhanced fault detection
— Optimized traffic flow and
resource allocation

— Reduced energy
consumption

— Fault detection and prediction
— Improved resource allocation

— Lower resource utilization

— Improved learning accuracy
— Enhanced adaptability in
G-loT systems

— Optimized energy patterns
and consumption prediction

— Optimized resource utilization
— Continuous learning and
adaptation

— Reduced energy
consumption

— Minimal environmental impact
— Efficient network operation

— Reduced energy
consumption

— Enhanced privacy and
security

— Reduced network congestion
— Improved scalability

— Sustainable and efficient loT
networks

forecast industrial equipment maintenance needs, thereby reducing downtime and
conserving energy. Environmental monitoring and pollution control also benefit from
SL models by analyzing sensor data from air and water quality monitoring systems,
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which helps predict pollution levels and classify regions based on environmental
risks for improved decision-making. In smart agriculture, SL models can predict
crop yields by analyzing weather patterns, soil quality, and historical production data
while detecting plant diseases through image analysis from IoT-connected cameras
and drones. Furthermore, SL models can analyze traffic congestion patterns in traffic
management to optimize vehicle routing and dynamically adjust traffic light opera-
tions to minimize fuel consumption and emissions.

9.3.2 Unsupervised learning

Unsupervised learning (UL) [17] is a type of ML where models analyze unlabeled
datasets to identify hidden patterns, structures, or relationships without predefined
output labels. Unlike SL, UL uses self-organizing techniques to classify data or ex-
tract insights. It is primarily used for clustering and dimensionality reduction. UL
includes algorithms such as K-means clustering, hierarchical clustering, principal
component analysis (PCA), and autoencoders.

UL supports G-IoT by improving energy efficiency, security and building fault
tolerance. Clustering techniques are used to analyze consumption patterns of users
and devices, enabling efficient power distribution while detecting inefficiencies in
smart grids through the identification of anomalies in power usage. Additionally, be-
havioral pattern analysis facilitates the implementation of optimized energy-saving
protocols. UL can predict issues by detecting unusual sensor readings that indicate
impending equipment failures. Clustering device performance data can identify po-
tential faults before they cause disruptions. Environmental monitoring and pollution
control benefit from clustering techniques applied to air and water quality data, al-
lowing for the detection of pollution hotspots. Anomaly detection in climate sensor
data enables the prediction of environmental hazards. Clustering can be applied to
segment agricultural land based on soil quality and crop health patterns, enabling tar-
geted interventions. Furthermore, clustering image data from IoT-connected drones
enhances the early detection of plant diseases. Similarly, irrigation systems can be
optimized by analyzing water usage patterns across different clusters of agricultural
facilities. Clustering techniques can be used in smart cities to analyze traffic flow
data, optimize urban transportation systems by identifying congestion hotspots, and
improve route planning. Additionally, trends in public transport usage can be ana-
lyzed by UL models to ensure optimal resource allocation, thereby contributing to
sustainable and efficient mobility solutions.

9.3.3 Semi-supervised learning

Semi-supervised learning [ 18] is an ML approach that combines SL and UL. It lever-
ages a small amount of labeled data combined with a large volume of unlabeled
data to improve learning accuracy and efficiency. This approach mitigates training
costs in the absence or shortage of labeled data, as it allows the model to gener-
alize from a limited set of labeled samples while learning patterns from the vast
pool of unlabeled data. Semi-supervised learning techniques include self-training,
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co-training, and graph-based methods, which help to refine decision boundaries and
improve model performance.

Semi-supervised learning can play a critical role in enhancing the efficiency,
adaptability, and accuracy of G-IoT applications by using labeled and unlabeled data
collected by the sensors and managing underlying network usage patterns. Semi-
supervised learning enables predictive modeling of energy usage trends, improves
load balancing in smart grids by identifying consumption patterns and anomalies,
and optimizes energy patterns in residential and commercial settings to reduce energy
waste. Semi-supervised learning can offer benefits in smart cities, smart agriculture,
and smart living settings by leveraging its capabilities to use a small set of labeled
data to learn patterns in the vast unlabeled datasets with a higher accuracy and lower
resource utilization.

9.3.4 Reinforcement learning

Reinforcement learning (RL) [17] is a type of ML where an agent learns to make de-
cisions by taking actions in an environment to maximize some notion of a cumulative
reward. The agent receives feedback in the form of rewards or penalties based on its
random actions and learns to optimize its policy over time. Unlike SL or UL, where
the model learns from pre-existing datasets, RL uses trial and error to discover the
best policy. Applications of RL span several domains, including robotics, gameplay,
autonomous vehicles, and natural language processing (NLP). These applications
benefit from RL’s ability to optimize performance through continuous learning and
adaptation.

In G-IoT, RL presents significant potential for advancing sustainability and effi-
ciency. Key applications include smart grid management, building energy manage-
ment, sustainable agriculture, traffic management, and supply chain optimization. By
leveraging RL, G-IoT systems can optimize resource utilization, reduce energy con-
sumption, and minimize environmental impact, thus contributing to greener and more
sustainable technological ecosystems. RL models are inherently lightweight com-
pared to the previously stated models due to the absence of explicit training datasets.
Therefore, RL is integrated with the network design without increasing the opera-
tion cost of underlying wireless networks powering the G-IoT systems. RL can be
integrated into channel access methods, routing, and congestion control to ensure
efficient network operation.

9.3.5 Federated learning

Federated learning (FL) [17] decentralizes the training of models by leveraging dis-
tributed data across multiple devices or agents. Contrary to centralized learning,
where the training and test data is sent to a central server for processing, FL al-
lows the model to be trained locally on the sensor or edge nodes, with only model
parameters shared with a central server. This approach addresses significant privacy,
security, and data efficiency challenges while offering solutions for network manage-
ment and data processing at the same time. FL enhances wireless communication
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by improving channel state information (CSI) prediction, optimizing resource alloca-
tion, and reducing interference through personalized, locally trained models. It also
aids in predicting real-time network traffic flows and adapting to local conditions.
FL enables more accurate device behavior modeling, supporting personalized ser-
vices like adaptive streaming and energy-efficient communication, while minimizing
privacy risks by keeping user data on-device. Additionally, FL improves security by
ensuring that sensitive data does not leave the user’s device, reducing the risk of data
breaches and complying with privacy regulations.

FL contributes to energy-efficient and sustainable solutions in the G-IoT paradigm
significantly. The local model training in FL minimizes energy consumption, espe-
cially for battery-powered devices, by reducing the need for continuous communi-
cation with central servers and utilization of resource-heavy data processing. Addi-
tionally, FL optimizes data efficiency and bandwidth usage by limiting network trans-
mission to just model parameters, alleviating congestion in bandwidth-constrained G-
IoT networks. FL usually employs edge processing, which enables decision-making
within the network to optimize energy consumption without overwhelming the cen-
tral servers. This decentralization reduces latency, enhances scalability, and supports
sustainability by lowering the carbon footprint through decreased data transfer and
less reliance on centralized data centers, thereby promoting greener IoT infrastruc-
tures.

9.4 Leveraging Al for Green-Internet of Things

The scope of sixth-generation (6G) cellular networks, especially machine-type com-
munication (MTC), includes support for 1000 devices per square meter, delivering
high data rates and reliability. Energy efficiency and sustainability are integral to
the network design, especially for IoT networks [19]. Al models are widely adopted
to transform IoT to G-IoT at all layers of the IoT architecture, as illustrated in
Fig. 9.1. Furthermore, Al models are evolving to achieve higher energy and com-
putational efficiency. Green Al development necessitates optimizing computational
efficiency across dimensions. Algorithm optimization techniques, such as sparse
training, quantization, and pruning, reduce the memory requirements and compu-
tational complexity, thereby lowering energy consumption. Hardware efficiency can
be enhanced by utilizing energy-efficient hardware, leveraging parallelization, and
implementing edge computing to process data locally, minimizing energy-intensive
cloud transmissions. Data center optimization strategies, including dynamic server
load balancing, cooling system adjustments, and efficient resource allocation, further
reduce energy demands. Finally, scaling reductions, such as limiting algorithm itera-
tions and hyper-parameter tuning, help mitigate unnecessary computational overhead
while maintaining performance [20]. The available research literature on the conver-
gence of Al and IoT to manifest G-IoT can be arranged according to each layer of
Fig. 9.1. Each application requires a minimum performance, which the underlying
layers can deliver. These layers work in tandem with each other, supporting a criti-
cal function enabling an application. Therefore, the contributions of Al in supporting
G-IoT, which translates to energy-efficient operation, can be summarized under the
following headings.
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9.4.1 loT architecture

Al techniques are predominantly centralized, i.e., the models are run on a central
server. However, this architecture faces challenges in terms of accuracy, computa-
tional complexity, power consumption, memory constraints, and explainability. Edge
computing moves the computational process from a central server to the “edge of the
network”. Therefore, this shift warrants a similar distributed Al paradigm, with frag-
mented training and inference processes to optimize computation and memory while
maintaining privacy and low latency. As large-scale IoT applications drive further
decentralization, the need for interoperability, scalability, and dynamic resource allo-
cation has led to the emergence of Pervasive Al, which integrates Al with pervasive
computing to manage resource constraints intelligently [21].

Edge computing reduces latency and computational burden by bringing compu-
tational resources closer to IoT devices, enabling real-time decision-making while
reducing data transfer to cloud servers, thereby freeing up bandwidth and reduc-
ing hardware requirements. This localized processing lowers the power consump-
tion associated with cloud infrastructure and network transmission. Additionally, Al
algorithms in the edge nodes facilitate intelligent resource management, optimiz-
ing energy consumption in IoT networks. Techniques such as DL-based predictive
analytics enable devices to operate in an energy-efficient manner by dynamically
adjusting their processing loads based on demand. Furthermore, model partition-
ing and offloading strategies allow computationally intensive tasks to be distributed
between edge and cloud servers, balancing efficiency and accuracy [22][23]. FL re-
duces redundant data movement by training models locally on edge devices, further
enhancing energy efficiency while preserving data privacy. Low-power Al models
designed for edge deployment, such as quantized DL models and lightweight neural
networks (NNs), ensure reduced computational complexity without compromising
accuracy performance. Software optimization techniques make Al-driven edge com-
puting solutions more sustainable. Adaptive energy management strategies within
IoT systems leverage RL and heuristic optimization algorithms to dynamically allo-
cate resources, reducing overall power consumption. Additionally, edge computing
facilitates event-driven architectures, where data processing is performed only when
necessary, minimizing idle power usage in IoT devices. Context-aware Al models
running at the edge can predict optimal operating conditions, enabling proactive
energy-saving measures in applications such as smart grids, intelligent transportation
systems (ITS), and industrial automation. Al-driven edge computing enhances real-
time load balancing and renewable energy forecasting, improving energy efficiency
in smart grid applications. Al models optimize proactive predictive maintenance to
minimize energy-intensive downtimes in industrial settings [23].

9.4.2 Communication networks

The radio access technologies powering G-IoT communication include low-power
technologies including Wi-Fi, Zigbee, and Bluetooth Low Energy (BLE). However,
regardless of the underlying communication standard, Al is increasingly integrated in
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the design of IoT systems. In the context of wireless communication, Al offers sev-
eral advantages. The growing data traffic load and the complexity of modern wireless
applications have made it difficult for traditional systems to meet demands. Al aids
at the physical layer in signal processing by enabling adaptive channel modeling,
reducing reliance on accurate mathematical models. The intelligent methodologies
for accurate channel modeling and estimation use models including generative net-
works and deep learning methods. These methods can accurately predict the channel
conditions and adapt the transmission parameters, which help in improving energy
efficiency, especially for battery-powered nodes. However, the NN-based models re-
quire a significant computational resources. Gathering accurate channel conditions
through the channel state information (CSI) leveraging deep NNs. In addition, learn-
ing models improve data processing by identifying patterns and reducing redundancy,
optimizing data storage and processing. Furthermore, Al supports network optimiza-
tion and resource allocation, which are crucial for the efficiency and scalability
of wireless systems. Traditional optimization tools struggle to handle large-scale,
real-time applications, especially with complex objectives and constraints in next-
generation wireless systems. RL-based resource allocation reduces reliance on train-
ing, and considering the distributed nature of the WSNs with resource constraints, RL
provides the required performance without reliance on computational resources. Al
integration into wireless communications also enhances practical applications, such
as localization and positioning accuracy, which are vital for indoor navigation and
asset tracking. Al algorithms can dynamically optimize beamforming and antenna
adjustments to reduce interference and enhance network performance. Additionally,
Al enables better allocation of wireless resources such as bandwidth, power, and
frequency spectrum, ensuring more efficient use and improving overall network per-
formance [24]. RL models further optimize routing decisions in WSN by reducing
the signaling overhead and remove network congestion. This reduces “sinkholes”
and energy consumption, and increase network life.

Despite these advances, the deployment of in wireless networks faces several
challenges. Effective reasoning of signal meanings remains difficult, and the scarcity
of computing resources poses significant hurdles, limiting the robustness of networks.
Efficient management of computing resources is just as critical as wireless resource
management. Furthermore, the selection of appropriate ML algorithms for specific
tasks remains an ongoing challenge. While data-driven ML methods have proven
successful in many contexts, model-driven methods are still relevant in some cases,
making algorithm selection a key consideration.

9.4.3 Security

There is an inherent risk of sensitive and private data exposure during its transmis-
sion and storage. For critical applications, ensuring users’ privacy and data security
is of the utmost priority. Among the most prevalent security and privacy concerns
are eavesdropping, data record exposure, user identity exposure, and location in-
formation exposure features across the literature. The commonly adopted solutions
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to these issues include data encryption during storage and transmission, assigning
pseudo identities, and distribution of data at several remote locations [25].

Al offers several advantages over traditional methods for ensuring network and
data security. Al-based methods have yielded a high accuracy rate in intrusion de-
tection systems (IDS) [26] [27]. These methods employ SL, UL, and several RL
algorithms against denial of service (DoS), jamming, spoofing, intrusion and malware
detection, and eavesdropping attacks. Q-Learning is an RL method that is employed
successfully to authenticate sensor nodes, avoid signal jamming, and prevent man-
in-the-middle attacks. NN offer very high accuracy in data offloading and intrusion
detection. While UL can provide a lightweight solution for encrypting the sensed
data at the sensor nodes before transmission [28]. However, non-RL methods require
resource-intensive training and datasets. Therefore, there is a tradeoff in accuracy
and computational cost in the case of SL, UL, and DL methods. Therefore, including
edge computing can help offset these tradeoff losses [29].

9.5 Conclusion

The fast paced adaption of Al in several faculties of IoT systems have yielded an
energy efficient and sustainable paradigm called G-IoT. The exponential growth of
sensor devices including trackers, climate and environment monitors, camera, and
imaging sensors are contributing to the enormous levels of e-waste. The improve-
ments in battery technology and software design can significantly improve the energy
efficiency. Al can further improve the energy efficiency when integrated in the IoT-
system operation and design. The distributed computing architectures decentralize
the processing hardware. Intelligent algorithms offload the processes to the edge
nodes to reduce communication bandwidth and computational resources. Addition-
ally, light-weight Al models reduce the energy and computational requirements. At
the network level, Al models can optimize channel access and data transmission to
reduce the transmission overhead and maximize throughput. Furthermore, Al-based
encryption algorithms foster data and network security.

This integration also opens up several challenges, including energy efficiency,
limited computing resources, scalability, privacy risks, and interoperability issues
[30]. The heterogeneity of IoT devices and network technologies further complicates
this integration, as variations in hardware and communication protocols can affect
model performance. Moreover, Al models must be sustainable, as Al training and
inference can have a high carbon footprint. The lack of standardized protocols for
Al-powered G-IoT systems hinders seamless integration, leading to interoperability
issues. Explainability and trust in Al decisions are also critical, especially in appli-
cations such as smart grids and healthcare, where regulatory compliance and user
confidence are essential. Cost constraints present a significant challenge in develop-
ing economies, as Al-based G-IoT solutions require investments in energy-efficient
hardware and infrastructure. Furthermore, Al models must adapt to dynamic envi-
ronmental conditions, such as fluctuating energy availability and changing network
loads, without excessive retraining.
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Future research should focus on developing lightweight and energy-efficient Al
models optimized for resource-constrained [oT devices. Advancements in FL and
edge-based Al can help reduce dependency on centralized computing while enhanc-
ing data privacy. Standardization efforts should be prioritized to ensure interoperabil-
ity across diverse IoT ecosystems. Additionally, explainable Al techniques should
be explored to improve transparency and trust in Al-driven decisions. Sustainable
Al training methodologies, such as low-power neural networks and green computing
frameworks, can help mitigate the environmental impact of Al deployment. Finally,
adaptive Al models capable of learning in real time with minimal retraining should
be developed to address the challenge of dynamic environmental conditions.
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10.1 Introduction

The road ahead for Green IoT (GIoT) technologies has many challenges and promis-
ing ways to innovation and environmental benefits. With the rapid expansion of
connected devices, there is an increasing urgency to tackle issues related to energy
use, resource management, and ecological consequences. GIoT seeks to balance tech-
nological growth with sustainability by adopting energy-saving methods, leveraging
renewable energy, and prioritizing environmentally conscious designs.

The Internet of Things (IoT) is a transformative technology that connects a wide
network of devices, enabling them to communicate and exchange data over the In-
ternet [1][2]. These interconnected devices, such as sensors, actuators, and software,
operate autonomously through Machine-to-Machine (M2M) communication, allow-
ing them to collect, share, and analyze data without human intervention. This capa-
bility drives efficiency and automation across various sectors, including healthcare,
transportation, agriculture, and industrial operations. For example, IoT enables smart
home systems to automate lighting and heating, while in agriculture it optimizes irri-
gation and crop monitoring. One of the most significant contributions of the IoT is its
role in the development of smart cities, where it improves resource management, im-
proves public services, and elevates overall quality of life by optimizing energy use,
traffic flow, and waste management [3]. The rapid increase in IoT devices is changing
the way we interact with technology and our environment. By 2030, it is estimated
that more than 100 billion devices will be connected globally, creating an extensive
ecosystem of smart, data-driven solutions [4]. However, this growth comes with chal-
lenges, particularly in terms of energy consumption and resource management. The
increasing number of connected devices demands substantial energy, raising concerns
about sustainability and environmental impact [5-7]. As IoT continues to expand,
there is a pressing need to adopt greener practices, such as energy-efficient hard-
ware, integration of renewable energy, and sustainable design principles, to ensure
that technological progress aligns with environmental preservation. Addressing these
challenges will be crucial for realizing the full potential of IoT while minimizing its
ecological footprint.

Design and Analysis of Green and inable IoT Technologies for Future Wireless Communications 2 1 5
https://doi.org/10.1016/B978-0-44-333000-1.00015-8
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The rapid expansion of IoT has significantly transformed various industries by en-
hancing efficiency and connectivity. However, this technological advancement also
brings serious environmental concerns, primarily due to the high energy consump-
tion and carbon emissions associated with connected devices [8,9]. Each IoT device
requires power to function, and with billions of these devices in operation, the cumu-
lative energy demand becomes substantial. Large-scale IoT applications, particularly
those involving extensive data processing and analytics, require considerable compu-
tational power, further increasing energy consumption. This contributes to an increase
in CO; emissions, which can undermine sustainability efforts. Projections indicate
that carbon dioxide emissions from cellular networks alone could reach hundreds
of millions of tons annually, emphasizing the environmental burden posed by IoT
expansion [10].

Beyond energy consumption, IoT devices also impact the environment through
the extraction and disposal of materials used in their production. The demand for raw
materials, including rare earth metals, leads to resource depletion and environmental
degradation. Furthermore, improper disposal of obsolete IoT devices contributes to
Electronic Waste (e-waste), posing further ecological risks. Without sustainable man-
agement, the widespread adoption of IoT could exacerbate existing environmental
problems rather than alleviate them. While IoT has the potential to optimize resource
use and reduce inefficiencies, its environmental footprint must be addressed through
sustainable practices. Adopting renewable sources of energy, integrating green tech-
nologies, and better managing e-waste are all critical measures to lessen these im-
pacts. It is crucial that IoT has both an innovative and a sustainable approach, in
order to develop in harmony with the resonating environmental objectives around the
world aligning with global environmental goals [11].

As a new concept, GIoT addresses the shortcomings of traditional IoT frame-
works for environmental issues. It shifts the design thinking of IoT systems archi-
tecture towards an energy-centric vertical to empower efficiency and sustainability at
all stages of [oT spanning design, production, operation, and even decommissioning.
GIoT aims to reduce the carbon footprint and other resources utilized in supporting
IoT infrastructure and integrating eco-friendly approaches. The main directions of
such an approach are reconsidering modern methods of software development, adopt-
ing energy-efficient, low-power computing technologies such as microcontrollers
and wireless sensors, and solar powering of the devices. For instance, innovations
like green Radio Frequency Identification (RFID) tags and energy-sensitive sensing
networks reduce energy demands without compromising functionality. GIoT also em-
phasizes “smart” resource management, where context-aware systems dynamically
adjust operations, such as sleep modes during inactivity, to conserve energy. Further-
more, cloud-based solutions enable centralized data processing, reducing the energy
burden on individual devices [12].

A core principle of GIoT is the adoption of sustainable design frameworks, ensur-
ing devices are built with recyclable or biodegradable materials and engineered for
longevity to curb electronic waste. Lifecycle management practices, such as efficient
recycling protocols, further mitigate environmental harm. By reimagining communi-
cation protocols—Ilike Low-power Wide-area Network (LPWAN) or edge computing
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GIoT minimizes data transmission energy and latency. Such innovation not only
reduces costs, but also integrates the expansion of the IoT with international sustain-
ability targets like cutting down greenhouse gas emissions and advancing circular
economies. In the end, the GIoT achieves a balance between fostered climate and
technological development, which results in smarter cities and industries while con-
serving natural resources. As evolution progresses within this domain, prospective
work could consider components such as Artificial Intelligence (Al)-controlled en-
ergy optimizers, biodegradable sensors and devices, or even decentralized renewable
energy loT ecosystem. Embracing GIoT is not just an environmental imperative, but
a strategic pathway to ensure that the scalability of IoT remains compatible with a
sustainable future.

10.1.1 Motivation and objectives

The rapid proliferation of IoT technologies has revolutionized global connectivity, yet
their environmental costs, escalating energy demands, carbon emissions, and elec-
tronic waste pose significant threats to ecological balance. With billions of devices
projected to dominate infrastructure by 2030, the urgency to align IoT innovation
with sustainability principles is critical. This research is motivated by the imperative
to transform conventional IoT into environmentally responsible systems, ensuring
technological progress does not compromise planetary health.

The primary objective of this work is to explore and systematize strategies for ad-
vancing GIoT technologies—innovations that prioritize energy efficiency, renewable
resource integration, and lifecycle sustainability. This research seeks to:

— Investigate energy-efficient technologies and systems, including low-power hard-
ware, renewable energy integration, and intelligent algorithms, to minimize the
ecological footprint of IoT operations.

— Develop holistic frameworks for sustainable IoT design, emphasizing lifecycle
management, recyclable materials, and circular economy practices to reduce waste
and extend device longevity.

— Advocate for cross-disciplinary strategies that combine policy reforms, industry
standards, and ethical innovation to address scalability challenges and steer IoT
growth toward global sustainability goals.

By addressing these objectives, this research aims to bridge the gap between IoT’s
transformative potential and environmental stewardship, empowering stakeholders to
adopt solutions that harmonize connectivity, efficiency, and ecological preservation.

10.1.2 Chapter organization

This chapter is structured to systematically explore the multi dimensions of GIoT,
guiding readers through technological innovations, practical implementations, and
policy-driven strategies for sustainability. Section 10.2 examines emerging tech-
nologies for GIoT systems, introducing cutting-edge advancements such as energy-
efficient hardware, low-power communication protocols, and Al-driven optimisation
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tools that form the backbone of sustainable IoT ecosystems. Section 10.3, Col-
laborative Intelligence and Software Optimization, explores intelligent algorithms
and distributed computing frameworks that enhance energy efficiency by minimis-
ing computational redundancy and enabling adaptive resource management. Section
10.4, Energy Harvesting and Renewable Integration, addresses methods to power IoT
devices through renewable energy sources like solar, kinetic, and thermal harvest-
ing, reducing reliance on non-renewable power. Section 10.5, Sustainable System
Design, focuses on lifecycle-aware engineering principles, emphasising recyclable
materials, modular architectures, and circular economy practices to control elec-
tronic waste. Section 10.6, Regulatory and Policy Frameworks for GIoT, analyzes
global standards, government incentives, and industry regulations necessary to align
IoT growth with environmental goals. Section 10.7, Future Challenges and Oppor-
tunities, identifies unresolved issues such as scalability, interoperability, and ethical
considerations, while highlighting pathways for innovation in biodegradable elec-
tronics and decentralized energy systems. Finally, Section 10.8, Conclusion: Path to
a Sustainable Future, synthesises key insights and outlines actionable strategies to
harmonize IoT’s transformative potential with planetary sustainability. Each section
builds on the previous, offering an organized roadmap for researchers, policymakers,
and industry stakeholders to advance GIoT technologies responsibly.

10.2 Emerging technologies for Green loT systems

Emerging technologies play a crucial role in the advancement of GIoT systems by
focusing on enhancing energy efficiency and promoting sustainable practices within
interconnected networks.

The fundamental part is the wireless identification and tracking of objects with the
use of eco-friendly tagged RFID systems, which significantly enhance the resource
management level. Green RFID tags, which obtain power from the reader’s signal
instead of batteries, are an important example of this. These tags enable effective
tracking and identification processes in various applications while further reducing
energy use. Green RFID tags require no batteries; furthermore, these tags reduce en-
ergy while retrieving information through lightweight power collection. These tags
not only facilitate seamless data collection but do so with a significantly lower power
footprint, thereby contributing to overall energy conservation. Near Field Communi-
cation (NFC) is similar to RFID, but designed for short-range communication, NFC
enables interactions between devices within a close distance. This technology is par-
ticularly useful in smart devices and payment systems, where it operates efficiently
with low power usage, contributing to the overall energy efficiency of IoT applica-
tions. Alongside this, Green Wireless Sensor Network (WSN) play a crucial role by
optimizing the energy usage of wireless sensors that gather extensive data without
adverse ecological impacts. By leveraging advanced algorithms and efficient device
management, these networks ensure that significant amounts of information can be
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collected while keeping power consumption at a minimum. These networks are de-
signed to operate with minimal power consumption, intelligently managing energy
use while providing robust data collection and monitoring capabilities. WSNs allow
for real-time data analysis and decision-making processes that optimize energy use.
Applications in agriculture, smart cities, and industrial monitoring demonstrate how
WSNs can enhance efficiency and sustainability by enabling adaptive management
based on sensor feedback [13].

Moreover, Cloud Computing: The backbone of modern IoT systems, cloud in-
frastructure supports vast amounts of data generated by IoT devices while providing
necessary computational resources. Therefore, Green Cloud Computing focuses on
creating hardware and software solutions that minimize energy usage and utilize en-
vironmentally sustainable resources, ensuring high performance with a lower carbon
footprint. The growth of low-power Microcontroller Unit (MCU)s and Integrated Cir-
cuits (IC)s designed for energy efficiency is driving the development of sustainable
IoT applications. Coupled with innovations in low-power communication protocols,
these advancements are transforming how devices interact, ensuring that data trans-
mission is both efficient and energy-saving. Additionally, the shift towards edge
computing enables data processing to occur closer to its source, reducing reliance on
centralized servers and conserving energy. Context-aware systems further enhance
these capabilities by dynamically adjusting device operations based on environmen-
tal conditions, enabling real-time optimizations that minimize energy consumption
[14].

Furthermore, advanced communication networks enhance data transmission effi-
ciency, minimizing energy consumption and supporting sustainable smart cities. As
urban areas change into smarter ecosystems, integrating energy-efficient technolo-
gies becomes crucial for reducing CO; emissions and achieving sustainability goals.
However, a key focus is developing low-power communication protocols that main-
tain seamless device connectivity while minimizing energy use. Given the vast num-
ber of connected IoT devices, these protocols are essential for efficient data exchange.
Smart algorithms using Al and machine learning further optimize resource utilization
by analyzing usage patterns and dynamically adjusting operations to reduce waste.
Therefore, we have M2M Communication technology that facilitates direct commu-
nication between devices, allowing them to share information autonomously and its
Green M2M communication version implements efficient protocols and optimization
strategies to reduce energy consumption [15].

In GIoT systems, one of the important technologies is energy harvesting, which
captures renewable energy from natural sources such as solar, wind, thermal, and ki-
netic energy to power loT devices. This process significantly reduces dependency on
conventional batteries, minimizing environmental impact and waste. Coupled with
energy harvesting, renewable integration enables the seamless incorporation of these
energy sources into IoT infrastructures, ensuring that devices can operate sustainably
even in off-grid locations, thus significantly lowering the overall carbon footprint of
IoT ecosystems. The use of biodegradable materials in the production of IoT hard-
ware complements these efforts, focusing on sustainability not only during the de-
vice’s operational life, but also at its end-of-life stage. This holistic approach reflects
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a significant advancement towards achieving an eco-friendly IoT ecosystem, where
technology and environmental responsibility coexist, driving the future of technology
in a direction that emphasizes sustainability and resource efficiency. Finally, Green
Data Centers prioritize energy efficiency by integrating renewable energy sources,
recycling electronic waste, and using sustainable building materials to enhance their
ecological impact [16].

These technologies collectively represent a strategic shift towards a more sustain-
able and resilient IoT infrastructure, addressing the challenges of energy consumption
and environmental degradation. All emerging technologies for GIoT systems are il-
lustrated in Fig. 10.1.

Emerging Technologies for Green loT Systems

Energy Harvesting & Self- Low-Power
Sustaining Power mmunication &

Energy-Efficient
Cot
Solutions Networking Technologies

Identification & Tracking
Technologies

Smart Algorithms &

Low-Power Wireless Sustainable Computing &
Sustainable Hardware

Sensor Networks Data Processing

Green Wireless Energy-Efficient Low-Power
GrsenRAiD) Sensor Networks jctecn Cotr L_{liiEnarey Harvesitog Communication Microcontrollers
Technology. o Computing Technologies ek frrespi

6G and Future Smart Algorithms &
et L ctoncomputing e o
Technologies Optimizations

Efficient Spectrum | | ContextAware
‘Management Systems

Biodegradable
Materials

FIGURE 10.1
Emerging technologies for Green loT systems.

10.3 Collaborative intelligence and software optimization

The rapid growth of IoT ecosystems has necessitated innovative approaches to man-
age energy consumption and computational resources effectively [17]. Collaborative
intelligence and software optimization are emerging as critical enablers of GloT,
leveraging advanced algorithms, distributed computing, and adaptive frameworks to
minimize energy waste while maintaining system performance. Let us explore key
strategies and technologies driving this transformation. Federated Learning (FL) is a
decentralized machine learning paradigm that enables IoT devices to collaboratively
train models without sharing raw data. By processing data locally and transmitting
only model updates,FL significantly reduces the energy overhead associated with
data transmission to centralized servers. Federated Edge Al framework demonstrated
a 60% reduction in energy consumption for IoT applications like smart healthcare
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and predictive maintenance. FL also enhances privacy and scalability, making it ideal
for large-scale IoT deployments [18]. Recent advancements in FL include adaptive
aggregation algorithms that dynamically adjust the frequency and size of model up-
dates based on device energy levels and network conditions.

Edge and fog computing architectures bring computational resources closer to
IoT devices, reducing the need for energy-intensive data transmission to distant
cloud servers. By processing data locally, these frameworks minimize latency and
energy consumption while improving system responsiveness. For example, Ama-
zon Web Services (AWS)’s Wavelength platform embeds micro-data centers in 6G
towers, enabling real-time analytics for smart city applications with 30% lower en-
ergy use compared to traditional cloud-based systems [19]. Fog computing extends
this concept by creating a distributed network of intermediate nodes that collabora-
tively process and store data. fog-based energy management systems optimize power
distribution in smart grids, reducing energy losses by 22%. These architectures are
particularly effective for applications requiring real-time decision-making, such as
autonomous vehicles and industrial automation.

Al plays a key role in optimizing resource allocation and energy use in IoT
systems. Reinforcement Learning (RL) algorithms, for instance, dynamically adjust
device operations based on environmental conditions and energy availability. An RL-
based system for smart agriculture that reduces irrigation energy use by 45% while
maintaining crop yields [20]. Al-powered predictive maintenance is another key ap-
plication, enabling [oT devices to anticipate failures and optimize energy use proac-
tively. For example, Siemens MindSphere platform uses Al to monitor industrial
equipment, reducing energy waste by 25% through timely maintenance interventions
[21]. These intelligent systems not only enhance energy efficiency, but also extend
the lifespan of IoT devices, contributing to sustainability goals. Table 10.1 showcas-
ing energy savings achieved through Al-driven predictive maintenance in industrial
IoT.

Table 10.1 Energy savings by industry and application.

Industry Energy Savings (%) Application

Manufacturing 25% Equipment monitoring and maintenance
Energy 30% Smart grid optimization

Transportation 20% Fleet management

Healthcare 15% Medical device maintenance

To address the computational constraints of IoT devices, researchers are devel-
oping lightweight algorithms that deliver high performance with minimal energy
use. For instance, CRYSTALS-Kyber cryptographic algorithm provides robust se-
curity with 70% less computational overhead than traditional methods, making it
ideal for energy-constrained IoT devices [22]. Energy-aware communication pro-
tocols, such as LPWAN and Bluetooth Low Energy (BLE), further optimize data
transmission. LPWAN protocols reduce energy consumption by 90% compared to



222

CHAPTER 10 Road ahead for Green loT technologies

Wireless Fidelity (Wi-Fi), enabling long-range communication for applications like
environmental monitoring and asset tracking.

Blockchain technology is increasingly being integrated into IoT ecosystems to
enable secure, transparent, and energy-efficient collaboration. Blockchain platform
tracks the carbon footprint of IoT supply chains, ensuring compliance with sustain-
ability standards. Blockchain also facilitates peer-to-peer energy trading in smart
grids, allowing IoT devices to exchange surplus energy efficiently. Collaborative IoT
ecosystems leverage blockchain to create decentralized networks where devices share
resources and data securely with reduced energy waste. Collaborative intelligence
and software optimization are transforming GIoT by enabling energy-efficient, adap-
tive, and scalable systems. From federated learning and edge computing to Al-driven
resource management and blockchain integration, these technologies can unlock the
full potential of GIoT while minimizing its environmental impact.

10.4 Energy harvesting and renewable integration

The components of GIoT systems include energy harvesting along with renewable
integration, both of which actively work in capturing energy and integrating it in
the best way possible for usage [23]. This in turn ensures that IoT devices are able
to operate sustainably and with minimal environmental impact. Renewable sources
of energy include solar, wind, thermal and even kinetic energy, all of which can be
coupled to power IoT devices. This approach greatly reduces dependency on tradi-
tional batteries, and in turn, lowers carbon footprints and waste. Energy harvesting,
on the other hand, uses solar panels or piezoelectric devices to power sensors and
actuators in remote locations, bypassing off-grid limitations. Furthermore, efficient
and sustainable device operations are also ensured through islands of renewable en-
ergy integrated into the IoT systems with the aid of sophisticated renewable energy
management approaches through integration. Such levels of integration are made pos-
sible through the coordination of energy consumption and generation hosted through
variable loads. These advanced algorithms and smart technologies greatly allow for
greater utilization of renewable energy significantly improving eco-sustainability and
energy efficiency in IoT environments. In conclusion, energy immersion and renew-
able integration together form an ecosystem through which the arcs of GIoT in energy
balancing and restraining harmful energy consumption practices.

The use of RFID and NFC technologies is becoming increasingly popular within
IoT systems, as technologies are capable of collecting information about objects
wirelessly. The recent focus has been on improving the energy consumption of these
technologies. Green RFID systems are now optimized through energy harvesting fea-
tures and improved signal processing, allowing them to operate with minimal power
consumption. For example, batteryless NFC sensors that harvest energy from am-
bient sources have been developed, eliminating the need for batteries and reducing
environmental impact. The shift toward self-sustaining IoT systems is accelerating
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with breakthroughs in energy harvesting. Solar-powered IoT nodes now leverage per-
ovskite solar cells, which achieve 33% efficiency under low light conditions, making
them viable for indoor or urban deployments. In one study, kinetic energy harvesting
has advanced the prototype of a piezoelectric floor tile that generates 4 W per step,
sufficient to power environmental sensors in smart buildings [24]. Meanwhile, Ra-
dio Frequency (RF) energy scavenging is gaining traction, researchers developed an
RF harvester that extracts 1 wW/cm? from ambient Wi-Fi signals, enough to sustain
low-power sensors [25]. Thermal energy recycling is another boundary; therefore, re-
searchers are Testing Thermoelectric Generators (TEGs) that convert industrial waste
heat into electricity for IoT monitoring systems [26]. A report by the International En-
ergy Agency (IEA) estimates that renewable energy-powered IoT could reduce global
CO, emissions by 1.2 gigatons annually by 2030, underscoring their role in achieving
net-zero targets [27]. These energy-efficient identification and tracking technologies
not only minimize power consumption, but also contribute to the sustainability of IoT
systems by reducing electronic waste. By leveraging energy harvesting mechanisms,
these devices can operate indefinitely without the need for battery replacements,
making them ideal for applications in logistics, inventory management, and envi-
ronmental monitoring. In Fig. 10.2, a flowchart illustrates how renewable energy is
integrated into IoT systems, from harvesting to consumption.

Device Operation: loT Energy Management: Smart
devices (sensors, algorithms optimize energy
actuators) operate using distribution based on
renewable energy device needs

FIGURE 10.2
Integration of renewable energy into loT systems, from harvesting to consumption.

The development of low-power MCU has enabled IoT devices to operate with
minimal power. Advancements in MCU design, such as the integration of energy-
efficient architectures and power-management features, have significantly reduced
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the energy consumption of 10T devices. These developments are crucial for battery-
powered applications, where energy efficiency directly impacts device longevity and
environmental sustainability. Low-power MCUs, such as ARM’s Cortex-M55 with
Ethos-US55 neural processing units, now integrate machine learning capabilities at un-
der 1 milliwatt of power, enabling real-time data analytics without draining batteries.
These MCUs are increasingly paired with biodegradable substrates; for instance, re-
cently researchers developed transient circuits using silk proteins that dissolve harm-
lessly after use, reducing e-waste. Complementing these hardware innovations are
ultra-efficient communication protocols like Long Range Wide Area Network (Lo-
RaWAN) and Narrowband IoT (NB-IoT), which optimize data transmission ranges
and frequencies to cut energy use by up to 90% compared to traditional Wi-Fi or
Bluetooth [28]. One study highlighted passive backscatter systems, such as battery-
free RFID tags powered by ambient radio waves, which are revolutionizing retail and
logistics by eliminating the need for disposable batteries [29]. Further, energy-aware
5G/6G networks now employ dynamic spectrum sharing and Al-driven beamforming
to reduce base station energy consumption by 30 to 40% [30]. These technologies
collectively address the “energy paradox” of IoT, balancing functionality with sus-
tainability by redefining how devices are built and communicate. Table 10.2 compares
the efficiency, applications, and energy output of various energy harvesting methods.
Energy harvesting and renewable integration are crucial for the advancement of GIoT

Table 10.2 Comparison of energy harvesting technologies.

Energy Source Efficiency Energy Output | Applications

Solar (Perovskite) 33% (low light) | 10-20 mW/cm? | Outdoor sensors, smart agri-
culture

Kinetic (Piezoelectric) | 10-20% 4 W per step Smart buildings, wearable de-
vices

RF (Ambient Wi-Fi) 1 pW/cm? 1-10 pW/cm? Low-power sensors, retail
tracking

Thermal (TEGs) 5-10% 1-5 mW/cm? Industrial monitoring, waste
heat recovery

systems, facilitating sustainable energy utilization while optimizing the efficiency of
IoT devices. Through the deployment of energy harvesting solutions and intelligent
energy management strategies, IoT systems can operate autonomously and sustain-
ably, significantly contributing to a reduction in carbon emissions and energy waste.
The implementation of these technologies supports the goal of creating environmen-
tally friendly IoT solutions that enhance operational efficiency and promote a greener
future.

10.5 Sustainable system design

Sustainable System Design in the context of GIoT focuses on creating systems that
minimize environmental impact throughout their lifecycle, from design and pro-
duction to utilization and disposal. At its core, this philosophy integrates energy
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efficiency, resource optimization, and renewable materials to create an eco-friendly
infrastructure. For example, low-power sensors and adaptive management systems
significantly reduce energy consumption in smart cities, as demonstrated in Amster-
dam’s smart grid deployments, where energy use is optimized through decentralized
renewable sources. Additionally, modular architectures enhance sustainability by en-
abling easy upgrades and repairs, extending device lifespans, and reducing e-waste
[31].

A critical aspect of sustainable system design is the use of biodegradable materials
such as cellulose-based circuits and organic semiconductors that decompose harm-
lessly after use. Researchers have developed transient electronics using silk proteins
that dissolve within weeks post-deployment, reducing electronic waste accumulation.
Circular economy principles are embedded into design frameworks, promoting mate-
rial reuse and recycling. For example, Dell’s closed-loop recycling program recovers
plastics from retired IoT devices for reuse in new products, significantly reducing the
demand for virgin materials and mitigating environmental degradation [32].

From a technical standpoint, sustainable system design incorporates hardware,
software, and circular economy principles to enhance energy efficiency and reduce
waste. On the hardware front, innovative energy-efficient components play a crucial
role in reducing power consumption in IoT systems. Devices such as ARM’s Cortex-
M55 microcontroller operate at ultra-low power levels, enabling real-time analytics
without excessive energy draw [33]. Renewable energy integration is another piv-
otal strategy; solar-powered IoT nodes using perovskite cells and piezoelectric floor
tiles that generate energy from foot traffic exemplify how sustainable energy sources
can support [oT infrastructures [34]. Meanwhile, software optimizations are crucial
for energy conservation. Smart algorithms and communication protocols enhance
IoT sustainability by optimizing resource use. Machine learning algorithms dynam-
ically adjust energy consumption, as seen in Barcelona’s smart streetlights, which
automatically dim when no movement is detected, cutting energy costs by 30%. Ad-
ditionally, lightweight communication protocols like LoRaWAN significantly reduce
data transmission energy compared to Wi-Fi, making them ideal for remote agri-
cultural sensors and industrial monitoring applications [35]. Furthermore, circular
economy integration sustainable system design also emphasizes modular and recy-
clable hardware. Fairphone’s modular smartphones serve as an inspiration for IoT
architectures, promoting replaceable sensors and extendable device lifecycles. Ad-
ditionally, smart recycling programs, such as sensor-equipped waste bins, optimize
collection routes, reducing truck emissions by 40% [36]. Blockchain technology
further supports sustainability by enabling lifecycle tracking of materials, ensuring
compliance with environmental regulations and reducing illicit waste disposal.

Real-world implementations of sustainable system design showcase its practical-
ity in various sectors, including smart agriculture, smart buildings, and urban waste
management. Precision farming solutions, using soil moisture sensors enabled by
the IoT, have helped reduce water consumption by 50% while maintaining crop
yields [37]. Solar-powered microclimate monitoring nodes in vineyards have also
slashed reliance on grid power, enhancing energy efficiency. In urban settings, smart
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buildings like The Edge Building in Amsterdam leverage loT-based Heating, Ven-
tilation, and Air Conditioning (HVAC) and lighting systems, achieving 70% energy
savings through automated adjustments based on occupancy patterns [38]. Table 10.3
comparing real-world applications of sustainable IoT systems, highlighting their en-
vironmental and operational benefits.. By embedding sustainability into the core of
IoT development, GIoT technologies can drive significant environmental benefits,
supporting global sustainability goals while enhancing efficiency and innovation.

Table 10.3 Comparison of sustainable loT applications.

Application Key Features Environmental Operational Benefits
Benefits

Smart Soil moisture sensors, | 50% reduction in | Increased crop yields,

Agriculture solar-powered nodes water usage reduced costs

Smart loT-enabled HVAC, 70% energy Lower utility bills,

Buildings occupancy sensors savings improved comfort

Urban Waste Sensor-equipped bins, | 35% reduction in | Cost savings, reduced

Management | route optimization fuel consumption | emissions

Smart Grids Real-time energy 30% reduction in | Stable energy supply,
monitoring, renewable | energy waste lower carbon footprint
integration

10.6 Regulatory and policy frameworks for Green loT

Regulatory and policy frameworks play a key role in shaping the development and
deployment of GIoT technologies. These frameworks ensure that IoT systems align
with global sustainability goals, such as reducing carbon emissions, minimizing
e-waste, and promoting energy efficiency. Now more than ever, governments and
global agencies appreciate encouraging the adoption of renewable energy sources,
energy-efficient designs, and sustainable manufacturing processes. For instance, the
Eco-design Directive of the European Union (EU) requires that [oT devices are manu-
factured with high energy efficiency and recyclability, which leads to less innovation,
more adoption, and greater environmental protection [39]. One of the most important
features of these frameworks is how they regulate socioeconomic development along-
side environmental protection. Policies that define minimum energy consumption
levels, maximum materials able to be used, and other such criteria enable policy-
maker restrictions that serve concern for the environment in regard to IoT evolution.
For instance, Energy Star for [oT certifies devices that are power efficient, thus limit-
ing the number of such devices in circulation permits the devices to be more widely
accepted [40]. Besides, the Circular Economy Action Plan as well as other initiatives
emphasize the importance of IoT of components, minimizing e-waste and enabling a
circular economy.

Internationally GIoT practices will require global standards. These objectives are
being pursued by the International Organization for Standardization (ISO) and the
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Institute of Electrical and Electronics Engineers (IEEE) through the establishment of
protocols aimed at the interoperability and energy efficiency of IoT systems. For in-
stance, the ISO 14000 series provides guidelines for environmental management sys-
tems, helping IoT manufacturers minimize their ecological footprint [41]. Similarly,
the IEEE P2413 standard focuses on unifying IoT architectures to enhance energy
efficiency and scalability [42]. International agreements, reinforce the importance of
GIoT for achieving climate goals. Countries participating in these agreements are
adopting policies that promote the research and development of sustainable IoT tech-
nologies. For example, Singapore’s Smart Nation Initiative subsidizes IoT projects
that align with carbon neutrality targets, fostering innovation in energy-efficient sys-
tems [43]. These collaborative efforts ensure that GIoT technologies are not only
environmentally friendly, but also globally scalable and interoperable.

National governments play a critical role in driving the adoption of GIoT through
targeted policies and incentives. For example, carbon tax rebates in different countries
encourage companies to invest in energy-efficient IoT solutions. Similarly, e-waste
legislation, such as the EU’s Waste Electrical and Electronic Equipment (WEEE)
Directive, mandates that IoT manufacturers manage end-of-life recycling of their
products, reducing environmental degradation [44]. In addition, public awareness
campaigns educate consumers and businesses about the benefits of GIoT, encour-
aging the adoption of energy-efficient practices. For example, the GIoT Initiative in
the UK is helping organizations shift towards sustainable [oT solutions through ded-
icated resources and training [45].

The industry, through its corporate initiatives, is working hand in hand with
the government to formulate best practice standards and sustainability frameworks
for IoT implementation. Alliance for IoT Innovation (AIOTI) is one such organi-
zation that put together a GIoT best practices publication that focuses on energy
efficiency, resource optimization, and lifecycle management. An equally important
initiative is that of the GSMA that aims for IoT climate action, with a target of
net-zero IoT networks by 2040. Achieving this goal would engrave the use of re-
newable energy and energy-efficient infrastructures. All these efforts highlight the
necessity for a combined effort from all stakeholders, governments, industries, and
academia, to drive initiatives on GIoT further. The above-mentioned initiatives cite
the EU’s Smart Cities and Communities Initiative, which collaborates with munici-
palities to create IoT solutions for cities like smart grids and energy-efficient lighting
systems. Surely, such collaborations enable innovation; however, they also guarantee
that GIoT technologies work practically, are scalable and, most importantly, environ-
mentally friendly.

To foster sustainable development practices at the intersection of the regulatory,
organizational and the 10T sectors, governments should support the GloT by enhanc-
ing energy efficiency and reducing environmental impact. These frameworks will
help IoT technology provide global solutions for sustainability and address signifi-
cant environmental issues.
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10.7 Future challenges and opportunities

The rapid innovation of GIoT technologies offers a unique blend of challenges and
opportunities. Efforts on improving energy efficiency, integrating renewables, and
promoting sustainable development provided a good starting point, but there are
challenges still. It is essential to tackle these challenges while leveraging available
opportunities in order to unlock the potential of GIoT towards the sustainability ob-
jectives.

— Challenges in Green IoT Implementation

One of the primary challenges in GIoT is balancing performance with sustainabil-
ity. Although the use of energy-efficient hardware and the integration of renewable
energy have succeeded in power consumption efficiency, the power supply of many
IoT devices is still based on traditional batteries or non-renewable energy sources.
The high cost of sustainable materials, such as biodegradable circuits and graphene-
based components, remains a barrier to mass adoption. For instance, biodegradable
IoT sensors, while promising in reducing e-waste, are currently 2-3 times more ex-
pensive than traditional alternatives, limiting their large-scale deployment.

Another critical concern is the scalability of GIoT solutions. Many sustainable
technologies, such as self-powered sensors and energy-harvesting devices, remain
in the prototype or early adoption phase. Large-scale manufacturing of transient
electronics and bio-based components faces production limitations, preventing their
mainstream commercialization. Additionally, interoperability issues arise due to the
diverse range of IoT communication protocols, such as Zigbee, LoORaWAN, and NB-
IoT, which lack standardization. The absence of a unified framework for integrating
different sustainable IoT systems makes deployment complex, particularly in large
urban environments.

Additionally, the data security issues in GIoT bring forward privacy concerns that
need to be addressed. Numerous communication protocols that design IoT devices
focus on energy efficiency and neglect security, thus making these devices prone to
hacking. For example, passive backscatter systems may inadvertently disclose im-
portant information when energy usage is minimized, due to their weak encryption.
To resolve these issues, significant effort is needed in innovation, coordination, and
development of overarching policies and regulations for GIoT.

— Opportunities for Growth and Innovation

Despite these challenges, GIoT offers vast opportunities for innovation, partic-
ularly in energy harvesting, sustainable computing, and Al-driven resource opti-
mization. Recently developed self-sustaining IoT systems introduce revolutionary
biohybrid sensors powered by algae, kinetic energy harvesting Triboelectric Nano-
generators (TENGs), and organic solar photovoltaics operating in low-light condi-
tions. These technologies have great potential for powering remote or off-grid IoT
systems without the use of conventional energy sources.
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Another significant saturator is the IoT manufacturing and deployment models
based on a circular economy. More and more firms are developing modular IoT ar-
chitecture within which separate sensors and processors can be altered or upgraded.
This design will greatly improve the efficiency of IoT systems, as well as extend the
useful life of the devices and lessen electronic waste. Furthermore, blockchain-based
IoT devices enhance the accountability of recycling and material recovery, thus im-
proving sustainability and facilitating IoT lifecycle management.

The capability of Al-based means for sustainability optimization suggests GloT
may be transformed by the emerging need for vertically integrated power manage-
ment for various components’ energy consumption and system performance. Ad-
vanced machine learning techniques may process real-time data from a multitude of
sensors and analyze energy demand prediction, thus boosting the dependability of
power distribution, cutting the need for transmitting data, and significantly minimiz-
ing energy waste. For example, Al-powered dynamic spectrum sharing in 5G and 6G
networks can optimize network resource allocation, reducing energy consumption by
30-40% while maintaining seamless [oT connectivity.

Policy and regulatory frameworks are also evolving to support sustainableloT ini-
tiatives. Governments worldwide are implementing stricter regulations on e-waste
management, energy efficiency standards, and carbon footprint reduction for elec-
tronic devices. The EU Ecodesign Directive mandates that IoT manufacturers adopt
sustainable design practices, ensuring that devices are energy efficient, repairable,
and recyclable. These regulatory measures provide a strong incentive for industries
to transition toward GIoT solutions, driving large-scale adoption and innovation.

10.8 Conclusion: path to a sustainable future

The evolution of GIoT technologies marks a pivotal shift toward a more sustain-
able, energy-efficient, and intelligent digital ecosystem. The growth of IoT systems
in industries calls for the combination of new technologies, collaborative intelli-
gence, renewable energy, and design sustainability to decrease environmental impact.
Overreliance on traditional power sources for GIoT systems is achieved through in-
novations like low-power MCUs, Al-enhanced edge computing, and self-sustaining
sensors. With advanced hardware architectures, Al driven optimisations, and reg-
ulatory frameworks, the GIoT world is creating a reality where sufficiency meets
ecological preservation.

Furthermore, biohybrid sensors, biodegradable circuits, and transient electronics
have improved the sustainability of IoT. Collaborative intelligence coupled with soft-
ware optimisation renders change in IoT performance while empowering Al-driven
energy management. With the integration of lightweight communication protocols
and intelligent data processing, devices consume fewer resources, which allows for
efficient device usage.

The combination of energy harvesting and renewable energy approaches has be-
come one of the primary methods within GIoT, allowing devices to operate without
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frequent battery changes. Two technologies, namely RF energy scavenging, piezo-
electric harvesting, and even perovskite solar cells are revolutionizing IoT applica-
tions with autonomous power supplies. In addition, the aspects of sustainable system
design, such as modular designs, circular economy systems and material reprocess-
ing, guarantee the sustainability and environmental friendliness of IoT implementa-
tions in smart cities, modern agriculture and industrial automation.

While GIoT presents remarkable opportunities, regulatory and policy frameworks
remain essential in driving its large-scale adoption. Governments and international
organizations are formulating eco-design mandates, energy efficiency standards, and
lifecycle tracking regulations to ensure compliance and promote green innovation.
However, challenges such as high costs, interoperability issues, and cybersecurity
risks still pose hurdles that require collaborative efforts between industry leaders,
researchers, and policymakers.

Looking ahead, GIoT is poised to redefine the future of smart systems by in-
tegrating Al-driven efficiency, renewable energy solutions, and sustainable system
designs. Through continuous innovation, cross-sector collaboration and regulatory
support, GIoT can help achieve global sustainability goals, reduce carbon footprints,
and foster resilient, low-impact digital ecosystems. The road ahead for GIoT is both
challenging and promising, but with the right technological and policy-driven strate-
gies, it holds the potential to create a greener, smarter, and more sustainable future.
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