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CHAPTER 

1Introduction to Green IoT 

devices

Wali Ullah Khan, Chandan Kumar Sheemar, and Eva Lagunas
Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg 

Luxembourg, Luxembourg

1.1 Introduction to IoT and its environmental impact
1.1.1 What is IoT?
The Internet of Things (IoT) is a system of linked devices that exchange data across 
the Internet [1]. These sensors, actuators, and communication modules-equipped de
vices provide real-time monitoring, control, and automation in a variety of uses 
including smart homes, healthcare, agriculture, transportation, and industrial automa
tion [2].

1.1.2 Arising environmental challenges
IoT devices’ broad acceptance has transformed daily life and businesses, allowing 
formerly unheard-of degrees of data-driven decision-making, connectivity, and au
tomation. Still, this fast spread of IoT technologies has brought major environmental 
problems. The lifetime of IoT devices—including their manufacture, running, and 
disposal—defines these obstacles. We explore the main environmental issues con
nected with IoT devices below.

1.1.2.1 Energy consumption
Often in remote or di˙icult-to-reach areas, IoT devices are meant to run continuously 
to offer real-time monitoring and control. Although this ability is quite useful, signif
icant energy consumption results from it. Important problems include data centers, 
battery reliance, ongoing operation, and cloud computing [3]. Many IoT devices, such 
surveillance cameras and smart sensors, run around-the-clock, which drives great en
ergy demand. For instance, a single smart home gadget—such as a thermostat or 
security camera—may use just a tiny bit of energy, but when multiplied by millions 
of devices worldwide, the total energy usage becomes somewhat noteworthy. More
over, a lot of IoT gadgets run on batteries. Regular battery changes not only raise 
running expenses but also help to damage the environment by battery manufacture 
and disposal. IoT devices create enormous volumes of data that are often handled 
and kept in energy-intensive data centers. Large amounts of electricity consumed by 
these data centers help to explain world energy usage and carbon emissions. Recent 
Design and Analysis of Green and Sustainable IoT Technologies for Future Wireless Communications 
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estimates indicate that data centers account for about 1% of world electricity use; this 
figure is anticipated to increase significantly as the IoT develops.

Electronic waste
The short lifetime of many IoT devices aggravates the worldwide e-waste issue. 
Discarded electronic equipment, sometimes known as e-waste, often have toxic com
ponents that might endanger human health or the environment. Important concerns 
are limited device lifetime, toxic materials, and recycling difficulties [4]. More pre
cisely, many Internet of Things devices are made with planned obsolescence—that 
is, they are meant to have a limited lifetime. Frequent replacements encouraged by 
this cause e-waste to rise. For instance, as newer versions are unveiled, smart home 
appliances like wearable fitness trackers or voice assistants are sometimes changed 
every few years. Apart from that, IoT gadgets sometimes have harmful elements 
such as cadmium, mercury, and lead, which, if improperly disposed of, can seep 
into the ground and water. Much of the world’s e-waste is sent to underdeveloped 
nations, so inappropriate management of e-waste there poses major environmental 
and health hazards. Moreover, the intricate architecture of IoT devices—which fre
quently combine several materials and components—makes recycling challenging. 
Many technologies are not meant to be disassembled, and the absence of uniform 
recycling policies aggravates the problem. Furthermore, the extensive application of 
lithium-ion batteries in Internet of Things devices begs issues with resource depletion 
and battery waste pollution. Consequently, a good amount of e-waste either burns or 
finds their way in landfills, spewing dangerous toxins into the surroundings.

Carbon footprint
IoT devices have a carbon footprint that includes greenhouse gas emissions pro
duced all during their lifetime, from manufacture to disposal. Important contributors 
are end-of-life emissions, operating emissions, and manufacturing emissions [5]. 
Energy-intensive operations including the procurement and processing of raw mate
rials, component manufacture, and device assembly comprise the production of IoT 
devices. For instance, semiconductor manufacture—which is necessary for Internet 
of Things devices—requires a lot of energy and produces large emissions. IoT de
vices’ running energy consumption adds to their carbon footprint. For gadgets that 
depend on non-renewable energy sources especially, this is quite alarming. IoT de
vices running coal-based electricity, for example, have a far larger carbon impact 
than those running renewable energy. Particularly by landfilling or incineration, the 
disposal of IoT devices generates methane and carbon dioxide. Further adding to 
emissions is the movement of e-waste to disposal sites or recycling centers.

Resource depletion
Rare earth metals, copper, and gold are among the few natural resources needed for 
IoT devices’ manufacture. Among important issues are resource shortages and rare 
earth metals. Most IoT devices, including sensors and communication modules, de
pend on rare earth metals such dysprosium and neodymium [6]. Deforestation, soil 
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erosion, and water contamination follow from the environmentally disastrous ex
traction of these resources. Consequently, the growing demand for IoT devices is 
stressing world supply of important resources. For instance, the manufacturing of 
lithium-ion batteries, which are extensively utilized in Internet of Things devices, 
depends on lithium, a resource that is growingly limited.

Impact on biodiversity
Furthermore affecting the environment are IoT devices’ effects on biodiversity. Im
portant problems include pollution and damage of habitat. Raw material extraction 
for Internet of Things devices sometimes entails mining operations that disturb 
ecosystems and harm natural habitats. For rare earth metals, for instance, mining has 
been connected to the degradation of wetlands and forests. IoT device and compo
nent disposal might cause harmful chemicals to leak into the environment, therefore 
damaging ecosystems and wildlife. For example, heavy metals found in e-waste can 
poll water supplies, therefore compromising aquatic life.

1.1.3 The need for Green IoT
The fast expansion of the IoT has resulted in major technological developments 
allowing smarter homes, businesses, hospitals, and communities. But the environ
mental effect of conventional IoT devices has caused major issues that call for Green 
IoT development. Green IoT is centered on designing IoT devices and systems that 
reduce environmental damage while preserving or perhaps improving performance 
and functionality. We investigate the main drivers and approaches behind Green IoT 
below.

Reducing energy consumption
Energy consumption is one of the most critical environmental challenges posed by 
IoT devices. Green IoT aims to address this issue through several strategies such 
as energy-e˙icient hardware, energy harvesting, and optimized data transmission. 
Designing IoT devices with low-power processors, sensors, and communication mod
ules can significantly reduce energy consumption [7]. For example, microcontrollers 
with advanced sleep modes and energy-e˙icient wireless protocols like Zigbee or 
LoRaWAN are increasingly being used in Green IoT applications. Green IoT devices 
can leverage renewable energy sources such as solar, thermal, or kinetic energy to 
power themselves. For instance, solar-powered sensors in agricultural fields can op
erate indefinitely without the need for battery replacements, reducing both energy 
consumption and waste. Transmitting data over long distances consumes substantial 
energy. Green IoT systems often use edge computing to process data locally, reduc
ing the need for frequent data transmission to centralized cloud servers. This not only 
saves energy, but also reduces latency.
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Using sustainable materials
The production of IoT devices often relies on non-renewable resources and hazardous 
materials. Green IoT promotes the use of sustainable materials to mitigate the issues 
of biodegradable and recyclable materials, non-toxic substances, and lightweight and 
durable designs [8]. Green IoT devices can be designed using biodegradable plastics 
or recyclable metals, reducing the environmental impact of their production and dis
posal. For example, some companies are experimenting with biodegradable circuit 
boards made from organic materials. Traditional IoT devices often contain toxic sub
stances like lead, mercury, and cadmium. Green IoT devices avoid these materials, 
using safer alternatives that are less harmful to the environment and human health. 
Using lightweight and durable materials reduces the amount of raw materials needed 
for production and extends the lifespan of devices. For instance, aluminum and mag
nesium alloys are increasingly being used in IoT device casings due to their strength 
and recyclability.

Extending device lifespan
Many IoT devices have a limited lifetime that greatly adds to electronic garbage 
(e-waste). By stressing longevity and durability through modular design, firmware 
upgrades, and strong construction [9], Green IoT tackles this problem. Easy repairs 
and updates made possible by modular IoT devices help to extend their useful lives. 
For instance, one can change the sensors or communication components of a modu
lar smart thermostat without throwing away the complete gadget. Frequent firmware 
updates help IoT devices to remain relevant for longer times and improve their secu
rity and performance. This cuts e-waste and lessens the need for regular replacements. 
IoT devices should be built to survive in hostile environmental circumstances, includ
ing high temperatures or dampness, therefore guaranteeing their prolonged operation. 
For industrial IoT applications, for example, tough sensors are designed to survive in 
demanding surroundings.

Promoting recycling and reuse
IoT devices’ disposal presents major environmental problems. Green IoT advocates a 
circular economy approach whereby devices are made to be recycled and used again. 
Easy disassembly of IoT devices will help to enable the component recycling [10]. 
For instance, modular designs of smart homes and cellphones let customers replace 
certain components instead of throwing away the whole gadget. Take-back initiatives 
let manufacturers gather end-of-life IoT devices for refurbishing or recycling. Com
panies like Apple and Dell have already established successful take-back programs 
for their electronic products. Used IoT devices can be repurposed for secondary ap
plications. For instance, retired smartphones can be used as security cameras or home 
automation controllers, extending their useful life and reducing e-waste.
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Reducing carbon footprint
The carbon footprint of IoT devices encompasses emissions from their production, 
operation, and disposal. Green IoT aims to minimize this footprint through various 
measures. Using renewable energy sources in the production of IoT devices can sig
nificantly reduce their carbon footprint [11]. For example, factories powered by solar 
or wind energy produce fewer emissions compared to those relying on fossil fuels. 
Green IoT devices are designed to operate with minimal energy consumption, reduc
ing their carbon emissions during use. For instance, smart lighting systems that use 
energy-e˙icient LEDs and motion sensors can drastically cut energy use in build
ings. Proper disposal and recycling of IoT devices prevent the release of greenhouse 
gases from landfills and incineration. Green IoT promotes the use of certified e-waste 
recycling facilities to ensure environmentally friendly disposal.

Enhancing resource efficiency
The production of IoT devices relies on finite natural resources, such as rare earth 
metals and lithium. Green IoT makes use of alternative materials and resource
e˙icient production to support environmental sustainability. Advanced manufactur
ing methods, including additive manufacturing (3D printing), can lower material 
waste and raise resource efficiency. 3D-printed IoT device casings, for instance, save 
waste by using just the required quantity of material. Green IoT investigates using 
less ecologically harmful and more plentiful alternative materials. For IoT compo
nents, researchers are looking at substituting graphene and other nanomaterials for 
rare earth metals, for example.

1.2 Enabling technologies for Green IoT
Green IoT aims to reduce environmental effect and energy usage while nevertheless 
preserving flawless connectivity and operation. Several main enabling technologies 
help IoT networks to reach sustainability and energy economy.

1.2.1 Energy-e˙icient wireless communication
Adaptive power control, energy-aware Medium Access Control (MAC) protocols, 
and duty-cycling algorithms assist lower power usage in IoT networks [12]. Cognitive 
radio and dynamic spectrum access technologies maximize spectrum use and reduce 
energy waste.

1.2.2 Reconfigurable Intelligent Surfaces (RIS)
With clever reflection and manipulation of wireless signals, RIS is a new technology 
improving spectrum and energy efficiency [13]. RIS lowers power needs in Green 
IoT systems by maximizing phase shifts and focusing signals toward designated re
ceivers.
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1.2.3 Energy harvesting
IoT devices can gather thermal, mechanical, RF, solar, and mechanical vibrations 
[14] from ambient sources. This promotes self-sustaining functioning, hence low
ering reliance on conventional battery-powered systems and prolonging IoT device 
lifetime.

1.2.4 Artificial Intelligence (AI) and Machine Learning (ML)
In Internet of Things networks, artificial intelligence and machine learning methods 
maximize intelligent energy management, predictive maintenance, and resource allo
cation [15]. Effective data routing, congestion control, and anomaly detection made 
possible by artificial intelligence-driven algorithms help to lower unneeded energy 
consumption.

1.2.5 Low-power communication protocols
Designed to guarantee consistent connectivity while consuming little power, light
weight communication protocols including Bluetooth little Energy (BLE), Zigbee, 
LoRaWAN, and Narrowband IoT (NB-IoT). Large-scale deployed battery-operated 
IoT devices depend on these protocols.

1.2.6 Edge and fog computing
Edge and fog computing process data near to the source instead of depending just on 
cloud computing, therefore lowering the demand for energy-intensive cloud transfers 
[16]. Using localized processing helps these technologies improve response times 
and lower general network energy usage.

1.2.7 Software-Defined Networking (SDN) and Network Function 
Virtualization (NFV)

SDN and NFV enable dynamic network configuration, virtualized resource alloca
tion, and traffic optimization, leading to more energy-e˙icient IoT networks [17]. 
These technologies help minimize redundant network operations and enhance adap
tive energy management.

1.2.8 Green data centers and cloud computing
Energy-e˙icient data centers powered by renewable energy sources help mitigate the 
carbon footprint of IoT applications [18]. Cloud computing platforms with optimized 
resource allocation and cooling mechanisms further support sustainable IoT ecosys
tems.



1.3 Applications of Green IoT devices 7

FIGURE 1.1 

Use cases of Green IoT.

1.2.9 Backscatter communication and tags
Backscatter communication is a promising technique for ultra-low-power IoT de
vices, enabling data transmission by reflecting existing RF signals rather than gen
erating new ones [19]. Backscatter tags operate without batteries, harvesting energy 
from ambient sources such as Wi-Fi, cellular, and TV signals. This technology is 
particularly useful for applications like RFID-based tracking, smart agriculture, and 
passive environmental sensing, where minimizing power consumption is critical. 

1.3 Applications of Green IoT devices
Green IoT devices are transforming various sectors by enabling smarter, more ef
ficient, and environmentally friendly solutions. These applications leverage energy
e˙icient technologies, sustainable materials, and advanced data analytics to minimize 
environmental impact while enhancing functionality. Below, we explore the key ap
plications of Green IoT across different domains, shown in Fig. 1.1.

1.3.1 Smart homes
Green IoT devices are revolutionizing smart homes by reducing energy consumption 
and promoting sustainable living. Key applications include energy-e˙icient light
ing, smart thermostats, Water-Saving Systems, and energy monitoring [20]. Smart 
lighting systems use energy-e˙icient LED bulbs and motion sensors to automatically 
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adjust lighting based on occupancy and natural light levels. For example, Philips 
Hue and LIFX offer smart lighting solutions that can be controlled via smartphones, 
reducing unnecessary energy use. Devices like the Nest Thermostat learn user prefer
ences and optimize heating and cooling schedules to minimize energy consumption. 
These thermostats can reduce household energy use by up to 20%, significantly low
ering carbon emissions. Smart irrigation systems, such as those offered by Rachio, 
use weather data and soil moisture sensors to optimize watering schedules, reducing 
water waste. Smart faucets and showerheads similarly track water use and offer real
time feedback to promote conservation. Like those from Sense or Emporia, smart 
plugs and energy monitors measure the energy use of particular appliances, therefore 
enabling homeowners to find and cut energy-intensive gadgets.

1.3.2 Smart cities
By besting resource utilization and lowering environmental effect, green IoT is abso
lutely essential in creating sustainable smart cities. Important uses are waste manage
ment, energy distribution, intelligent traffic control, and environmental monitoring 
[21]. Real-time traffic flow, monitored by IoT-enabled sensors and traffic lights, 
adjusts signal timings to lower idle and congestion. Cities such as Barcelona and 
Singapore, for instance, deploy IoT technologies to increase traffic efficiency, there
fore reducing fuel usage and emissions. Sensible waste bins with sensors track fill 
levels and maximize waste collecting paths, therefore lowering fuel consumption and 
running costs. IoT solutions for effective garbage management come from companies 
like Bigbelly and Enevo. Integrating renewable energy sources like solar and wind, 
smart grids monitor and control energy distribution using IoT devices. For example, 
Copenhagen employs IoT-enabled smart grids to help it to reach its target of carbon
neutrality by 2025. Real-time monitoring of air quality, noise levels, and water quality 
using IoT sensors helps cities to respond early in order to mitigate pollution. For in
stance, IoT sensors in the Breathe London project track air quality to guide policy 
decisions.

1.3.3 Precision agriculture
Precision farming methods enabled by green IoT are revolutionizing agriculture by 
besting resource use and waste reduction. Important uses include cattle monitoring, 
crop health monitoring, soil and weather monitoring, and [22]. IoT sensors track 
nutrient levels, temperature, and soil moisture to give farmers real-time data that max
imizes fertilization and irrigation. The CropX system, for instance, reduces water use 
by up to 25% by delivering exact irrigation recommendations based on soil sensors. 
Hyper-local weather forecasts made possible by IoT-enabled weather sensors enable 
farmers to schedule their planting and harvesting operations. IoT solutions for agri
cultural weather monitoring come from companies like Davis Instruments and Metos. 
IoT-equipped drones track crop condition and identify pests and illnesses early on. 
Targeted treatments made possible by this help to lower the demand for chemical fer
tilizers and pesticides. For precise crop spraying, for example, the DJI Agras drone is 
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rather popular. IoT devices track cattle’s health and whereabouts, therefore allowing 
farmers to maximize feeding and identify diseases early on. IoT solutions for cattle 
management are offered by businesses including Allflex and HerdDogg.

1.3.4 Healthcare
Green IoT devices are improving healthcare outcomes while reducing energy con
sumption and carbon emissions. Key applications include wearable devices, remote 
patient monitoring, smart hospitals, and telemedicine. Wearables like Fitbit and 
Apple Watch monitor vital signs such as heart rate, blood pressure, and activity 
levels, enabling remote health monitoring [23]. These devices reduce the need for 
frequent hospital visits, lowering energy consumption and carbon emissions. IoT
enabled medical devices, such as glucose monitors and ECG monitors, allow patients 
to manage chronic conditions from home. For example, the Dexcom G6 continu
ous glucose monitoring system provides real-time data to patients and healthcare 
providers, reducing the need for in-person consultations. IoT devices optimize energy 
use in hospitals by monitoring and controlling lighting, heating, and cooling systems. 
For instance, the Cleveland Clinic uses IoT systems to reduce energy consumption 
and improve patient comfort. IoT-enabled telemedicine platforms allow patients to 
consult with healthcare providers remotely, reducing travel-related emissions. Plat
forms like Teladoc and Amwell have seen significant adoption, especially during the 
COVID-19 pandemic.

1.3.5 Industrial IoT (IIoT)
Green IoT is driving sustainability in industrial settings by enabling predictive main
tenance, energy monitoring, and process optimization. Key applications include pre
dictive maintenance, energy monitoring, process optimization, and sustainable supply 
chains. IoT sensors monitor the condition of machinery and predict failures before 
they occur, reducing downtime and energy waste [24]. For example, Siemens uses 
IoT-enabled predictive maintenance to optimize the performance of industrial equip
ment. IoT devices track energy consumption in factories, identifying inefficiencies 
and opportunities for savings. Companies like Schneider Electric and Siemens offer 
IoT solutions for industrial energy management. IoT systems optimize manufacturing 
processes by monitoring and adjusting parameters in real-time. For instance, General 
Electric uses IoT to optimize the performance of its wind turbines, increasing energy 
output and reducing maintenance costs. IoT devices track the environmental impact 
of supply chains, enabling companies to make more sustainable decisions. For ex
ample, IBM’s Food Trust platform uses IoT to track the carbon footprint of food 
products from farm to table.

1.3.6 Satellite IoT
Satellite IoT extends the reach of Green IoT to remote and underserved areas, en
abling global connectivity and environmental monitoring. Key applications include 
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environmental monitoring, disaster management, precision agriculture in remote 
areas, and maritime and aviation monitoring [25]. Real-time monitoring of defor
estation, glacier melting, and ocean health using satellite IoT devices supplies vital 
information for climate study and policy development. Sentinel satellites of the Eu
ropean Space Agency, for instance, track environmental changes using IoT sensors. 
Real-time monitoring of natural disasters such as hurricanes, earthquakes, and wild
fires, which is made possible via satellite IoT, improves reaction times and lowers 
damage by means of better control. To watch and forecast natural disasters, for ex
ample, the NASA Earth Observing System employs IoT-enabled satellites. For areas 
lacking consistent internet access, satellite IoT offers connectivity for precision agri
culture. By tracking soil conditions, meteorology, and crop health using satellite data, 
farmers can maximize resource utilization and lower waste. By tracking ship and air
craft locations and environmental impact, satellite IoT helps to enable more effective 
routing and lowers emissions. For maritime and aircraft IoT uses, for instance, the 
Iridium satellite network offers worldwide access.

1.4 Challenges in Green IoT
While Green IoT holds immense potential for creating a sustainable and environ
mentally friendly IoT ecosystem, its widespread adoption faces several challenges. 
These challenges span technical, economic, and regulatory domains, and addressing 
them is crucial for realizing the full potential of Green IoT. Below, we explore these 
challenges in detail.

1.4.1 Technical challenges
The development and deployment of Green IoT devices involve overcoming several 
technical hurdles. These challenges stem from the need to balance performance, en
ergy efficiency, and reliability.

Balancing performance and energy efficiency
Green IoT devices have to minimize energy use while also delivering great perfor
mance. Striking this balance is difficult, since energy-e˙icient designs can compro
mise processing power, communication range, or functionality. Low-power micro
controllers, for instance, can cut energy use, but restrict the device’s capacity to run 
sophisticated calculations or support fast-moving communication protocols.

Ensuring reliable operation with energy harvesting
Green IoT devices in far-off or di˙icult-to-reach areas must be powered by energy 
collecting systems include solar or kinetic energy. These methods, however, often 
offer erratic and changeable energy, which makes dependability of operation difficult. 
Solar-powered sensors, for example, could find it difficult to operate consistently in 
low-light or cloud cover, so sophisticated energy management systems are needed to 
store and control acquired energy.
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Managing the complexity of edge computing and AI algorithms
Optimizing the performance of Green IoT devices depends critically on edge com
puting and artificial intelligence techniques. Their computational and memory needs 
make deploying these technologies on resource-limited devices difficult, though. 
Running machine learning algorithms on low-power IoT devices, for instance, could 
call for specialized hardware or optimized software frameworks, hence escalating 
development complexity and cost.

1.4.2 Economic challenges
The adoption of Green IoT practices often involves higher upfront costs and eco
nomic barriers, which can hinder widespread implementation.

Higher upfront costs for sustainable materials and technologies
Often requiring sustainable materials and cutting-edge technologies, green IoT de
vices might be more costly than conventional substitutes. For instance, rare earth
free components or biodegradable plastics could raise manufacturing costs, therefore 
reducing the competitiveness of Green IoT devices on the market. Higher initial in
vestments involved in energy-e˙icient hardware and energy harvesting systems also 
discourage producers and consumers.

Lack of incentives for manufacturers to adopt Green IoT practices
Particularly in very competitive industries, many manufacturers give cost control and 
profitability top priority over environmental issues. Companies can be reluctant to 
spend in Green IoT technologies without financial incentives or legislative rules. For 
sustainable manufacturing techniques, for example, the absence of tax benefits or 
subsidies can deter businesses from implementing environmentally friendly designs 
and methods.

1.4.3 Regulatory and policy challenges
The lack of consistent regulations and standardized guidelines poses significant chal
lenges for the development and deployment of Green IoT devices.

Inconsistent regulations across regions
Regarding energy efficiency, e-waste management, and the usage of hazardous mate
rials, different nations and areas have different rules. Manufacturers producing Green 
IoT devices for worldwide markets find difficulties resulting from this inconsistency. 
A gadget compliance with European Union rules, for instance, might not satisfy crite
ria in the United States or Asia and calls for expensive changes or alternative product 
lines.
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Lack of standardized guidelines for Green IoT design and deployment
Lack of consistent policies for Green IoT design and implementation complicates de
velopment process and reduces interoperability. Manufacturers find it challenging to 
guarantee compliance and compatibility across devices since, for example, there are 
no global criteria for sustainable material certifications or energy-e˙icient communi
cation protocols. For consumers, who could find it difficult to spot really sustainable 
IoT items, this lack of standardizing also generates ambiguity.

1.5 Future directions
With lots of chances for invention and teamwork, Green IoT has bright future. Grow
ing demand for sustainable technology will depend much on developments in energy
e˙icient technologies, standardization, and cooperative efforts to shape Green IoT 
going forward. We go into great detail below on these future paths.

1.5.1 Advances in energy-e˙icient technologies
The development of energy-e˙icient technologies is essential for reducing the en
vironmental impact of IoT devices. Future advancements in this area will focus on 
improving performance while minimizing energy consumption.

Development of ultra-low-power processors and sensors
Researchers and manufacturers are working on designing processors and sensors that 
consume minimal power without compromising performance. For example, ultra
low-power microcontrollers like the ARM Cortex-M series and energy-e˙icient sen
sors such as those from Bosch Sensortec are already making strides in this direction. 
Future innovations may include processors that leverage quantum computing or neu
romorphic engineering to achieve unprecedented energy efficiency.

Integration of advanced energy harvesting techniques
Energy harvesting technologies, such as solar, thermal, and kinetic energy, will con
tinue to evolve, enabling IoT devices to operate autonomously without relying on 
traditional batteries. For instance, advancements in flexible solar panels and piezo
electric materials will allow energy harvesting to be integrated into a wider range of 
IoT devices, from wearable gadgets to industrial sensors. Additionally, hybrid energy 
harvesting systems that combine multiple energy sources (e.g., solar and thermal) 
will enhance reliability and efficiency.

1.5.2 Standardization and certification
Standardization and certification are critical for ensuring the consistency, interoper
ability, and credibility of Green IoT devices. Future efforts in this area will focus on 
establishing global standards and promoting eco-friendly products.
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Establishing global standards for Green IoT devices
The development of global standards for energy efficiency, sustainable materials, 
and e-waste management will provide a unified framework for manufacturers and 
consumers. Organizations like the International Telecommunication Union (ITU) 
and the Institute of Electrical and Electronics Engineers (IEEE) are already work
ing on standards for IoT sustainability. Future standards may include guidelines for 
energy-e˙icient communication protocols, such as LoRaWAN and NB-IoT, as well 
as requirements for the use of recyclable and non-toxic materials.

Introducing certification programs to promote eco-friendly products
Certification programs, such as Energy Star and EPEAT, will play a key role in pro
moting Green IoT devices. These programs provide consumers with a reliable way to 
identify eco-friendly products, encouraging manufacturers to adopt sustainable prac
tices. Future certification programs may include criteria for carbon footprint, energy 
harvesting capabilities, and end-of-life recyclability, ensuring a holistic approach to 
sustainability.

1.5.3 Collaborative efforts
Collaboration between governments, industries, and researchers is essential for driv
ing innovation and accelerating the adoption of Green IoT. Future efforts will focus 
on fostering partnerships and raising public awareness.

Encouraging collaboration between governments, industries, and re
searchers
Governments, industries, and academic institutions must work together to address the 
technical, economic, and regulatory challenges of Green IoT. For example, public
private partnerships can fund research and development projects, while government 
incentives can encourage companies to adopt sustainable practices. Collaborative ini
tiatives like the European Union’s Horizon 2020 program and the U.S. Department of 
Energy’s Advanced Research Projects Agency-Energy (ARPA-E) are already driving 
innovation in Green IoT.

Promoting public awareness and consumer demand for sustainable IoT 
solutions
Raising public awareness about the environmental impact of IoT devices and the ben
efits of Green IoT is crucial for driving consumer demand. Educational campaigns, 
eco-labeling, and incentives for purchasing sustainable products can encourage con
sumers to make environmentally conscious choices. For instance, companies like 
Apple and Google are already promoting their eco-friendly initiatives, such as using 
recycled materials and reducing carbon emissions, to attract environmentally con
scious consumers.
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1.6 Conclusion
A revolutionary way to solve the environmental problems caused by the explosive 
spread of conventional IoT technologies is provided by green IoT devices Green IoT 
presents a road to a more sustainable and environmentally friendly IoT ecosystem 
by including circular economy concepts, sustainable materials, and energy-e˙icient 
designs. The relevance of Green IoT, its main ideas, enabling technologies, applica
tions, difficulties, and future paths has been investigated in this chapter.

Adoption of Green IoT presents many difficulties. Technical challenges includ
ing handling the complexity of edge computing and artificial intelligence algorithms, 
balancing performance and energy efficiency, guaranteeing dependable operation us
ing energy harvesting technologies, and so addressing technical obstacles. Significant 
challenges also come from economic hurdles, including more upfront costs for sus
tainable materials and technologies as well as from manufacturers’ lack of incentives 
to embrace Green IoT techniques. Moreover, unequal rules among different areas and 
the lack of common standards for Green IoT design and implementation hamper the 
evolution and acceptance of sustainable IoT solutions.

Notwithstanding these obstacles, Green IoT has bright potential. More sustainable 
IoT devices are making possible by developments in energy-e˙icient technology such 
ultra-low-power CPUs and sophisticated energy harvesting methods. While coopera
tive projects between governments, businesses, and researchers are driving innovation 
and fast adoption of Green IoT, standardizing and certification activities are helping 
to set worldwide rules and promote environmentally friendly goods. Growing pub
lic knowledge of and consumer demand for sustainable IoT solutions also motivates 
producers to give environmental sustainability top priority.

Green IoT is ultimately a need for creating a sustainable future as much as a 
technology advancement. We may fully actualize Green IoT by tackling technical, 
financial, and regulatory obstacles and using the chances given by developments in 
technology, standardization, and teamwork. This will help to further more general 
objectives of sustainability and climate action in addition to lessening the environ
mental effect of IoT devices. A greener IoT environment has yet to be reached, hence 
constant research, creativity, and teamwork are crucial to realize this vision.
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2.1 Introduction
Traditional wireless systems have focused on rate-hungry, human-centric applica
tions, including extended reality, virtual reality, and conference calling. These sys
tems were designed to prioritize high data rates and optimized to improve quality
of-experience (QoE) and support seamless human-to-human communication. In con
trast, the vision of the Internet of Things (IoT) has transformed the demands and 
architectures of wireless systems by introducing new constraints and objectives. IoT 
networks require support for massive machine-to-machine communication, with bil
lions of interconnected devices operating under strict constraints of energy efficiency, 
network sustainability, scalability, and long-range connectivity. The scale and diver
sity of IoT deployments, ranging from smart cities and industrial automation to envi
ronmental and agricultural monitoring, demand technologies that minimize energy 
consumption, extend network lifetime, and ensure reliable communication across 
wide geographical areas. Addressing these constraints has reshaped wireless system 
design by prioritizing sustainability and scalability in architectures. This chapter de
tails the principles and methodologies for designing an end-to-end sustainable IoT 
network, emphasizing energy efficiency, scalability, and long-term operational feasi
bility across diverse applications.

2.1.1 Historical perspective
In this section, we briefly discuss the emergence of the IoT paradigm of commu
nication. The conceptual foundation of the IoT dates back to 1999, when Kevin 
Ashton introduced the term in the context of supply chain optimization at Procter & 
Gamble [1,2]. He envisioned a system of interconnected physical objects capable of 
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autonomous and efficient communication, laying the groundwork for the global IoT 
ecosystem. While the concept of IoT emerged in the late 1990s, it was not until the 
early 2000s that wireless communication technologies began to integrate machine
centric communication into standard infrastructures.

From 1G to 3G, wireless networks were primarily designed for voice commu
nication and basic data services, lacking the technologies necessary for supporting 
large-scale, interconnected IoT ecosystems [2]. The evolution of IoT was catalyzed 
by advancements in sensor technology, enhanced computing capabilities, and the 
development of optimized communication protocols, which enabled seamless data 
collection, processing, and exchange, forming the backbone of modern IoT applica
tions. The introduction of 4G networks marked a turning point for IoT systems and 
enabled higher data rates, lower latency, and higher system capacity. The increased 
bandwidth and lower latency facilitated real-time data exchange between devices and 
supported the development of low-power wide-area networks (LPWAN), specifically 
designed for long-range, low-power IoT use cases [2--4].

The emergence of 5G networks has further revolutionized the IoT landscape 
by supporting a massive number of connected devices with capabilities such as 
ultra-reliable low-latency communication (URLLC) and enhanced mobile broadband 
(eMBB [5]. These advancements enable seamless integration of IoT devices across 
sectors, including smart cities, healthcare, and industrial automation. However, de
spite these advancements, 5G is limited by the lack of scalability, which is imperative 
to support mass-scale next-generation networks [6]. Future applications, which in
clude holographic communication [7], immersive reality [8], real-time autonomous 
systems, etc., demand higher data rates, seamless coverage, and ultra-low latency. 
Furthermore, the expansion of MTC and the integration of billions of IoT devices 
into intelligent ecosystems further strain 5G’s scalability and energy efficiency.

6G networks aim to address these shortcomings by prioritizing diverse metrics 
that are critical for next-generation applications, e.g., reliability for mission-critical 
systems, spectral efficiency for denser networks, and energy efficiency for reduced 
operational costs. 6G systems will have sustainable designs, ensuring networks can 
support massive connectivity while minimizing environmental and operational im
pacts through optimized energy consumption. This will enable network scalability 
by supporting large-scale IoT ecosystems, facilitating global connectivity in remote 
regions, and maintaining consistent performance as network density and device di
versity increase.

2.2 Fundamentals of IoT
IoT networks extend beyond the human-centric traditional wireless systems to create 
an interconnected ecosystem of data, devices, processes, and persons. This paradigm 
has created diverse opportunities across different sectors and presents new challenges 
that demand sustainable, scalable, and secure solutions. The IoT vision aims to create 
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FIGURE 2.1 

IoT functions.

a seamlessly interconnected network where devices operate autonomously with min
imal human intervention. IoT devices encompass a vast variety of physical objects, 
ranging from wearable devices and household appliances to industrial machinery 
and autonomous vehicles. These objects or things are connected to the internet and 
equipped to realize one or more of the following functions, also illustrated in Fig. 2.1.

1. Sense: Sensing is the ability to gather data about and from the environment.
2. Analyze: Devices can also have the ability to process and interpret the collected 

data to derive actionable insights.
3. Communicate: IoT devices have the ability to receive and transmit processed or 

raw information to neighboring nodes and central access points.
4. Actuate: Actuation involves executing specific actions or commands to control 

physical systems based on the analyzed data or received instructions.

2.2.1 Architecture of IoT
The architecture of IoT systems is segregated into different layers which perform 
specific functions to ensure seamless communication, data processing, and device 
management. We briefly describe IoT architecture in Fig. 2.2, and describe it as fol
lows [9,10]:

Application layer
The application layer provides an interface between the network and the end user and 
enables use-case specific services and functionalities through IoT devices and plat
forms [11--14]. Here, raw data is converted into insights, and the actionable directives 
are propagated toward the network devices. The functions of the application layer are 
described as follows:
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FIGURE 2.2 

Architecture of IoT systems.

• Data processing: Aggregating and interpreting the collected data is a core func
tion of IoT systems. This is realized in the application layer by using advanced 
analytics frameworks to extract actionable insights.

• Service provisioning: The application layer delivers use-case specific services 
such as remote monitoring, and automation. These services are tailored to meet 
user requirements and application demands.

• User interaction: The application layer also has interfaces for user interactions, 
which can be implemented as web portals, mobile applications, or application 
programming interfaces (APIs). These interfaces provide seamless control and 
monitoring of IoT devices.

• Device management: The application layer facilitates device registration, firmware 
updates, and node maintenance to ensure optimal performance.

Network layer
The network layer enables data transmission between IoT devices, gateways, and 
central servers [11--14]. Routing, connectivity, and protocols are implemented in this 
layer. The key functionalities are as follows:

• Data routing: The network layer ensures efficient delivery of data packets across 
the IoT system. This is achieved through energy-aware routing protocols designed 
to optimize resource usage while maintaining reliable communication paths.
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• Connectivity management: Establishing and maintaining communication links 
is a key function of the network layer. It employs technologies such as low-power 
wide-area networks (LPWANs) for long-range connectivity or short-range stan
dards like Zigbee or Bluetooth for high-density deployments.

• Interoperability: The network layer combines heterogeneous technologies such 
as LPWANs, Bluetooth low energy (BLE), and WiFi to enable seamless commu
nication between devices operating on different protocols or standards.

• Network optimization: Reducing power consumption and improving spectral ef
ficiency are critical for IoT systems. Techniques such as duty cycling, adaptive 
modulation, energy harvesting, backscattering, etc. are realized in this layer.

Interaction layer
The interactions of the end-devices with the environment are managed at this layer, 
e.g., sensing, data collection, and actuation. This layer facilitates real-time interaction 
between the physical world and the IoT ecosystem.

• Data aggregation: The interaction layer gathers data from the environment using 
end-devices. This data is then preprocessed to ensure it is ready for further analysis 
in higher layers of the IoT architecture.

• Operation management: This layer also enables seamless operation among di
verse sensors and actuators. The formats and protocols to enable efficient commu
nication with the network layer are implemented here.

• Control: The interaction layer executes control commands received from higher 
layers. These commands are realized as physical actions, e.g., turning on a device, 
adjusting a parameter or initiating a process, etc.

• Environmental interaction: This layer realizes direct interaction with the phys
ical world through sensing and actuation. Sensors measure parameters, e.g., tem
perature, humidity, motion, etc., while actuators influence the environment by 
controlling devices or systems.

2.2.2 Network entities in IoT
In the context of IoT systems, network entities are classified according to their spe
cific roles and operational functions within the architectural framework, as shown in 
Fig. 2.2. These entities are distributed across multiple layers and facilitate key pro
cesses such as data acquisition, transmission, processing, and decision-making. The 
fundamental components that constitute an IoT network include:

End-devices
End-devices serve as the foundational nodes within an IoT network, integrating sen
sors and actuators to facilitate direct interaction with the physical environment. These 
devices are tasked with capturing real-time data from their surroundings, executing 
localized computations, and transmitting relevant information to intermediary gate
ways or centralized processing servers. The embedded sensors within these nodes 
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continuously monitor key environmental parameters, including temperature, humid
ity, motion, and light intensity, converting these variations into electrical signals for 
further processing. To optimize network performance and minimize communication 
overhead, IoT end-devices often employ preprocessing techniques such as data filter
ing, aggregation, or compression before transmission. This localized data refinement 
not only conserves bandwidth, but also enhances the overall efficiency and respon
siveness of the IoT system. End-devices in IoT networks are inherently resource
constrained with limited energy availability, computational capacity, and storage. To 
operate efficiently within these constraints, they leverage lightweight communica
tion protocols such as the constrained application protocol (CoAP) [15] and message 
queuing telemetry transport (MQTT) [16], which minimize data overhead and opti
mize transmission efficiency. Additionally, energy conservation techniques, including 
duty cycling, where devices alternate between active and sleep states [17], and en
ergy harvesting from ambient sources are employed to extend operational time [18]. 
End-devices operate in the interaction layer where they serve as the critical inter
face between the physical environment and the broader IoT ecosystem, facilitating 
real-time sensing, data acquisition, and actuation while ensuring minimal resource 
utilization.

Gateways
Gateways function as critical intermediaries within IoT architectures and bridge 
the communication gap between resource-constrained end-devices and high-capacity 
processing servers. Their primary roles are to enable seamless connectivity, aggregate 
data from multiple IoT nodes, and perform protocol translation to ensure interop
erability across heterogeneous networks. Additionally, they serve as access points 
for diverse communication technologies, including Zigbee, LoRaWAN, Wi-Fi, and 
Bluetooth Low Energy (BLE). Through these capabilities, gateways enhance network 
reliability, support device heterogeneity, and enable seamless integration within the 
broader IoT ecosystem. A fundamental role of gateways in IoT networks is to fa
cilitate interoperability by bridging heterogeneous communication protocols. They 
perform protocol translation between device-level standards and network-layer proto
cols enabling necessary data exchange across diverse network infrastructures. Unlike 
resource-constrained end-devices, gateways possess greater computational power and 
energy reserves, allowing them to support advanced functionalities such as encryp
tion for secure communication, error correction to enhance data integrity, and inter
ference management to maintain signal quality in congested environments.

Processing servers
Processing servers serve as the computational houses of IoT networks, encompass
ing both cloud platforms and edge computing workstations to handle data-intensive 
tasks such as storage, analysis, and decision-making. Cloud servers provide scalable 
and centralized resources and enable large-scale data aggregation, and advanced an
alytics which extract actionable insights from IoT-generated data. These platforms 
support high-volume processing and long-term storage. In contrast, edge and fog 
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computing workstations bring computational capabilities closer to data sources, per
forming localized preprocessing to reduce latency, conserve bandwidth, and enable 
real-time decision-making for latency-sensitive applications. By distributing compu
tational tasks across cloud and edge infrastructures, IoT networks achieve a balance 
between efficiency, responsiveness, and scalability, optimizing performance for a di
verse range of use cases. Processing servers are integral to IoT architectures and 
execute complex tasks such as data fusion, anomaly detection, predictive analytics, 
and long-term storage. These systems are distinguished by their high computational 
power, extensive storage capacity, and capability to seamlessly integrate with APIs. 
Beyond data processing, they enforce stringent security measures, including encryp
tion, access control, and compliance frameworks to safeguard data integrity and 
uphold privacy regulations. Functioning primarily at the application layer, process
ing servers transform raw sensor data into actionable insights and enable advanced 
decision-making in IoT applications across domains such as smart cities, industrial 
automation, and healthcare.

2.2.3 Types of IoT
IoT systems have versatile application domains, as shown in Fig. 2.3, which address 
specific sector needs, operational challenges, and QoS requirements. This section 
describes the major IoT application types, highlighting their technical requirements, 
network characteristics, and use cases.

Consumer applications
Consumer IoT (CIoT) applications enable and assist personal experiences by integrat
ing automation, real-time data processing, and seamless connectivity into everyday 
life. Key use-cases of CIoT are wearable devices [19], tracking devices [20], and 
smart homes [21]. Some of these use-cases are illustrated in Fig. 2.4. In smart homes, 
IoT systems automate and control home devices and manage lighting, thermostats, 
and security cameras using technologies like Zigbee, Wi-Fi, and Bluetooth low en
ergy (BLE). These devices monitor and actuate different environmental parameters 
and adapt to user preferences. Wearable devices, e.g., fitness trackers, smartwatches, 
and health monitors, collect real-time data on physical activities and health metrics. 
This data is processed locally or transmitted to gateways or mobile phones to provide 
insights and alerts. Tracking devices leverage GPS and LPWAN technologies like Lo
RaWAN and Sigfox to provide accurate, long-range tracking for personal items, pets, 
or individuals [22]. Consumer IoT devices prioritize low power consumption to ex
tend battery life in portable and wearable devices. They must be designed to provide 
reliable performance during movement and have moderate data rate requirements 
which efficiently handle periodic updates and event-driven communication. Security 
and privacy protocols are also integrated into consumer IoT to protect sensitive user 
data, including health and location information. For example, smart assistants cen
tralize the control of IoT devices, BLE-enabled fitness trackers offer real-time health 
insights, and LPWANs ensure reliable connectivity over extended ranges, making 
CIoT an indispensable component of modern lifestyle.
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FIGURE 2.3 

Types of IoT.

FIGURE 2.4 

Consumer applications.
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Commercial applications
IoT of commercial things (IoCT) optimizes enterprise operations by integrating IoT 
technologies into urban cities [23], office systems [24], and retail processes [25]. 
Smart city applications are included in IoCT and include use-cases such as urban in
frastructure monitoring, traffic control, smart parking, and waste management. These 
systems use real-time data, collected by sensors, to identify traffic congestion, moni
tor resource usage, and optimize municipal services. Smart offices implement IoT so
lutions to improve workspace processes by monitoring energy consumption, tracking 
employee activities, and automating environmental controls. Retail stores utilize IoT 
for smart shopping experiences by enabling personalized recommendations, in-store 
navigation, and automated checkouts powered by IoT beacons and sensors. Commer
cial IoT systems require scalable design to support large deployments across cities 
and enterprises. They must ensure the reliability of critical services, e.g., traffic man
agement and waste monitoring, etc. [26,27], while minimizing energy consumption 
for continuous operation. Interoperability is essential for enabling IoCT as it includes 
a diverse set of requirements and devices. For example, smart parking systems use 
LoRaWAN to detect and communicate available parking spaces, while traffic mon
itoring systems enable real-time traffic flow optimization. IoT-enabled waste bins 
provide immediate updates on fill levels, allowing for more efficient waste collec
tion.

Industrial applications
Industrial IoT (IIoT) systems utilize IoT devices to monitor, automate, and optimize 
industrial processes such as warehouse tracking [28], supply chain control [29], and 
smart grids [30]. Warehouse tracking systems use RFID, BLE, and LPWAN tech
nologies to monitor inventories, and provide efficient supply management. Control 
applications such as predictive maintenance and fault detection automate production 
lines by leveraging IoT sensors and machine learning. Smart grids collect and process 
data about power generation, transmission, and consumption. This enables efficient 
energy distribution and significantly reduces operational costs. Industrial IoT systems 
require high reliability and low latency to support critical operations. Low latency 
ensures real-time responsiveness for automation and control tasks. Predictive main
tenance using IoT sensors can prevent costly equipment failures in industrial plants. 
Furthermore, manufacturing can be streamlined using IoT-integrated robotics, creat
ing efficient, precise, and manageable processes.

Infrastructure applications
IoT of infrastructure things (IoIT) improves the safety and reliability of critical infras
tructures by integrating real-time monitoring and automated maintenance using IoT 
sensors. IoIT use cases span transportation systems [31], railway management [32], 
and public safety systems [33]. In transportation systems, sensors can be embedded 
in bridges and roads to measure structural integrity, traffic loads, and environmen
tal conditions. The sensors can detect anomalies such as stress cracks or overloads 
and alert maintenance teams to avoid disasters. Railway management systems can 
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track train locations, schedules, and conditions using IoT-enabled sensors, improving 
safety and operational efficiency. Public safety systems can also utilize IoT sensors 
to monitor environmental hazards and enable real-time emergency response. IoIT 
prioritizes long-term reliability for decade-long deployments and ensures continu
ous operation with minimal maintenance. Scalable and high-precision designs are 
required to cover extensive geographical areas and enable safety-critical applications. 
Energy efficiency is critical for devices deployed in remote locations. For example, 
smart bridges equipped with load and vibration sensors provide real-time monitoring 
of structural health.

Healthcare applications
Healthcare IoT (HIoT) improves medical services and processes by enabling real
time monitoring and remote diagnostics using wearable devices, telemedicine [34], 
and smart hospitals [35]. Wearable devices track vital signs such as heart rate, glu
cose levels, and blood pressure, which provides information critical to healthcare 
providers [36]. These devices transmit data to cloud platforms or mobile applications 
and enable continuous monitoring for early detection of health issues. Telemedicine 
platforms also use IoT systems to facilitate remote consultations, diagnostics, and 
patient monitoring [37]. This improves the efficiency of hospitals and enables imme
diate consultations. Smart hospitals integrate IoT systems to optimize patient flows, 
and equipment management. HIoT demands ultra-reliable communication for accu
rate data transmission. Low latency is also essential for real-time monitoring and 
alerts, as healthcare processes are extremely critical and can have disastrous conse
quences. Strong data security measures are also required in HIoT systems to protect 
sensitive patient information. Examples include IoT-enabled glucose monitors for di
abetic patients and smart hospital beds equipped with pressure sensors to prevent 
bedsores.

Agricultural applications
Agricultural IoT (AIoT) leverages advanced sensors, wireless communication, and 
data analytics to optimize farming practices. It enables use-cases such as precision 
farming [38], livestock management [39], and smart irrigation systems [40]. Pre
cision farming systems use IoT sensors to measure soil moisture, nutrient levels, 
and weather conditions, which provide real-time data for informed decision-making 
regarding farming schedules. Livestock management systems track animal health, be
havior, and location using IoT-enabled collars and tags, which improves the efficiency 
of farming processes. Smart irrigation systems automate water delivery by analyzing 
soil and weather data and provide optimal resource utilization and waste reduction. 
AIoT systems require low power consumption for remote sensors as the farms have 
expansive areas. These systems must also be seamlessly integrated with data ana
lytics platforms to provide actionable insights. For example, IoT-based soil moisture 
sensors help farmers optimize irrigation schedules. GPS-enabled livestock trackers 
monitor herd movement and enhance productivity. Smart greenhouses equipped with 
IoT systems control temperature, humidity, and lighting, hence improving crop yield 
and reducing labor costs.
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Military applications
Military IoT (MIoT) leverages advanced sensing, communication, and analytics 
to improve situational awareness, operational efficiency, and decision-making in 
defense environments. MIoT systems provide real-time intelligence and support 
mission-critical operations [41]. They enable surveillance and reconnaissance of en
emy activities and battlefield conditions using unmanned aerial vehicles (UAVs), 
ground-based sensors, and autonomous vehicles. These systems transmit secure, real
time data to command centers and improve tactical decision making. MIoT also 
transforms logistics using IoT-enabled tracking devices, e.g., RFID tags and GPS 
units, etc., to monitor military assets, streamline inventory, and optimize resource 
distribution. Wearable IoT devices further enhance troop safety by monitoring sol
dier vitals. They can alert command centers to potential health risks or emergencies 
in real time.

Environmental applications
Environmental IoT (EIoT) systems monitor and manage ecosystems to provide pol
lution control [42], resource management, and disaster mitigation [43]. IoT-enabled 
sensors measure environmental parameters such as air quality, water quality, soil 
conditions, etc. [44], to transmit data in real-time to centralized systems for analy
sis and actionable insights. For example, air quality monitoring networks deployed 
in urban areas continuously track pollutant levels, enabling city administrators to 
implement timely measures, such as traffic rerouting, emission reduction policies, 
etc. Similarly, IoT-based water quality monitoring systems detect contamination, en
suring regulatory compliance and safe resource utilization. These systems require 
energy-e˙icient and scalable designs to operate reliably in remote and harsh envi
ronments. Energy harvesting techniques are vital to EIoT systems as they extend 
the operational lifespan of sensors. They also have low-rate requirements and have 
reduced bandwidth usage for seamless transmission across vast geographical ar
eas.

2.3 Fundamentals of sustainability
Sustainability refers to the design and operation of IoT systems with minimal envi
ronmental impact, optimized resource utilization, and network scalability. With the 
proliferation of IoT devices �- from smart homes to industrial automation �- achiev
ing sustainable designs has become a multidimensional challenge. It requires ad
dressing and minimizing different expense verticals, including energy consumption, 
deployment complexity, hardware design, spectrum allocation, processing efficiency, 
and maintenance. Each expense vertical presents distinct challenges and opportuni
ties for sustainable IoT, as shown in Table 2.1.
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Table  2.1 Fundamentals of sustainability in IoT.

Factor Impact Challenges Solutions
Energy Con
sumption

Defines power 
efficiency and network 
lifetime; affects 
sensing, data 
processing, 
communication, and 
actuation.

High power demand 
for RF transmission; 
real-time processing in 
constrained 
environments; limited 
battery life in remote 
deployments.

Low-power 
communication 
protocols; energy 
harvesting (solar, 
kinetic, thermal); 
adaptive power 
management 
techniques.

Deployment 
Challenges

Determines ease of 
installation, integration, 
and scalability of IoT 
networks.

Remote and 
inaccessible 
deployments require 
specialized equipment; 
interoperability 
between 
heterogeneous 
devices; high initial 
costs.

Modular and scalable 
network architectures; 
standardized 
protocols; automated 
configuration and 
provisioning tools.

Hardware 
Design

Encompasses RF 
chains, antenna 
modules, sensors, and 
processors for data 
collection, 
communication, and 
computation.

High energy 
consumption in 
real-time applications; 
environmental impact 
of non-recyclable 
materials; difficulty in 
repairing miniaturized 
components.

Use of energy-e˙icient 
components; 
recyclable materials; 
modular designs for 
easy maintenance and 
upgrades.

Spectrum 
Allocation

Governs wireless 
communication 
reliability, efficiency, 
and congestion 
management.

Spectrum congestion 
in densely populated 
areas; interference in 
unlicensed bands 
(Wi-Fi, Zigbee); limited 
bandwidth in LPWAN 
systems.

Dynamic spectrum 
access; cognitive radio 
techniques; spectrum 
sensing and adaptive 
frequency 
management.

Processing 
Ability

Defines how IoT 
devices analyze and 
manage data locally or 
centrally to extract 
insights.

High computational 
burden for real-time 
applications; limited 
processing power in 
edge devices; 
increased energy 
consumption.

Lightweight AI 
algorithms; edge 
computing; federated 
learning for distributed 
model updates; 
over-the-air (OTA) 
computations.

Network 
Maintenance

Involves hardware 
repairs, software 
updates, and battery 
replacements in 
large-scale 
deployments.

Frequent maintenance 
is costly and 
resource-intensive; 
firmware updates 
introduce security 
vulnerabilities; remote 
device access is 
challenging.

Predictive maintenance 
using IoT sensors; OTA 
firmware updates with 
secure authentication; 
modular hardware 
replacement strategies.
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2.3.1 Energy consumption
Energy consumption is critical in IoT systems as it directly impacts network lifetime 
and operational efficiency. IoT devices perform energy-intensive tasks, e.g., sensing, 
data processing, communication, actuation, etc. Furthermore, most devices operate 
in energy-constrained environments and rely on batteries, which are impractical to 
replace in remote deployments. For example, an environmental IoT system or in
frastructure monitoring system must operate for years without human intervention. 
It is also directly influenced by the network architecture. Wireless data transmission 
consumes substantial energy due to the demands of radio frequency (RF) chain func
tions, e.g., source coding, channel coding, modulation, amplification, etc. Devices 
using cellular technologies, e.g., 3G, 4G, or 5G, etc., have higher energy footprints 
compared to low-powered, IoT-specific technologies, e.g., LoRa, Bluetooth, Zigbee, 
etc. Additionally, continuous data transmission to cloud servers or access points/ 
gateways exacerbates energy consumption in real-time applications such as monitor
ing and supply chain management. Energy-hungry tasks such as anomaly detection, 
data preprocessing, and predictive analytics, further add to the burden. Devices de
ployed in isolated environments face even greater challenges. Addressing these issues 
requires sustainable designs such as energy harvesting, low-power communication 
protocols, and efficient processing techniques.

2.3.2 Deployment challenges
Deployment challenges are associated with installing, integrating, and scaling IoT 
devices across diverse environments. IoT systems usually consist of a diverse set of 
devices with unique communication protocols, processing capabilities, and power 
requirements. In large-scale deployments such as smart cities, forest fire detection 
systems, industrial plants, etc., thousands of devices coordinate to operate as a uni
fied system. Devices may need to be installed in remote or inaccessible areas, which 
require specialized equipment and significant human effort, driving up costs and time. 
IoT systems must accommodate additional devices and increased data traffic without 
degrading performance. To manage this, sustainable deployments must be realized 
using modular designs, standardized protocols, and automation tools.

2.3.3 Hardware design
Hardware design in IoT systems encompasses the RF chains, antenna modules and 
processors responsible for sensing, communication, analysis, and actuation. The di
versification of IoT applications has resulted in a wide range of hardware designs, 
from compact, lightweight wearable devices to robust industrial sensors capable of 
withstanding extreme environmental conditions. Each of these devices must balance 
performance, durability, and energy efficiency respective to their corresponding use
cases. Sensors can be of different types, such as optical, acoustic, and chemical 
sensors. Each sensor is tailored to a specific application. For example, air quality 
monitoring systems use chemical sensors to detect pollutants, while autonomous ve
hicles rely on LiDARs (light detection and ranging) and radars for real-time object 
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detection. These functions consume significant power, particularly during continu
ous operation for real-time applications. Furthermore, many components used in IoT 
systems rely on non-recyclable materials, leading to environmental concerns. Ad
ditionally, the miniaturization of IoT devices exacerbates environmental concerns, 
as smaller components are harder to repair or recycle. Addressing these challenges 
requires sustainable designs such as modular hardware, recyclable materials, and 
low-powered components.

2.3.4 Spectrum allocation
Spectrum allocation is the process of designating specific frequency ranges within the 
electromagnetic spectrum to various services and technologies. This ensures efficient 
and interference-free operation of wireless systems. IoT devices do not have high pro
cessing capabilities, therefore, efficient spectrum usage is critical to ensure reliable 
communication. Spectrum congestion has become a pressing issue in densely popu
lated areas owing to the scale of IoT networks, which is ever-increasing. Furthermore, 
the utilization of unlicensed frequency bands such as 2.4 GHz for Wi-Fi and Zig
bee, etc., exacerbates interference and reduces data throughput. Similarly, LPWAN 
technologies rely on sub-GHz frequency bands, which provide efficient long-range 
communication at the cost of limited bandwidth. Spectrum congestion also increases 
energy consumption as devices expend more power to retransmit lost or corrupted 
data. Dynamic and cognitive spectrum management techniques can empower the de
vices to sense and adapt to underutilized frequencies. However, implementing them 
complicates the design of IoT devices, which hinders sustainability.

2.3.5 Processing ability
IoT systems generate vast amounts of data from sensors, which must be processed 
to extract actionable insights. Therefore, IoT devices need processors to direct the 
collection and management of data locally or centrally. The computational demands 
of applications such as anomaly detection, predictive analysis, and real-time ana
lytics strain the limited processing power of IoT devices. Local processing in the 
gateways or end-devices reduces the need for continuous data transmission to the 
cloud. However, these devices face constraints in terms of processing power, mem
ory, and energy availability. The use of lightweight algorithms and energy-e˙icient 
processors can partially address these challenges. Over-the-air (OTA) computations 
can also mitigate these constraints. However, sustainable designs are required to bal
ance the processing demands and energy constraints, especially in high-density IoT 
networks.

2.3.6 Network maintenance
Network maintenance processes are the activities required to ensure devices re
main operational, e.g., hardware repairs, software updates, and battery replacements. 
Frequent battery replacements or firmware updates in large-scale deployments are 
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impractical, unsustainable, and resource-intensive. Additionally, IoT deployments in 
remote localities further complicate network maintenance. Predictive maintenance 
techniques can be employed to reduce maintenance costs. They use IoT sensors to 
identify potential failures before they occur and reduce network downtime. OTA up
dates can streamline the software maintenance process, but require secure and reliable 
communication channels to prevent failures or cyberattacks. Modular hardware de
signs can further simplify the replacement of faulty components and reduce waste.

2.4 Challenges of sustainable IoT
IoT ecosystems possess a unique set of characteristics which enables specific use
cases and distinguishes IoT from conventional wireless systems. These characteris
tics are critical to the proper functionality of IoT systems, but introduce significant 
sustainability challenges. These challenges demand a balance between the require
ments that enable the functionality of IoT-enabled architectures, and resource con
sumption. In most cases, IoT devices are often deployed in locations where frequent 
battery replacement or maintenance is impractical, necessitating energy-e˙icient de
signs. These designs can take advantage of solar or ambient energy harvesting tech
nologies to extend their operational lifecycle. Even though the data generated from 
a single IoT device is minuscule, the exchange of control information and data 
traffic from hundreds or thousands of nodes can become significant. Efficient data 
handling, storage, and processing solutions adopted on an individual and architec
tural level have the potential to minimize the environmental impact of IoT-enhanced 
ecosystems. Durable and low-cost hardware can support diverse applications across 
different deployment scenarios eliminating the complexity of device manufacturing 
and management. The key characteristics are shown with their corresponding sus
tainability challenges in Table 2.2, and are described as follows:

Table  2.2 Challenges of sustainable IoT.

Challenge Impact Problems Solutions
Massive 
Scale

Billions of IoT devices 
require seamless 
management, data 
handling, and reliable 
communication.

High congestion, 
increased interference, 
bandwidth limitations, 
authentication 
complexity.

Edge computing, 
adaptive frequency 
management, 
hierarchical clustering, 
congestion control.

Scalability IoT networks must 
support continuous 
growth in device count, 
data generation, and 
application demands.

Performance 
degradation, increased 
latency, inefficient 
routing, resource 
exhaustion.

Distributed processing, 
self-organizing 
networks, optimized 
congestion control, 
adaptive routing.
continued on next page
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Table  2.2 (continued)

Challenge Impact Problems Solutions
Hetero
geneity

IoT systems integrate 
diverse devices with 
different protocols, 
energy needs, and 
data formats.

Compatibility issues, 
inefficient data 
standardization, 
increased processing 
overhead.

Middleware for 
interoperability, 
standardization of 
protocols, cross-layer 
optimization.

Autonomy IoT devices require 
minimal human 
intervention for 
sensing, 
decision-making, and 
actuation.

Continuous sensing 
increases energy 
consumption, 
synchronization 
overhead in real-time 
systems.

Integrated sensing and 
communication (ISAC), 
power-e˙icient 
localization, 
event-driven 
processing.

Energy 
Efficiency

Long-term operation in 
constrained 
environments requires 
minimal power 
consumption.

High energy demand for 
sensing and 
communication, rapid 
battery depletion.

Ultra-low-power 
architectures, energy 
harvesting, efficient 
sleep-wake 
scheduling.

Low Trans
mission 
Rates

IoT traffic consists of 
small, burst 
transmissions rather 
than continuous data 
streams.

Inefficient bandwidth 
utilization, increased 
queuing delays, high 
protocol overhead.

Adaptive data 
compression, 
event-triggered 
transmission, 
tra˙ic-aware 
scheduling.

Real-Time 
Communi
cation

Applications like 
autonomous vehicles 
and industrial 
automation require low 
latency.

High power 
consumption for 
continuous connectivity, 
network congestion in 
time-sensitive 
applications.

Edge computing, 
time-sensitive 
networking, 
low-latency routing 
protocols.

Long-Range 
Connectivity

IoT must maintain 
communication across 
vast geographical 
areas.

High transmission 
power requirements, 
signal degradation, 
spectrum scarcity.

LPWAN protocols 
(LoRa, NB-IoT), 
satellite IoT, advanced 
error correction 
techniques.

Security & 
Privacy

IoT systems process 
large volumes of 
sensitive data and 
require robust 
protection.

Increased 
computational burden, 
vulnerability to attacks 
(e.g., jamming, 
spoofing).

Lightweight encryption, 
blockchain 
authentication, 
AI-driven anomaly 
detection.

Massive scale
Approximately 40 billion IoT devices are estimated to be operational by the year 2025 
[45]. The versatility of IoT systems has accelerated their integration in a number of 
industries, including but not limited to smart home, healthcare, manufacturing, etc. 
The smart home sector is projected to constitute approximately 60% of all IoT appli
cations, this statistic translates to more than 5 billion IoT devices [46]. The large scale 
of connections within this type of connectivity paradigm introduces problems related 
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to device management, data handling, storage and processing, and network scala
bility. Billions of devices generating real-time data can lead to data handling issues 
requiring novel methods for storage, processing, management, and analysis. Central
ized architectures can lead to problems like latency, bandwidth limitations, channel 
access issues, data drops, corruption, energy efficiency, etc., especially in real-time 
applications like self-driving cars or mission-critical applications like manufactur
ing plants. These challenges are effectively mitigated using fog and edge computing 
architectures that bring the processing nodes closer to the IoT devices.

IoT devices are envisioned to be connected to each other and other nodes through 
wireless communication networks. The number of devices communicating over a 
wireless medium with limited capacity is a major concern especially in terms of 
congestion of the wireless medium and interference. Advanced resource allocation 
schemes are required that work to address these limitations, especially in dense net
work configurations. Adaptive frequency management and congestion control are 
also areas where significant improvement can be made to maintain reliable com
munication. Technologies like LoRaWAN, Sigfox, and NB-IoT focus on techniques 
that enable scalability in massive IoT networks. These protocols and technologies, 
however, require careful optimization for a good balance between range, bandwidth, 
and energy efficiency. The scale of the network formed by a massive number of IoT 
devices, also poses sustainability concerns. The energy consumption, hardware man
ufacturing waste, and wireless channel resource consumption for billions of devices 
have highlighted legitimate environmental concerns. Processes have to be put in place 
that not only allow for very low energy operation, but also produce recyclable waste 
and enable effective wireless resource consumption with robust hardware that allows 
for long-lasting operation. Proper device life-cycle tracking can also be implemented 
to evaluate the impact of devices from their point of manufacturing to their oper
ation and final decommissioning. The life-cycle of devices provides insights about 
the environmental impact of devices, allowing for better analysis of devices for their 
environmental footprint. This footprint can then later be reduced by recognizing op
portunities for improvement.

Scalability
Scalability refers to the ability of a network to support a growing number of con
nected devices, increase in data traffic, and explosion in application demands without 
performance degradation. A systematic structure capable of supporting repeating 
hierarchies, distributed processing, and dynamic control protocols can ensure the 
seamless scalability of extremely large and growing networks [47]. IoT networks are 
expected to form large and dense networks that can only be sustained using adaptive 
architectures and protocols. All the devices being added the IoT networks increase 
the data processing and management load, which has to provide resources to keep 
the network operational and meet QoS demands. Increased device interference and 
network congestion needs to be managed by appropriate protocols that can dynam
ically make optimal decisions for appropriate device resource management. These 
steps can ensure the scalability of IoT networks.
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Heterogeneity
Heterogeneity refers to the integration of nodes in the network that have varying 
requirements, functions, and/or performance metrics. IoT nodes can vary in their na
ture and can be devices, sensors, and/or actuators. An IoT system can therefore be 
expected to form a heterogeneous network. In this network, a number of devices 
with varying power consumption, computational power, functions, and communica
tion protocols exist. The optimization and management of such a system with varying 
requirements and configurations becomes increasingly complex. The management of 
a network with heterogeneous entities becomes complex and incurs additional re
sources to enable appropriate hardware compatibility, energy optimization, and data 
standardization. The different functions of devices operating within an ecosystem can 
cause them to have a different life cycle. Less resilient devices have to be frequently 
changed, contributing to waste production. The processing overhead involved in the 
interoperability of the devices in the network also decreases efficiency. Sustainable 
IoT designs account for this decrease in efficiency and work to reduce the overhead 
involved between devices while also minimizing waste by using devices with longer 
life cycles. Accounting for compatibility between devices can also lead to a decrease 
in energy consumption.

Autonomy
One of the key features of IoT systems is their ability to operate autonomously 
with minimal human intervention [48]. This is done by collecting data, process
ing it and taking appropriate actions in order to achieve an outcome. Systems that 
are designed to operate autonomously often have a sensing aspect underlining their 
operation. They achieve this by integrating technologies such as global position
ing system (GPS) and radar for real-time positioning, motion detection, and spatial 
awareness. Due to the nature of the systems formed by autonomous IoT devices, they 
require continuous and reliable operation. This leads to significant energy demands, 
especially in the case of sensing and localization, where a constantly changing en
vironment necessitates frequent updates and high computation. Integrated sensing 
and communication (ISAC) frameworks are efficient in their operation, but still re
quire resources for synchronization and reliability [49]. In order to make autonomous 
systems more sustainable, power requirements, computational complexity and com
munication overhead must be balanced.

Energy efficiency
Energy-e˙icient operation in constrained environments is one of the most common 
operating conditions in the case of IoT systems. Monitoring of remote environments, 
wearable devices, underwater sensors, etc., are expected to be operational for a long 
period of time without the need to be maintained [50]. This need for long-term oper
ation conflicts with the high power demands of continuous sensing, processing, and 
communication. In order to achieve low power consumption, devices often have to 
have lower processing power, lower update frequency, and a smaller feature set. As 
the IoT devices use and wear down their batteries, these batteries have to be replaced 
and thus contribute to environmental pollution. Ultra-low power designs or energy 
harvesting devices have to be made more robust for their widespread adoption.
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Low transmission rates
IoT devices have a different transmission behavior, as compared to human-generated 
traffic, and are mostly focused on small transmissions in regular or semi-regular 
bursts. Applications such as environmental monitoring and asset tracking often re
quire similar transmission behaviors. These types of behaviors can be configured for 
optimal power consumption for devices operating in constrained environments albeit 
at the cost of lower performance such as a lower number of updates, etc. Real-time 
communication requires frequent updates and degradation in performance may be 
observed with a decrease in the amount of updates. This can also become dangerous 
in situations where a slow update can lead to an increased risk of accidents, as in 
the case of autonomous vehicles. Some mechanisms might be able to handle the spo
radic flows of IoT networks, including queueing, but these mechanisms also lead to 
processing overhead. Low transmission rate protocols may be developed that accom
modate the sporadic nature of machine communication in IoT networks. However, 
due to the recent interest in the field, further testing and evaluation may be needed.

Real-time communication
Real-time communication allows IoT devices to adapt to dynamic conditions and re
spond to user interactions without significant delays. This capability is particularly 
critical in applications that demand immediate decision-making and action [51]. For 
instance, in autonomous vehicles, real-time communication ensures safety by en
abling rapid responses to changing road conditions and potential hazards. Similarly, 
healthcare monitoring systems rely on real-time data to promptly detect and address 
critical patient health changes. Industrial automation also benefits from this charac
teristic, where time-sensitive processes require seamless communication to maintain 
operational efficiency and prevent costly disruptions. Real-time systems are charac
terized by their need for continuous connectivity, low latency, and high reliability, but 
these requirements often come at the cost of increased energy consumption and com
putational complexity. Ensuring real-time capabilities in large-scale IoT networks 
introduces additional challenges, such as managing network congestion, mitigating 
power drainage, and addressing hardware degradation over time. The sustainability of 
such systems relies on carefully optimized network architectures and the implemen
tation of low-power, high-e˙iciency communication protocols. These measures must 
balance the trade-offs between maintaining real-time responsiveness and minimizing 
resource utilization to achieve practical and scalable IoT solutions.

Long-range connectivity
Long-range connectivity enables IoT devices to maintain communication across 
extensive geographical areas, making it suitable for diverse applications such as 
precision agriculture in rural farms, infrastructure management in smart cities, and 
monitoring in large industrial sites [52]. Technologies such as LoRaWAN and NB
IoT provide energy-e˙icient solutions for low-data–rate communication over long 
distances. Additionally, cellular networks, such as long-term evolution (LTE) and 5G 
offer higher data rates and reliability. These technologies collectively facilitate robust 
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communication in scenarios where extended coverage and dependable connectivity 
are paramount. Long-range communication systems often require higher transmis
sion power to maintain reliable connectivity, particularly in environments character
ized by significant signal attenuation or high levels of interference. This increased 
transmission power directly impacts energy consumption, posing a challenge for 
energy-constrained IoT devices. Moreover, ensuring dependable connectivity over 
extended distances can demand greater spectrum usage, potentially contributing to 
network congestion in densely deployed regions. The deployment and maintenance of 
long-range communication infrastructure, such as gateways and base stations, further 
amplify these challenges, contributing to the system’s overall environmental foot
print. Addressing these concerns necessitates a careful balance between achieving 
extended coverage and minimizing energy and resource consumption.

Security and privacy
IoT systems are responsible for processing and transmitting large volumes of sensi
tive data, including personal information, healthcare records, and critical industrial 
metrics. Protecting this data from unauthorized access and breaches requires robust 
security measures, such as encryption to safeguard data during transmission, au
thentication mechanisms to verify user and device identities, and stringent access 
control policies to restrict unauthorized interactions. These measures are essential 
for maintaining the integrity, confidentiality, and privacy of IoT networks, particu
larly in applications where data sensitivity and regulatory compliance are critical. 
The implementation of security protocols in IoT systems often introduces additional 
computational and communication overhead, which can lead to increased energy con
sumption and higher latency. Addressing emerging vulnerabilities requires frequent 
software updates, further consuming system resources, and necessitating constant 
monitoring to ensure robust security. Moreover, privacy concerns demand compre
hensive and reliable data handling policies, adding complexity to system design and 
management. Developing sustainable IoT systems requires carefully balancing these 
security and privacy requirements with the need to minimize resource usage and 
reduce environmental impact. This calls for innovative approaches that optimize se
curity measures while maintaining efficiency and scalability.

2.5 Design elements of sustainable IoT
The design of sustainable IoT systems is governed by various technical elements that 
influence network performance, energy efficiency, and scalability. These elements 
define how data is processed, transmitted, and managed within an IoT ecosystem. 
Optimizing these elements is essential for ensuring long-term operational efficiency 
while minimizing energy consumption and resource utilization. This section details 
the critical design elements that impact sustainable IoT networks.
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2.5.1 Modulation schemes
Modulation schemes play a fundamental role in wireless communication by defining 
how digital information is encoded onto an analog carrier wave for efficient transmis
sion. The choice of modulation technique directly impacts key performance metrics 
such as spectral efficiency, power consumption, and signal robustness in the presence 
of noise and interference. Low-order modulation schemes, such as binary phase shift 
keying (BPSK), offer superior noise immunity and lower energy requirements. These 
characteristics make them well-suited for long-range, low-power IoT applications 
where reliability and energy efficiency take precedence over data rate. Conversely, 
higher-order schemes like quadrature amplitude modulation (16-QAM, 64-QAM) 
enable significantly higher data throughput by encoding more bits per symbol, but 
necessitate a stronger signal-to-noise ratio (SNR) and higher transmission power. 
This trade-off makes high-order modulation preferable for bandwidth-intensive ap
plications, but less suitable for power-constrained devices. Sustainable IoT networks 
leverage adaptive modulation that dynamically adjusts the modulation order in re
sponse to varying channel conditions, optimizing both throughput and energy ef
ficiency. Advanced techniques such as orthogonal frequency-division multiplexing 
(OFDM), widely implemented in LTE and Wi-Fi, improve spectral efficiency by 
enabling parallel data transmission across multiple subcarriers while mitigating the 
effects of multipath fading. Low-power IoT technologies such as LoRa and Sigfox 
favor low-order modulation schemes to maximize energy efficiency and coverage.

2.5.2 Coding techniques
Coding techniques improve the reliability of IoT communication by detecting and 
correcting transmission errors. These techniques enhance data integrity at the cost 
of additional computational complexity and power consumption that might not be 
suitable for power-constrained IoT network infrastructures. Forward error correc
tion (FEC) techniques, including low-density parity-check (LDPC) and Turbo codes, 
enable reliable communication between the sender and receiver by allowing the re
ceiver to reconstruct the corrupted bits using the embedded redundancy [53--55]. 
Automatic repeat request (ARQ) mechanisms like hybrid ARQ (HARQ) used in 
LTE and 5G [56], optimize retransmissions based on error feedback. Sustainable 
coding techniques minimize overhead while ensuring sufficient error protection to re
duce retransmissions, as retransmissions not only result in increased latency but also 
consume additional power. Polar codes are one example of highly efficient error cor
rection codes with minimal computational cost [54]. Energy-e˙icient IoT networks 
aim for lightweight error correction mechanisms that adapt dynamically to channel 
conditions, preventing unnecessary power expenditure.

2.5.3 Antenna design
Antenna design directly affects signal propagation, interference mitigation, and en
ergy efficiency of IoT systems. Antennas convert electrical signals into electromag
netic waves for transmission and reception. Directional antennas focus transmission 
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power in a specific direction, thereby improving range and reducing interference [57]. 
Omnidirectional antennas provide uniform radiation patterns, making them suitable 
for mesh networks and short-range IoT applications [58]. Multi-antenna technologies 
increase spectral efficiency by taking advantage of the spatial multiplexing provided 
by multiple antennas. These technologies enhance throughput and reliability with
out increasing bandwidth or power consumption. Sustainable IoT networks leverage 
energy-aware antenna designs, including passive backscatter antennas and recon
figurable intelligent surfaces (RIS), to enhance efficiency while maintaining robust 
connectivity.

2.5.4 Interference management techniques
Interference management ensures reliable communication in dense IoT networks by 
minimizing signal degradation caused by overlapping frequencies. Frequency plan
ning and dynamic spectrum allocation can enhance spectrum utilization. The inter
ference in this case is reduced by allocating orthogonal frequency bands to adjacent 
transmitters. Adaptive power control minimizes interference by adjusting transmis
sion power based on network conditions. Modern IoT systems can employ advanced 
interference cancellation techniques including interference alignment and successive 
interference cancellation (SIC) in non-orthogonal multiple access (NOMA) systems 
[59]. These approaches aid in spectral reuse, enabling multiple devices to share the 
same frequency bands efficiently. Sustainable IoT networks implement low-power 
interference mitigation strategies to enhance spectrum management.

2.5.5 Spectrum allocation schemes
Spectrum allocation directs how frequency bands are assigned to IoT devices and 
affects network capacity, reliability, and efficiency. Dynamic spectrum access (DSA) 
enables IoT devices to opportunistically use underutilized frequencies, which im
proves spectrum efficiency [60]. Cognitive radio techniques, such as spectrum sens
ing and spectrum sharing, allow IoT networks to identify and utilize vacant frequency 
bands, which reduce network congestion [61]. Hybrid models, e.g., licensed shared 
access (LSA), combine fixed and dynamic spectrum strategies to ensure fair and sus
tainable spectrum allocation [62]. Efficient spectrum distribution maximizes through
put while minimizing interference and energy consumption.

2.5.6 Processor designs
IoT processor design impacts computational efficiency, power consumption, and real
time responsiveness. Low-power microcontrollers are optimized for energy-e˙icient 
processing in constrained environments. Edge AI processors enable on-device ma
chine learning inference, which reduces dependence on cloud processing and mini
mizes data transmission overhead. Dynamic voltage and frequency scaling (DVFS) 
adjust processor power consumption based on workload demands, which optimizes 
energy efficiency while maintaining performance [63]. Sustainable processor designs 
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incorporate hardware accelerators, such as field-programmable gate arrays (FPGAs) 
and application-specific integrated circuits (ASICs), to execute specialized tasks with 
minimal energy usage.

2.5.7 Power allocation strategies
Efficient power allocation balances energy consumption and network performance 
in IoT deployments. Fixed power allocation maintains consistent transmission power 
levels and ensures stable connectivity. However, it can potentially waste energy in fa
vorable channel and network conditions. Adaptive power control dynamically adjusts 
transmission power based on link quality, interference levels, and energy constraints. 
Energy-aware routing protocols further enhance power efficiency by selecting paths 
that minimize overall energy consumption. Sustainable IoT networks employ green 
power allocation frameworks and integrate renewable energy sources with intelligent 
power management technologies.

2.5.8 Multiple access techniques
Multiple access schemes regulate how various IoT devices share communication re
sources. Time-division multiple access (TDMA) assigns time slots to devices and 
reduces channel contention and energy consumption in low-power applications. 
Frequency-division multiple access (FDMA) separates communication channels into 
different, non-overlapping frequency bands, thus mitigating interference in dense net
works. Orthogonal frequency-division multiple access (OFDMA) improves spectral 
efficiency by dynamically allocating subcarriers to users, whereas NOMA enhances 
network capacity by superimposing signals at different power levels, which enables 
simultaneous transmissions without increasing bandwidth requirements. Selecting 
appropriate multiple access techniques ensures functional communication while con
serving energy.

2.5.9 Edge and fog computing
Edge and fog computing reduce latency and bandwidth usage by processing data 
closer to the source rather than relying on cloud infrastructure. Edge computing en
ables real-time analytics on IoT devices or gateways, which minimizes transmission 
overhead and improves response times. Fog computing distributes processing across 
intermediate nodes and balances computational loads while enhancing system scal
ability. These paradigms optimize resource utilization and contribute to sustainable 
IoT ecosystems by reducing network congestion and energy consumption.

2.6 Design considerations for sustainable IoT
IoT networks have a diverse set of critical metrics that evaluate their performance, ef
ficiency, and applicability across versatile use cases. These metrics not only define the 
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technical capabilities of the IoT systems, but also affect sustainability as they govern 
resource utilization, energy consumption, and environmental impact. Optimization of 
network designs to meet these metrics efficiently ensures that IoT networks are en
abling application-specific functions while adhering to sustainable design principles. 
This section provides a detailed analysis of the IoT design metrics and their effects 
on sustainability.

2.6.1 Data rate
The data rate is the speed at which information is transmitted and received between 
IoT devices, gateways, or access points. It is directly affected by the modulation 
schemes, power allocations, frequency-of-operation, antenna designs, network archi
tectures, and coding techniques. The effects are briefly described as follows:

• Modulation schemes: Higher-order modulation schemes increase the number of 
bits transmitted per symbol. This improves the effective data rate of the wireless 
communication link. However, higher orders require higher signal-to-noise ratios 
(SNRs), and are more susceptible to noise. Hence, higher-order modulations may 
demand higher power to function feasibly.

• Power allocation: Transmission power dictates the strength of received signal 
over long distances. It also reduces bit errors, thus enabling higher data rates. 
However, high power utilization hinders sustainability and scalability. Power allo
cation must be optimized to provide sustainability and realize a balance between 
coverage, link throughput, and green functioning.

• Frequency-of-operation: Higher frequencies provide increased bandwidth and 
support higher data rates. For example, 5G millimeter-wave (mmWave) bands pro
vide Gbps throughputs, but are limited in range compared to sub-GHz frequencies. 
Higher frequencies experience greater signal attenuation and reduced penetration 
through obstacles, making them less suitable for long-distance or non-line-of-sight 
applications.

• Antenna design: High-gain and directional antennas improve signal strength and 
minimize interference, hence, providing higher data rates. Multi-antenna tech
nologies such as multiple-input multiple-output (MIMO) arrays enhance spectral 
efficiency using spatial diversity and enable higher throughput.

• Network architectures: Decentralized architectures such as mesh networks re
duce congestion and improve data rates by optimizing routing paths. In contrast, 
centralized systems rely on efficient gateway management and maintain high 
throughput. In general, centralized systems can provide higher throughput owing 
to the higher processing ability and transmission powers available at the central 
gateways or access points.

• Coding techniques: Advanced error correction codes, such as LDPC (low-density 
parity check) and Turbo codes, improve the reliability of data transmission by 
correcting errors caused by noise or interference, indirectly supporting higher data 
rates.
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• Channel bandwidth: Wider bandwidths improve link capacity and directly in
crease data rates. For example, Wi-Fi 6 (802.11ax) utilizes wider channels to 
achieve higher throughput.

• Interference management: Properly managing co-channel and adjacent-channel 
interference improves signal-to-interference-plus-noise ratio (SINR), which di
rectly improves effective channel capacity. It also reduces retransmissions and 
indirectly enables higher data throughput.

• IoT protocol design: Efficient protocols with low overhead maximize the 
payload-to-header ratio, and indirectly enhance the effective data rates.

• Processor design: IoT devices with advanced hardware, e.g., high-speed proces
sors and optimized transceivers, etc., support faster data processing and transmis
sion, resulting in higher data rates.

• Routing protocols: Routing protocols dictate how data is localized through the 
network. Energy-e˙icient routing protocols are critical for ensuring optimal data 
paths, reducing delays, and maintaining throughput.

LPWANs such as LoRa and SigFox, support data rates of tens of kilobits per 
second (kbps), which is sufficient for low-rate and low-bandwidth applications, e.g., 
smart metering, smart lightening, and environmental monitoring. These technologies 
are designed for energy-e˙icient long-range communication, making them ideal for 
large-scale IoT deployments in remote or resource-constrained environments. Zig
bee and BLE support data rates in the range of hundreds of kbps to a few megabits 
per second (Mbps). Zigbee provides data rates up to 250 Kbps and is well suited for 
industrial IoT, home automation, and smart city applications that demand medium
range connectivity. BLE offers a balance between energy efficiency and performance 
and enables data rates up to 2 Mbps for applications such as wearable devices, 
proximity-based interactions, and indoor navigation. In contrast, high-data-rate tech
nologies such as Wi-Fi, long-term evolution (LTE), and 5G enable data rates ranging 
from Mbps to gigabits per second (Gbps). These technologies enable data-intensive 
applications, e.g., real-time video streaming, augmented reality (AR), telemedicine, 
industrial robotics, etc.

Higher data rates consume more energy due to the increased transmit power and 
computational demands. This trade-off between performance and energy efficiency 
hinders sustainability, particularly in resource-constrained environments. Sustainable 
designs can mitigate these challenges by employing adaptive modulation schemes, 
advanced routing algorithms, and complex interference management techniques. 
These designs provide an effective balance between power consumption and com
munication reliability, ensuring long-term operational efficiency in IoT networks.

2.6.2 Coverage
Coverage of a network is defined as the maximum geographical distance over which 
a signal can be transmitted and reliably received between communication devices. It 
is a critical design consideration for ensuring connectivity in large-scale IoT deploy
ments, particularly in remote areas and harsh environments with physical obstruc
tions. Applications such as smart agriculture and environmental monitoring heavily 
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depend on reliable, large-coverage networks to maintain system functionality. Cov
erage is influenced by the following factors:

• Modulation schemes: Lower-order modulation schemes provide higher noise tol
erance and enable larger coverage. In contrast, higher-order modulation schemes 
improve spectral efficiency and provide higher data rates at the cost of reduced 
effective coverage and lower noise tolerance.

• Transmission power: An increase in the transmission power improves the effec
tive strengths of the signal at the receivers and enables large propagation distances. 
However, this increased energy consumption can hinder sustainability of battery
powered devices.

• Frequency-of-operation: Lower frequencies (e.g., sub-GHz bands) have higher 
obstacle penetration abilities and support longer ranges of coverage. However, 
they provide lower data rates and shorter bandwidths. Higher frequencies (e.g., 
mmWave) suffer from greater attenuation and are less effective for long-range and 
non-line-of-sight applications. However, higher frequencies can provide higher 
bandwidths and higher effective throughputs.

• Antenna design: High-gain directional antennas focus energy in specific direc
tions and extend the range of the communication system. Omnidirectional anten
nas provide uniform coverage but have reduced range. MIMO systems can provide 
a balance and improve coverage by leveraging spatial diversity and dynamically 
directing signals toward the desired devices.

• Interference management: Effective mitigation of co-channel and adjacent
channel interference can significantly improve the network’s effective coverage.

• Network architecture: Multi-hop and mesh architectures expand coverage areas 
by relaying data through intermediate nodes. This reduces the need for high trans
mission power, but requires energy-e˙icient routing protocols.

LPWAN protocols provide long-range coverage (up to a few kilometers), which 
makes them ideal for applications like environmental monitoring in rural or remote 
areas. Zigbee and BLE have shorter ranges of operation and are well-suited for in
door IoT applications, such as home automation, smart offices, etc. Cellular networks 
(e.g., LTE and 5G) offer scalable coverage across diverse deployment scenarios and 
can enable high-rate and low-energy applications using different technical standards. 
Extending coverage necessitates higher transmission power, which increases energy 
consumption and impacts sustainability. Sustainable IoT designs utilize adaptive 
power allocation, energy-e˙icient routing protocols, and advanced antenna configu
rations to maintain reliable connectivity over large coverage areas while minimizing 
resource utilization.

2.6.3 Transmission frequency
Transmission frequency defines how often data transmission is initiated in an IoT 
network between end-devices, gateways, or central servers. It impacts system re
sponsiveness and the age of information (AoI), which is a critical metric for real-time 
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applications, e.g., industrial automation and healthcare monitoring, etc. Applications 
with periodic or event-triggered data transmissions, such as environmental moni
toring, benefit from lower transmission frequencies to conserve energy. However, 
real-time applications, such as autonomous vehicles and telemedicine, require fre
quent data transmissions to maintain low latency and provide updated information. 
The transmission frequency is influenced by the following factors:

• Energy availability: Battery-operated IoT devices often reduce the effective 
transmission frequency to conserve energy and do not enable real-time appli
cations. Devices with continuous power sources can realize real-time and high 
transmission rate applications.

• IoT protocols: Efficient, low-overhead protocols enable more frequent data trans
mission without exhausting network resources. In contrast, high-overhead proto
cols offer enhanced functionality and robustness at the cost of increased energy 
and bandwidth consumption, which is inefficient in real-time applications.

• Multiple access techniques: Multiple access techniques reduce contention in 
high-transmission-frequency scenarios, and ensure reliable communication even 
in dense networks.

• Processor design: Devices with advanced processors and transceivers enable fre
quent transmissions more efficiently by reducing processing delays and power 
consumption.

BLE supports moderate transmission frequencies for event-driven communica
tion in wearable devices, ensuring frequent updates with minimal latency. In con
trast, LoRaWAN prioritizes scheduled transmissions for energy conservation in peri
odic applications, e.g., environmental sensing, infrastructure monitoring, etc. High
throughput technologies, e.g., 5G and LTE, etc., enable ultra-frequent transmissions 
in applications such as augmented reality (AR), telemedicine, and industrial robotics. 
Frequent transmissions increase energy demands and network congestion in dense 
IoT networks, which hinders network sustainability. To mitigate these challenges, 
adaptive scheduling, data aggregation, and event-triggered communication are em
ployed in large-scale IoT systems.

2.6.4 Network densities
Network density quantifies the number of IoT devices operating within a defined 
spatial area and affects interference, bandwidth allocation, and network scalability.
High-density networks, such as smart cities and industrial IoT systems, have high 
levels of interference, congestion, and resource contention. In contrast, low-density 
networks prioritize coverage and long-range communication, particularly in rural or 
sparsely populated areas. Network density is influenced by the following factors:

• Interference management: Dense networks increase co-channel and adjacent
channel interference, which degrades the signal quality. Advanced interference 
mitigation techniques are required to maintain reliable communication.
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• Multiple access techniques: Efficient access schemes can allocate resources dy
namically, which provides increased network traffic support while minimizing 
packet collisions.

• Routing protocols: Hierarchical and clustered routing protocols optimize com
munication paths, reducing congestion and improving energy efficiency in dense 
deployments.

• Antenna design: High directionality antennas and MIMO technology provide 
spatial diversity and enable advanced interference mitigation, which enable feasi
ble and functional high-density deployments.

• Bandwidth: Wider allocated bandwidths can enable service to a higher number 
of devices, which improves network capacity and reduces delays in high-density 
environments.

Zigbee mesh networks are highly efficient for medium-density deployments in 
smart homes and industrial automation systems. In contrast, 5G networks leverage 
massive MIMO to support ultra-dense IoT applications in urban environments. LP
WAN technologies are designed for low-density and long-range deployments, and 
have high performance in long-range, low-rate applications. Sustainable designs in 
dense networks focus on reducing interference, minimizing energy consumption, 
and managing congestion. Device clustering, dynamic spectrum allocation, non
orthogonal multiple access, and adaptive scheduling techniques can enable efficient 
resource utilization and minimal environmental impact.

2.6.5 Network architecture
Network architecture is the structure and organization of devices in an IoT network. 
It can be centralized, decentralized, or hybrid in nature. Centralized architectures 
have a central hub or gateway for data aggregation and processing, while decentral
ized architectures, such as mesh networks, distribute communication and processing 
tasks across multiple nodes. Each of these architectures is optimized for specific 
performance metrics like scalability, fault tolerance, and energy efficiency. Network 
architecture is affected by the following factors:

• Routing protocols: Centralized systems rely on efficient routing to aggregate data 
at the hub, while decentralized systems use distributed routing to balance traffic 
loads and minimize congestion.

• Processing distribution: Centralized architectures realize data processing at the 
gateways, which reduces IoT device complexity. In contrast, decentralized sys
tems leverage edge computing and perform localized processing, which reduces 
latency and bandwidth usage at the cost of higher device complexity and energy 
consumption.

• Failure tolerance: Decentralized systems provide higher resilience by rerouting 
traffic around failed nodes. This enables enhanced fault tolerance. In contrast, 
centralized architectures can experience single-point failures.



2.6 Design considerations for sustainable IoT 45

• Energy efficiency: Centralized systems typically consume less energy at end 
devices, as most processing is offloaded to the gateway. Decentralized systems 
distribute energy consumption more evenly across the network, but have higher 
energy footprints per end-device.

Centralized architectures are commonly employed in LPWAN technologies like 
Sigfox and LoRaWAN, where data from devices is routed to a central gateway. In 
contrast, Zigbee mesh networks implement decentralized architectures to improve 
scalability and fault tolerance in smart home and industrial IoT applications. Hybrid 
architectures (e.g., LTE and 5G, etc.) combine centralized and decentralized systems 
to optimize performance across versatile usage scenarios. Sustainability in network 
architectures requires a balance of energy efficiency, scalability, and fault tolerance. 
Techniques such as adaptive routing, hierarchical clustering, and edge computing 
improve the sustainability of both centralized and decentralized architectures.

2.6.6 Security
IoT security protocols protect data confidentiality, integrity, and availability during 
transmission between devices, gateways, and servers. These protocols use encryption, 
authentication, access control, and intrusion detection to prevent unauthorized access, 
breaches, and attacks. Owing to the densely connected nature of IoT systems, secu
rity breaches can compromise entire networks and result in data theft, unauthorized 
access, false alarms, or system disruptions. Critical applications such as telemedicine, 
industrial automation, and infrastructure monitoring require robust security measures 
to safeguard sensitive information. IoT network security is directed by the following 
factors:

• Encryption techniques: End-to-end encryption techniques, e.g., AES-128 and 
RSA, etc., ensure data confidentiality during transmission. These techniques re
quire key exchange to realize functional communication.

• Authentication mechanisms: Robust authentication protocols, e.g., public key 
infrastructure (PKI) and biometrics, etc., verify device and user identities. They 
enable confidentiality and prevent eavesdroppers.

• Access control: Role-based access control restricts access to authorized users and 
devices, minimizing security risks.

• Intrusion detection: Real-time monitoring and anomaly detection systems can be 
deployed to identify and mitigate potential threats to the network.

Zigbee and BLE incorporate AES-128 encryption for secure communication 
and provide adequate security in local area IoT applications. Cellular networks use 
mutual authentication and SIM-based security procedures for enhanced protection. 
Blockchain is emerging as a promising candidate for secure IoT and can enable 
decentralized use-cases, particularly in supply chain management and critical in
frastructure. Sustainable systems require lightweight cryptographic protocols and 
efficient authentication mechanisms to reduce energy consumption without compro
mising protection.
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2.6.7 Privacy
Privacy in IoT systems protects personal and sensitive data collected by devices and 
provides user anonymity and controlled access to information. Unlike security mea
sures, which safeguard data from unauthorized access and attacks, privacy protocols 
enable compliance with user consent and regulatory requirements. Privacy is a criti
cal design metric for healthcare, smart homes, and wearable technology applications. 
Privacy can be enabled using the following:

• Data anonymization: Anonymity prevents the identification or tracking of in
dividuals or devices within a communication system by dissociating transmitted 
data from identifiable information. Pseudonymization, encryption, and data ob
fuscation preserve privacy and mitigate the risk of surveillance.

• Access control: Access control mechanisms restrict data access to authorized 
users and applications based on predefined policies. Techniques such as role-based 
access control (RBAC) and attribute-based access control (ABAC) can enforce 
precise access policies to minimize privacy risks.

• Data minimization: Data minimization reduces privacy risks by collecting and 
processing the data necessary for a specific application or service.

• Secure storage: Secure storage protects stored data using encryption methods 
such as AES-128 or AES-256 and ensures that the information remains inaccessi
ble to unauthorized entities.

• Data transmission: Data transmission protocols protect information during prop
agation by implementing encryption schemes such as TLS/SSL which provide 
confidentiality and integrity.

Healthcare IoT systems rely on data anonymization and secure transmission to 
protect patient information. Smart home platforms implement role-based access con
trol to manage data privacy among devices and users. Decentralized systems use 
blockchains to enhance privacy by providing tamper-proof transaction records. Sus
tainable privacy practices must balance security measures with energy efficiency. 
Lightweight encryption and authorization algorithms can reduce the resource burden 
while protecting sensitive and identifiable information.

2.6.8 Reliability
Reliability is the network’s capability to consistently ensure accurate data delivery 
and maintaining seamless operational functionality. It is characterized by perfor
mance metrics such as packet delivery ratio and bit error rate (BER) and is governed 
by mechanisms like error correction, interference mitigation, and the implementa
tion of network redundancy. High reliability is essential for mission-critical applica
tions, such as industrial automation, healthcare monitoring, and autonomous vehicles, 
where delays or data loss can result in catastrophic consequences. Reliability is influ
enced by the following factors:

• Packet loss: Reducing packet loss ensures consistent data delivery and minimizes 
retransmissions.
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• Error correction: Techniques such as forward error correction and ARQ improve 
data reliability in noisy channels.

• Network redundancy: Redundant communication paths prevent data loss due to 
node or link failures.

• Hardware design: Devices designed for harsh environments can withstand ex
treme conditions and ensure uninterrupted operation.

LPWAN technologies implement error correction to improve network reliability
in long-range, low-power networks. Cellular systems (e.g., LTE, 5G, etc.) provide 
ultra-reliable low-latency communication (URLLC) for critical applications. Zigbee 
mesh networks enhance reliability through redundant paths and ensure continuous 
data delivery by mitigating node failures. Sustainable designs focus on minimizing 
energy consumption associated with retransmissions and redundancy. Efficient error 
correction codes can achieve high reliability while conserving resources.

2.6.9 Latency
Latency is the time delay between the generation of data by an IoT device and its 
successful delivery to the intended destination. It includes any processing or trans
mission delays. Low latency is critical for real-time applications, e.g., autonomous 
driving, industrial automation, telemedicine, etc., where even minor delays can im
pact functionality. Latency is defined by the following factors:

• Network congestion: High traffic volumes increase queuing delays and worsen 
the end-to-end delay of successful data transmission.

• Routing protocols: Efficient routing protocols minimize path delays and ensure 
faster data delivery. They also minimize network congestion.

• Processing time: Faster processing at devices and gateways reduces the delay 
introduced by data handling.

• Multiple access techniques: Efficient access mechanisms reduce contention and 
packet collisions which cause delays in end-to-end successful transmission.

5G networks provide ultra-low latency communication and enable advanced ap
plications such as augmented reality and autonomous vehicles. LPWAN systems 
prioritize energy efficiency but have higher latencies due to lower data rates and 
scheduled transmissions. Sustainable designs can be realized by using edge com
puting and adaptive routing to reduce latency while maintaining energy efficiency.

2.6.10 Network lifetime
Network lifetime is the operational duration of an IoT network before its components 
require significant maintenance, such as device replacements or battery recharging. 
It is a critical metric for sustainability and is the core focus of large-scale and re
mote deployments where frequent maintenance is impractical. Network lifetime is 
influenced by the following factors:
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• Energy efficiency: Minimizing power consumption extends device lifetimes and 
reduces network downtime. Hence, modulation schemes, coding techniques, and 
routing protocols must be tailored to provide high energy efficiency.

• Energy harvesting: Energy harvesting technologies enable IoT device operation 
without frequent battery replacements by utilizing solar, thermal, and vibrational 
energy. For example, piezoelectric sensors in industrial IoT applications can con
vert mechanical vibrations into usable electrical energy and provide continuous 
operation in remote environments.

• Duty cycling: Duty cycling alternates between active and sleep states of the de
vices to conserve energy during periods of inactivity and extend network lifetimes 
in energy-constrained environments.

• Hardware durability: Robust and durable hardware designs reduce the need for 
frequent replacements, ensuring reliable operation over extended periods.

• Battery capacity: Devices with higher-capacity batteries provide longer opera
tional durations, but may increase deployment costs and environmental impact.

• Communication overhead: Reducing the frequency of information transmission 
conserves energy and extends device lifetimes.

LoRa and Sigfox networks optimize network lifetime through low-power opera
tion and infrequent transmissions. Energy harvesting technologies in industrial IoT 
enable continuous operation in power-constrained environments, reducing reliance 
on battery replacements. Sustainable designs focus on energy-e˙icient protocols, 
durable hardware, and energy harvesting solutions to extend operational durations 
without increasing environmental impact.

2.7 Conclusion
This chapter explores the architectural foundations, sustainability challenges, and de
sign considerations of IoT networks. We define the layered IoT architecture of IoT 
systems and detail the roles of interaction, network, and application layers along
side key network entities such as end-devices, gateways, and processing servers. 
IoT applications are categorized into consumer, commercial, industrial, healthcare, 
agricultural, infrastructure, military, and environmental domains. These domains are 
analyzed based on technical constraints and operational demands. We identify sus
tainability challenges driven by large-scale deployments, heterogeneity, autonomy, 
real-time constraints, and security concerns. Core design elements, e.g., modulation 
schemes, coding techniques, antenna configurations, spectrum allocation, multiple 
access strategies, and power control mechanisms, etc., are discussed in the con
text of energy efficiency and network scalability. Finally, we define essential design 
considerations such as data rates, coverage, transmission frequency, network densi
ties, security, privacy, reliability, and latency. These factors guide the development 
of sustainable, low-power, and high-performance IoT networks, ensuring long-term 
operational feasibility.
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3.1 Introduction
The Internet of Things (IoT) can be defined as a network of interconnected devices 
capable of sensing the world around them, taking actions, and communicating with 
each other without human intervention [1,2]. This interconnected ecosystem encom
passes sensors, cameras, and computing devices, reshaping industries, enhancing 
operational efficiency, and improving the quality of life [3]. From smart homes and 
cities to supply chains and transportation, IoT applications are ubiquitous and rapidly 
expanding [4]. By 2025, it is estimated that 42 billion IoT devices will be deployed 
globally, underscoring the vast scale of this technology [3].

However, this remarkable growth of IoT is accompanied by significant environ
mental challenges. The energy consumption of billions of devices, including their 
production, operation, and eventual disposal, raises critical concerns about their car
bon footprint and sustainability [5]. As IoT adoption accelerates, addressing its en
vironmental impact becomes imperative to ensure a sustainable future. Green IoT 
emerges as a solution to this challenge by focusing on reducing the energy consump
tion and carbon footprint of IoT systems throughout their lifecycle. This involves 
designing energy-e˙icient hardware, optimizing software, and implementing sus
tainable practices that align with the United Nations (UN) sustainability goals. By 
prioritizing energy efficiency and sustainability, green IoT aims to balance techno
logical advancement with ecological responsibility [6].

One of the key areas influencing energy consumption in IoT systems is the pro
cessing unit, which serves as the computational heart of these systems. Single-Board 
Computers (SBCs), such as the Raspberry Pi, offer comprehensive computational ca
pabilities, making them suitable for high-performance applications. However, their 
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relatively high energy demands can strain energy resources, particularly in resource
constrained deployments [7,8]. On the other hand, Single-Board Microcontrollers 
(SBMs) like Arduino and ESP32 are optimized for low-power operations, making 
them ideal for task-specific, energy-constrained applications [9]. Striking a balance 
between computational performance and energy efficiency is critical for advancing 
green IoT, necessitating the design of hardware that minimizes energy usage without 
compromising functionality. This ensures that IoT systems can meet application
specific requirements sustainably.

In addition to hardware considerations, communication technologies, which form 
the backbone of IoT systems—present another critical area for energy optimization. 
These technologies enable devices to transmit and receive data, but their energy con
sumption varies depending on the protocol and the deployment context. For instance, 
Long Range (LoRa) and Bluetooth Low Energy (BLE) are tailored for energy
constrained devices, making them suitable for low data-rate communication scenar
ios [10,11]. Conversely, Wi-Fi and Millimeter Wave (mmWave) technologies offer 
high-speed data transfer capabilities at the cost of increased energy usage [12,13]. 
Achieving energy-e˙icient communication requires selecting the appropriate tech
nology based on application needs and implementing optimization techniques to 
minimize unnecessary data transmission and idle power consumption.

Another innovative approach to address the energy challenges of IoT is Energy 
Harvesting (EH), which harnesses ambient energy sources such as sunlight, radio 
waves, mechanical vibrations, or temperature gradients [14--16]. IoT devices can use 
these sources to generate their own power, reducing dependency on traditional bat
teries and external power supplies. For example, solar EH is particularly well-suited 
for outdoor applications with consistent sunlight availability [17], while piezoelectric 
EH utilizes mechanical vibrations to power devices in dynamic environments [18]. 
These self-sustaining energy solutions extend device lifespans, lower maintenance 
requirements, and reduce electronic waste. Despite their potential, EH technologies 
face challenges, such as variability in energy availability and the need for efficient 
storage systems to ensure consistent device operation. By integrating advanced EH 
technologies into IoT systems, energy-resilient solutions can be created, aligning with 
the objectives of green IoT.

Moreover, advances in edge and fog computing have further revolutionized the 
potential of green IoT. These paradigms address the energy inefficiencies of tradi
tional cloud-centric IoT systems by bringing computational resources closer to the 
devices that generate data [19]. Edge computing processes data locally at the device 
or network level, significantly reducing the energy consumed in transmitting large 
volumes of data to the cloud and back. This also improves system responsiveness 
and supports real-time applications [20]. Fog computing extends the cloud model by 
leveraging intermediate nodes to distribute cloud resources and tasks across multi
ple locations closer to IoT systems, enabling scalable and energy-e˙icient operations 
[19]. Together, these technologies enable green IoT systems to minimize energy costs 
while maintaining high performance and reliability [21].

The integration of Artificial Intelligence (AI) and Machine Learning (ML) is also 
integral to realizing the full potential of green IoT. By analyzing the vast amounts of 
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data generated by IoT devices, AI and ML can enable intelligent decision-making and 
optimize energy consumption [22]. For example, edge intelligence leverages AI at the 
device level to process data locally, reducing transmission energy and latency. Fur
thermore, Deep Learning (DL) models enhance capabilities such as image and video 
recognition, while predictive ML algorithms improve system performance through 
functions like anomaly detection, predictive maintenance, and resource allocation 
[23,24].

Despite its promising potential, green IoT faces several challenges that must be 
addressed for widespread adoption. One significant obstacle is the trade-off between 
energy efficiency and performance. Designing energy-e˙icient hardware and soft
ware often involves compromises that limit computational capabilities, particularly 
in resource-intensive applications. Additionally, integrating sustainable technologies, 
such as EH and advanced communication protocols, can increase initial costs, posing 
economic barriers to large-scale implementation. Moreover, the variability of renew
able energy sources, such as solar or Radio Frequency (RF) harvesting, introduces 
reliability concerns that require innovative storage and energy management solutions 
[25]. Security concerns also arise, as distributed computing approaches like edge 
and fog computing increase the attack surface of IoT systems [19]. Addressing these 
challenges requires holistic approaches that integrate technological innovation, cost
effective designs, and robust security measures.

In conclusion, the successful implementation of green IoT will play a pivotal role 
in building a sustainable and environmentally responsible technological ecosystem. 
By prioritizing energy efficiency, minimizing carbon footprints, and leveraging in
novative technologies, green IoT can drive a paradigm shift toward a greener future, 
ensuring that the benefits of IoT are realized without compromising the health of our 
planet.

The remainder of this chapter is structured as follows: Section 3.2 surveys the cur
rent landscape of green IoT, focusing on hardware and software challenges. Section 
3.3 discusses EH techniques. Section 3.4 explores the role of edge and fog computing 
in supporting green IoT. Section 3.5 showcases the use of AI and ML in fulfilling the 
promise of green IoT. Finally, Section 3.6 concludes the chapter.

3.2 Energy efficient hardware
Energy-e˙icient hardware has become a crucial area of focus in the pursuit of green 
IoT, emphasizing the development of devices that minimize power consumption with
out compromising performance [26]. This section explores the foundational elements 
of energy-e˙icient hardware, with a particular focus on advanced processing units, 
innovative communication technologies, and their integration into IoT systems [27]. 
By examining state-of-the-art solutions such as SBCs, SBMs, and optimized commu
nication protocols, this section underscores the importance of sustainable hardware 
design in promoting eco-friendly IoT deployments [3,9].
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Table  3.1 Comparison of SBM and SBC.

SBM SBC
Primary Purpose Automation, real-time tasks, 

control
General-purpose computing

Operating System (OS) Minimal to no firmware Full OS (Linux, Android)
Performance Lower performance, 

task-focused
Higher performance, more 
versatile

Power consumption Lower, usually less than 
500 mW

Higher, usually 0.5 W to 1.5 W

Cost Lower Higher

3.2.1 Energy-e˙icient processing units
Processing units form the core of IoT systems, responsible for performing compu
tational tasks and often serving as the primary consumers of energy. Sustainable 
hardware design emphasizes energy-e˙icient processors to balance computational 
capabilities with power consumption. The two main types of processing units used in 
IoT devices are SBCs and SBMs [3]. On one hand, SBCs are fully functional modern 
computers built on a single circuit board, integrating all necessary components such 
as the Central Processing Unit (CPU), Random Access Memory (RAM), input/output 
interfaces, storage, and sometimes even a power supply, all onto one board [3]. On the 
other hand, SBMs are compact devices that includes a Microcontroller Unit (MCU) 
and essential components (such as RAM and storage) on a single board, designed 
specifically for controlling tasks or systems in embedded applications [9]. Unlike an 
SBC, which is a fullfledged computer, an SBM is focused on control and automation 
rather than computational performance. SBM have gained popularity in the IoT in
dustry due to their ultra-low power consumption and integrated Wi-Fi and Bluetooth 
functionality [28]. Their low power consumption and small size make them ideal for 
real-time monitoring devices [28]. A comparison between SBC and SBM is shown 
in Table 3.1.

Raspberry Pi
The Raspberry Pi is a low-cost SBC widely used for its versatility and modular de
sign. Although originally developed for educational purposes, its adaptability and 
computational power have made it a popular choice in IoT deployments. It supports a 
range of IoT applications, including industrial automation and smart homes, though 
its power requirements are higher compared to simpler microcontrollers. Fig. 3.1 il
lustrates the components of a standard Raspberry Pi 4 model. Energy efficiency is a 
critical consideration when using Raspberry Pi devices, as it is a key priority in green 
IoT initiatives.

The Raspberry Pi also offers extensive library support, such as RPi.GPIO for con
trolling General Purpose Input/Output (GPIO) pins and Adafruit’s CircuitPython for 
simplified interaction with hardware components. These libraries, along with support 
for popular programming languages like Python, C, and Java, make the Raspberry 



3.2 Energy efficient hardware 57

FIGURE 3.1 

An illustration of Raspberry Pi 4.

Pi highly accessible to developers building energy-e˙icient IoT solutions [29]. Addi
tionally, its robust community ecosystem provides access to open-source resources, 
facilitating rapid prototyping and development. While Raspberry Pi models like the 
Raspberry Pi 3 offer significant computational capabilities, their power consumption 
(1.5 W) may not be suitable for battery-powered IoT deployments [7]. To address 
this, the Raspberry Pi Zero, an energy-e˙icient variant, offers power consumption as 
low as 0.5 W during operation, while still featuring a quad-core processor and Wi-Fi 
and Bluetooth connectivity. This makes it an ideal choice for sustainable IoT appli
cations. The Raspberry Pi’s balance of computational performance, flexibility, and 
energy efficiency positions it as a valuable tool for achieving green IoT objectives 
[30].

Arduino
Arduino is a widely used open-source SBM platform, renowned for its simplicity, 
affordability, and versatility. Unlike fullfledged SBCs, Arduino is designed for tasks 
that require minimal computational power, making it an ideal choice for energy
e˙icient IoT applications. Arduino’s extensive library ecosystem simplifies the de
velopment of such solutions. For example, the Arduino low-power library enables 
the use of sleep modes, allowing devices to enter extremely low-power states when 
idle, significantly reducing energy consumption [31].

Additionally, there are libraries specifically tailored for low-power features, such 
as the Arduino low-power library for SAMD21-based boards, which helps extend bat
tery life and enhance sustainability [31]. By providing tools that streamline energy
conscious development and integrating low-power functionalities with ease, Arduino 
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FIGURE 3.2 

An illustration of Arduino Uno.

empowers developers to create solutions that align with green IoT principles. This re
duces environmental impact and conserves energy resources, particularly in battery
powered and remote deployments [9]. Fig. 3.2 illustrates the components of a stan
dard Arduino UNO.

ESP32 and STM32
The ESP32 and STM32 are prominent examples of energy-e˙icient SBM that have 
gained significant traction in the IoT industry. Like Arduino, both are compact and 
optimized for low power consumption. However, the ESP32 stands out with its 
built-in Wi-Fi and Bluetooth capabilities, making it ideal for IoT applications. In 
contrast, the STM32 focuses on high performance and a wide range of peripher
als, making it better suited for industrial and complex systems that typically require 
external modules for wireless connectivity [32,33]. The ESP32 is particularly well
suited for applications like smart homes and wearable devices due to its ultra-low 
power consumption and dual-core processor, which enables efficient multitasking 
[32]. Similarly, STM32 microcontrollers, based on the ARM Cortex-M architecture, 
are known for their energy efficiency and versatility, making them popular in indus
trial automation and precision control systems [33]. These characteristics position the 
ESP32 and STM32 as excellent choices for sustainable IoT solutions, especially in 
battery-powered or off-grid deployments [32]. Their blend of computational capabil
ity, connectivity, and energy efficiency aligns with the goals of green IoT.
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FIGURE 3.3 

Communication between IoT devices and the cloud.

3.2.2 Communication technologies
IoT devices are typically small, wireless, and battery-powered units that must operate 
for extended periods without requiring frequent battery replacements. These devices 
also need to communicate regularly with a base station or gateway to send and receive 
data, as illustrated in Fig. 3.3. As a result, energy-e˙icient wireless communication is 
crucial for the development of effective IoT networks for future applications. In this 
section, we will explore some of the communication technologies commonly used in 
IoT deployments.

LoRa
LoRa is a communication protocol specifically designed for low-power, low-bitrate, 
and long-range communication in IoT applications [10]. It is particularly well-suited 
for deployments involving energy-constrained devices that transmit or receive small 
amounts of data, typically just a few bytes per transaction. Operating mainly in the 
800 MHz frequency band, LoRa can transmit data over distances of up to 15 kilo
meters. These characteristics make LoRa an attractive solution for a wide range of 
IoT applications, especially those requiring broad coverage and minimal energy con
sumption.

Bluetooth
Originally introduced in 1994, Bluetooth technology has undergone significant devel
opment over the years [34], culminating in the release of Bluetooth 6.0 in September 
2024. The versions most commonly used in industry today include Bluetooth 4, Blue
tooth 5, and BLE. BLE, a variant introduced by the Bluetooth special interest group, 
is specifically designed for low energy consumption, making it particularly well
suited for IoT applications that require efficient data exchange between smartphones 
and energy-constrained peripheral devices [11]. Notably, most modern smartphones 
are equipped with BLE capabilities, offering an advantage over other low-power 
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wireless communication standards such as ZigBee and Thread [11]. A comparative 
analysis reported in [35] demonstrates that Bluetooth 4.2 and Bluetooth 5 consume 
significantly less energy than the IEEE 802.15.4 standard. Specifically, these Blue
tooth versions use approximately one-third of the energy required by IEEE 802.15.4 
in indoor environments and less than half in outdoor settings [35].

Wi-Fi
Wi-Fi is a technology that allows devices to connect to the internet or communicate 
wirelessly with one another using radio waves. It operates under the IEEE 802.11 
family of standards and is commonly used in Local Area Networks (LAN). Wi-Fi 
is widely utilized in homes, businesses, and public spaces to connect devices such 
as smartphones, laptops, tablets, and other internet-enabled gadgets to the internet, 
typically through a wireless router. Wi-Fi generally operates on the 2.4 GHz and 
5 GHz frequency bands and can transfer data at gigabit speeds, making it signif
icantly faster than technologies like LoRa and Bluetooth. However, Wi-Fi typically 
consumes more energy than these alternatives. This higher energy consumption poses 
a significant challenge for IoT devices, which often rely on small, battery-powered 
units. To preserve energy efficiency in such devices, minimizing power consumption 
during wireless communication is critical. Simply embedding conventional Wi-Fi 
chipsets in IoT devices is not a viable solution, as it would lead to excessive energy 
consumption [12]. To address this issue, Hossein Pirayesh and colleagues propose an 
asymmetric physical design that enables substantial power reduction in IoT devices 
[12]. Furthermore, the IEEE 802.11 standard includes a power-saving mode, which 
allows mobile devices to enter a low-power state by turning off the transmitter and 
receiver when not in use, thus conserving energy [36].

Millimeter wave
The introduction of mmWave technology in 5G New Radio (NR) is expected to play a 
critical role in future 6G networks [37]. mmWave refers to extremely high-frequency 
RF signals, typically ranging from 24 GHz to 300 GHz. Compared to legacy RF 
technologies operating below 6 GHz, mmWave significantly expands the available 
bandwidth by using higher carrier frequencies, which far exceed the bandwidth al
located to today’s Wi-Fi and cellular networks [13,37]. mmWave systems enhance 
transmission efficiency by leveraging beam directivity, which improves antenna per
formance for both transmitters and receivers [5]. Additionally, the shorter wavelength 
of mmWave signals allows for smaller antennas, enabling the deployment of large 
Multiple-Input Multiple-Output (MIMO) antenna arrays. This improves communica
tion performance, particularly in IoT environments [5]. However, several challenges 
persist. The shorter wavelength also results in higher path loss, limiting transmission 
range [38]. Atmospheric and molecular absorption exacerbate this problem, espe
cially in the 60 GHz, 120 GHz, and 180 GHz bands, where significant propagation 
loss occurs [37]. On the other hand, certain frequency bands, such as 35 GHz, 94 
GHz, 140 GHz, and 220 GHz, experience lower attenuation, enabling longer-range 
communication [37]. Due to these limitations, mmWave communication often re
quires line-of-sight transmission and is highly susceptible to obstruction by vehicles, 
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Table  3.2 Comparison of LoRa, Bluetooth, Wi-Fi, and mmWave technologies.

Technologies LoRa Bluetooth Wi-Fi mmWave
Range 4.8 km–16 km 10 m–240 m 20 m–45 m 80 m–200 m
Data transfer 
rate

250 Kbps 2Mbps 1Gbps–9Gbps 1Gbps–10Gbps

Energy 
consumption

10 mW to 50 mW 10 mW–1 W 2 W–20 W 320 W–450 W

Frequency 
bands

433 MHz--
928 MHz

2.4 GHz 2.4 GHz–6 GHz 24 GHz–300 GHz

pedestrians, and even the human body [37]. This line-of-sight dependency, along 
with the short transmission range, makes mmWave systems highly sensitive to mo
bility and fading effects, which can degrade signal quality [37]. Another significant 
challenge for mmWave systems is energy consumption. The technology demands 
substantial power for transmission and beamforming, making it unsuitable for low
power IoT devices [13]. Additionally, the complexity of phased array systems, which 
are used to focus mmWave signals into narrow beams, further increases power con
sumption and hardware costs [13]. These factors limit mmWave’s applicability in IoT 
applications, where cost and energy efficiency are crucial. Table 3.2 compares various 
communication technologies.

3.3 Energy harvesting
One approach to achieving energy efficiency in IoT, as previously discussed, is the 
use of energy-e˙icient IoT devices. Another method for promoting green IoT is the 
generation or harvesting of renewable and sustainable energy through EH techniques 
to power IoT devices. In the following section, we will explore these EH techniques 
in detail.

3.3.1 Photovoltaic/solar energy harvesting
Photovoltaic or solar EH is a clean and affordable energy source that can help address 
energy shortages in IoT networks by converting light into electricity through the pho
tovoltaic effect [5]. Among all EH techniques, it is one of the most effective due to its 
efficiency and high power density of 100 mW/cm2 during daylight hours [17]. This 
process uses solar cells to generate power from light shining on semiconducting ma
terials, making it particularly suitable for locations with abundant sunlight. Outdoor 
IoT devices can directly utilize solar energy during periods of sufficient sunlight, 
while indoor devices can benefit from trickle charging in well-lit environments [5]. 
However, the technique faces limitations in areas with inconsistent light availability, 
and transporting harvested energy to other locations can result in significant energy 
losses, emphasizing the need for further research and improvements [39].
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3.3.2 Radio-frequency harvesting
RF EH is a technique used to power IoT devices and charge batteries by capturing 
energy from radio waves. It operates based on magnetic inductive coupling, where 
a time-varying current in a transmitter loop generates an open-circuit voltage in a 
nearby receiver loop [18]. The induced voltage, typically around 0.5 V, can power 
passive devices like Radio Frequency Identification (RFID) tags or be stored in bat
teries for active battery-powered devices [18]. This technology is currently applied 
in systems such as electronic ID tags and smart cards, which activate when exposed 
to RF-rich environments. However, scaling this solution for large-scale IoT deploy
ments may require significant RF radiation, which could potentially pose health risks 
to humans [18,40].

Despite the relatively low power density of ambient RF energy (ranging from 0.2 
nW/cm2 to 1 W/cm2), it is increasingly available due to the widespread presence 
of wireless communication infrastructures like Wi-Fi, cellular networks, and broad
casting systems, especially in urban areas [17]. This technology is particularly ad
vantageous for wirelessly charging batteries or powering electronics in hard-to-reach 
locations, such as bridges, chemical plants, or aircraft, and can operate continuously 
with minimal ambient power [17].

3.3.3 Thermoelectric harvesting
Thermoelectric harvesting is an EH technique that generates electricity from tem
perature gradients or differences. The thermoelectric effect allows the conversion of 
temperature gradients into electrical energy by diffusing charge carriers, which cre
ates a voltage difference [5]. This principle can be used to power IoT devices by 
harnessing thermal energy from sources such as hot beverages, the human body, or 
environmental temperature variations [5]. Efficient energy generation is essential to 
fully leverage the potential of thermal EH for powering IoT devices. The human 
body, in particular, is an excellent source for thermoelectric harvesting and is espe
cially valuable for powering wearable devices [41].

3.3.4 Piezoelectric harvesting
Piezoelectric materials have the ability to convert mechanical energy into electrical 
energy. The direct piezoelectric effect, where mechanical strain generates an electric 
field proportional to the applied stress, is the primary mechanism used for EH from 
vibrations [18]. This principle enables the powering of IoT devices, such as roadside 
sensors and smart traffic lights, by harnessing vibrations from human motion or ve
hicles. Piezoelectric devices can also act as backup energy sources for smartphones 
and other electronics by capturing energy from movements like shaking [5].

Piezoelectric energy harvesters are more reliable and efficient compared to other 
EH methods [18]. These materials can be optimized for specific applications and are 
available in various shapes and sizes, offering considerable flexibility [18]. As the 
cost of piezoelectric materials decreases, their high energy density and adaptability 
make them ideal for IoT devices requiring long lifespans. By integrating piezoelectric 
units for energy harvesting and storage, device lifetimes can be significantly extended 
[18].
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3.4 Edge & fog computing
IoT devices typically lack the processing power needed to analyze the data they col
lect. These devices are primarily designed to gather data and transmit it to remote 
cloud centers for processing. However, this centralized cloud-based approach can be 
inefficient or infeasible in certain situations. For instance, in real-time systems, the 
latency caused by transmitting data to distant cloud servers may exceed the appli
cation’s requirements. Additionally, in remote areas with poor or no connectivity, 
sending data to the cloud may not be possible. In such cases, local processing be
comes essential, making edge and fog computing a viable solution [42].

Edge computing involves performing computational tasks at the network’s edge, 
closer to the IoT devices themselves [43], [44], [23]. Edge computing offers energy 
savings in scenarios where the cost of processing locally is lower than transmitting 
data to remote cloud centers. This can contribute to more energy-e˙icient and sus
tainable IoT systems [45]. While cloud computing setups are highly effective for 
handling large-scale systems with multiple users or devices per server [46], [47], 
their energy efficiency decreases significantly under low loads. In cases like small
scale IoT deployments, where devices transmit data infrequently, the static energy 
costs of running a cloud server often outweigh the benefits of centralized process
ing [48]. In contrast, edge computing proves more energy-e˙icient in such situations. 
Even with increased sensor density, the energy cost of edge infrastructure scales more 
linearly than that of centralized cloud systems, due to the distributed nature of edge 
networks, which minimizes bottlenecks and the need for extensive cooling [48].

Similar to edge computing, fog computing brings cloud computing resources 
closer to the network edge. However, rather than placing computation directly on 
the edge devices, fog computing divides traditional centralized cloud resources and 
data centers into smaller centers located at strategic geographical points, bringing 
cloud capabilities nearer to the endpoints [19]. While edge computing relies on local 
resources within the target network, fog computing functions as an intermediary be
tween the cloud and the edge. Essentially, fog computing is akin to having a cloud 
center closer to the network, often provided as Infrastructure as a Service (IaaS). 
Although fog computing cannot fully replace cloud computing, nor replicate the 
extensive functionality of a complete cloud computing center, it extends and com
plements the cloud’s capabilities [19].

3.4.1 Challenges
Despite the numerous advantages offered by edge and fog computing, there are sev
eral drawbacks that must be considered. Since edge and fog centers are distributed 
across various locations at the edge of networks, they increase the overall attack 
surface by introducing more potential points of vulnerability for hackers to exploit 
[44,49]. If one center is compromised, attackers can use it as a gateway to target other 
centers or services [44,50,51]. Furthermore, because edge and fog centers are smaller 
and less resourceful than full-scale cloud centers, they lack the hardware capabilities 
to implement robust security measures [44]. This makes them more susceptible to 
attacks, which can, in turn, create vulnerabilities that hackers might use to breach the 
larger cloud infrastructure.



64 CHAPTER 3 Sustainable hardware and software design challenges 

3.5 Artificial intelligence for Green IoT
AI can enable machines to learn and solve problems similarly to humans, and have 
gained significant popularity across various disciplines [22] due to its ability to handle 
large amounts of data, a task where traditional systems often fall short [22]. As the 
number of IoT devices continues to grow, the volume of data generated has increased 
dramatically, making it challenging for traditional systems to manage. AI can play 
crucial roles in the future of IoT, potentially enabling smart decision-making that can 
help save energy, in alignment with the green IoT concept [3].

IoT devices produce substantial amounts of data, which is typically transferred to 
the cloud for further processing. These devices incorporate various types of sensors 
that collect both structured and unstructured data. While structured data can be eas
ily processed by traditional systems, unstructured data, such as videos, images, and 
sounds, requires significant computational power—resources that IoT devices gen
erally lack [23]. Whereas DL (an AI variant) enhances the efficiency of processing 
unstructured data [23], saving time, computation, and energy.

Cloud computing relies on centralized data centers to handle large-scale tasks, 
such as training DL models and performing complex data analytics. However, these 
data centers are energy-intensive. The power usage effectiveness of large data centers 
is typically around 1.2, meaning that 20% of their energy consumption supports in
frastructure, like cooling systems and power distribution [52]. This static power cost 
contributes significantly to the overall energy consumption of cloud systems.

For AI applications, cloud computing provides efficient scaling and parallel pro
cessing. However, as the traffic and computational load increase, so does the dynamic 
energy consumption of the cloud systems. Furthermore, transmitting data from IoT 
devices to the cloud increases network energy consumption. For example, a study 
showed that static power consumption from idle servers and routers, combined with 
the dynamic costs of data transmission, creates inefficiencies, especially in low
bandwidth IoT applications [48].

On the other hand, deploying AI on edge computing can amplify the benefits 
provided by edge networks. Edge AI reduces latency further and filters unnecessary 
data, ensuring that only relevant information is transmitted to the cloud, thus sav
ing transmission energy [3]. With the AI model running locally, the IoT system can 
continue to function without connectivity, and the AI system can troubleshoot and 
predict potential issues before they cause system failure, improving both availability 
and uptime [3].

Video sensing and image recognition are key applications within the IoT do
main that deal with unstructured data. These technologies combine image processing 
and computer vision to enhance IoT networks [22]. However, accurately recogniz
ing objects in low-quality video data captured by IoT devices remains a significant 
challenge [22]. Given the impressive accuracy of DL techniques in video recogni
tion tasks, this area exemplifies how DL can be leveraged in IoT applications [22]. 
An example of this is the license plate recognition system as illustrated in Fig. 3.4
[53]. In traditional cloud-based architectures, images captured by cameras are trans
mitted to the cloud for processing, recognition, and storage, leading to high data 
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FIGURE 3.4 

An illustration of license plate recognition process [53].

transfer and bandwidth consumption, which results in excessive energy usage. How
ever, when implemented with edge intelligence, the recognition software runs locally 
on the camera system, meaning only the license plate number and associated meta
data need to be sent to the cloud. This significantly reduces bandwidth requirements 
and energy consumption.
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Minimizing energy consumption in DL is essential for battery-powered edge de
vices in IoT systems. Reducing computational complexity naturally lowers energy 
use, but further research into how DL computations interact with battery management 
mechanisms—such as CPU throttling and sensor hardware optimizations—could 
reveal additional opportunities for energy savings [54]. Techniques like change de
tection, implemented either in software or hardware, can reduce the frequency of 
DL executions, lowering the overall energy demand [54]. While optimizing energy 
efficiency in hardware is important, a comprehensive understanding of how these 
hardware optimizations interact with broader system mechanisms, such as battery 
management and edge server resource trade-offs, is crucial for achieving overall en
ergy optimization [54]. Another strategy for improving energy efficiency in edge 
intelligence involves reducing the size and complexity of neural networks deployed 
on edge devices [55]. In [55], the authors propose a neural network compression 
method called DeepIoT, which is applicable to common architectures, including fully 
connected, convolutional, and recurrent neural networks. This technique can reduce 
the size of deep neural networks by up to 98.9%, leading to a 72.2% to 95.7% de
crease in energy consumption, all without sacrificing accuracy [55].

3.6 Conclusion
Green IoT represents a transformative approach to the development and deployment 
of IoT systems, aiming to minimize their environmental impact while maintaining 
functionality and efficiency. By addressing key challenges such as energy consump
tion, resource optimization, and sustainability, green IoT seeks to align technological 
advancement with ecological responsibility. The core principles of green IoT empha
size the use of energy-e˙icient hardware, sustainable communication technologies, 
and EH methods that reduce reliance on traditional power sources. Alongside hard
ware improvements, advancements in edge and fog computing bring computational 
resources closer to IoT devices, thereby lowering the energy demands associated 
with data transmission and cloud processing. These decentralized approaches not 
only improve energy efficiency, but also enhance system responsiveness, supporting 
real-time applications. Moreover, the integration of AI, ML, and DL technologies 
further optimizes IoT operations by enabling intelligent decision-making, predictive 
analytics, and efficient resource allocation, ensuring minimal energy waste. Despite 
the promising potential of green IoT, several challenges persist, including trade
offs between energy efficiency and performance, economic feasibility, and security 
concerns. Overcoming these barriers requires collaborative efforts from researchers, 
developers, and policymakers to create cost-effective, secure, and sustainable IoT 
ecosystems. By focusing on energy-e˙icient design, sustainable practices, and the 
integration of advanced technologies, green IoT can pave the way for a sustainable 
digital future, ensuring that the growth of IoT contributes positively to both society 
and the environment.
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4.1 Introduction to NTNs
NTNs are an incomparable advancement in communication technologies. They ex
tend complex connections beyond terrestrial borders with a constellation of spe
cialized airborne and space-borne platforms. The space-borne platforms consist of 
satellites and are divided into three primary types: Geostationary Earth Orbit (GEO) 
satellites, Medium Earth Orbit (MEO) satellites, and Low Earth Orbit (LEO) satel
lites. GEO satellites are about 35,786 km from Earth and always occupy the same 
position above the equator. The best utility of this type of satellite is for continu
ous, wide-area coverage. GEO satellites are widely used in television broadcasting 
and meteorological monitoring applications. MEO satellites travel at distances from 
2,000 km to 35,786 km above the equator. Mostly, MEO satellites are used in global 
positioning and navigation systems. MEO satellites offer a great compromise be
tween the area over which coverage is provided and the delay in signal strength. LEO 
satellites operate above Earth in the range between 180 km and up to 2,000 km, pro
viding much lower latency and increased bandwidth that are essential for real-time, 
data-intensive IoT communication [1--3].

Besides satellites, NTNs consist of airborne platforms consisting of High-Altitude 
Platforms (HAPs) and Unmanned Aerial Vehicles (UAVs), which are an essential 
part of NTNs [4,5]. HAPs encompass objects such as balloons or airships within the 
stratosphere, which can provide localized communications coverage that is close to 
that of a satellite. In addition, HAPs offer more operational flexibility and reduce the 
necessary operational costs. These platforms are particularly used to provide tempo
rary solutions for connectivity during live events, emergency response situations, or 
other transient conditions that demand extra coverage with lower latency [4]. UAVs or 
drones augment the high flexibility of NTNs with their quick deployability to ensure 
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FIGURE 4.1 

NTN layers supporting IoT connectivity.

disaster areas receive immediate ad-hoc network support. UAVs are also deployed 
to provide support in wide areas hosting important events, ensuring network avail
ability in critical situations [5]. Fig. 4.1 shows the hierarchical arrangement of NTN 
components comprising GEO, MEO, LEO satellites, HAP, and UAV interconnected 
with terrestrial and core networks to enable seamless data exchange and Low-Power 
Wide-Area Network (LPWAN) for sustainable IoT applications.

The integration of NTN is critical in geographical or underdeveloped regions, 
where laying physical cables in the ground or installing cell towers and terrestrial 
infrastructure is not possible or economically viable [6]. NTNs in these regions cat
alyze the expansion of robust communication services, driving the world closer to 
seamless global connectivity. The integration of NTNs becomes especially important 
with respect to IoT, where seamless connectivity in a wide range of locations is essen
tial for continuous data collection and delivery between devices [7]. IoT applications 
that support environmental monitoring in remote wilderness or real-time data man
agement with offshore oil platforms are highly dependent on the wide coverage and 
support of NTNs. NTNs are also highly beneficial in enhancing network resiliency, 
as they provide alternative data routes, useful when the terrestrial network fails, par
ticularly during calamities. In case of such natural disasters, readily available NTNs 
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provide continued communication, aiding the key emergency services and coordina
tion [8].

The strategic deployment of NTNs immensely relieves the congestion that exists 
on terrestrial networks by managing the excess overflow of information traffic. The 
network overburden is imperative given the exponential growth in the number of IoT 
devices, which tends to exert a strain on the existing network infrastructure. Through 
the use of NTNs, diversification of the data path occurs, hence enhancing the overall 
network performance. NTNs not only guarantee increased service quality, but also 
ensure that the network attains sustainability through optimized performance of the 
energy resources as well as minimized usage of extensive physical infrastructural ex
pansions that cater to the modern-day challenges of network demand, connectivity 
reliability, and inclusivity on a geographically wide scale. As we move forward, the 
combination of terrestrial and NTNs would, without a doubt, be one of the pillars 
around which the revolution in the global communication landscape unravels, espe
cially in the vast and variably connected space of the IoT [7] [9].

4.2 NTNs and IoT connectivity
The integration of NTNs with existing terrestrial and IoT infrastructure is a step for
ward in achieving full global connectivity. This is important to create a connectivity 
mesh around the world that welcomes both traditional ground-based networks and ad
vanced aerial and satellite systems [10]. To ensure the seamless operation of global 
IoT systems, it is important to have such a connected mesh, especially in providing 
reliable service delivery in areas with a sparse or non-existent terrestrial network. By 
providing stable internet connectivity, the NTNs enable these areas to be connected 
to the internet, allowing these populations to participate more positively in the global 
digital economy. This is not only for accessing information, but also for varied ser
vices including advanced health, education, and disaster management, in which the 
data exchange is of great importance [1] [11].

The integration of NTNs extends the capability of IoT to support massive deploy
ments across a range of sectors. This promise of IoT technology for the transforma
tion of industrial operations, agriculture, and urban management relies heavily on 
handling a big network of devices that work smoothly and efficiently. Here, NTNs 
are providing a major solution for increased bandwidth and wider coverage [10]. An 
example is in large agricultural lands, where traditional terrestrial connectivity can 
hardly cover all the areas, leading to the formation of blind spots. NTNs remove 
these gaps by offering farmers detailed real-time data from sensors. These sensors 
are spread across large fields and enable farmers to achieve an optimized irrigation 
system, including pest management, and crop health monitoring [12]. Similarly, in 
urban scenarios, where the density of devices and data demand is massive, NTNs 
take the load off the terrestrial networks by spreading the data traffic across the avail
able spectrum [13]. This will not only make the operation of the IoT applications run 
smoother, but also enable the urban network service providers to achieve optimized 
infrastructure, and obtain higher spectrum efficiency and greater reliability [14].
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Table  4.1 Comparison of NTNs and terrestrial networks for IoT connectivity.

Parameter Terrestrial Networks NTNs
Coverage Area Limited to urban and suburban 

areas
Global, including remote and 
underserved areas

Bandwidth High Varies, typically lower than 
terrestrial

Latency Low Higher due to signal travel distance
Deployment Cost High initial cost, lower 

maintenance
Lower initial cost, higher 
operational cost

Scalability Limited by infrastructure Highly scalable across vast regions
Reliability High in covered areas Consistent, even in challenging 

environments
Data Handling 
Capacity

High Can handle large volumes from 
numerous devices

The NTNs support massive data from a large number of devices, a game changer 
for IoT deployments. It not only has the potential to support the current scale of 
IoT implementations, but also has to support future network expansions. The ex
pandability that NTNs have in place ensures the network’s growth with technological 
advances in the IoT and the expected resultant growth in data traffic, while maintain
ing service performance at full speed and quality [15]. In addition, NTNs improved 
connectivity, paving the way for the use of more sophisticated IoT applications. One 
such example is in industrial IoT applications, which require precision and efficiency, 
where the use of NTNs ensures that complex automated processes and machin
ery operate continuously [16]. NTNs significantly improve productivity and safety 
and reduce downtime due to connection issues, allowing real-time monitoring and 
maintenance. The merger of NTN with industrial IoT networks represents simply 
an incremental value addition to the existing system and is a step toward a global 
IoT infrastructure that is more accessible, more connected, and finally more capable 
[17]. Table 4.1 provides a comparison of NTNs and terrestrial networks for IoT Con
nectivity, highlighting differences in coverage, bandwidth, latency, deployment costs, 
scalability, reliability, and data handling, showcasing NTNs’ strengths in global and 
remote IoT applications.

4.3 NTNs sustainability challenges and opportunities
The deployment and maintenance of NTNs inherently involve significant environ
mental and sustainability challenges, largely due to the energy-intensive nature of 
their lifecycle. The process begins with the manufacturing of components, such as 
satellites, UAVs, and HAPs, which require substantial amounts of various raw ma
terials, including metals and composite materials that are often procured through 
environmentally taxing mining practices. Many of these materials, such as lithium for 
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Table  4.2 Life cycle of NTNs, environmental impacts, and sustainable solutions.

Life Cycle Stage Environmental Impact Sustainable Solutions
Manufacturing Raw material extraction (e.g., 

lithium, rare earth elements)
Use of recycled materials, 
eco-friendly mining practices, 
material substitution

Launch High carbon emissions from 
rocket propellants

Development of reusable rockets, 
green propellants, more efficient 
launch schedules

Operation Energy consumption (satellites 
in orbit, ground stations)

Increased use of solar power, 
energy-e˙icient ground station 
designs

End-of-Life 
Management

Space debris, decommissioned 
satellites

Recycling/re-purposing satellites, 
safe de-orbit technologies, space 
debris mitigation

Broad Impact Disruption from terrestrial 
infrastructure (e.g., 
deforestation)

Reducing terrestrial reliance 
through NTN connectivity

Resource 
Management

Efficient water and fertilizer use, 
renewable energy management

IoT applications for agriculture, 
real-time data collection for remote 
installations

batteries and rare earth elements crucial for electronic components, often have com
plex extraction processes associated with high environmental costs, such as habitat 
destruction, water pollution, and high carbon emissions [1]. Next, the launch phase 
of the satellites introduces another layer of environmental impact. The rocket launch
ing process used to place satellites into orbit is the most carbon-intensive aspect of 
NTN operations. These launches utilize rocket propellants that release significant 
amounts of carbon dioxide and other pollutants into the atmosphere, contributing 
to both localized air pollution and global greenhouse gas emissions [18]. There is 
another environmental impact due to the satellite constellation that needs to be main
tained by launching new satellites, especially as more and more satellites reach their 
end of life and require replacement [19]. Once operational, NTNs continue to con
sume energy, predominantly to power the satellites in orbit and the ground stations 
that control them. Although solar power provides much of the in-orbit energy needs, 
ground operations often rely on conventional energy sources that may not be sustain
able. Furthermore, the end-of-life management of these technologies poses a critical 
sustainability challenge, as decommissioned satellites can contribute to the growing 
problem of space debris. Space debris not only poses a threat to other satellites and 
space missions, but also represents a long-term environmental concern in near-Earth 
space [20,21]. Table 4.2 illustrates the environmental impact throughout the NTN 
lifecycle and the solutions that support this with an effective green approach that sup
ports sustainability across every stage in their life cycle, from manufacturing through 
to end-of-life management, to enable positive contributions towards overall global 
sustainability.
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4.3.1 Opportunities for sustainable solutions
Despite these challenges, NTNs hold substantial potential for fostering sustainable 
IoT systems and reducing the environmental footprint of global connectivity infra
projects. One of the most pronounced benefits is their ability to minimize reliance on 
terrestrial infrastructure, which is often more invasive and resource-intensive to build 
and maintain. Terrestrial network components such as cell towers and ground ca
bles necessitate extensive physical disruption, including deforestation and landscape 
alteration, to establish network coverage, especially in rural or environmentally sensi
tive areas. By providing connectivity from the sky, NTNs can drastically reduce these 
intrusions, thereby preserving natural habitats and decreasing the carbon footprint as
sociated with constructing and maintaining terrestrial networks [14]. The expanded 
coverage offered by NTNs enables more effective management and utilization of nat
ural resources, especially for IoT applications powered by NTNs in agriculture can 
optimize the use of water and fertilizers, reducing waste and environmental impact. 
Similarly, NTNs can support efficient renewable energy management by facilitating 
real-time data collection and control of remote installations, like wind farms, located 
in offshore or hard-to-reach areas. The remote connectivity achieved through NTNs 
ensures energy is harnessed and distributed more efficiently, aligning with goals for 
reducing greenhouse gas emissions [22].

There is also a growing trend towards incorporating sustainability into the design 
and operation of NTNs themselves. Innovations in technology are gradually reduc
ing the size and weight of satellite components, which lowers the materials required 
and also decreases the fuel requirement needed for launches and daily operations. 
The advancements in propulsion and materials science are improving the lifespan of 
satellites and ultimately reducing the frequency of launches. There is a need to recycle 
older satellites and use them for different applications. The safe de-orbiting of satel
lites, when they reach their end of life, is also a promising avenue to explore for the 
reduction of space debris, and it also minimizes the environmental footprint of NTNs 
[23,24]. The integration of sustainable practices in NTNs reduces their ecological 
impact, and encourages eco-friendly IoT adoption. Since NTNs reduce dependence 
on terrestrial infrastructure and address sustainability challenges, they support global 
environmental goals and will, therefore, form a vital role in the road to greener, long
term strategies for a hyperconnected world [25].

4.4 Energy efficiency in NTNs
Energy efficiency is critical for all communication systems, especially for NTNs 
where the lifespan of the equipment is highly energy-constrained. The NTNs’ en
ergy dependency is driven by innovations in different technological domains. Solar 
energy is the most important domain for the NTNs as it drives the space-born and 
usually drives the air-born equipment. All the satellites and most of the HAPs and 
UAVs are equipped with state-of-the-art solar panels that convert sunlight directly 
into electrical energy to meet the power requirements of these systems [14]. Recent 
advancements in photovoltaic cell technology have led to increased efficiency and re
duced weight, resulting in ultra-light materials. These innovations have significantly 
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improved the power-to-weight ratio, enhancing the operational longevity and overall 
efficiency of NTN platforms [26].

The advanced signal processing algorithms achieved better energy efficiency for 
both uplink and downlink data [27]. These innovative error detection and correction 
solutions provide better signal integrity with minimum power consumption. Although 
the complexity of the system is often increased, the low power requirement makes 
them ideal for IoT and NTNs as both sides of the network are energy-constrained 
[28]. There are several modulation schemes available in the literature that demon
strate promising results in achieving energy efficiency, and if they can be imple
mented, they have the potential to improve the energy efficiency of NTN networks 
[14,29,30]. The adaptive communication protocols used in IoT and NTN dynami
cally adjust the energy used based on the quality of the communication link and data 
demands, and also conserve the energy on both the IoT and NTN side of the network 
[31]. The novel designs of UAVs also help them achieve better energy efficiency. 
Modern UAVs are usually designed with superior aerodynamics and equipped with 
lighter materials to reduce drag and energy consumption. The integration of AI results 
in intelligent navigation systems that allow for optimized travel paths, and reduce 
unnecessary maneuvers, thereby extending the battery life and operational duration 
[32]. In the following subsections, we will dive deep into the technologies enabling 
NTNs to achieve energy efficiency.

4.4.1 Advanced technologies for energy efficiency
Several emerging technologies, such as beamforming and massive Multiple-Input 
and Multiple-Output (MIMO) possess the potential to enhance the energy efficiency 
of NTNs. Beamforming is a technology that focuses the concentration of wireless 
signals toward a specific direction, resulting in a directional gain. Beamforming pos
sesses the potential to improve the transmission and reception of signal energy, which 
not only improves signal quality but also reduces power wastage in other direc
tions [33]. Beamforming, when combined with massive MIMO technology, further 
enhances the performance of the communication system. Massive MIMO is a tech
nology where a large number of antennas are embedded in the base station. The 
base station serves the different devices simultaneously through spatial multiplexing, 
leveraging beamforming for focused signals, and also results in reduced interference 
for other nearby devices. The combination of massive-MIMO and beamforming en
hances the energy efficiency of NTN and IoT networks by focusing the signal power 
on the intended users, minimizing energy wastage, and improving the coverage of the 
network in the remote areas [34,35].

4.4.2 Energy harvesting
The role of NTNs in enabling IoT devices to leverage energy harvesting technologies 
opens a new dimension of sustainability, especially in energy-constrained environ
ments. Energy harvesting refers to the process by which energy is derived from 
external sources and converted to electricity to power IoT devices. These sources 
are easily available in the environment, and utilizing them reduces the dependency 



78 CHAPTER 4 Role of non-terrestrial networks in achieving sustainability 

on conventional power sources. Energy harvesting improves the autonomy of devices 
and improves the self-sustainability of the devices and the overall network as well 
[14,36]. Table 4.3 provides a concise comparison of the solar, kinetic, and thermal 
energy harvesting options for NTN-IoT devices, including typical application areas, 
advantages, and implementation challenges.

Table  4.3 Comparison of energy harvesting methods.

Energy Source Application Area Advantages Challenges
Solar Energy Agricultural fields, 

remote areas
Sustainable power 
source, easy to deploy

Weather-dependent, 
initial setup cost

Kinetic Energy Urban settings, 
roads, bridges

Utilizes ambient 
energy, reduces 
external power need

Low energy yield, device 
complexity

Thermal Energy Industrial 
environments

Uses temperature 
gradients, reliable in 
high-temp areas

Initial setup cost, 
efficiency varies by 
environment

Solar energy harvesting
In remote areas, where IoT devices are deployed, such as agricultural fields or wildlife 
monitoring areas, solar energy provides a sustainable power source that can keep 
devices running indefinitely, depending on weather conditions. The solar panels on 
these devices capture sunlight, which is then converted into electrical energy to power 
sensors and communication modules [37]. The dependence on solar reduces battery 
and fossil fuel-based energy consumption and overall reduces the carbon footprint 
of the overall network. The longer life of high-quality solar panels, which is around 
twenty years, is a huge contributing factor towards the sustainability of this solution.

Kinetic energy harvesting
Kinetic energy harvesting is the process of converting motion or mechanical vibra
tion into electrical energy. Most kinetic energy harvesters depend on mechanical
to-electrical energy converters. Typically, this process consists of three stages. The 
first stage, energy capture, involves coupling externally provided motion or vibration 
to a mechanical structure, such as a spring or mass, to facilitate energy conversion. 
The second stage, energy conversion, transduces the captured mechanical energy into 
electrical energy using mechanisms such as electromagnetic induction, piezoelectric
ity, or electrostatic methods. The third and final stage, energy conditioning and stor
age, processes and stores the harvested energy in batteries or supercapacitors, ensur
ing a stable power supply for IoT devices. Several key components are involved in this 
process. The important ones among them are energy transducers. Energy transducers 
are classified as mechanical, magnetic, and electrostatic. Piezoelectric materials fall 
into the first category, converting mechanical stress into electricity using quartz or ce
ramic elements. Coming to electromagnetic generators utilize the motion of a magnet 
through a coil in order to induce an electric current, using Faraday’s law. Finally, the 
electrostatic generators work on the principle of converting changes in capacitance 
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caused by mechanical motion to generate power. The second constituent in this in
teraction is the source of vibration, such as ambient vibrations from machinery or 
wind, even from user activity in wearable devices, and it provides mechanical energy 
to actuate the system. Mechanical structures, such as cantilever beams, resonators, 
or springs, amplify the mechanical vibration to improve the capture efficiency of vi
brational energy. Power management circuits will finally regulate the output voltage 
and current to match IoT devices for energy storage in batteries or supercapacitors. 
Kinetic energy harvesting is suitable for IoT in NTN scenarios, like satellites, UAVs, 
and remote sensors, where ambient motion is rich, such as wind, vibration, or body 
movement. It provides a renewable and sustainable power source to reduce the fre
quency of battery replacement and enhance the reliability of IoT networks [38].

Thermal energy harvesting
Thermal energy conversion is also an emerging trend in which temperature differ
ences are used to generate electricity. Thermal energy harvesting works by converting 
heat into electrical energy using thermoelectric materials and leveraging the temper
ature difference between two surfaces or regions. The process is primarily based on 
the Seebeck effect, a phenomenon where a voltage is generated across two dissimilar 
conductors or semiconductors that experience a temperature gradient.

The thermal energy harvesting process is divided into several steps. First, the heat 
absorption, where a heat source, such as solar radiation, electronic devices, or nat
ural geothermal heat, generates thermal energy. Heat collectors capture this energy 
and transfer it to the thermoelectric generator (TEG). Second, the creation of a tem
perature gradient. The TEG has two sides, one exposed to the heat source (hot side) 
and the other connected to a heat sink (cold side). A temperature difference is estab
lished between the two sides, which is crucial for generating electricity. Third, the 
electron movement via thermoelectric materials. Inside the TEG, thermoelectric ma
terials such as bismuth telluride or silicon-germanium alloys facilitate the conversion 
of the temperature difference into an electric current. The hot side excites electrons, 
causing them to move towards the cooler side, creating a flow of charge. Fourth is 
the energy output stage. The resulting voltage from the temperature difference gener
ates Direct Current (DC) electricity. The amount of electricity is proportional to the 
material’s thermoelectric efficiency and the magnitude of the temperature gradient. 
The fifth step is power regulation, where the harvested electricity is typically low in 
voltage and requires regulation to be usable by IoT devices. A power management 
circuit, including voltage regulators and converters, ensures the output is stable and 
matches the device’s energy requirements. The last step is energy storage, which is to 
provide continuous power, especially when the temperature gradient fluctuates. The 
harvested energy is stored in batteries or supercapacitors. This ensures IoT devices 
have a reliable energy supply even during periods of minimal heat availability.

Over the years, there have been several enhancements in thermal energy har
vesting systems however there are several open research challenges that can fur
ther improve these systems, like the advanced thermoelectric materials with higher 
Seebeck coefficients and thermal conductivities improve conversion efficiency. The 
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integration of Phase Change Materials (PCMs) which store excess thermal energy 
during peak heat and release it during cooler periods, maintains a steady temperature 
gradient. The development of hybrid harvesting systems combines thermal energy 
harvesting with other energy sources, such as solar or kinetic energy, for higher reli
ability and efficiency in NTN-IoT networks.

This seamless energy harvesting process ensures that IoT devices in NTNs operate 
autonomously in remote or harsh environments, reducing dependency on traditional 
power sources and supporting sustainable energy practices [39].

4.4.3 Optimization through low-energy protocols
Beyond enhancing hardware efficiency and incorporating energy harvesting strate
gies, energy efficiency in NTNs is achieved through the implementation of low
energy protocols. These protocols are designed to minimize energy consumption 
during data transmission and reception. This is crucial for the longevity and sus
tainability of NTN communication platforms [40--43].

An example of such protocol optimization is the use of LPWAN technologies 
in NTNs. LPWAN technologies are specifically designed for long-range communi
cation between IoT devices while consuming very little power. Integrating LPWAN 
technology with NTN infrastructures significantly prolongs the operational life of 
individual IoT devices deployed in remote areas, reduces maintenance frequency 
due to battery depletion, and ensures continuous data collection and monitoring, all 
while maintaining minimal energy usage [44]. There are several subcategories of 
Low-Energy Protocols, and we will explore them in detail in the following sections. 
Complementing these protocol-level strategies, Table 4.4 summarizes representative 
energy-e˙icient signal-processing techniques, outlining their purposes and the bene
fits they offer in NTN deployments. 

Table  4.4 Energy efficiency techniques in signal processing.

Technique Purpose Benefits
Error Correction Codes Maintain signal integrity Reduces power use, improves 

reliability
Power-saving 
Modulation

Minimize power requirement 
for data transmission

Increases energy efficiency, 
reduces power waste

Adaptive 
Communication 
Protocols

Adjust energy use based on 
link quality

Optimizes energy consumption, 
conserves power

Dynamic Power Management (DPM)
These strategies are very important and are considered an integral portion of the 
NTN power management system. DPM involves the use of software and hardware 
techniques that dynamically adjust the power state of network components based 
on current network load and performance requirements. The DPM is used to switch 
certain parts of a satellite payload to a low-power state during periods of low commu
nication activity, thus conserving energy without impacting the overall performance 
of the networks [45].
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Efficient network routing
Enhanced routing protocols also contribute significantly to energy conservation in 
NTNs. Efficient routing algorithms ensure that data packets sent from source to des
tination follow the most energy-e˙icient path, thus minimizing the power consumed 
during transmission across networks. The pathfinding algorithms, such as Dijkstra’s 
algorithm or Bellman–Ford algorithm, are among the most popular in obtaining the 
most suitable paths. Suitable route exploration, route selection, and dynamic route 
updates are the stages of these algorithms. These routes are calculated not only based 
on the shortest path but also take into account current network conditions and energy 
profiles of the nodes, optimizing energy use across the network architecture [46,47].

Energy-aware system design
Beyond protocols, the complete design philosophy for NTNs has the potential to 
embed energy-aware strategies at various levels of abstraction, which range from 
hardware design to operational and management strategies; this includes the use of 
materials or components that allow saving energy, or system designs that make more 
efficient heat dispersal possible, and leveraging software techniques, which reduce 
computational burdens, thus slashing the energy input required by a processing unit 
mounted on an NTN platform [48,49].

Implementation of smart sleep schedules
Smart sleep protocols are also employed across IoT and NTNs. These protocols are 
especially viable for satellite and UAV-operated networks. The smart sleep protocols 
intelligently determine inactive periods of the devices and put these devices into sleep 
mode or low-power modes. The sleep mode significantly reduces the power usage of 
devices and it is only used when full operation is unnecessary. Smart sleep schedules 
are dynamically adjusted based on real-time data usage patterns and predictions of 
network demand, optimizing energy utilization [14].

All these techniques, such as low-power protocols, dynamic power management, 
efficient network routing, energy-conscious system design, and smart sleep sched
ules, offer an avenue for NTNs to further their sustainability. The sustainability results 
in improved power savings and the improvement of network component life. Such 
strategies align with the United Nations’ sustainability vision, but also provide a guar
antee for NTNs to increase their reliability. The economic impact of sustainability is 
huge and results in further deployment and extension of services for IoT networks. 
By emphasizing low-energy software and network management techniques, a criti
cal opportunity is opened to significantly enhance the environmental sustainability
of next-generation network technologies, enabling a more resource-e˙icient future in 
the realm of global communications.

4.5 Case studies and real-world applications
The transformative impact of NTNs in sustainable IoT applications can be best under
stood through specific case studies that illustrate their deployment and functionality 
in various sectors. Each case study showcases the practicability and benefits of NTNs 
and contextualizes their role in enhancing IoT-driven sustainability.
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4.5.1 Environmental monitoring
Rainforest Connection (RFCx)1 is a San Francisco-based organization that develops a 
solution that utilizes innovative hardware, NTNs, and cutting-edge software to enable 
effective wildlife and forest conservation. RFCx built hardware, at the core of their 
innovative solution, termed ``Guardians'', which is fundamental in detection and data 
transmission. The Guardian is fabricated from recycled smartphones, making them 
very viable, cost-effective solutions that are sustainable. Smartphones have been con
verted to microphones, picking up sounds like chainsaws, gunshots, or even the call 
of animals in the forest. Guardians are also fitted out with extra hardware compo
nents: solar panels that allow the devices to continuously supply power from remote 
locations using renewable sources when traditional energy sources are not available. 
These solar panels are very efficient and, therefore, can allow these devices to operate 
24/7 without maintenance, even in adverse weather conditions.

It combines NTN-based connectivity solutions, including satellites and HAPs, 
whichever solution is geographically feasible to facilitate communication in areas 
bereft of terrestrial network coverage. Guardians use terrestrial networks where avail
able, but, in case of their absence, rely on satellite communication to transmit real
time audio data to the cloud. The NTNs form a critical link from these remote forest 
monitoring systems to the centralized data processing centers. This makes RFCx re
liably transmit the data from locations considered so out of reach through satellites 
to have continuous monitoring in large-scale areas of the forests. By routine, a forest 
guard patrols through an area by vehicle or on foot. The work of these guard person
nel was thus made smooth and effective since one need not patrol physically on the 
ground through the areas assigned.

Once the audio reaches the cloud, it is further analyzed on advanced ML and 
AI algorithms. The algorithms are engineered to identify shots, chainsaw sounds, 
or other animal distress calls associated with specific illegal logging, poaching, or 
other harms. The NTN supports this by allowing low-latency data transmission from 
Guardians to processing centers, so that possible threats can be identified quickly 
and a rapid response facilitated. It does this by distinguishing between all the natural 
sounds of the rainforest and those that are artificial, such as chainsaws, gunshots, or 
vehicles; thus, the alerts given are highly accurate.

The satellite-based communication system also contributes to RFCx being scal
able and adaptable. Since NTNs mean an organization could deploy Guardians across 
diverse regions �- from the dense Amazonian rainforests to isolated areas in Africa 
and Southeast Asia �- without the use of any ground-based communications in
frastructure, it enables RFCx to reach large swaths of forests while adjusting their 
systems according to varied environments. Incorporating IoT-enabled Guardians with 
any NTN creates an ecosystem with a powerful platform for making actionable in
sights using connectivity and data processing. RFCx works with local authorities, 
governments, and communities by giving them access to real-time alerts created 

1 https://RFCx.org/.

https://RFCx.org/


4.5 Case studies and real-world applications 83

by the Guardians. This is further facilitated through the use of cloud computing 
services linked to NTN systems. NTNs fill in the gap in connectivity for conserva
tionists to take quick action and contain deforestation, poaching, and other dangers to 
biodiversity. This seamless integration of hardware, NTNs, and AI-driven analytics 
underlines the technological sophistication and environmental impact of the RFCx 
method. Their work epitomizes how NTNs and IoT could shape the future in the 
name of global conservation, offering a replicable, sustainable model for the protec
tion of natural ecosystems.

4.5.2 Precision agriculture
CropX2 is a leading digital agronomy platform that integrates advanced hardware and 
software solutions to provide comprehensive farm management. Founded in 2013 in 
New Zealand, the company has expanded its expertise globally, offering tools that 
aggregate data from various sources to monitor field and crop health effectively. 
The CropX system comprises several key components like Soil Sensors, which are 
patented spiral-designed sensors that measure soil moisture, temperature, and electri
cal conductivity, providing real-time data essential for informed irrigation decisions. 
Telemetry devices facilitate the wireless data transmission from the sensors to the 
cloud-based platform, ensuring seamless integration and accessibility. The Actual 
Evapotranspiration (ETa) sensors of CropX measure and monitor the water use of 
crops daily in real-time, enabling precise irrigation planning. The rain gauges are 
precisely the tipping-spoon rain gauges that capture accurate precipitation data, con
tributing to effective water management strategies.

The combined data collected is synthesized into a specially designed, user
friendly application capable of managing multiple farms and fields from a single 
account. This holistic approach allows farmers to make data-driven decisions about 
irrigation, disease control, nutrition monitoring, and effluent management. While 
CropX primarily utilizes terrestrial IoT devices for data collection and transmis
sion, the integration of NTNs, such as satellite communications, holds the potential 
for enhancing connectivity, especially in remote agricultural areas. NTNs can pro
vide reliable data transmission where traditional cellular networks are unavailable, 
ensuring continuous monitoring and management capabilities. The CropX solution 
is promoting sustainable agricultural practices. By incorporating advanced technol
ogy, the company has achieved a 36% reduction in greenhouse gas emissions and a 
47% decrease in water usage compared to traditional irrigation methods. These ef
forts contribute to environmental conservation and support the long-term viability of 
farming operations. CropX’s innovative agronomy platform exemplifies how the inte
gration of IoT technologies can drive sustainable and efficient farming practices. The 
potential incorporation of NTNs further enhances these capabilities, offering robust 
solutions for modern agriculture.

2 https://cropx.com/.

https://cropx.com/
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4.5.3 Disaster management
The American Red Cross3 requires no introduction. It has enormously upgraded its 
response to disasters by introducing advanced technologies that allow it to intervene 
at the quickest possible time in disaster situations. This technological advancement 
has been headlined by the Disaster Services Technology (DST) team that installs 
and operates communication networks in disaster areas. The DST team deploys 
various equipment, including radios, computer networks, cell phones, tablets, and 
laptops, and manages to keep connectivity for the Red Cross operations. This inte
grated arrangement thus provides great coordination among the response teams and 
timely dissemination of information to people in need. The Red Cross uses Geo
graphic Information Systems (GIS), and UAVs, where the GIS allows analysis and 
visualization of data on disaster impact, resource allocation, and logistical planning 
for better decision-making during relief operations. These UAVs provide immediate 
aerial views of affected areas, thus enabling responders to gauge the extent of dam
ages, locate areas inaccessible, and effectively marshal assistance efforts.

Central to the Red Cross’s technological framework is the disaster management 
system �- previously RC View, which was recently replaced by Arc GIS Online4

developed by Esri �- an innovative IT support system that integrates real-time data 
into a unified platform, offering a comprehensive view of disaster situations. This 
system enables the Red Cross and its partners to share visual situational awareness, 
manage disaster operations more effectively, and coordinate responses with greater 
precision. The organization is also exploring the use of AI to further streamline dis
aster response. By automating tasks and analyzing data swiftly, AI has the potential 
to reduce the need for extensive on-ground personnel, accelerate response times, and 
allow teams to focus on mission-critical activities.

Satellites feature in several different initiatives within the disaster response and 
preparedness activities of the American Red Cross. Current weather and forecast 
monitors, including observations, watches, warnings, and radar graphics from satel
lite imagery, are available through the organization’s Map, Weather, and Hazard 
Catalogs. The Red Cross uses satellite images in its effort to map the most vulnerable 
communities using a project called Missing Maps5 for risk reduction planning and 
assistance. The Red Cross Volunteers examine massive satellite imagery to locate ru
ral hamlets and villages, then ensure humanitarian organizations reach those in need; 
Humanitarian Organizations at the Red Cross encourage each one to join disaster pre
paredness through the Humanitarian OpenStreetMap Team (HOT)6 to utilize satellite 
imagery for developing newer, more complete and accurate geographic data. These 
initiatives show the commitment of the Red Cross to taking up space technology in 
effective disaster management and humanitarian assistance.

3 https://redcross.org/.
4 https://www.esri.com/en-us/arcgis/products/arcgis-online/overview.
5 https://www.missingmaps.org/.
6 https://www.hotosm.org/.

https://redcross.org/
https://www.esri.com/en-us/arcgis/products/arcgis-online/overview
https://www.missingmaps.org/
https://www.hotosm.org/
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Through the integration of these advanced technologies and volunteer efforts, the 
American Red Cross has developed a robust system capable of delivering rapid and 
effective disaster response. The integration of NTN and IoT technologies empowers 
organizations like the Red Cross to enhance disaster management through real-time 
connectivity, rapid response, and improved resource allocation, even in the most re
mote and underserved regions.

4.6 Technological innovations and future directions
In this section, we delve into the dynamic interfacing between NTNs and the IoT, 
investigating recent technological innovations and studies developed to improve NTN 
and IoT networks. We also discuss promising future research directions aimed at 
further integrating and improving NTN into eco-friendly IoT solutions.

4.6.1 Review of current technologies
Recent technological developments have been gradually improving the integration of 
NTNs with IoT devices. These improvements are focused on energy optimization and 
increased robustness in communications between terrestrial IoT networks and their 
non-terrestrial counterparts. We will discuss a few of these solutions in the following 
section.

Innovative antenna designs
Antennas in wireless communication play a vital role in both IoT and NTN sys
tems for data transmission and reception using electromagnetic waves. Compact and 
energy-e˙icient antennas are used in IoT to support low-power devices, while NTNs 
require high-gain, directional antennas that maintain reliable communication over 
long distances or in remote areas [50]. Recent developments in antenna technol
ogy represent a significant step forward. Antennas with improved energy efficiency 
not only reduce the power requirements for maintaining communications but also 
help enhance signal quality with superior directionality [51]. phased-array antennas, 
known for their ability to electronically steer the direction of their beam without mov
ing parts, ensure focused communication that dramatically cuts down the energy lost 
in signal spread [52]. This technology is ideal for dynamic environments, like those 
encountered in satellite or UAV-based communications, where traditional directional 
antennas would require constant mechanical adjustments [53].

Advancements in low-power communication protocols
The low-power communication protocol has been a driver of much development in 
IoT and NTN energy efficiency by enabling device communication with minimum 
energy consumption. Long-range protocols such as LoRa [54] and Sigfox [55] en
able IoT devices to send limited amounts of data over long distances and, hence, 
are particularly appropriate for NTN applications such as satellite-enabled remote 
monitoring. LoRaWAN [56] has enabled the realization of bidirectional wireless 
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communication with very low energy consumption, which allows sensors in agricul
tural fields to communicate information toward NTN-connected gateways. Another 
example is Bluetooth Low Energy (BLE) [57], which enables short-range IoT appli
cations, such as wearable health devices, to reduce power usage while maintaining 
reliable connectivity. Another important development in this regard is Narrowband 
IoT (NB-IoT) [58], which enables huge IoT deployment at low power consumption, 
allowing devices like smart meters and environmental sensors to function efficiently 
for several years on a single replacement of batteries. These protocols are partic
ularly advantageous in supporting IoT applications in remote or di˙icult-to-access 
areas, because they enable reliable connectivity and long battery life by transmit
ting small amounts of data over long distances without demanding much power and 
ensuring sustainability [59].

4.6.2 Future research directions
As we look to the future, several research initiatives are poised to further cement 
the role of NTNs in sustainable IoT applications. These efforts focus on enhancing 
network intelligence, reducing environmental impacts, and extending the capabilities 
and application scopes of NTN systems.

Integration of AI
Future research is increasingly focusing on harnessing AI to enhance the efficiency 
and functionality of NTNs in IoT applications. AI could lead to smarter data pro
cessing algorithms that predict network loads and adjust energy use accordingly. 
Moreover, AI can enhance decision-making processes within IoT devices, allowing 
for autonomous operations based on real-time data, which would be particularly use
ful in dynamic or unpredictable environments [60].

Exploration of advanced materials and technologies
The ongoing fascination with reducing the cost and improving the lifespan of NTNs 
has led to research into next-generation materials and battery technologies. Innova
tions such as graphene-based materials for lighter and stronger satellite structures, or 
cutting-edge energy storage solutions like solid-state batteries, are expected to rede
fine the operational parameters of NTNs. These advancements could lead to smaller, 
lighter, and more efficient satellites, UAVs, and IoTs that are cheaper to launch and 
operate and have a longer service life [61].

Satellite mega-constellations
The concept of deploying large numbers of smaller satellites in carefully planned con
stellations offers the potential for global coverage and resilient connectivity for IoT 
devices anywhere on the planet. Research into managing these mega-constellations 
effectively—and sustainably—concerns both the optimal design for coverage and the 
development of sustainable practices for dealing with satellite end-of-life scenarios, 
such as through automated deorbiting systems to prevent space debris [62].
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Emerging applications in deep-sea and remote monitoring
The potential for NTNs extends into novel applications such as deep-sea IoT con
nectivity and real-time environmental monitoring in geographically isolated regions. 
Developing communication technologies that can withstand harsh underwater envi
ronments or provide consistent performance in polar regions represents a leading 
edge of current research efforts [14].

As NTNs continue to evolve, their role in enabling a connected, sustainable world 
appears increasingly crucial. The ongoing advancements in antenna technology, com
munication protocols, and the integration of AI, along with the explorations into new 
materials and satellite constellation management, underscore a future where NTNs 
are pivotal in deploying extensive, eco-friendly IoT solutions globally. This pro
gressive trajectory highlights the importance of continued innovation and research 
in overcoming the existing challenges and unlocking the full potential of NTNs and 
IoT networks.

4.7 Policy and regulatory considerations
We now delve into the complicated landscape of policy and regulatory considerations 
that surround the deployment and operation of NTNs. These networks are indeed 
facing a host of regulatory hurdles that need to be negotiated with care in order to 
make sure the solutions are effective and compliant. This section debates specific 
policy recommendations that could facilitate the sustainable development of NTNs.

4.7.1 Regulatory challenges
The implementation of NTNs introduces several regulatory challenges, such as spec
trum management, space traffic management, and cross-border coordination. We will 
discuss each one in the following section.

Spectrum management
One of the most critical regulatory challenges for the NTNs has to do with the effi
cient management of the radio frequency spectrum, which is extremely limited and 
hotly contested. Ensuring that NTNs operate seamlessly, causing no interference to 
the terrestrial networks nor any other types of non-terrestrial communications, is 
highly important [63]. Regulatory bodies like the International Telecommunication 
Union spearhead this cause by overseeing how the spectrum will be allocated, among 
other factors, and building global standards into place. These are measures put in 
place to avoid conflicts, ensure coexistence, and make the spectrum resource avail
able to all stakeholders equitably [64].

Space traffic management
It is important to cope with the growing need for effective space traffic manage
ment while satellites continue to multiply, especially under large-scale constellations 
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already under deployment by different organizations like SpaceX,7 OneWeb,8 and 
many others. This creates great necessities regarding setting and observing robust 
regulatory frameworks that would sort out a few of the critical aspects involving 
satellite operations. Key issues also include satellite deorbiting protocols that make 
sure non-functional or end-of-life satellites are taken out of orbit safely and sustain
ably to reduce collision risks and further the creation of debris. Besides, collision 
avoidance can be ensured only if safe orbital operations are maintained, which again 
requires highly developed tracking systems, reliable communication between satellite 
operators, and adherence to predefined maneuvering standards.

All these go hand in hand with regulatory frameworks provided by relevant bodies 
such as the International Telecommunication Union and other national space agen
cies involved in their development and enforcement to encourage the sustainable use 
of space. It is critical to their enforcement, not only in terms of mitigating most of 
the immediate risks that come with space debris, but also to safeguard the usability of 
this environment as a common heritage. It follows that without an adequate manage
ment regime, there will probably be cascading collision events in effect, something 
often termed Kessler syndrome, where such orbits could well become unavailable to 
later missions. Rigorous management of space traffic will go hand in glove with sus
tainable space operation, especially with continuing growth into the satellite-based 
application, including NTNs and IoT solutions-appropriately looking after the envi
ronment for space into the future [65].

Cross-border coordination
The NTNs operate within many different national jurisdictions; any meaningful 
cross-border coordination must handle these regulatory and operational challenges 
robustly. Some of the central issues include data sovereignty: many nations require 
data collected within their borders to be stored, processed, and managed subject to 
that nation’s laws and regulations. It will be particularly hard on NTNs since often 
they deal with data transferring between satellites, ground stations, and users in differ
ent countries. The environmental regulations also have many differences depending 
on the nation; hence, going into making NTNs compliant with several different stan
dards over sustainability, emissions, and environmental impacts.

Comprehensive international agreements on the operations of NTN make for 
smooth operations. Organizations such as the International Telecommunication 
Union (ITU) and regional regulation bodies are very important in making these reg
ulations agree on a set of global standards. These will help in conflict resolution, 
smoothing out data management policies, and enforcing interoperability across bor
ders as NTNs remain operationally effective and sustainable in their manner [66].

7 https://www.spacex.com/.
8 https://oneweb.net/.

https://www.spacex.com/
https://oneweb.net/
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4.7.2 Policy recommendations
This section elaborates on some policy recommendations that can effectively address 
regulatory challenges to NTNs while contributing to their sustainable development. 
The following recommendations seek to achieve a proper balance between tech
nological development and environmental concerns through innovation and global 
coordination.

Incentives for green technology
The policy frameworks by governments have to be worked out that would incen
tivize firms to adopt or develop green technologies within NTNs; these incentives, 
in the form of tax breaks, grants for research and development, and subsidies, act 
to encourage them to integrate their NTN infrastructure using energy-e˙icient tech
nologies. It is expected that incentives or special regulatory treatment will be given to 
the companies deploying satellites or building renewable energy-powered ground sta
tions using solar, wind, or hybrid systems. Energy-e˙icient communication protocols, 
sustainable manufacturing, and advanced recycling for satellite components are also 
encouraged by the policies. If there is an increased innovation in renewable energy 
technologies and environmentally friendly design of equipment for NTN, the carbon 
footprint from NTN can be reduced. These will be instrumental in bringing in an 
environment that will make technological growth keep up with global sustainability 
objectives to help NTNs become greener and more efficient in communication [67].

Guidelines for Environmental Impact Assessments (EIAs)
The development of detailed, specific, and standardized guidelines for EIAs con
cerning NTNs will be very important for the sustainable development of NTNs. The 
EIAs should be made to cover all the possible environmental impacts of NTN ac
tivities, including atmospheric pollution from rocket launches, which would involve 
the emission of Greenhouse Gases (GHGs) and particulate matter, and impacts on lo
cal ecosystems from ground stations, including land use change, noise pollution, and 
interference with wildlife habitats. EIAs should contain lifecycle analyses of NTN 
infrastructure manufacturing, operation, and end-of-life phases, which will allow 
regulators and companies to find the most critical environmental risks. The imple
mentation of mitigation strategies is allowed, for instance, by the adoption of greener 
propellants, renewable energy used in ground stations, or the design of deorbiting 
systems that reduce space debris. Incorporating EIAs as a mandatory regulatory re
quirement will align NTN deployments with global sustainability goals and foster 
responsible innovation in the satellite and IoT ecosystem [68,69].

Frameworks for international cooperation
Since the coverage and impact of NTNs are global, robust international frameworks 
will be vital for policy harmonization and effective cross-border collaboration. In
ternational frameworks should, therefore, aim at data sharing and joint monitoring 
of environmental and operational impacts of NTNs to make the stakeholders oper
ating NTNs more transparent and responsible. Unified standards should be set to 
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manage fundamental issues such as radiofrequency spectrum allocation, space de
bris mitigation, and safe deorbiting of defunct satellites. The same would also apply 
to internationally collaborative research undertakings, combining resources and ex
pertise in advanced development toward sustainable NTN technology. This could be 
achieved by jointly working on low-impacting propulsion, optimization of energy 
efficiency in NTN operations, and elaboration on a global protocol related to space 
debris. An effective regulatory approach that aligns worldwide should foster NTNs 
working well while being environmentally friendly, and it creates one path toward 
sustainability in satellite communication [70].

The regulatory landscape is complex, and the implementation of effective pol
icy frameworks will be crucial to make NTN deployment successful and sustainable. 
The main regulatory challenges, such as spectrum allocation, space traffic manage
ment, and cross-border coordination, require comprehensive and forward-looking 
strategies. Simultaneously, incentivizing the adoption of green technologies, rigorous 
environmental impact assessments, and international collaboration in policy recom
mendations are critical for embedding sustainability into NTN operations. In that 
way, with early mitigations of such challenges, along with the integration of sustain
able practices, NTNs could be designed to handle ever-increasing global demand for 
connectivity without having to make compromises in environmental responsibility 
and long-term viability.

4.8 Conclusion
This chapter has examined the role of NTNs in providing a sustainable and greener 
future for IoT technologies. NTNs are revolutionizing connectivity and playing a 
critical role in the expansion of IoT access into remote and underserved areas, while 
promoting environmentally conscious technological deployments. They become ma
jor enablers of transformation in IoT, offering connectivity solutions that enable 
very important applications: environmental monitoring, precision agriculture, disas
ter management, urban air quality assessment, and maritime surveillance. These use 
cases strengthen the real impact that NTNs may have on global goals for sustainable 
development by scaling up our capability to collect, analyze, and act on environmen
tal data. The technological development in NTNs is highly committed to sustainabil
ity, ranging The integration of NTNs with IoT technologies does not come without 
challenges. The regulatory complexities involve spectrum management, space traffic 
control, and cross-border coordination. High costs and technical difficulties in de
ploying and maintaining NTNs also stand in the way of widespread adoption. Such 
challenges require collaborative efforts in engineering, environmental science, infor
mation technology, law, and international relations. Only collaborative approaches 
can overcome these obstacles while ensuring ethical, sustainable, and effective NTN 
implementations. Such challenges require collaborative efforts in engineering, envi
ronmental science, information technology, law, and international relations. It is only 
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through collaborative approaches that these obstacles can be overcome while ensur
ing ethical, sustainable, and effective NTN implementations. NTNs hold immense 
promise for changing the paradigm of IoT connectivity and fostering global sustain
ability. However, their eventual success will depend upon sustained innovation, robust 
policy frameworks, and international cooperation in accordance with environmental 
imperatives. NTNs are indeed a technological milestone, but they also form a corner
stone in framing IoT strategies that are ecologically sensitive and globally impactful. 
The NTNs, supporting various IoT applications while integrating sustainability, have 
opened ways toward a much more connected, equitable, and efficient future. Further 
innovation, interdisciplinary collaboration, and policy alignment are all required in 
the context of realizing full NTN potential and assuring that IoT advances contribute 
toward a sustainable and prosperous future for generations to come.
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5.1 Introduction
The technological advances in the Internet of Things (IoT) domain are transform
ing modern society by introducing new technologies that improve efficiency across 
industries and quality of life [1--5]. IoT refers to a vast network of interconnected 
devices that collect, exchange, and process data without human intervention [6]. 
IoT devices, ranging from simple household items like smart thermostats and fitness 
trackers to complex systems such as autonomous vehicles and critical healthcare, as 
shown in Fig. 5.1, are deeply embedded in our daily lives. These devices enhance effi
ciency and quality of life by automating home environments, tracking vital signs, and 
optimizing traffic flow and energy consumption in smart city infrastructures [7,8].

However, as IoT adoption grows, so do the associated security challenges. IoT 
devices, essentially resource-constrained computers, significantly widen the attack 
surface for cyber threats [9--12]. As a result, cyberattacks targeting IoT systems have 
surged in frequency and impact. One notable example is the Mirai botnet attack, 
which exploited weak IoT security, compromising thousands of devices to orchestrate 
one of the largest Distributed Denial of Service (DDoS) attacks in history [13]. Even 
seemingly harmless smart devices, like a connected smart coffee machine, can have 
vulnerabilities that allow attackers to infiltrate a home network. Once inside, hackers 
could manipulate other connected devices, steal sensitive data, or even endanger lives 
by tampering with critical medical equipment like pacemakers [14].

Beyond household security risks, IoT vulnerabilities can escalate into large-scale 
national threats. Critical infrastructure, such as power grids and oil pipelines, re
lies on thousands of interconnected sensors and actuators. A cyberattack on these 
systems could cause catastrophic disruptions comparable to the impact of conven
tional weapons [15]. Even indirect attacks, such as exploiting vulnerabilities in 
automated thermostats, could have the same effect. Malicious actors could simul
taneously increase heating in millions of homes and overload the power grid, leading 
to widespread power outages.

Given the far-reaching implications of IoT security breaches, robust and efficient 
security solutions are essential at every level. One foundational pillar is lightweight 
Design and Analysis of Green and Sustainable IoT Technologies for Future Wireless Communications 
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FIGURE 5.1 

IoT Applications.

encryption techniques. While traditional cryptographic methods offer strong protec
tion, they impose high computational and energy costs that resource-constrained IoT 
devices cannot afford. Lightweight encryption techniques address this challenge by 
optimizing security for embedded and battery-powered applications without signifi
cantly degrading device performance [16,17].

Beyond encryption, secure data transmission and aggregation play a crucial role 
in IoT security, particularly in data-sensitive environments like healthcare and in
dustrial automation. IoT-generated data must be protected during transit to pre
vent unauthorized access or tampering. Innovative approaches such as fog com
puting and blockchain-based data aggregation help secure real-time communication 
while improving efficiency and reducing latency [18,19]. The integration of privacy
preserving encryption techniques, such as homomorphic encryption and secure multi
party computation, allows IoT devices to transmit and analyze encrypted data without 
exposing sensitive information [20]. By implementing secure transmission frame
works, IoT ecosystems can mitigate cyber threats while optimizing network perfor
mance [21--23].

Another important aspect of IoT security is privacy-preserving data analytics. The 
increasing reliance on IoT-generated data for decision-making has raised concerns 
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regarding user privacy and data exposure. Conventional centralized data process
ing models expose raw data to potential breaches and unauthorized surveillance. To 
counteract this, decentralized and privacy-preserving analytics methods have been 
proposed, including homomorphic encryption, federated learning, and anonymiza
tion techniques [24,25]. These methods enable IoT devices to process and analyze 
data securely without compromising privacy. As Artificial Intelligence (AI) and Ma
chine Learning (ML) become more integrated with IoT, ensuring secure and private 
data analytics is imperative for sustainable IoT adoption.

While encryption and secure data handling are crucial, secure authentication 
methods form the foundation of reliable IoT security frameworks. Authentication 
mechanisms ensure that only legitimate devices and users can access IoT networks, 
preventing unauthorized intrusions and attacks. Traditional password-based authen
tication methods are often insufficient due to scalability and security limitations. 
Advanced authentication techniques, including blockchain-based authentication, del
egated authentication, and Radio Frequency Identification (RFID)-based authentica
tion, have been introduced to enhance identity verification while maintaining minimal 
computational overhead [26--28]. Secure authentication methods are vital in prevent
ing impersonation attacks and ensuring the integrity of IoT networks.

As the IoT ecosystem continues to expand, addressing security and privacy chal
lenges remains a priority. A comprehensive security framework must incorporate 
lightweight encryption, secure data transmission, privacy-preserving analytics, and 
strong authentication mechanisms. By integrating these solutions, we can create a 
secure, privacy-aware IoT landscape that supports sustainable innovation while miti
gating cyber threats.

The remainder of this chapter is structured as follows: Section 5.2 explores 
lightweight encryption techniques, highlighting cryptographic solutions optimized 
for resource-constrained IoT environments. Section 5.3 discusses secure data trans
mission techniques, including blockchain-based aggregation, to enhance communi
cation security. Section 5.4 examines privacy-preserving data analytics, focusing on 
decentralized approaches such as federated learning and homomorphic encryption. 
Section 5.5 delves into secure authentication mechanisms, evaluating advanced iden
tity verification techniques such as blockchain-based authentication and RFID-based 
authentication. Finally, Section 5.6 concludes the chapter.

5.2 Lightweight encryption techniques
The increasing adoption of IoT devices in diverse applications ranging from health
care and smart cities to industrial automation necessitates the development of efficient 
cryptographic solutions that address security challenges while maintaining the re
source constraints of these devices. With IoT devices operating under constrained 
resources such as limited battery life, low processing power, and minimal memory ca
pacity, traditional encryption methods are often too computationally expensive. Stan
dard cryptographic algorithms like RSA, AES and DES require significant processing 
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Table  5.1 Comparison of different lightweight encryption techniques [31--33].

Encryption 
Technique

Key Size 
(bits)

Block 
Size 
(bits)

Structure Rounds Encryp
tion 

Strength

Com
puta
tional 
Cost

AES 128/192/256 128 SPN 10/12/14 High High
HIGHT 128 64 GFS 32 Medium Low
PRESENT 80/128 64 SPN 31 Medium Low
RC5 0-2048 32/64/128 Feistel 1-255 Variable Variable
TEA 128 64 Feistel 64 Medium Medium
XTEA 128 64 Feistel 64 Medium Medium
LEA 128-256 128 Feistel 24-32 High High
DES 54 64 Feistel 16 Medium Medium
TWINE 80/128 64 Feistel 32 Medium Low
Humming
bird

256 16 SPN 4 Low Very 
Low

Iceberg 128 64 SPN 16 Medium Medium
SIMON 64-256 32-128 Feistel 32-72 High Low
SPECK 64-256 32-128 Feistel 22-34 Medium Low
Chaskey 128 128 Feistel 8/16 Medium Low

resources, making them impractical for small IoT devices that must balance secu
rity with energy efficiency [29]. Lightweight cryptography is specifically designed 
to reduce computational overhead while maintaining adequate security levels for 
IoT applications. These encryption techniques enable secure communication while 
minimizing power consumption, making them ideal for deployment in resource
constrained IoT environments [14].

Lightweight cryptographic algorithms are primarily classified into block ciphers, 
stream ciphers, homomorphic encryption, and chaotic encryption. Block ciphers such 
as PRESENT, SIMON, SPECK, Chaskey, and optimized versions of AES-128 for 
constrained environments by reducing the key size, block size, and number of rounds, 
making encryption operations feasible for battery-powered devices [14,29]. These al
gorithms are widely used in IoT security due to their balance between security and 
performance. Stream ciphers such as Grain, MICKEY, and Trivium provide real-time 
encryption of data streams, making them suitable for IoT applications requiring mini
mal latency and computational overhead like wireless sensor networks and embedded 
systems [29]. Table 5.1 shows a comparison of different encryption techniques, in
cluding key sizes, block sizes, structures, rounds, relative encryption strengths, and 
relative computational costs [30].

Homomorphic encryption enables computations to be performed on encrypted 
data without requiring decryption, thereby preserving privacy in applications such as 
healthcare and secure data aggregation. The Paillier cryptosystem supports additive 
homomorphic encryption and is commonly used for privacy-preserving computations 
in IoT healthcare environments [34]. Lattice-based homomorphic encryption offers 
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additional security advantages by providing resistance against quantum attacks, mak
ing it a promising technique for future post-quantum IoT security implementations. 
The applicability of lattice-based cryptography in IoT environments is particularly 
significant due to its computational efficiency and resilience against quantum threats. 
The Learning With Errors (LWE) and Ring-Learning With Errors (R-LWE) tech
niques form the foundation of many lattice-based encryption schemes, offering worst
case security guarantees [31]. These techniques ensure that cryptographic primitives 
remain computationally feasible while providing robust security for IoT applications, 
including secure authentication, key exchange, and data encryption [31]. Moreover, 
LWE-based encryption schemes have been shown to efficiently support homomor
phic operations, allowing secure computation on encrypted data without revealing 
plaintext information. These properties make lattice-based encryption a viable choice 
for securing sensitive data in resource-constrained IoT devices [31].

In addition to homomorphic encryption, chaotic encryption techniques provide 
lightweight security solutions for resource-constrained IoT devices. The IEPSBP 
framework is a cost-e˙icient image encryption algorithm based on a parallel chaotic 
system that enhances both security and energy efficiency in Green IoT applications 
[35]. It utilizes a 16-bit precision-limited chaotic system, known as PSBP, which 
combines Piecewise Linear Chaotic Map (PWLCM), Skew Tent Map (STM), and 
Bernoulli Map in a parallel configuration. This approach allows for the generation 
of high-quality pseudo-random sequences suitable for encryption while maintaining 
low computational complexity. Unlike conventional encryption methods that oper
ate at the bit or byte level, IEPSBP employs row- and column-based permutation 
and diffusion techniques, significantly reducing the computational overhead required 
for secure data transmission in IoT networks [35]. The algorithm is optimized for 
low-power devices, enabling secure image transmission while minimizing energy 
consumption, making it particularly suitable for Green IoT applications.

Despite their advantages, several implementation challenges must be addressed. 
The trade-off between security strength and resource constraints means that light
weight cryptographic algorithms must be carefully designed to resist common at
tacks such as differential cryptanalysis, side-channel attacks, and man-in-the-middle 
attacks [29]. For instance, while PRESENT (a lightweight SP-network cipher) pro
vides strong security with a 31-round encryption process, its small key size (80-bit) 
makes it vulnerable to brute-force attacks over time [36]. To address this, hybrid 
encryption techniques that combine lightweight symmetric and asymmetric encryp
tion have been proposed. For example, Elliptic Curve Cryptography (ECC) provides 
a lightweight asymmetric encryption alternative with smaller key sizes than RSA 
while maintaining comparable security levels. The combination of AES and ECC in 
hybrid encryption models ensures faster processing for bulk data encryption, while 
leveraging ECC for secure key exchange, thereby balancing security and efficiency in 
IoT systems [14]. Such lightweight algorithms and hybrid models provide a scalable 
approach to securing large-scale IoT networks, reducing latency while maintaining 
end-to-end encryption.
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The development of lightweight cryptographic methods must focus on optimiz
ing energy consumption, enhancing security resilience, and standardizing crypto
graphic evaluation metrics. Research into AI-driven security adaptation can enable 
the dynamic selection and adjustment of cryptographic schemes based on available 
computational resources, ensuring optimal performance in diverse IoT environments. 
Additionally, post-quantum cryptography is gaining attention as a potential solution 
to future security threats posed by quantum computing advancements. Establishing 
universal standards for lightweight encryption techniques will facilitate greater adop
tion and interoperability, ultimately strengthening the security and sustainability of 
IoT systems [19].

5.3 Secure data transmission and aggregation
In modern Internet of Medical Things (IoMT) applications, ensuring the secure 
transmission and aggregation of healthcare data is a critical challenge due to the 
sensitive nature of patient records and the necessity for real-time monitoring. Tra
ditional cloud-centric architectures introduce high latency, bandwidth consumption, 
and security risks, making them less suitable for real-time and privacy-sensitive ap
plications. To address these challenges, Fog-assisted data aggregation has emerged as 
a promising solution [18]. Fig. 5.2 shows the different layers in the IoT architecture 

FIGURE 5.2 

Illustration of data transmission between IoT devices, Edge Computing, Fog Computing and 
Cloud Computing.
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and the data transmission between the layers. Fog computing acts as an intermediary 
between edge devices [37] and cloud servers, enabling local processing, encryption, 
and compression before transmitting data to the cloud. This approach significantly re
duces transmission delays, improves efficiency, and minimizes exposure to security 
threats. In secure IoT-based healthcare networks, data is often aggregated at the edge 
nodes, such as smartphones, wearable devices, or local fog servers, where encryption 
techniques like Homomorphic Encryption, Attribute-Based Encryption (ABE), and 
Secure Multiparty Computation (SMC) ensure privacy-preserving aggregation [18].

Privacy-preserving aware data aggregation (EPPADA), as proposed by Othman 
et al. [38], integrates Homomorphic Encryption to secure medical data aggregation 
while minimizing communication overhead and energy consumption. The system 
ensures that medical sensors transmit encrypted data, which can be aggregated by 
intermediate nodes without decryption, thus maintaining end-to-end confidentiality. 
This approach effectively mitigates the risk of data interception and unauthorized 
access during transmission. Furthermore, dual-prediction mechanisms are employed 
to reduce the number of transmissions by only sending data when deviations from 
predicted values occur, significantly lowering bandwidth consumption and energy 
usage [38]. This aligns with green computing principles, ensuring sustainability while 
enhancing security in IoT-driven healthcare applications.

In IoT-driven healthcare networks, blockchain-based mechanisms for secure data 
aggregation enhance privacy, integrity, and scalability. Ahmed et al. propose an 
Energy-E˙icient Data Aggregation Mechanism (EEDAM) secured by blockchain 
[19], which leverages fuzzy similarity clustering and sleep scheduling to optimize 
network traffic, reduce data redundancy, and enhance security. This approach groups 
sensor nodes with high data similarity to minimize redundant transmissions, while 
blockchain technology is used to authenticate and validate aggregated data before 
it is stored in the cloud. By integrating edge computing and decentralized architec
tures, EEDAM enhances scalability, reduces computational overhead, and prevents 
single points of failure [8,19,39,40]. Moreover, the use of blockchain-enabled smart 
contracts ensures tamper-proof data storage and automated access control, preventing 
unauthorized modifications while allowing secure, real-time data retrieval by medical 
professionals.

Efficient data compression and deduplication techniques further enhance secure 
data aggregation by reducing redundant transmissions and storage costs. As health
care IoT devices continuously generate vast amounts of real-time data, it is crucial to 
employ lightweight and scalable compression techniques such as TTTD-Huffman hy
brid encoding, Secure Deduplication and Data Dissemination (S-DDD), and Slepian
Wolf coding-based methods [18]. These techniques allow data to be efficiently com
pressed at fog nodes, ensuring that only relevant and non-redundant information is 
transmitted to the cloud. This approach not only reduces energy consumption and 
bandwidth usage, but also enhances real-time analytics and decision-making for 
critical healthcare applications. Furthermore, priority-based data transmission frame
works such as those designed for non-delay-tolerant medical emergencies, allow 
urgent data to be transmitted immediately, while non-critical data is compressed and 
stored for later retrieval [18]. These strategies optimize network efficiency, reduce un
necessary data loads, and contribute to the scalability and sustainability of IoT-driven 
healthcare ecosystems.
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5.4 Privacy-preserving data analytics
With the increasing reliance on IoT-enabled healthcare systems, preserving data pri
vacy while enabling efficient analytics remains a pressing challenge. Traditional 
cloud-based architectures centralize IoT data, making them susceptible to privacy 
breaches and high latency issues. Liang Zhao introduced a fog computing framework 
that distributed data analytics across edge devices and fog nodes, reducing reliance 
on the cloud and enhancing privacy [24]. Unlike centralized approaches, this method 
keeps raw data at the edge, only sharing encrypted gradients and model parameters, 
thereby preventing data leakage. A key component of this approach is the homo
morphic encryption-based privacy-preserving protocol, ensuring that sensitive IoT 
data remains secure during analytics processing. The security analysis in the study 
demonstrates that an honest-but-curious adversary cannot infer raw data from en
crypted updates, ensuring privacy without compromising analytical accuracy [24].

The kHealth framework, an IoT-based healthcare system, demonstrates how per
sonalized health analytics models can be built while maintaining privacy [41]. In 
such frameworks, Cryptographic Service Providers (CSP) are proposed as interme
diary entities that manage secret keys and intermediate computations, reducing the 
risk of data exposure to potentially honest but curious service providers. Another 
promising approach is SMC, which allows multiple parties (such as hospitals or re
search institutions) to jointly train machine learning models without revealing their 
private datasets [41]. However, SMC requires extensive computational resources and 
synchronized participation, limiting its scalability.

Another significant advancement in privacy-preserving IoT analytics comes from 
deep learning-based methods. Bi et al. introduced a privacy-isolation zone at the user 
end to separate Personally Identifiable Information (PII) from health-related sensor 
data before uploading to the cloud [25]. This method ensures that only anonymized 
health metrics are processed in the cloud, while privacy-sensitive behavioural data 
such as gait patterns or voice characteristics are filtered locally. A non-privacy data 
extraction algorithm, implemented via Convolutional Neural Networks (CNNs), en
hances the security of extracted data while maintaining accuracy in health assess
ments. The proposed approach is particularly useful in wearable healthcare technolo
gies, such as smart earphones for posture monitoring, where head motion data must 
be separated from identifiable gait signals to prevent unauthorized re-identification 
[25]. The combination of deep learning and data isolation mechanisms provides a 
scalable, privacy-enhanced framework for sustainable IoT analytics.

While encryption and anonymization techniques offer privacy benefits, they often 
introduce computational overhead. The papers reviewed suggest a hybrid approach, 
combining lightweight encryption, fog-based distributed analytics, and AI-driven 
privacy protection to balance efficiency and security [24,25]. Edge computing and 
fog-based privacy-preserving analytics provide a decentralized solution that mini
mizes data exposure risks while improving real-time processing for sustainable IoT 
systems. By reducing reliance on third-party cloud services and implementing secure, 
distributed data-sharing protocols, these approaches significantly enhance privacy 
protection in real-world IoT applications, particularly in healthcare, smart cities, and 
industrial IoT ecosystems [41].
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5.5 Secure authentication methods
Authentication is a fundamental requirement in sustainable IoT systems to ensure 
secure and reliable communication between devices, especially in privacy-sensitive 
environments like healthcare [42]. Since medical sensor nodes are often deployed 
in untrusted environments, they are vulnerable to data tampering, identity spoofing, 
and man-in-the-middle attacks. To mitigate these risks, cryptographic schemes like 
HMAC-based authentication, mutual authentication protocols, and session key gener
ation techniques are implemented to validate the integrity of data before aggregation 
[18]. Another approach is mutual authentication using hash functions and shared se
crets, as explored in the Hybrid Logical Security Framework (HLSF), which employs 
a three-phase authentication process involving device registration, mutual authenti
cation, and secure data communication [27]. When a device joins the network, its 
credentials are securely registered with a central Inventory Server (IS). During au
thentication, the client device generates a hash of its identity combined with a nonce 
and a shared key before sending an authentication request [27]. The IS verifies the 
request and responds with its own hash-based verification, ensuring a bidirectional 
authentication mechanism that prevents replay and impersonation attacks [27].

Another promising authentication method for green IoT is blockchain-based au
thentication, which enhances security through decentralization. The BENIGREEN 
authentication scheme uses blockchain technology to validate the legitimacy of sen
sor nodes before allowing them to participate in data transactions [26]. Instead of 
relying on a centralized authentication authority, this scheme assigns each node a 
pseudo-identity and dynamically updates authentication keys at predefined time in
tervals. The authentication process ensures that only verified nodes can communicate 
with others, mitigating risks such as Sybil attacks and identity spoofing. Addition
ally, the system employs certificate revocation to prevent compromised nodes from 
accessing the network, further enhancing security [26].

RFID-based authentication is another mechanism that can be integrated into IoT 
ecosystems to facilitate secure access control. RFID technology enables automatic 
identification and tracking of devices or assets within IoT networks, including smart 
agriculture and green IoT applications. A lightweight anonymous RFID authentica
tion scheme has been proposed to enhance privacy by using pseudo-identities, emer
gency keys, and cryptographic hash functions [28]. This scheme effectively defends 
against common security threats such as replay, cloning, and location-tracking at
tacks. Moreover, RFID authentication can be combined with cloud-based verification 
to ensure scalability and seamless device management across large IoT deployments 
[28].

Delegated authentication is another key strategy for securing IoT-based commu
nication, particularly when data is transported via untrusted public networks [28]. 
A Semi-outsourcing Privacy-Preserving authentication scheme allows authentication 
tasks to be offloaded to intermediate cloud nodes while ensuring the integrity and con
fidentiality of IoT data [28]. This scheme leverages ECC to enable non-interactive au
thentication, significantly reducing computational overhead for resource-constrained 
IoT devices. By delegating authentication responsibilities to trusted public clouds, 
the approach provides a balance between security and efficiency, ensuring that only 
legitimate devices gain access to IoT networks while mitigating unauthorized access 
attempts [28].
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5.6 Conclusion
The increasing adoption of IoT has enhanced efficiency and connectivity across var
ious domains while also introducing security and privacy challenges. Addressing 
these concerns requires a combination of robust encryption, secure data transmission, 
privacy-preserving analytics, and strong authentication mechanisms.

As discussed in this chapter, effective security strategies include lightweight 
encryption to balance security and computational efficiency, secure transmission 
methods such as fog computing and blockchain-based solutions to protect data in
tegrity, and privacy-preserving analytics using federated learning and homomorphic 
encryption to enable safe data processing. Authentication mechanisms, including 
blockchain-based authentication, RFID-based solutions, and delegated authentica
tion, play a crucial role in preventing unauthorized access and ensuring trust within 
IoT ecosystems.

A comprehensive approach to IoT security involves integrating these measures 
while adapting to emerging technologies. Future research should focus on scalable 
security frameworks, AI-driven threat detection, and post-quantum cryptography to 
strengthen IoT resilience. Implementing these strategies will support the sustainable 
and secure expansion of IoT applications across industries.
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6.1 Introduction
In the 6G era, there is vast growth in industrial applications, smart cities, Intelligent 
Transportation Systems (ITS), smart agriculture, and smart healthcare [1]. All these 
applications are governed under the umbrella of Internet of Things (IoT) networks. 
For the seamless operation of each application, the IoT ecosystem must ensure both 
scalability and sustainability to accommodate the increasing connectivity demands 
and long-term efficiency. Traditional IoT architectures rely on fixed, hardware-centric 
infrastructures that lead to inefficient power usage, increased operational costs, and 
a high carbon footprint. As a next-generation communication paradigm, 6G strides 
toward addressing these sustainability concerns by leveraging Artificial Intelligence 
(AI), Network Function Virtualization (NFV), Software-defined Networking (SDN), 
and Software-defined Radios (SDRs) to build a more energy-e˙icient, scalable, and 
adaptive IoT ecosystem [2].

One of the main challenges in IoT sustainability is high energy consumption. 
Many IoT applications, particularly in remote, rural, and industrial environments, 
rely on battery-operated devices. These devices need to function for extended pe
riods with minimal energy usage. Such devices should be capable of operating for 
long periods while consuming less energy. Consequently, the widespread deploy
ment of IoT sensors, edge devices, and gateways necessitates an effective approach 
to power management. Inefficient energy utilization increases maintenance costs and 
compromises environmental integrity. Additionally, spectrum scarcity and inefficient 
resource allocation further limit the potential of IoT networks, especially Multi-Radio 
Access Technologies (Multi-RATs) [3]. Multi-RATs include Narrow Band IoT (NB
IoT), Long Term Evolution for Machines (LTE-M), Long Range (LoRa), and 5G, 
operating simultaneously one or more. Traditional hardware-related network solu
tions are rigid and do not efficiently allocate resources on demand across different 
IoT applications, leading to inefficient spectrum usage and hardware redundancy [4].
Design and Analysis of Green and Sustainable IoT Technologies for Future Wireless Communications 
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FIGURE 6.1 

Radio access network with (right) and without (left) virtual radio implementation.

To tackle these sustainability challenges, 6G-enabled AI-driven SDRs and virtu
alization techniques are the potential alternatives. The integration of 6G and AI in 
the domain of virtualization offers adaptive, programmable, and energy-e˙icient IoT 
network solutions. SDRs replace traditional fixed-function radio hardware with re
configurable, software-controlled systems, enabling seamless adaptation to different 
IoT communication standards without requiring separate hardware infrastructures for 
each RAT. As a result, it reduces power consumption, enhances spectral efficiency, 
and minimizes infrastructure costs. Additionally, NFV and SDN enable the dynamic 
allocation of network resources, ensuring that IoT connectivity remains sustainable, 
cost-effective, and scalable.

SDR-based virtualization benefits in reducing hardware redundancy. Since a vir
tual logical network could be created over a single hardware platform. The physical 
layer parameters could be adaptive based on the RAT through an SDN. In traditional 
IoT deployments, multiple base stations or gateways are required to support different 
RATs, leading to hardware redundancy and excessive energy consumption. By virtu
alizing SDRs, a single Remote Radio Head (RRH) can dynamically switch between 
multiple RATs (e.g., NB-IoT, LTE, 5G, V2X) based on network demand. Fig. 6.1 de
picts the SDR-based virtualization to enable each standard. This eliminates the need 
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for separate infrastructure for different RATs. AI-driven dynamic resource allocation 
further enhances the sustainability of IoT networks by intelligently managing spec
trum allocation, transmission power, and network slicing in real time. This enables 
IoT applications to efficiently balance energy efficiency, latency, and data throughput 
based on contextual requirements [5].

The need for Multi-RAT support in IoT networks is becoming increasingly hot 
as heterogeneous IoT network users demand diverse services. These diverse services 
include High-Definition (HD) streaming, Virtual Reality (VR), Augmented Reality 
(XR), and remote driving. Each service has its own Key Performance Indicators 
(KPIs), such as throughput, guaranteed bandwidth, transmission power, and reliabil
ity. To enable such diverse services, different physical layer technologies are required, 
such as Orthogonal Frequency Division Multiplexing (OFDM) / Non-Orthogonal 
Frequency Multiple Access (NOMA). Each RAT has its own physical layer design 
tailored to its specific requirements [6]. In a typical smart city or industrial IoT 
deployment, different IoT applications may require low-power connectivity (e.g., 
NB-IoT, LTE-M), broadband access (e.g., 5G), Ultra-Reliable Low-Latency Com
munication (URLLC), or integration with satellite-based Non-Terrestrial Networks 
(NTN) solutions. However, traditional networking architectures struggle to efficiently 
accommodate these diverse requirements. Traditionally, each RAT has its dedicated 
physical infrastructure, leading to unnecessary hardware deployment and scalability 
issues. For example, fixed infrastructure allocation can be inefficient, as demand for 
specific services fluctuates over time. Some services may require more resources at 
certain times, while others remain underutilized. By leveraging SDR-based virtual
ization, IoT networks can achieve seamless multi-RAT support through AI-driven 
spectrum management, dynamic RAT selection, and intelligent power optimization 
[7].

In this chapter, we explore how SDR-based virtualization can revolutionize IoT 
sustainability by enabling dynamic, software-driven network architectures. We begin 
by discussing the fundamentals of SDRs and network virtualization in the context 
of IoT, followed by an in-depth analysis of AI-driven multi-RAT support, energy
e˙icient resource allocation, and network slicing for sustainable IoT networks. Addi
tionally, we examine the role of AI in optimizing virtualized SDR networks, ensuring 
low power consumption, seamless connectivity, and intelligent spectrum manage
ment. Finally, we highlight key challenges and future research directions for achiev
ing a green and sustainable IoT ecosystem in 6G and beyond.

6.2 Fundamentals of Software-Defined Radios (SDRs) and 
virtualization

The advent of wireless communication has opened the gates for the creation of 
more flexible, multidimensional, and power-effective networking techniques. SDRs 
are instrumental in bringing about such a change by substituting the conventional 
hardware-based radio systems with software-defined reconfigurable architectures [8]. 
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Whereas traditional radios are designed to work on pre-configured frequency and 
modulation modes, SDRs offer the flexibility to modify parameters like frequency 
bands, transmit power, and modulation schemes in real-time via software updates. 
Such programmability renders SDRs as the perfect choice for multi-RAT use cases, 
where one hardware platform can cater to various communication standards like 5G, 
NB-IoT, LTE-M, V2X, NTN, and Wi-Fi.

The requirement of sustainability in IoT networks is promoting the use of SDRs 
since they lessen the dependency on hardware, decrease infrastructure expenditure, 
and enhance spectral efficiency. Through the cognitive radio feature, SDRs can 
intelligently sense free frequency bands and dynamically assign resources, hence 
guaranteeing maximum spectrum usage while reducing energy consumption. This is 
especially important in large-scale IoT deployments, where billions of interconnected 
devices demand energy-e˙icient and scalable communications [9]. SDRs provide on
demand reconfiguration of IoT networks, adjusting to evolving network conditions 
and traffic loads without the cost of hardware upgrades.

To enhance the performance of SDR networks, virtualization technologies such 
as NFV and SDN have been proposed as facilitators of sustainable IoT paradigms. 
NFV allows the implementation of traditional network functions as software-based 
services on standard hardware, thus reducing the need for specialized physical infras
tructure. By virtualizing network elements like firewalls, routers, and base stations, 
IoT networks become more scalable, cost-effective, and energy efficient. Similarly, 
SDN decouples the control plane and data plane, managing the networks in a central
ized way and intelligently steer the traffic [10].

Employing virtualization, an SDR can support multi-RAT environments in a sin
gle hardware deployment. By combining virtualized SDRs, NFV, and SDN, network 
operators can deploy one RRH that can switch dynamically between various commu
nication standards. This feature provides end-to-end connectivity for IoT use cases 
demanding low-power wide-area connectivity (LoRa, NB-IoT), broadband connec
tivity (5G), or URLLC.

Virtualized SDRs provide several key benefits for green IoT networks, with 
power-e˙icient spectrum utilization being one of the most significant. AI-powered 
cognitive networking techniques enable dynamic spectrum allocation, optimizing the 
use of frequency resources. Traditional wireless networks often suffer from inefficient 
spectrum utilization, where some frequency bands remain underused while others 
become overcrowded. Virtualized SDRs address this limitation by sensing real-time 
spectrum demand and dynamically allocating bandwidth, allowing IoT devices to 
transmit at optimal energy levels.

IoT service demand-based dynamic reconfiguration is another key aspect of SDR 
virtualization. IoT applications pose varying communications demands, from low
power periodic data transfer (smart metering, environmental monitoring) to high
bandwidth real-time processing (industrial control, autonomous vehicles). Virtual
ized SDRs can dynamically adapt transmission parameters, power levels, and RAT 
selection according to the demands of each IoT application. This flexibility makes 
smart cities, healthcare systems, and industrial Internet of Things systems operate 
more effectively, consume less power, and lower operational costs.
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Additionally, SDR virtualization enables network slicing and multi-tenancy, in 
which multiple IoT service providers use a shared virtualized infrastructure. Each 
provider has an isolated, independent network slice tailored to their specific applica
tion. This enables a cost-effective deployment of IoT networks as the infrastructure 
investments can be shared and optimized across various applications and industries 
[11].

6.3 Sustainable IoT networks with SDR virtualization
The sustainability of IoT networks depends upon optimized resource utilization. 
Virtualized SDRs significantly reduce energy consumption through adaptive power 
control and intelligent waveform selection. Unlike traditional networks, where ra
dio transmitters work with fixed-power levels. Further, the integration of AI allows 
IoT devices to utilize resources more efficiently. AI-enabled framework distribute the 
radio resources fairly among the virtual radios employed over the SDR [12].

SDR virtualization, coupled with AI, supports green network slicing to enhance 
IoT sustainability. Demand-oriented IoT resource allocation can be enabled, ensur
ing that low-power IoT applications receive the minimum bandwidth required, while 
high-performance applications obtain sufficient resources without excessive energy 
consumption [13].

6.4 Multi-RAT virtualized Remote Radio Head (RRH) for 6G 
IoT

The rising demand for scalable, energy-e˙icient, and flexible wireless communica
tion infrastructure has driven the evolution of Multi-RAT virtualized RRHs [14]. 
Unlike traditional networks, where each RAT—for instance, NB-IoT, LTE-M, 5G, 
V2X, and NTN requires its dedicated radio access infrastructure, thereby leading 
to considerable hardware redundancy, high power consumption, and poor spectrum 
utilization, software-defined radios (SDRs) and virtualization technologies enable a 
single virtualized RRH to flexibly switch multiple RATs to enhance the efficiency, 
sustainability, and cost efficiency in networking. Such shifts will form the basis for 
the development of 6G-enabled IoT networks, where the requirements for heteroge
neous connectivity must be fulfilled with the least possible energy usage and costs 
[15].

6.4.1 Concept of a virtualized RRH for IoT
A virtualized RRH is characterized as a flexible radio access unit operating over mul
tiple RATs and dynamically responsive to the communication requirements of IoT 
applications [16]. Traditionally, dedicated base stations are designed for certain wire
less standards, each works on a fixed frequency band and protocol. This often results 
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in energy wastage and severely limited scalability. Using SDR-based virtualization, 
any RRH can provide support for multiple RATs efficiently, thereby allowing IoT de
vices to connect whenever needed by using the most efficient connectivity standard 
[17].

An IoT sensor network for smart city development, for example, can very well 
use NB-IoT and LTE-M for low-power, long-range communication. Real-time video 
surveillance or autonomous vehicles could be supported with 5G or 6G millimeter
wave communications by switching RRH. The RRH can also incorporate NTN-based 
satellite communication for remote communication and to enable continuous con
nectivity for IoT. This unique capability to dynamically allocate RATs enables the 
operators to optimize infrastructure costs and spectrum efficiency.

AI-driven dynamic RAT selection
The AI-oriented RAT selection is one of the very powerful features of a virtualized 
RRH [18]. Different IoT applications have diverse requirements for data rate, latency, 
reliable delivery, and energy consumption. AI-based decision-making frameworks 
could analyze the network condition, node mobility, traffic load, and existing power 
availability and select the most suitable RAT in real time. For example, AI can clas
sify IoT traffic into different categories:

-- Low-power, delay-tolerant applications (e.g., smart meters, environmental sen
sors) characterized under NB-IoT or LTE-M.

-- Ultra-reliable low-latency applications (e.g., autonomous vehicles, remote 
surgery) characterized under 5G URLLC.

-- High-bandwidth applications (e.g., drone-based video streaming, XR/VR for 
IoT) characterized under 6G mmWave or Terahertz bands.

-- IoT deployments in remote areas (e.g., maritime IoT, disaster recovery) charac
terized under NTN (LEO satellites, HAPs, UAV relays).

The adaptive selection of the RAT ensures sustainability towards IoT networks while 
giving resilience and scalability for a variety of applications, each configured through 
scalable QoS, without wasting energy or over-provisioning resources.

6.4.2 Hardware and architecture of virtualized SDR-based RRH
The implementation of virtualized RRHs involves both SDR hardware along with 
AI-enabled network management and virtualization on cloud computing. Unlike tra
ditional RRHs, which rely on dedicated, static radio hardware, the virtualized SDR
based RRH consists of flexible radio front-end, reconfigurable baseband processing, 
and intelligent spectrum management [19].

Virtualized RRH with dynamic waveform adaptation
Another fundamental capability of a virtualized RRH is its direct adaptability of 
the waveforms instantaneously based on the RAT in operation. In a legacy central
ized system, distinct RAT uses different waveform structures (OFDM in 5G, Single 
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Carrier Frequency Division Multiple Access (SC-FDMA) in LTE, and narrowband 
modulations in NB-IoT). The RRH, through the use of SDR technology, is free to 
dynamically modulate and demodulate the signal, thereby allowing for the use of 
many different standards and without a need for hardware modifications [20].

Along with AI-based waveform adaptation, this ensures that higher energy effi
ciency is maintained, as the most power-e˙icient transmission mode is selected in 
real time according to prevailing network conditions. For example, during low-tra˙ic 
conditions, the RRH can adopt low-power waveforms with reduced transmission 
bandwidth, conserving energy before resuming normal operational settings when 
needed [21].

Efficient spectrum sharing and low-power SDR base stations
Spectrum efficiency is crucial for sustainability in IoT networks. The conventional 
usage of pre-allocated spectrum bands in cellular networks leads to inefficient spec
trums and interference problems. The virtualized RRH allows the dynamic spectrum 
access, where idle frequency bands could be reallocated to active IoT devices, thus 
reducing the wastage of spectrum while enhancing the overall efficiency of networks 
[22].

Low-power software-defined radio base stations can also be established within 
the virtualized RRH structure to serve a localized IoT cluster such as smart factories, 
connected transportation hubs, and industrial automation zones. These light-weight, 
software-defined base stations work from optimized power to severely limit the car
bon footprint of traditional cell towers while providing custom network slices for IoT 
applications.

6.4.3 Use cases of virtualized multi-RAT RRH in IoT
Dynamic NB-IoT and 6G network allocation
Smart cities rely on various heterogeneous deployments of IoT, involving environ
mental sensor, traffic management systems, public safety networks, and energy grids 
[23]. To fully utilize the resources efficiently, virtualized RRH enables NB-IoT con
nectivity to the low-data applications and 5G connectivity to high-data applications 
such as real-time surveillance.

Multi-RAT support for vehicular communication
To support autonomous vehicles connectivity two major technologies have been in
troduced such as IEEE 802.11P in 2010 and Cellular Standard C-V2X in 2017. Later, 
802.11P evolved to 802.11bd and C-V2X to NR-V2X. To provide interoperability, a 
virtualized RF end could be utilized [24]. Also, based on the applications the network 
traffic load could be shifted among the technologies. These heterogeneous technolo
gies could be enabled by virtualization over a single hardware. By enabling dynamic 
RAT switching, virtualized RRHs significantly enhance road safety and network sus
tainability.
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Satellite-based NTN for IoT
Many IoT applications demand connectivity in areas that are remote, offshore, or 
disaster-prone where terrestrial networks are unavailable. NTN-based IoT commu
nication, facilitated by LEO satellites, HAPs, and UAV relays, plays a vital role in 
ensuring global IoT coverage [25]. A virtualized RRH may integrate satellite-based 
RATs that complement terrestrial networks 5G and NB-IoT to allow IoT devices to 
seamlessly switch from terrestrial to satellite communication links, as depicted in 
Fig. 6.2. As an example, this includes an IoT-enabled maritime monitoring system. 
Using NB-IoT connectivity while near coastal areas and switching to satellite-based 
NTN when in deep-sea locations. This type of model guarantees continuous connec
tivity, reduced satellite bandwidth costs, and enhanced power conservation. 

FIGURE 6.2 

Virtualized heterogeneous Multi-RAT to support low-latency space–air--ground communica
tion.

6.5 AI-driven dynamic resource allocation for sustainable 
IoT SDR networks

The use of artificial intelligence and machine learning in the virtualization of 
software-defined radio is an essential step toward energy-e˙icient, adaptive intelli
gent resource allocation in sustainable IoT networks. Conventional resource alloca
tion techniques in wireless networks depend on prefixed rules and static policies, 
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which yield suboptimal performance, resulting in ineffective spectrum utilization 
and high-power consumption [26]. The enormous growth of 6G IoT networks en
compasses AI-driven dynamic resource allocation, offering real-time optimization, 
efficient network slicing, and maximum security, with low-latency, high-reliability 
for various IoT applications.

AI techniques such as Reinforcement Learning (RL), Federated Learning (FL), 
and deep neural networks further enhance the SDR-based virtualized networks [27]. 
IoT networks learn from data, adapt to changes, and dynamically deploy resources, 
enabling multiple RAT-based SDR networks to be efficient and sustainable. In addi
tion, AI-based anomaly detection and blockchain-based security framework further 
enhance virtualized IoT networks considering reliability and security.

6.5.1 Machine learning for efficient SDR virtualization
Reinforcement Learning (RL) for adaptive radio resource management
RL refers to a machine learning paradigm wherein an agent learns how to achieve its 
objective through trial and error by interacting with the environment. Based on real
time network conditions, SDN-based IoT networks can dynamically allocate radio 
resources, like spectrum management and power optimization in real time [27], [28].

Unlike traditional scheduling algorithms that use static spectrum policies, the 
dynamic adjustment of transmission parameters, power levels, and frequency alloca
tions by means of RL-based resource management aims at increasing efficiency while 
minimizing energy consumption. For example, in a multi-RAT IoT deployment, RL 
can:

-- Predict network traffic patterns and provision bandwidth before congestion oc
curs.

-- Modify IoT transmission power in response to proximity to other devices and 
interference from the environment.

-- Choose the best RAT in terms of energy efficiency (e.g., NB-IoT for low power 
consumption, 5G for very high-speed data) in accordance with the demand of 
the network.

-- Using RL-based SDR virtualization may allow IoT networks to self-optimize 
this process in real time, minimizing the need for human intervention and reduc
ing energy losses and operational costs.

Federated Learning (FL) for distributed AI-based IoT networking
FL is a decentralized AI training in which multiple IoT devices and base stations can 
collaboratively train AI models without exchanging sensitive data. FL is thus a deter
minant in preserving privacy, energy efficiency, and AI-based resource management 
when applied in the context of SDR-based virtualized IoT networks.

FL permits limited distribution learning on all the IoT edge devices, such that 
SDR networks learn using localized data without relying on cloud-based computation 
that incurs high latency and energy costs [29]. Some of the advantages of FL in SDR 
virtualization include:
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-- Decentralized training for artificial intelligence models, which diminishes the 
level of congestion in the network and energy usage.

-- Spectrum allocation while remaining private, with IoT devices optimizing radio 
parameters locally without open exposure of sensitive data.

-- Modification of higher priority PLMN selection to include shared Mobile Coun
try Code (MCC).

-- Increased the accuracy of AI models through collaboration with many IoT nodes.

With the implementation of FL-sustained SDR networks, IoT operators are able to 
achieve scalable, adaptive, and extremely energy-e˙icient virtualized IoT connectiv
ity, especially in smart and city, industrial automation, and remote IoT deployments.

6.5.2 Optimizing IoT network slices with AI
Energy-e˙icient scheduling for IoT edge and core networks
AI-enabled scheduling algorithms will allow for efficient, dynamic task allocation in 
energy-e˙icient modes between edge and core network layers in SDR-based virtual
ized IoT networks [30]. Instead of processing all IoT-generated data on a centralized 
cloud server, AI-based scheduling will ensure that only high-priority tasks are relayed 
to the core, while routine, low-latency tasks are executed at the edge.

For example:

-- IoT sensors in smart cities can process local temperature readings themselves 
instead of clouds receiving raw data.

-- Industrial IoT (I-IoT) applications can delegate real-time control tasks to SDR
based edge networks to relieve processing delays.

-- V2X networks allow for intelligent switching between depending on low-latency 
applications using edge processing or cloud AI inference through an intelligent 
system.

AI-enabled performing based processing distributions optimize energy usage and en
sure low latency and reduced unnecessary data transmission between SDR-enabled 
IoT edge devices and centralized cloud networks [31].

AI-based QoS-aware dynamic RAT switching
Quality-of-Service (QoS) needs from various applications in the context of 6G IoT 
networks vary widely [32]. Smart agriculture sensors, autonomous vehicles, indus
trial automation, and AR/VR IoT applications require different levels of data rates, 
latency, and reliability. Dynamic RAT switching using AI ensures that:

-- Low-power IoT devices maximize energy savings through NB-IoT/LTE-M.
-- Ultra-low latency applications (for example, V2X, AR/VR) can switch to 5G or 

6G when needed.
-- Tasks that require high bandwidth demands (for example, video streaming, AI 

inference at the edge) can leverage the higher frequency mmWave/Terahertz 
bands.
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The AI-based RAT switching makes real-time traffic analysis, predictive modeling, 
and reinforcement learning to connect IoT devices with the most energy-e˙icient 
and QoS-compliant RAT in real time, which leads to optimized spectral efficiency, 
minimal energy waste, and smooth connectivity for various IoT applications [33].

6.5.3 Security and privacy in virtualized IoT SDR networks
AI-driven anomaly detection for energy-e˙icient security
With the virtualization of SDRs into the IoT, security threats have become more 
complex, such as signal jamming, unauthorized spectrum access, and cyber-attack. 
Traditional signature-based Intrusion Detection Systems (IDS) are ineffective in han
dling the large volume and diverse data generated by SDRs [34]. AI-based anomaly 
detection overcomes this, employing:

-- Machine learning models trained on network traffic behavior to flag suspicious 
patterns.

-- An energy-e˙icient security mechanism to automatically mitigate malicious ac
tivities with light computational loads.

-- A self-adaptive security algorithm that changes over time, dynamically discov
ering new attack.

Through AI-based security monitoring, virtualized SDRs can keep detecting and mit
igating threats continuously while consuming less power and a small computational 
load.

Blockchain-based secure network slicing for IoT and 6G
Network slicing in SDR-based virtualized IoT networks allows the creation of iso
lated logical networks for different applications [35]. Maintaining slices with security 
and privacy turns into a difficult task, mainly due to multi-tenancy and the dynamic 
nature of resource allocation. Blockchain technology offers the decentralized and im
mutable integrity framework for enhancing SDR-based network slicing by:

-- Ensuring the resource allocation records are transparent.
-- Preventing unauthorized access to the network slices through cryptographic au

thentication.
-- Making use of smart contracts for automatic policy-based execution in network 

configuration.

Therefore, blockchain and SDR integration safeguard IoT operators in ensuring se
cured virtualized networks by preventing them from cyber-attacks.

6.6 Challenges and future research directions
Since SDR-based virtualization are being evolved, some challenges need to be tack
led to achieve scalable, energy-e˙icient, and ideally secure IoT networks. While SDR 
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virtualization does provide multi-RAT flexibility, spectrum efficiency, and adaptive 
resource management, issues related to interference, hardware efficiency, URLLC, 
and integration with 6G NTN remain key areas for future research.

This section discusses the major technology-related challenges in deploying SDR
based virtualized IoT networks and discusses possible research directions that can 
help overcome these limitations.

6.6.1 Interference management in virtualized multi-RAT SDR
The prime challenge in SDR-based virtualized networks is interference management, 
especially when multiple RATs are operating simultaneously. Unlike in traditional 
networks, each RAT operates over pre-defined frequency bands [36]. However, multi
RAT SDR virtualization allows dynamic spectrum sharing, thereby increasing the 
probability of co-channel interference, internal RAT collision, and adjacent channel 
leakage.

Challenges
-- The coexistence of varied radio access technologies results in interference, low

ering performance on the SDR platform.
-- Adaptive waveform switching for SDRs can generate unwanted harmonics and 

intermodulation distortion and lower spectral efficiency.
-- Advanced detection and mitigation of noise sources, such as IoT devices, legacy 

wireless systems, and NTN communications, need to be developed.

Future research directions
-- AI-Powered Interference Prediction: Machine learning models analyze spec

trum utilization patterns and proactively devise allocations to non-overlapping 
resources to different access technologies [37].

-- Dynamic Spectrum Access (DSA) Strategies: Cognitive software-defined radio 
using artificial intelligence is capable of performing real-time frequency hopping 
and adaptive power control to mitigate interference [38].

-- Multi-Agent Reinforcement Learning (MARL) for Spectrum Coordination: AI
based multi-agent frameworks can enable collaborative interference manage
ment, allowing SDR nodes to autonomously negotiate spectrum access in dense 
IoT environments.

6.6.2 Energy-e˙icient SDR hardware for IoT and V2X
Although SDR virtualization reduces hardware dependence, power consumption is 
one of the major challenges for IoT edge devices and vehicular networks (V2X). 
SDRs for real-time waveform processing require highly accurate Digital Signal Pro
cessing (DSPs) and Field-programmable Gate Arrays (FPGAs), which in many cases 
results in excessive power consumption and thermal dissipation [39].
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Challenges
-- Computational overhead increases power consumption on SDR-based IoT de

vices and reduces battery life.
-- The high-energy requirements results in setbacks for deployment in low-power 

IoT scenarios.
-- Vehicular networks (V2X) need ultra-fast SDR-based signal processing tech

niques to maintain low latency with energy efficiency.

Future research directions
-- AI-Optimized SDR Hardware Acceleration: Machine learning algorithms can 

optimize signal processing pipelines, thus reducing computational redundancy 
and wastage of energy.

-- Building Ultra-Low-Power SDR Chips: Building specialized SDR hardware 
with built-in AI acceleration (e.g., neuromorphic computing, AI-driven DSP) 
can significantly reduce energy consumption in IoT applications.

-- Green SDR Hardware Architectures: Energy-harvesting SDRs that use solar, RF, 
or kinetic energy can improve sustainability in remote IoT deployments [40].

6.6.3 AI-driven RAT selection for ultra-reliable low-latency IoT 
(URLLC IoT)

With URLLC connectivity for communications, such as that between connected cars, 
industrial automation, and mission-critical IoT, requires delays as low as 1 ms and 
reliability levels of more than 99.999% [41]. It is essential to apply AI to the selection 
of RATs to ensure that communication for URLLC IoT applications occurs through 
the most reliable and low-latency service standards at any point in time. However, 
achieving real-time AI-based RAT switching while maintaining reliability and energy 
efficiency remains a challenge.

Challenges
-- Real-time decision-making for RAT selection requires ultra-fast AI inference, 

which increases the computational demands.
-- Switching between RATs introduces transient latency, which could affect time

sensitive applications such as autonomous driving and remote surgery.
-- Ensuring network reliability in high-mobility environments (such as V2X, 

UAVs, and industrial IoT) provides a great challenge when trying to achieve 
seamless integration among multiple RATs.

Future research directions
-- Deep Reinforcement Learning (DRL) for Real-Time RAT Selection: AI models 

trained on large IoT traffic datasets can predict network conditions, allowing for 
proactive RAT switching before link degradation occurs.

-- AI-Based Proactive Handover Mechanisms: Applying predictive handover tech
niques based on AI-driven policy (for vehicles, drones, and mobile robots) al
lows to further improve URLLC reliability.
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-- AI-enabled Network Slicing for URLLC Applications: AI-based dynamic net
work slicing allows prioritization of URLLC traffic above other IoT services to 
secure ultra-low-latency connectivity [42].

6.6.4 SDR virtualization for 6G NTN & space communications
NTN, including Low Earth Orbit (LEO) satellites, High Altitude Platforms (HAPs), 
and Unmanned Aerial Vehicles (UAV) based relay networks, are becoming integral 
components of 6G IoT architectures. SDR virtualization will enable seamless in
tegration between terrestrial and space-based IoT networks, but still has enormous 
challenges to overcome.

Challenges
-- Dynamic radio environment in NTN makes SDR-based waveform adaptation 

complex, whereas Doppler shifts, propagation delays, and signal blockages vary 
for satellite and aerial platforms.

-- Limited energy resources in space-based IoT platforms make power-e˙icient 
SDR virtualization critical for extending the lifetime of satellites.

-- Interference and spectrum coordination of terrestrial and NTN IoT networks re
quire AI-aided spectrum-sharing techniques and advanced strategies.

Future research directions
-- AI-Driven SDR Virtualization for NTN Spectrum Management: Cognitive SDR 

systems driven by AI can adapt to the modulation and coding scheme accord
ing to dynamic factors like satellite trajectory, weather conditions, and spectrum 
availability.

-- SDR-Enabled Multi-RAT NTN Connectivity: Virtualized SDRs implemented on 
LEO satellites and UAVs can extend cross-domain connectivity by dynamically 
switching between NTN 5G, THz communications, and terrestrial IoT networks.

-- Energy Efficient SDR Platforms for NTN: Energy-saving techniques include AI
powered sleep scheduling, dynamic beamforming, and adaptive power control 
[43].

6.7 Conclusions
The evolution to 6G-based IoT networks demands scalable, energy-e˙icient, and 
intelligent solutions to cater to the increasing complexity of heterogeneous IoT ap
plications. SDR-based virtualization and AI-powered resource allocation provide a 
breakthrough solution to achieve sustainability demands, enabling dynamic spectrum 
utilization, hardware dependency minimization, and power efficiency optimization. 
This chapter covers how SDR virtualization is used to develop Multi-RAT interop
erability for enabling an NB-IoT, LTE, 5G, V2X, and NTN capability using a single 
piece of hardware.
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AI-optimized dynamic resource allocation, one of the key enablers of SDR-based 
sustainable IoT, dynamically optimizes network slicing, RAT selection, and energy
aware scheduling. RL-FL integrated solution supports real-time adaptation to net
work conditions, ensuring low-latency, high-reliability connectivity for autonomous 
vehicle, industrial automation, and smart city infrastructure use cases. AI-aided in
terference management and waveform adaptation also optimize spectrum efficiency, 
ensuring seamless communication in IoT-rich environments. Though it has benefits, 
some challenges still exist, such as handling interference in virtualized multi-RAT 
SDRs, enhancing energy efficiency in hardware implementations, providing ultra
reliable low-latency communication (URLLC) for mission-critical use cases, and 
incorporating SDR virtualization into 6G NTN-based IoT deployments.

Future work should concentrate on the design of ultra-low-power SDR chips, 
AI-driven proactive RAT switching, and blockchain-secured network slicing for 
improved network security, power efficiency, and decentralized trust management. 
Through evolving 6G networks, SDR virtualization, AI automation, and NTN-based 
connectivity will shape the future of green IoT ecosystems. Self-optimizing, intel
ligent, and energy-e˙icient SDR architectures, when incorporated into future IoT 
infrastructures, have the potential to achieve seamless global connectivity, carbon 
footprint reduction, and enhanced network resilience to establish a greener, smarter, 
and adaptive future IoT.
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7.1 Introduction
In the past years, there has been an increasing demand of IoT devices in various ar
eas such as smart applications and industrial automation. With this increase brings 
a challenge to produce energy and spectral efficient solutions for long-term sustain
ability. This section explores and identifies, deep reinforcement learning (DRL) based 
solutions to identify optimized solutions in terms of energy and spectrum efficiency.

7.1.1 Background and motivation
The paradigm shift from 5G to 6G era enabled concepts such as self-organizing net
works (SONs) and self-sustainable networks (SSNs). Applications like smart cities, 
ultra-massive machine-type communication (umMTC), and ubiquitous instant con
nectivity are now building on these advancements being brought up by the 6G regime. 
In this context, the Internet of things (IoT) [1] enables intelligent communication with 
multiple objects interacting with each other seamlessly. This has interconnected rang
ing of areas from healthcare to agriculture, by enhancing decision making accuracy 
and increasing efficiencies. With the growth of IoT devices, there is an increasing 
demand of higher data rates, connectivity and reliability. The arrival of 6G networks 
is set to revolutionize IoT while supporting countless devices and applications.

In earlier generations, orthogonal frequency division multiple access (OFDMA) 
[2] has been widely used in various IoT and 6G models and applications. In OFDMA, 
bandwidth is divided into orthogonal subcarriers. Each subcarrier is assigned to a sin
gle user at any given time, minimizing inter user interference and providing flexibility 
in resource management. However, a major drawback of OFDMA is the strict or
thogonality of the limited number of subcarriers that can be used simultaneously. 
Design and Analysis of Green and Sustainable IoT Technologies for Future Wireless Communications 
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FIGURE 7.1 

6G-enabled IoT ecosystems.

To overcome these limitations, non-orthogonal multiple access (NOMA) [3] has 
emerged as a promising solution. It offers superior spectral and energy efficiency, 
particularly in environments with diverse user requirements. NOMA uses power do
main multiplexing and successive interference cancellation (SIC) at the receiver. This 
allows multiple users to share the same spectrum resources efficiently. This approach 
not only increases the number of supported users, but also improves spectrum utiliza
tion. A comparative analysis in [4] demonstrates that NOMA outperforms OFDMA 
in both spectral efficiency (SE) and energy efficiency (EE) under various network 
configurations (Fig. 7.1).

Recent studies have explored the integration of NOMA with cognitive radio (CR) 
to improve SE and EE. In [5], a framework integrating CR-NOMA with simultaneous 
wireless information and power transfer (SWIPT) is proposed, focusing on improv
ing SE by optimizing the sensing sub slot. Similarly, [6] examines downlink multiple 
input multiple output (MIMO) NOMA systems, leveraging different linear beam
forming strategies to enhance power allocation across user clusters, thereby achieving 
maximum sum of SE. Moreover, [7] proposes an energy harvesting (EH) incremen
tal relaying NOMA protocol (IR-EH-NOMA) and analyzes its throughput. It derives 
analytical expressions for throughput under delay-limited transmission, considering 
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imperfect SIC and optimal power splitting at the relay. In addition, the authors in 
[8] focused on optimizing throughput in IoT networks by introducing a power al
location strategy tailored for NOMA systems. They used Lagrange multipliers and 
Karush–Kuhn--Tucker (KKT) to optimize channel capacity while catering constraints 
like Nakagami-m fading channels. Though efficiency, these methods face significant 
challenges, including high complexity and increased power consumption by users. 
Therefore, with growing advancements in intelligent machines learning solutions, it 
is important to integrate existing transmission models into these solutions. In this 
context, DRL [9] has proven to be a game changer, helping IoT systems manage the 
dynamic and complex demands of modern networks effectively.

7.1.2 Challenges in supporting sustainable IoT devices
The rise of IoT devices has changed industries, making communication and automa
tion smoother. But keeping these devices sustainable is tough due to energy limits, 
limited spectrum, and environmental concerns. As the demand for connected devices 
grows, solving these problems is key for future IoT networks. Many IoT devices in 
remote areas rely on batteries, making energy efficiency a top concern. It’s hard to 
recharge or replace batteries regularly.

While techniques like energy harvesting and power efficient protocols have been 
tried, their use is tricky because of different environmental factors and device limi
tations. The rapid growth of IoT devices adds to the problem of spectrum shortage. 
Traditional methods can not keep up with the increased data demands, causing con
gestion and lower service quality.

Implementing previous solutions means dealing with issues like interference and 
meeting regulations. As IoT networks expand to billions of devices, ensuring de
vices from different manufacturers work together gets harder.Efforts to standardize 
are ongoing, but differences in protocols and technologies make it hard to integrate 
smoothly. To solve these challenges, researchers are exploring new solutions like 
energy-e˙icient protocols, adaptive spectrum sharing, and machine learning-based 
optimization. One promising approach in this area is DRL, which can handle the 
dynamic and complex challenges in IoT networks.

7.1.3 Role of energy and spectrum efficiency in IoT
Despite many advancements, the rapid growth of IoT devices and the rising demand 
for high data rates and energy-e˙icient communication create big challenges. The 
combination of spectrum shortage and energy limits requires new solutions to im
prove EE and SE. In this regard, both EE and SE are key issues in the growing IoT 
landscape. SE, which measures how well bandwidth is used, is important for meet
ing the increasing data demands of IoT systems. At the same time, EE ensures that 
devices can operate sustainably by maximizing data transfer while using less energy. 
Balancing these two factors is essential for building the future communication net
works.
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7.1.4 Relevance of DRL based algorithms
Integrating DRL into wireless communication networks offers a new way to solve 
key challenges like energy efficiency, spectrum optimization, and smart resource al
location. DRL uses neural networks and reinforcement learning to model complex 
decisions without relying on preset assumptions or fixed optimization models.

This adaptability is crucial in the fast-changing environment of IoT networks, 
where the number of devices is growing rapidly, causing dynamic network condi
tions. Unlike traditional methods that may lose efficiency as networks change, DRL 
learns from real-time data and makes decisions that improve network performance.

DRL algorithms are also great for managing different quality of service (QoS) 
needs in mixed networks. They help distribute resources fairly across devices with 
varying data, latency, and energy needs, improving efficiency and user experience.

In cases with EH and spectrum sharing, DRL helps with task scheduling, channel 
selection, and power allocation. It adjusts to external interference and traffic changes, 
keeping communication strong and secure. DRL is key to next-generation wireless 
networks, enabling smart automation and efficient resource management for large
scale IoT deployments.

7.2 Overview of sustainable IoT devices
Sustainable IoT devices are key to modern technology, designed for low power use 
and efficient resource management. They aim to reduce environmental impact while 
supporting the growing need for connected services. This section highlights the main 
features, challenges, and trends shaping sustainable IoT networks.

7.2.1 Characteristics of sustainable IoT
Sustainable IoT systems are designed for efficiency and minimal environmental im
pact. One key feature is EE. As noted in [10], the growth of IoT demands low power 
sensors that can operate reliably and sustainably. Traditional battery-powered sen
sors face limitations in lifespan and performance, but EH technology offers a more 
eco-friendly option by extending sensor life and lowering maintenance costs.

Another important aspect is resource optimization. This includes lightweight 
communication, data compression, and edge computing to reduce energy use and 
improve response times. [11] presents an edge computing model for IoT applications 
like precision agriculture, e-health, and smart homes. It introduces a task offloading 
mechanism that distributes tasks among devices, helping reduce resource use while 
meeting QoS needs. Evaluations show its effectiveness in optimizing resource usage.

Scalability and interoperability are also essential for various IoT applications. [12] 
looks at the balance between interoperability and performance in IoT platforms by 
analyzing FIWARE, ThingsBoard, and Konker. It assesses their scalability, response 
times, and resource usage in smart city and smart health contexts. The study finds 
that interoperability does not significantly impact platform performance.
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7.2.2 Energy and spectrum constraints in IoT networks
The rapid growth of IoT devices has created major challenges in energy manage
ment and spectrum use. IoT devices run on small batteries that are hard to replace or 
recharge, especially in remote areas like factories, farms, or monitoring sites. At the 
same time, more devices are competing for limited bandwidth, making it harder to 
maintain efficient communication.

7.2.2.1 Energy constraints in IoT networks
Unlike traditional systems with constant power, IoT devices need smart energy man
agement to last longer and reduce maintenance. Efficient communication protocols 
help save battery by cutting down unnecessary data transmissions and idle time. 
Techniques like data aggregation, adaptive compression, and optimized packet sizes 
reduce communication overhead. Sleep scheduling lets devices switch between ac
tive and low-power states. EH uses ambient sources like solar, thermal, vibration, or 
RF signals to recharge batteries, extending device life and improving sustainability.

7.2.2.2 Spectrum utilization challenges
Effective spectrum use is key to maintaining IoT network performance as device den
sity grows. The varied data rate and latency needs of IoT applications make spectrum 
allocation difficult. Interference, poor spectrum sharing, and underused frequencies 
worsen the problem. To tackle these challenges, strategies like cognitive radio, dy
namic spectrum allocation, and cooperative communication are used. These help IoT 
systems adapt to changing spectrum conditions, improve sharing, and reduce inter
ference.

7.2.2.3 Balancing energy and spectrum efficiency
Balancing energy and spectrum efficiency requires smart resource management that 
adapts to network conditions and demands. Machine learning and optimization al
gorithms are increasingly used to improve decision-making in energy and spectrum 
management. These methods optimize transmission schedules, choose the right com
munication channels, and balance power use with reliability. In many algorithms one 
of the major drawback is the inverse proportional relation between energy and spec
trum efficient solutions. Optimizing one often degrades the other. Therefore, there is 
a need of solutions which aims to optimize both the solutions.

To ensure scalability, reliability, and sustainability, addressing energy and spec
trum challenges is key for IoT networks. With innovative designs and adaptive strate
gies, IoT systems can be more efficient and resilient, meeting the growing needs of a 
connected world.

7.3 Fundamentals of Deep Reinforcement Learning (DRL)
This section explores the fundamental concepts of DRL. 
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FIGURE 7.2 

Illustration of (a) DL, (b) RL, and (c) DRL.

7.3.1 Basics of Deep Learning (DL)
Deep learning (DL) is a branch of machine learning (ML) that uses multi layered 
neural networks (NNs) to automatically extract complex features from raw data. This 
ability has led to DL’s success in areas such as image recognition, natural language 
processing (NLP), autonomous systems, and strategic game playing.

Inspired by the human brain, neural networks consist of layers of connected ar
tificial neurons. These neurons exchange information through weighted connections, 
which are adjusted during training using methods like backpropagation and gradient 
descent optimization.

This iterative refinement helps DL models learn and represent data at different 
levels of abstraction, capturing complex patterns and relationships that traditional al
gorithms often miss. These hierarchical feature representations make DL effective at 
solving challenging AI problems. Fig. 7.2 (a) shows a schematic of a DL framework, 
illustrating the flow of data through hidden layers to output generation.

7.3.2 Basics of Reinforcement Learning (RL)
Reinforcement learning (RL) [13] is a type of machine learning where an agent 
learns to make decisions by interacting with an environment. The agent takes ac
tions, receives feedback in the form of rewards or penalties, and learns to optimize its 
behavior to maximize cumulative rewards over time. Key components of RL include:

• Agent: The decision maker that takes actions in the environment.
• Environment: The external system with which the agent interacts, providing ob

servations and rewards.
• State: The current situation or configuration of the environment that the agent 

observes.
• Action: The decision made by the agent to interact with the environment.
• Reward: Feedback given to the agent after an action is performed, guiding learning 

towards better outcomes.
• Policy: The strategy or mapping from states to actions, aiming to maximize cu

mulative rewards.



7.3 Fundamentals of Deep Reinforcement Learning (DRL) 133

• Value Function: A function estimating the long-term rewards of states or actions, 
guiding the agent’s decisions.

The goal of RL is to learn an optimal policy that maximizes cumulative rewards 
through trial and error. The agent updates its knowledge from experiences to adapt 
its actions. In RL, also known as an experience-driven approach, no prior data is 
given for learning. Instead, the agent gains knowledge by interacting with the envi
ronment. Through a series of actions, the agent receives rewards or penalties based 
on the outcomes of its decisions [14], generating data in real time through these inter
actions. The environment in an RL framework is typically modeled mathematically, 
with them Markov decision process (MDP) [15], [16] being the most commonly em
ployed model. The primary objective is to derive an optimal policy that maximizes 
cumulative rewards (or minimizes cumulative penalties) over a specified future time 
horizon, taking into account the agent’s current state. Fig. 7.2 (b) illustrates the fun
damental components of an RL setup.

7.3.3 Introduction to DRL
Deep RL (DRL), first introduced in [17], integrates DL with RL, forming the ba
sis of its nomenclature. Traditional RL methods are effective for problems involving 
limited state and action spaces. However, real-world scenarios often encompass high
dimensional and continuous state and action spaces, posing significant challenges for 
traditional RL approaches as determining an optimal policy becomes increasingly 
complex. DRL was developed to overcome these limitations by efficiently addressing 
high-dimensional applications and enabling learning in continuous spaces. In DRL, 
the RL component involves a self-learning agent that aims to maximize long-term 
rewards without requiring prior knowledge of the underlying system model. Mean
while, inspired by biological NNs, DL has advanced significantly in managing the 
complexities of high-dimensional environments. By combining these approaches, 
DRL effectively mitigates the curse of dimensionality through efficient feature ex
traction.

DRL methods are predominantly applied to sequential decision-making tasks [18], 
where an agent must make a series of decisions to solve a given problem effectively. 
The objective in such tasks is to identify a sequence of decisions that maximizes the 
expected cumulative future reward. Sequential decision-making problems are well
modeled using MDPs, which satisfy the Markov property, implying that the next state 
depends solely on the current state, with outcomes being partially random and par
tially under the agent’s control. The following discussion delves into the fundamental 
concept of MDPs and their role in shaping and facilitating the DRL framework.

7.3.3.1 Markov Decision Processes (MDPs)
An MDP is a discrete-time stochastic control process commonly represented as a 
tuple, (S,A,Ta,Ra), where:

• S represents the finite set of states in the environment,
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• A denotes the action space,
• Ta represents the probability that action a taken at time t in state s leads to a 

transition to state s′ at time t + 1, and
• Ra denotes the immediate reward obtained after action a, facilitating the transition 

from state s to s′.

The agent’s goal in an MDP is to interact with the environment across different time 
steps to find an optimal policy, π∗, which maps states to actions to maximize the 
cumulative reward over the long term. The policy π can be deterministic, providing a 
single state-to-action mapping, or stochastic, offering a probability distribution over 
all possible actions.

An MDP may operate under a finite or infinite time horizon. In a finite time hori
zon MDP, the optimal policy π∗ maximizes the expected total reward, represented 
as:

max
π

𝔼

{︂ T∑︂
t=0 

rt (st , π(st ))
}︂
. (7.1)

For an infinite time horizon MDP, the objective is to maximize the expected dis
counted total reward:

max
π

𝔼

{︂ ∞ ∑︂
t=0 

γ rt (st , π(st ))
}︂
, (7.2)

where γ ∈ [0,1] is the discount factor, determining the relative importance of future 
rewards compared to immediate rewards. A discount factor of γ = 0 results in a 
“myopic agent'' that prioritizes instant rewards, whereas γ ≈ 1 incentivizes long
term reward maximization.

Depending on the application, MDPs can be classified as fully observable 
(FOMDP) or partially observable (POMDP) [19]. In an FOMDP, the agent has full 
access to the environment’s states. Conversely, in a POMDP, the agent only has par
tial access to the states, introducing additional complexity. A POMDP is typically 
represented as (S,A,Ta,Ra,Ω,O), where:

• Ω denotes the set of partial observations accessible to the agent, and
• O represents the transition probabilities of partially observable states from s to s′.

A belief set, consisting of probability distributions over states, is maintained in a 
POMDP. The agent selects an action a based on its belief b(s), transitions to the next 
state s′, and receives the reward r ∈ Ra along with the current observation o ∈ O. The 
agent then updates its belief about the new state s′ using the following equation [19, 
20]:

bo
a(s

′) = p(o|s, a, s′)
∑︁

s p(s′|s, a)b(s) ∑︁
s,s′ p(o|s, a, s′)p(s′|s, a)b(s)

, (7.3)

where p(o|s, a, s′) denotes the probability of receiving observation o given that the 
agent takes action a in state s and transitions to state s′, and p(s′|s, a) represents 
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the probability of transitioning to state s′ from state s upon taking action a. The 
corresponding reward Ra is provided through the immediate reward function. Similar 
to MDPs (or FOMDPs), agents in POMDPs seek an optimal policy π∗ to maximize 
the expected long-term cumulative reward:

max
π

𝔼

{︂ ∞ ∑︂
t=0 

γ rt (st , π
∗(st ))

}︂
. (7.4)

7.3.4 Classification of DRL models
Given the wide array of applications of DRL, various DRL algorithms have been 
developed, categorized based on their reliance on predefined models or their ability 
to function without them. Accordingly, DRL techniques can be broadly classified into 
the following.

7.3.4.1 Model-based methods
Model-based DRL methods begin by constructing a model of the environment us
ing feedback from the agent’s interactions. This model is then employed to predict 
the outcomes of actions on states and rewards, thereby enabling the derivation of an 
optimal policy. Examples of model-based methods include AlphaZero [21], model
based RL with model-free fine-tuning (MBMF) [22], imagination-augmented agents 
(I2A) [23], and Monte Carlo tree search (MCTS) [24]. These methods offer lower 
sample complexity by reducing the need for extensive interaction with the environ
ment. However, their reliance on potentially inaccurate models can lead to suboptimal 
policies and reduced accuracy.

7.3.4.2 Model-free methods
In contrast, model-free DRL methods directly interact with the environment to learn 
optimal policies or value functions, eliminating the need for explicitly modeling the 
environment’s dynamics. These methods are further classified into the following sub
categories:

7.3.4.3 Value-based methods
Value-based DRL methods focus on learning a value function, such as the state-value 
function V π(s), rather than directly storing a policy π(s). The state-value function 
represents the expected cumulative reward for each state under a given policy π and 
is defined as V π(s) : S ⇒ Ra . Its mathematical expression is:

V π(s) =
∑︂

P(τ |π, s)G(τ), (7.5)

where P(τ |π, s) represents the probability of trajectories given the initial state s and 
policy π , and G(τ) = ∑︁T

t=0 γ rt (st , π(st )). The optimal state-value function is given 
by:

V ∗(s) = max
π

V π(s),∀s ∈ S. (7.6)
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The action-value function Qπ(s, a) maps a state-action pair to its long-term ex
pected reward:

Qπ(s, a) : S × A ⇒ Ra, (7.7)

and is mathematically expressed as:

Qπ(s, a) =
∑︂
π

P (τ |π, s, a)G(τ). (7.8)

The optimal action-value function is:

Q∗(s, a) = max
π

Qπ(s, a),∀s ∈ S,∀a ∈ A. (7.9)

The agent’s objective in value-based DRL is to derive an optimal policy π∗ that 
maximizes expected cumulative rewards:

π∗(s) = max
π

V π(s),∀s ∈ S. (7.10)

For an optimal Q-value function, the corresponding optimal policy is:

π∗ = max
a∈A 

Q∗(s, a),∀s ∈ S. (7.11)

In practice, finding an optimal policy involves approximating the optimal action
value function using methods like temporal difference (TD) learning or Monte Carlo 
(MC) estimation. MC methods, while yielding lower bias, require full episodes for 
updates and are suitable for episodic MDPs. TD methods, which leverage the Markov 
property, allow online updates after every decision epoch and are more flexible, mak
ing them widely used in contemporary DRL algorithms. Examples of value-based 
methods include Q-Learning (QL) [25], Deep Q-Learning (DQL) [26], and Rain
bow [27].

7.3.4.4 Policy-based methods
Policy-based DRL methods directly optimize policies without relying on value func
tions. These methods refine policy parameters iteratively using gradient-based opti
mization. The objective is to maximize the long-term reward:

J (θ) =
∑︂
τ

P (τ |πθ )G(τ), (7.12)

where P(τ |πθ ) represents the trajectory probabilities under policy πθ . The policy 
gradient is:

∇θJ (θ) = Pπθ

[︂
G(τ |s, a)∇θ lnπθ (a|s)

]︂
, (7.13)

and the updates are performed as:

θt+1 = θt + βγ t
[︂
G(τ |st , at )∇θ lnπθ (at |st )

]︂
. (7.14)
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The examples of policy-based methods include REINFORCE [28], trust region policy 
optimization (TRPO) [29], and proximal policy optimization (PPO) [30].

7.3.4.5 Actor-critic methods
Actor-critic methods integrate value-based and policy-based approaches. The actor 
network selects actions, while the critic network evaluates them. The actor updates 
policies based on feedback from the critic, which estimates value functions. Ex
amples include asynchronous advantage actor-critic (A3C) [31], deep deterministic 
policy gradient (DDPG) [32], and soft actor-critic (SAC) [33]. Table 7.1 summarizes 
the different categories of the DRL models. 

7.3.5 Advantages of DRL for IoT applications
Deep RL has emerged as a transformative approach for optimizing complex, dynamic 
systems, making it particularly advantageous for IoT applications. By leveraging 
the power of neural networks to approximate policies and value functions, DRL fa
cilitates efficient decision-making in environments with significant uncertainty and 
variability.

One of the primary strengths of DRL lies in its capability to handle high
dimensional state and action spaces. Traditional optimization techniques, such as 
linear programming or heuristic-based methods, struggle with scalability and hetero
geneity in IoT networks. These networks consist of many devices operating under dif
ferent protocols and standards. DRL algorithms address these challenges by learning 
directly from the environment, without needing predefined models. This model-free 
approach allows DRL to handle complex interactions between IoT devices, ensuring 
stable performance even in dynamic situations.

IoT networks often face unpredictable changes, such as fluctuating traffic, varying 
latency, and energy constraints. In this context, DRL adapts well to real world con
ditions. Unlike traditional methods, which require re-optimization under changing 
conditions, DRL continuously updates its policies based on rewards and state transi
tions. This allows IoT systems to adjust to the evolving conditions, such as shifting 
communication schedules, balancing loads, or redistributing resources, etc.

Another advantage of DRL in IoT is its support for multi objective optimiza
tion. It can balance competing goals like energy efficiency, latency, throughput, and 
QoS. By adjusting rewards, DRL can prioritize specific objectives while maintaining 
overall system performance. For example, in energy-limited IoT networks, DRL can 
optimize data throughput while minimizing power consumption, ensuring sustainable 
operation.

Additionally, DRL can be improved with techniques like transfer learning and 
meta-learning. These methods speed up training and improve generalization across 
different IoT scenarios by using pre-trained models or knowledge from similar tasks. 
This is useful in IoT applications with changing topologies or dynamic environments, 
where retraining from scratch would be too costly.
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Table  7.1 Summary of DRL algorithms.

Algo. Key Characteristics Applications
Value-Based DRL Algorithms 

QL A TD learning algorithm tailored for discrete 
state and action spaces, which iteratively 
refines action-value estimates to converge 
toward the optimal policy.

Applied in robotics, industrial 
automation, gaming, and 
finance.

DQL Employs DNNs to approximate the 
Q-function, enabling efficient learning in 
high-dimensional state spaces.

Appropriate for MDPs that 
involve discrete state and action 
spaces.

PDQL Prioritizes experiences with significant TD 
errors, assigning them higher replay priority 
to improve sample efficiency and speed up 
learning.

Appropriate for MDPs 
prioritizing experiences.

DDQL Mitigates Q-value overestimation by using 
two distinct networks to independently 
estimate target and current Q-values, 
enhancing stability and performance.

Used in gaming, robotics, and 
finance, with effective DQ-value 
estimation for decision-making.

ADQL A parallelized DQL approach where multiple 
agents interact with separate environment 
instances, accelerating learning through 
asynchronous Q-network updates.

Effective for managing 
asynchronous updates in 
distributed environments.

Dis-DQL Distributes the training process across 
multiple machines, enabling faster training 
and better scalability for larger 
environments and datasets.

Excels at capturing uncertainty 
and enhancing performance in 
stochastic environments.

Due-DQL Breaks the Q-value into an advantage 
function and a state value function, 
improving learning efficiency and yielding 
more precise Q-value approximations.

Effective for MDPs with large 
action spaces.

DQLNN Introduces noisy layers into the neural 
network, dynamically adjusting exploration 
strategies to enhance learning efficiency.

Appropriate for MDPs with large 
action, and state spaces.

Rainbow Combines advanced techniques like PER, 
DQL, dueling networks, and noisy layers to 
achieve cutting-edge performance in DQL.

Ideal for complex problems with 
high-dimensional state and 
action spaces and uncertainty.

SARSA An on-policy TD learning algorithm that 
updates action values using outcomes from 
its own actions, factoring in the next action 
and its corresponding reward.

Used in discrete state-action 
spaces for on-policy learning 
and optimal policy 
convergence.

Policy-Based DRL Algorithms 
REIN
FORCE

Leverages deep neural networks to train 
the policy function, optimizing it by directly 
estimating gradients based on received 
rewards.

Appropriate for problems with 
discrete action spaces.

TRPO Imposes constraints on policy updates to 
maintain stability and prevent large, 
destabilizing changes, thereby ensuring 
reliable optimization.

Effective for large-scale 
continuous control problems.

continued on next page
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Table  7.1 (continued)

Algo. Key Characteristics Applications
PPO Utilizes a clipped surrogate objective 

function to regulate policy updates, 
avoiding large, disruptive changes and 
fostering stable improvement.

Effective for high-dimensional or 
continuous action spaces, like 
robotics and games.

Actor-Critic DRL Algorithms 
A2C Merges policy gradient and value-based 

approaches by concurrently learning action 
selection and value estimation, boosting 
efficiency and training stability.

Appropriate for problems with 
continuous action spaces.

A3C Combines policy gradient and value-based 
methods with multiple parallel agents, 
enhancing sample efficiency and stability 
via asynchronous updates.

Ideal for problems needing 
asynchronous training for 
efficient exploration.

SAC Incorporates entropy regularization into 
stochastic policies and value function 
learning, fostering exploration and 
robustness in continuous action spaces.

Appropriate for problems 
requiring stable learning and 
robust exploration.

DDPG Designed for continuous action spaces, 
using deterministic policy gradients and 
experience replay for stable and efficient 
learning.

Used for continuous action 
spaces needing stable learning 
and efficient exploration.

CER
DDPG

Builds on DDPG by prioritizing recent 
experience tuples in batch selection, 
improving sample efficiency and learning 
stability.

Used where sample efficiency 
and fast convergence are 
crucial.

PER
DDPG

Combines prioritized experience replay with 
DDPG, assigning higher replay priority to 
experiences with larger TD errors.

Beneficial for problems requiring 
improved sample efficiency and 
faster convergence.

MADDPG Adapts DDPG for multi agent scenarios, 
enabling centralized training and 
decentralized execution to support 
cooperation in complex environments.

Appropriate multi agent 
problems in complex 
environments.

TD3 Utilizes twin critics and delayed policy 
updates to stabilize training and enhance 
policy robustness.

Ideal for continuous action 
spaces where stability and 
robustness in learning are key 
for efficient exploration and 
decision-making.

RDPG Incorporates RNNs into the policy network 
to learn deterministic policies in sequential 
or time-sensitive observation settings.

Effective for sequential 
decision-making with crucial 
temporal dependencies in 
time-sensitive scenarios.

D4PG Enhances DDPG by integrating 
distributional RL techniques and 
parallelized training across multiple actors, 
enabling efficient exploration in expansive 
continuous action spaces.

Used in continuous action 
spaces where stability and 
robustness in learning are 
crucial for efficient exploration 
and decision-making.
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DRL also supports cooperative and distributed decision-making in IoT systems. 
In multi-agent networks, DRL can coordinate actions among devices, leading to col
laborative strategies that improve overall system efficiency. Algorithms like multi 
agent DDPG (MADDPG) are used to optimize tasks such as spectrum allocation, 
resource sharing, and task offloading.

Finally, advancements in DRL frameworks, such as model-based DRL and actor
critic methods, enhance its effectiveness in IoT. Model-based approaches simulate 
IoT environments to predict outcomes and optimize actions, reducing trial-and-error. 
Actor-critic methods combine policy-based and value-based learning to speed up 
training and improve stability.

7.4 DRL-based algorithms for energy and spectrum 
efficiency

Energy and spectral efficiency are key to sustainable IoT systems, with EH and power 
management being important factors. DRL based algorithms have shown great poten
tial in optimizing these areas by learning strategies in real time. This section looks 
into how DRL can improve EE in IoT networks, with supporting case studies.

7.4.1 DRL in EH systems
Recent advances in machine learning, especially DRL, have shown great potential. 
Smart solutions with optimised resource allocation, high spectrum management, and 
great security protocols can be build using DRL-based algorithms in IoT systems. 
With billions of devices expected to be interconnected, this capability is essential 
to ensure sustainable operation, efficient resource utilization, and meet the stringent 
QoS requirements of modern IoT applications. By leveraging DRL, IoT networks 
can adapt to the dynamic and complex nature of wireless communication environ
ments, paving the way for more efficient and sustainable future networks. Example, 
[34] presented a DRL-based framework to enhance the throughput of a stationary 
secondary user within a CR-NOMA communication system, where the secondary 
user performs EH and data transmission during the primary user’s time slot. Expand
ing on this foundation, [35,36] investigated self-sustaining IoT networks powered by 
wireless communication, utilizing EH and RF-EH diversity-combining techniques. 
Their approach incorporated a QoS-aware NOMA scheme for uplink transmissions, 
optimizing both linear and non-linear EH models, duration and transmission power 
through DRL to maximize the sum rate of a stationary secondary node. Similarly, 
[37,38] proposed an energy-e˙icient communication protocol tailored for resource
constrained IoT networks. By employing DRL, specifically the CER-DDPG algo
rithm, they achieved throughput maximization for the secondary sensor. Building on 
this model, [39] further optimized the network’s SE using DRL to manage EH and 
data transmission in a CR-NOMA framework. [40] further improved the model by in
corporating mobility for the secondary user using a random waypoint model, making 
it more applicable to real-world scenarios.
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7.4.2 Spectrum and energy allocation via DRL
Spectrum scarcity is a critical challenge in IoT networks, especially with the prolif
eration of ultra-massive machine-type communication (umMTC). DRL-based frame
works provide innovative solutions for spectrum efficiency by:

• Enabling dynamic spectrum access in cognitive radio (CR) systems, where devices 
opportunistically utilize underused spectrum bands.

• Optimizing NOMA schemes by dynamically adjusting power allocation and user 
clustering strategies.

• Enhancing spectral reuse through intelligent channel assignment and interference 
management.

• Optimizing power allocation and scheduling to minimize energy consumption 
without compromising performance.

• Determining the optimal time allocation for EH and data transmission in energy
constrained scenarios.

• Dynamically redistributing traffic loads among IoT devices to avoid overburden
ing specific nodes, reducing overall energy consumption.

7.4.3 Case studies
In this section, we present two case studies related to EE and SE of IoT systems.

7.4.3.1 Background and motivation
As the demand for low-power sensing grows, modern wireless networks face signif
icant challenges in accommodating additional devices while simultaneously maxi
mizing SE and EE. Traditional wireless infrastructures struggle to meet these dual 
demands due to the constrained energy resources of low-power devices and the inef
ficient utilization of available spectrum. To overcome these challenges, EH-enabled 
symbiotic radio has emerged as a promising approach, enabling secondary devices 
to coexist with primary wireless systems. By leveraging RF-EH and opportunistic 
spectrum sharing, EH-enabled symbiotic radio provides a sustainable and efficient 
solution, addressing both SE and EE requirements, and aligning with the vision of 
future wireless networks.

In this case study, we explore an innovative framework that tackles the complex
ities of optimizing EH-enabled symbiotic radio in dynamic environments character
ized by nonlinear EH circuitry and pre-scheduled operations of primary devices. The 
proposed framework employs advanced techniques to achieve a balanced enhance
ment of SE and EE, ensuring sustainable operation while maintaining the commen
salistic relationship between secondary and primary systems.

7.4.3.2 System model: overview of EE optimization
As illustrated in Fig. 7.3, we analyze a wireless IoT network configuration consisting 
of a central base station (BS) and J pre-scheduled primary IoT devices, denoted 
as Mj , where 1 ≤ j ≤ J . The primary devices communicate using a time division 
multiple access (TDMA) mechanism, where each device is assigned a dedicated time 
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FIGURE 7.3 

Illustration of the considered IoT network.

slot of T seconds within a frame duration of NT , given that N ≥ J . The scheduling 
of these devices operates such that during the k-th time slot, labeled tk and satisfying 
1 ≤ k ≤ N , the j -th primary device is active. Here, j is determined by the relation 
((k − 1) ⊕ J ) + 1, with ⊕ representing the modulo operation.

In this configuration, an energy-constrained device, referred to as the EH-enabled 
symbiotic radio, transmits sensor data to the BS during the time slots allocated to 
primary devices. The EH-enabled symbiotic radio employs the CR-NOMA method, 
which enables its transmissions to coexist with those of the primary devices while 
ensuring that their QoS requirements are met. This QoS guarantee is achieved through 
a QoS-driven SIC decoding order, ensuring that the EH-enabled symbiotic radio’s 
signal is decoded first in the SIC process [41].

A unique feature of the EH-enabled symbiotic radio is its ability to harvest energy 
from the uplink RF transmissions of primary devices. For example, in the k-th time 
slot, where tk is identical for all k, the EH-enabled symbiotic radio dedicates the 
initial τkT seconds to data transmission and the remaining (1 − τk)T seconds to 
EH, where τk ∈ [0,1] is the time-sharing coefficient. To simplify notation, let the 
primary device scheduled at time tk be represented as Mk , where Mk = Mj and j =
((k −1) ⊕ J )+1. Henceforth, k will denote both the time slot and the corresponding 
primary device. The channel gain between the EH-enabled symbiotic radio and the 
BS during the k-th time slot is denoted as g̃k. Additionally, for the k-th primary 
device, its channel gains to the BS and EH-enabled symbiotic radio during the k
th time slot are denoted as gk and gk,0, respectively.

We assume that the EH-enabled symbiotic radio starts communication with a fully 
charged battery and has prior knowledge of the channel state information (CSI) of 
each primary device transmitting at time tk. Let Γk denote the energy stored in the 
EH-enabled symbiotic radio’s battery at time tk. The total transmission energy of the 
EH-enabled symbiotic radio is constrained by Γk, expressed as:

τkT (Ω̃k + λ) ≤ Γk, (7.15)

where λ represents the fixed RF circuit power and signal processing power of the 
EH-enabled symbiotic radio, accounting for the constant energy consumption of RF 
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operations, and Ω̃k denotes the EH-enabled symbiotic radio’s transmit power at time 
tk .

The total energy available in the EH-enabled symbiotic radio’s battery at time 
tk+1 is given by:

Γk+1 = min
{︂
Γk + (1 − τk)T [ΦPrac(Ωk)]|gk,0|2 − τkT (Ω̃k + λ),Γmax

}︂
, (7.16)

where ΦPrac(Ωk) represents the practical nonlinear EH model of the EH-enabled 
symbiotic radio, Ωk is the transmit power of the k-th primary device, and Γmax de
notes the maximum battery capacity of the EH-enabled symbiotic radio.

The system’s nonlinear EH model is expressed as:

𝒫EH(Ω̃k) =
β3

(︂
eβ1Ω̃k − 1

)︂
eβ1Ω̃k + eβ1β2

, (7.17)

where β1, β2, and β3 are parameters defining the EH circuit characteristics. The time
sharing coefficient τk determines the portion of a time slot allocated to transmission, 
with the remainder dedicated to EH.

7.4.3.3 Problem formulation
This section formulates the mathematical model for maximizing the EE and frames 
it within a DRL context.

The data rate achieved by the EH-enabled symbiotic radio during time tk is de
fined as:

R̃k = τklog2

(︄
1 + Ω̃k|g̃k|2

1 + Ωk|gk|2
)︄

. (7.18)

The order of SIC decoding follows the definition in (7.18), where the EH-enabled 
symbiotic radio’s signal is decoded first, and the scheduled primary device’s signal 
is decoded subsequently. This ensures the QoS requirements for primary devices. To 
achieve the objective of maximizing the EE of the EH-enabled symbiotic radio, the 
EE at the k-th time slot is expressed as:

Πk(τk, Ω̃k) =
τklog2

(︂
1 + Ω̃k |g̃k |2

1+Ωk |gk |2
)︂

λ̄
, (7.19)

where the numerator represents the instantaneous data rate of the EH-enabled symbi
otic radio, and the denominator is the total power consumed, with λ̄ denoting the total 
average power consumed for transmission. This formulation ensures that the QoS of 
the scheduled primary device is satisfied as the EH-enabled symbiotic radio’s signal 
is decoded without interference. The optimization parameters in (7.3) are τk and Ω̃k .

The EE maximization problem is then formulated as:

maximize
τk, Ω̃k

𝔼

{︄
N∑︂

k=1 
αk−1Πk(τk, Ω̃k)

}︄
(P1)
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s.t.

Γk+1 = min

{︄
(1 − τk)T

[︃
β3

[︁
eβ1Ωk − 1

]︁
eβ1Ωk + eβ1β2

]︃
|hk,o|2

−τkT (Ω̃k + λ) + Γk,Γmax

}︄
,

(7.20)

Rk ≥ γk, (7.21)

τkT (Ω̃k + λ) ≤ Γk, (7.22)

0 ≤ Ω̃k ≤ Ωmax, (7.23)

0 ≤ τk ≤ 1. (7.24)

In Problem (P1), 𝔼{·} represents the expected sum of discounted energy efficien
cies of the EH-enabled symbiotic radio, where α is the discount factor prioritizing 
long-term rewards. The term Rk = log (1 + Ωk|hk|2) denotes the data rate of the k-th 
primary device, and γk represents its minimum required rate. Constraint (7.20) de
fines the total energy in the EH-enabled symbiotic radio’s battery at time tk+1, while 
Constraint (7.21) ensures QoS for the primary devices. Constraint (7.22) limits the 
total energy consumed by the EH-enabled symbiotic radio to its available energy at 
time tk , and Constraints (7.23) and (7.24) restrict the EH-enabled symbiotic radio’s 
transmit power and time-sharing coefficient, respectively.

Problem (P1) is non-convex due to: (i) the non-convex nature of the long-term EE 
function in the objective, (ii) the non-a˙ine structure of Constraint (7.20), and (iii) 
the bilinear term in Constraint (7.22) involving optimization variables. The need for 
timely EH and transmission decisions under resource constraints motivates the use of 
RL, while the continuous action space makes the problem suitable for the modified 
DDPG (MDDPG) algorithm. However, the varying ranges of optimization variables 
in Constraints (7.23) and (7.24) necessitate additional processing.

To address these challenges, we employ a primal decomposition approach, split
ting Problem (P1) into a two-layer optimization problem:

Introducing the energy fluctuation parameter Γ̄k, defined as the difference be
tween harvested and consumed energy:

Γ̄k = (1 − τk)T

[︃
β3

[︁
eβ1Ωk − 1

]︁
eβ1Ωk + eβ1β2

]︃
|hk,o|2 − τkT (Ω̃k + λ). (7.25)

This parameter indicates an energy deficit (Γ̄k < 0) or surplus (Γ̄k > 0) at time tk . 
Accordingly, for a given Γ̄k, maximize instantaneous EE:

maximize
τk, Ω̃k

Πk(τk, Ω̃k) (P2)

s.t.
Γ̄k = (1 − τk)T

[︃
β3

[︁
eβ1Ωk − 1

]︁
eβ1Ωk + eβ1β2

]︃
|hk,o|2

−τkT (Ω̃k + λ),

(7.26)
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(7.21), (7.22), (7.23), (7.24), (7.27)

and the second layer optimization problem is given by:

maximize
Γ̄k

𝔼

{︄
N∑︂

k=1 
βk−1Πk(τk, Ω̃k)

}︄
(P3)

s.t. Γk+1 = min
{︂
Γmax, Γ̄k + Γk

}︂
, (7.28)

which has been formulate following [42].
The solution approach to this problem is divided into two phases. In the first 

phase, convex optimization is employed to derive closed-form expressions for the 
optimization variables for a given Γ̄k in Problem (P2). Consequently, the optimal 
solution is expressed as functions of Γ̄ k in Problem (P2), i.e., τ ∗

k (Γ̄ k) and Ω∗
k (Γ̄k). 

In the second phase, the MDDPG algorithm is utilized to solve Problem (P3), while 
incorporating the optimal solutions derived in the first phase. Using these closed-form 
expressions, Problem (P3) can be reformulated as follows:

maximize
Γ̄k

𝔼

{︄
N∑︂

k=1 
βk−1Πk(τ

∗
k (Γ̄k), Ω̃

∗
k (Γ̄k))

}︄
(P4)

s.t. Γk+1 = min
{︂
Γmax, Γ̄k + Γk

}︂
. (7.29)

This reformulation highlights that the EH-enabled symbiotic radio’s action is to se
lect Γ̄k . Problem (P4) is a single-variable function, and the continuous nature of the 
parameter of interest, Γ̄k , makes this one-dimensional, continuous action space op
timization problem particularly suited for a DRL algorithm such as the MDDPG 
algorithm.

The closed-form solutions are given as:

Ω∗
k (Γ̄k) =

[︃
(1 − τ ∗

k (Γ̄k))T α3
[︁
eβ1Ωk − 1

]︁|gk,o|2
(eβ1Ωk + eβ1β2)τ ∗

k (Γ̄k)T 

]︃
− Γ̄k

τ ∗
k (Γ̄k)T

− λ, (7.30)

and

τ ∗
k (Γ̄k) =

⎧⎨
⎩min

{︂
Θ,1

}︂
if Rk ≥ γk

0 otherwise,
(7.31)

where Θ = max
{︂
τ̂k,Ψ

}︂
, for τ̂k = x1−x2

e
U0

(︁
e−1(1−x1−x3)

)︁
+1+x1+x3−1

, and

Ψ = max

{︄
X − (eβ1Ωk + eβ1β2)Γ̄k

X + T
[︁
λ + Ωmax

]︁
(eβ1Ωk + eβ1β2)

,1 −
[︁
Γ̄k + Γk

]︁
(eβ1Ωk + eβ1β2)

X

}︄
,
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with X = T α3
[︁
eβ1Ωk − 1

]︁|gk,o|2. The expressions for x1, x2, and x3 are given by

x1 = |g̃k|2Tβ3
[︁
eβ1Ωk − 1

]︁|gk,o|2
YT (1 + Ωk|gk|2) , (7.32)

where Y = eβ1Ωk + eβ1β2

x2 = τ̄k|g̃k|2
T (1 + Ωk|gk|2) , (7.33)

and

x3 = λ|g̃k|2
(1 + Ωk|gk|2) . (7.34)

Using the above closed-form expressions, the reward parameter is defined as

Πk(τ
∗
k (Γ̄k), Ω̃

∗
k (Γ̄k)) =

τ ∗
k (Γ̄k)log2

(︂
1 + Ω̃∗

k (Γ̄k)|g̃k |2
1+Ωk |gk |2

)︂
λ̄

. (7.35)

7.4.3.4 Performance evaluation
The effectiveness of the proposed strategy was validated through extensive simu
lations. The learning efficiency analysis evaluates the performance of the proposed 
MDDPG algorithm in comparison to the baseline DDPG algorithm and non-DRL 
methods, including the random and greedy approaches, focusing on episodic reward 
(or EE) and sum rate. The greedy method prioritizes data transmission by using 
all available energy before initiating EH, setting the transmission power to Ωmax
and computing τk as τk = min{1,

Γk

T Ωmax
}. In contrast, the random method fixes the 

transmit power at Γmax and selects τk randomly from a uniform distribution within 
a predefined range. The analysis highlights the convergence performance of these 
algorithms under both non-linear and linear EH dynamics. As shown in Fig. 7.4, 
episodic reward decreases by approximately 30% for the non-linear EH model across 
all learning methods, reflecting the complexity of practical EH scenarios with in
herent non-linearities. Nevertheless, the proposed MDDPG algorithm outperforms 
both DDPG and non-DRL methods for the non-linear EH model, achieving a higher 
episodic reward upon convergence. Moreover, the MDDPG algorithm exhibits faster 
convergence than the DDPG, particularly in the case of the linear EH model.

7.4.3.5 System model: overview of SE optimization
This system operates similarly to the model described above, where the primary IoT 
devices, Mj , transmit data in a cyclic TDMA scheme. In each time slot, a secondary 
device employs the CR-NOMA technique to transmit its data while ensuring co
existence with the primary devices. However, unlike the EH-enabled symbiotic radio, 
which uses a nonlinear EH model, the secondary IoT device, denoted as M̃ in this 
model operates under a linear EH model. This change simplifies the energy harvesting 
process while maintaining the overall network functionality and QoS requirements.

The following assumptions are made at the beginning of each transmission:
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FIGURE 7.4 

Comparison of episodic rewards (or EE) for EH-enabled symbiotic radio using the proposed 
MDDPG algorithm and baseline methods under both linear and non-linear EH models, with 
parameters J = 2, λ = 0 dBm, and Ωk = 30 dBm.

• The secondary IoT device has full knowledge of the CSI.
• The secondary IoT device’s battery is fully charged at the start of the communica

tion.

Taking these assumptions into account, the energy available at the beginning of 
the next time slot is calculated as follows:

Γk+1 = min
{︂
(1 − τk)T ηΩk|gk,0|2 − τkT Ω̃k + Γk,Γmax

}︂
, (7.36)

where Γmax represents the upper limit of the secondary device, η is the EH coeffi
cient, and Ωk and Ω̃k represents transmit power of Mk and M̃ respectively. Under 
the energy constraint, the secondary device transmit power is restricted to the energy 
stored in its battery, as

τkT Ω̃kk ≤ Γk. (7.37)

Therefore, the SE of the network at the k-th time slot is given by [43],

ξk = Rk + R̃k

B
, (7.38)
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In Eq. (7.38), Rk and R̃k denote the data rates of M and M̃ , at the k-th time slot, 
respectively. As in [52], they are given by

R̃k = τkB log2

(︄
1 + Ω̃k|g̃k|2

Ωk|gk|2 + σ

)︄
, (7.39)

and

Rk = B log2

(︃
1 + Ωk|gk|2

σ

)︃
, (7.40)

respectively, where σ represents the noise power.

7.4.3.6 Problem formulation
Our primary objective here is to optimize the system’s overall SE, therefore, the SE 
maximization problem is defined as

maximize
τk,Ω̃k

[︄
τkB log2

(︂
1 + Ω̃k |g̃k |2

Ωk |gk |2+σ

)︂
+ Rk

B

]︄
,

s.t. C1: Γk+1 = min{Γmax, Q̃},
C2: βkT Ω̃k − Γk ≤ 0,

C3: 0 ≤ τk ≤ 1,

C4: 0 ≤ Ω̃k ≤ Ω̃sm,

(7.41)

where Ω̃sm denotes the maximum transmit power of the secondary device, and 
Q̃ = (1 − τk)T ηΩk|g̃k|2 − τkT Ω̃k +Γk . Constraint C1 ensures that the energy level 
of the secondary device’s battery at time slot k + 1 does not exceed its maximum 
capacity while considering harvested energy. Constraint C2 guarantees that energy 
consumption during the k-th time slot does not surpass the available battery energy, 
thereby maintaining a non-negative battery level per C1. Constraint C3 ensures that 
the time-sharing coefficient τk remains within the valid range of 0 to 1. Lastly, con
straint C4 limits the secondary device’s transmit power to be within the range of 0 to 
Ω̃sm, representing its maximum allowable transmit power.

The optimization problem in (7.41) is non-convex due to the non-a˙ine nature 
of C1 and the presence of variable multiplications in C2. Since the optimization 
variables take continuous values, solving Problem (7.41) is possible using the DDPG 
algorithm. However, applying DDPG directly presents significant challenges due to 
the wide range of optimization variable values. To address this, Problem (7.41) is 
decomposed into two subproblems for effective handling.

The first subproblem introduces an energy fluctuation parameter Γ̂k. This param
eter signifies the variance between the energy utilized and the energy gathered at the 
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k-th time slot.

maximize
τk,Ω̃k

[︄
τkB log2

(︂
1 + Ω̃k |g̃k |2

Ωk |gk |2+σ

)︂
+ Rk

B

]︄
,

s.t. C1: f̂ = 0,

C2, C3, C4 in (7.41),

(7.42)

where f̂ = (1 − τk)T ηΩk|g̃k|2 − τkT Ω̃k − Γ̂k , and Γ̂ k = (1 − τk)T ηΩk|g̃k|2 −
τkT Ω̃k . In (7.42), Γ̂k represents the energy surplus during the k-th time slot. As a 
result, Problem (7.42) is solved using convex optimization techniques, allowing ex
plicit formulas to be derived for a given Γ̂k. These formulations, as discussed in [34], 
yield closed-form solutions for the problem, expressed as follows:

Ω̃∗
k (Γ̂k) = (1 − τ ∗

k )T ηΩk|g̃k|2
τ ∗
k

− Γ̂k

τ ∗
k T

, (7.43)

and

τ ∗
k (Γ̂k) = min {1,max {f1, f2}} , (7.44)

where f1 = x1−x2

ew0(e−1(x1−1))+1−1+x1
, while w0(.) represents the Lambart-W -function, 

x1 = ηΩk |g̃k |2|g̃0|2
Ωk |gk |2+1 , x2 = Γ̂k |g̃0|2

T (Ωk |gk |2+1)
and f2 = max

{︂
1 − Γk+Γ̂k

T ηΩk |g̃k |2 ,
T ηΩk |g̃k |2−Γ̂k

T ηΩk |g̃k |2+T Ω̃sm

}︂
.

As our goal is to maximize the SE of the system, the second subproblem is given 
by

maximize
Γ̂k

X∑︂
i=1 

γ i−1

[︄τ ∗
k (Γ̂k)B log2

(︃
1 + Ω̃∗

k (Γ̂k)|g̃k |2
Ωk |gk |2+σ 

)︃
+ Rk

B

]︄
,

s.t. Γk+1 = min
{︂
Γmax,Γk + Γ̂k

}︂
,

(7.45)

where γ denotes the discount factor, which ranges between 0 and 1. We can observe 
that Problem (7.45) is a univariate, continuous-valued function, suitable for solution 
using the DDPG algorithm.

7.4.3.7 Performance evaluation
To integrate the DDPG algorithm into our system model, the state comprises the 
channel gains and the current battery level of the secondary device, while the ac
tion corresponds to Γk , and the reward is defined by the SE. We evaluate the DDPG 
algorithm’s performance by benchmarking it against traditional greedy and random 
strategies. In these baseline approaches, the transmit power of M̃ is kept constant at 
Ω̃k , while the time-sharing coefficient τk is determined differently:
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FIGURE 7.5 

Comparison of episodic rewards (or SE) for secondary IoT device using the proposed DDPG 
algorithm and baseline methods under linear EH models, with parameters J = 2, λ = 0 dBm, 
and Ωk = 30 dBm.

This comparison allows us to assess the efficiency and adaptability of DDPG in 
optimizing system performance over conventional methods. Fig. 7.5 presents a com
parison of episodic rewards in terms of SE for the DDPG algorithm and benchmark 
methods, namely the greedy and random approaches, over multiple episodes. The 
figure clearly demonstrates that the DDPG algorithm consistently achieves superior 
rewards compared to the benchmark strategies. Notably, the DDPG approach exhibits 
signs of convergence after approximately 20 episodes, indicating that any further 
gains in episodic rewards become marginal. This observation highlights the DDPG 
algorithm’s ability to learn and stabilize its performance efficiently, surpassing the 
other methods in effectiveness.

7.5 Implementation and practical considerations
While DRL based solutions have clear benefits, implementing them in practice comes 
with challenges like high computational demands, scalability issues, and real-time 
adaptability. This section focuses on practical factors such as tuning parameters, 
training methods, and deployment strategies to make DRL work effectively in real
world IoT networks.
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7.5.1 Computational complexity and scalability
Implementing DRL in real world IoT networks faces significant challenges, with 
computational complexity being a primary concern. DRL algorithms rely on deep 
neural networks for policy optimization, which requires processing large datasets 
and demands high computational resources. Training these models can be both time 
consuming and resource-intensive.

Scalability is another major issue. As IoT networks grow, the number of devices 
and sensors increases, making the problem more complex. DRL models trained in 
small scale environments often struggle to adapt to larger, dynamic networks, limiting 
their effectiveness in real-world applications.

To tackle these challenges, techniques like model pruning, parallel training, and 
the use of specialized hardware like GPUs and TPUs can help reduce computational 
demands. Research into algorithm optimization and distributed learning is also ad
vancing to improve the scalability of DRL for IoT systems.

7.5.2 Training and convergence challenges
DRL model training has many convergence issues. A drawback of RL is that the 
learning can vary from hundreds to millions episodes. The traditional DRL ap
proached require millions of interactions with the environment for the agent to learn 
the optimized action. Applying this to real-time applications can be highly imprac
tical. Furthermore, the highly dynamic real-world environment, causes the agent to 
take time to learn the correct actions and bring stability in its processes.

Other than this, exploration and exploitation trade off is also a major concern. 
Too much exploration leads to inefficiency in training. On the other hand, excessive 
exploitation of known policies can prevent the model from adapting to changes in the 
environment. Balancing these two aspects is crucial for the model’s success.

To mitigate these challenges, techniques such as reward shaping, curriculum 
learning, and experience replay are used to improve the stability and speed of con
vergence. Additionally, adaptive learning rates and multi-agent systems are being 
explored to handle complex, multi device environments.

7.5.3 Deployment in real-world IoT scenarios
Implementing DRL in real-world scenarios involves more than just achieving good 
algorithmic performance. As the environment keeps changing, adapting to it comes 
difficulty and requires more time to train. With frequent changes in terms of devices, 
behaviors and network condition, IoT network usually become extremely dynamic. 
DRL models must continuously adjust to maintain optimal performance.

Secondly, real-time deployment also faces latency challenges. Many IoT appli
cations require quick decision making, but the computational demands of DRL can 
cause delays. These delays can be unacceptable in time-sensitive scenarios. Ensuring 
that DRL policies run efficiently in real time is essential for such applications.

Another challenge is integrating DRL solutions into existing IoT setups. This re
quires hardware upgrades and software modifications to support deployment. Edge 
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computing and federated learning offer practical solutions. They enable DRL algo
rithms to operate on distributed devices with low latency, improving efficiency and 
adaptability.

7.6 Future directions
DRL has great potential to improve IoT systems, but several challenges still need to 
be addressed. Technologies like reconfigurable intelligent surfaces (RIS) [44], feder
ated learning, and edge computing offer new possibilities for advancing DRL-based 
solutions. This section highlights key areas for future research to support the devel
opment of more sustainable IoT networks.

7.6.1 Integration with emerging technologies (e.g., RIS, 
backscatter, MEC)

As IoT continues to grow, technologies like RIS, backscatter communications [45], 
and MEC are emerging as key components of next-generation IoT networks. These 
technologies offer new ways to improve the performance of DRL based solutions.

Reconfigurable Intelligent Surfaces (RIS): by modifying radio waves propaga
tion RIS, can adjust the wireless environment. This way, if combined with DRL 
algorithms, RIS can help optimize signal strength, reduce interference, and improve 
energy efficiency. RIS and DRL together can enhance the reliability and efficiency
of communication in large IoT networks, by controlling the environment in real 
time based on network conditions. For example, [46] highlights a RIS-assisted aerial 
NTNs integrate UAVs and HAPs with RIS to enhance wireless communication by op
timizing signal propagation for better coverage and reliability. This study highlights 
how DRL, specifically H-PPO, can optimize these networks in a CoMP-NOMA sce
nario.

Backscatter Communications: By reflecting existing signals instead of generat
ing new ones this technique allows devices to transmit data. Combining backscatter 
communications with DRL can help save energy, especially in battery-powered IoT 
devices. Similarly, DRL models can also adjust communication strategies to optimize 
backscatter performance under different environmental conditions. For example, [47] 
explores optimizing the sum rate for energy-harvesting IoT devices in a CR-NOMA
assisted backscatter network using the DDPG algorithm. This approach improves 
reflection coefficient management, ensuring QoS for primary devices and efficient 
performance for passive IoT nodes.

Mobile Edge Computing (MEC): MEC enables data processing closer to the edge 
of the network, reducing reliance on cloud computing. Integrating DRL with MEC 
can lead to faster decision-making in IoT applications. For instance, [48] explains 
how MEC enhances IoT performance by offloading tasks closer to User Equipment 
(UE), while DRL aids decision making in dynamic environments. By using edge 
servers, DRL models can process data locally, reducing delays and improving sys
tem performance. This is especially important for time-sensitive applications like 
autonomous vehicles and real-time healthcare monitoring.
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7.6.2 Federated and distributed DRL for IoT
Federated learning (FL) and distributed DRL (DDRL) allow training models without 
centralizing data, making them suitable for IoT networks spread across large areas. 
This approach avoids the need to send all data to a central server.

In federated DRL, IoT devices work together to train a shared model while keep
ing their data local. This reduces communication requirements and protects privacy 
since sensitive data is not transmitted. Future efforts can focus on improving how 
updates are aggregated and addressing challenges from non-uniform data distribu
tions. Example [49], a DRL-based management mechanism is proposed to select 
trustworthy devices, improving FL model accuracy by 20 percent with fewer train
ing iterations. This model aims to improve the security challenges from malicious or 
resource-limited devices.

DDRL involves multiple agents learning from different parts of the environment. 
This approach enables scaling in IoT networks by allowing devices to explore and 
share insights independently. It helps reduce training times and improves model re
liability, making it useful for real-time applications requiring quick adjustments. In 
[50], a DDRL-based computation offloading scheme is proposed to improve QoE 
in edge computing. Simulations show it outperforms existing methods with higher 
rewards and lower variability.

7.6.3 Security and privacy considerations
When using DRL algorithms that depend on large datasets, security and privacy are 
essential for IoT systems. However, protecting data and ensuring DRL model in
tegrity are key challenges.

Data Privacy: IoT devices gather large amounts of sensitive data, raising privacy 
concerns. Methods like differential privacy, homomorphic encryption, and secure 
multiparty computation can help protect data during DRL training and use.

Adversarial Attacks: DRL systems can be targeted by attacks that disrupt learning 
with false information or environment manipulation. Research should focus on mak
ing DRL more resistant to these attacks using techniques like adversarial training and 
anomaly detection.

Secure Communication: IoT devices face threats like data interception and unau
thorized access. Secure communication between devices and DRL models is vital, 
especially in distributed learning setups. Tools like TLS and blockchain [51] can help 
ensure data security and integrity.

7.6.4 Towards fully sustainable IoT networks
The long-term sustainability of IoT networks relies on reducing resource use, lower
ing environmental impact, and ensuring long-lasting systems. DRL can help achieve 
these goals by improving energy use, resource management, and overall performance.

Energy Efficiency: DRL can optimize energy use in IoT devices by adjusting 
transmission power, scheduling tasks, and managing network resources. This is cru
cial for battery-powered devices, as better energy management extends their lifetimes 
and reduces battery replacements.
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Environmentally Friendly IoT: Future IoT systems need to be energy efficient and 
eco-friendly. DRL can help create power-saving communication protocols, efficient 
network designs, and energy-aware hardware. It can also optimize the use of renew
able energy sources like solar power, ensuring sustainable operation of IoT devices.

Circular Economy: Sustainability also involves managing the lifecycle of IoT 
devices. DRL can support smart recycling systems where devices decide when to up
grade or replace parts. This helps promote a circular economy by focusing on reuse, 
recycling, and reducing waste.

7.7 Conclusion
This chapter explored the integration of DRL algorithms for optimization of energy 
and spectrum efficiency for IoT networks. The chapter focused on DRL ability to 
address the complex and evolving challenges of modern IoT deployments. We ex
amined the characteristics and constraints of IoT devices. Beside this we emphasized 
on the importance of energy and spectrum management to ensure the long-term vi
ability of these networks. DRL-based algorithms, with their ability to learn from 
dynamic environments, offer promising solutions to many challenges. By leveraging 
algorithms like DDPG, TD3, PPO, and SAC, these approaches optimize energy con
sumption and spectrum utilization in real time, driving greater network performance 
and sustainability.

However, as highlighted in the practical considerations, there remains several 
challenges. These challenges include computational complexity and scalability. 
Moreover, we discussed how the integration of DRL algorithms with technologies 
such as RIS, MEC, and FL has the potential to further enhance the capabilities of 
DRL for IoT. DRL-based algorithms addresses the evolving needs of diverse applica
tions while ensuring that the underlying infrastructure remains secure and efficient. 
The future of IoT networks lies in the continued development of intelligent, sus
tainable, and efficient solutions. DRL-based algorithms, pave their way for greener 
and efficient future, with their ability to optimize both energy and spectrum use. 
Ultimately, these efforts will contribute to the realization of fully sustainable IoT 
networks that are capable of meeting the growing demands of the digital world while 
minimizing their environmental impact.
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8.1 Introduction
An interconnected network of physical devices embedded with sensors, connectivity, 
and processing power capable of collaboratively exchanging data through the Inter
net forms the basis of the Internet-of-things (IoT). The idea of densely connected 
small devices has garnered significant attention since its inception in 1999 [1]. This 
growing interest is further indicated by the 934.2 billion dollar expected worldwide 
total annual revenue from the IoT industry [2]. According to some estimates, 127 
IoT devices are added to the Internet every second, and 125 billion IoT devices are 
expected to be connected to the Internet by the end of 2030 [3]. These projections 
indicate a massive increase in the connection load on the existing communication in
frastructure. In addition to the communication overhead, the power consumption of 
such a large number of devices in dense deployments is a major concern in academia 
and industries in the design of next-generation systems [4].

In addition to the exponential increase in the number of IoT devices that are 
expected to be operational in the coming years, the support of the growing IoT land
scape in its entirety requires the assimilation of sensing functionality inside the IoT 
devices. As these IoT devices must be able to sense the environment around them, the 
concept of integrated sensing and communication (ISAC) has been put forward as the 
way to enable the functional feasibility of IoT systems [5]. ISAC is expected to en
able the sensing of the surrounding environment using either a monostatic or bistatic 
configuration. In both these configurations, the communication signals can be used 
for information transmission and environmental sensing. Environmental sensing from 
information-bearing signals is a complicated procedure involving more processing, 
complex interference cancellation, and waveform optimization, etc. Due to these rea
sons, energy-e˙icient designs are starting to be explored in the literature to make the 
adoption of ISAC-enabled systems more practically feasible, especially in the context 
of IoT [5].
Design and Analysis of Green and Sustainable IoT Technologies for Future Wireless Communications 
https://doi.org/10.1016/B978-0-44-333000-1.00013-4
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As wireless communication infrastructure becomes more ubiquitous and reli
able, and machines and processes become more complex, intelligent automation of 
these processes not only becomes more feasible but also necessary. The optimal 
use of resources in production, logistics, and many other industrial processes in
creases efficiency and reduces workload on human workers who may have otherwise 
been overworked in the management of menial tasks. Owing to the advances en
abled through automation, machine-to-machine (MTM) communication has become 
one of the main design focuses of modern communication systems [6]. The na
ture of communication between machines varies significantly from human-to-human 
(HTH) communications owing to their focus on short but frequent messages with 
an enhanced focus on reliability rather than bandwidth. As the scale of deploy
ment and latency sensitivity of IoT in the industry is much different from typical 
HTH communications, the optimization of these systems plays an important role 
in their feasibility within such industrial environments. In addition to the afore
mentioned challenges, the move towards green IoT demands the efficient use of 
resources in order to maximize utility, limit power consumption, and reduce CO2 
emissions [7].

To fulfill the objectives required for the optimal functioning of IoT networks in 
the presence of energy constraints, every aspect of IoT systems, from design to im
plementation and operation, has to be optimized. This objective can only be fulfilled 
after a comprehensive understanding of the mindset, designs, and algorithms involved 
throughout the process. Understanding the bottlenecks and optimization variables 
involved in the problem can have a significant impact on the quality of the optimiza
tion performed for the desired functioning of the system. Therefore, in this chapter, 
we highlight the techniques and steps typically involved in the optimization of a 
system, including a primer on optimization, the structure of an optimization prob
lem, and types of optimization paradigms. We then move towards the introduction 
of optimization in green IoT and the opportunities typically exploitable in the design 
and optimization of green IoT networks in terms of typical wireless communication 
technologies. We then finally move towards communication protocols that can be 
employed for the optimal functioning of a green IoT architecture. Finally, the chap
ter is concluded by providing insights learned from the comprehensive treatment of 
the techniques and protocols mentioned in the chapter. Possible future directions are 
also mentioned that may be undertaken to explore feasible optimization opportuni
ties.

8.2 Optimization
Optimization is the process of determining the most favorable solution to a given 
problem from a set of feasible alternatives, based on a defined objective and sub
ject to constraints. The objective of optimization may be to maximize or minimize 
a particular quantity in order to obtain the best performance. The process is cen
tral to many disciplines, providing a systematic framework for decision making and 
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operational improvement in complex systems. By systematically exploring solution 
spaces within the defined constraints, the best solution that satisfies the objective can 
be identified. Constraints typically represent limitations or requirements, such as re
source availability, physical boundaries, or operational rules that must be satisfied for 
the solution to be feasible.

Optimization algorithms are employed when explicit solutions cannot be directly 
computed due to the complexity of the problem or time constraints. These algorithms 
iteratively refine candidate solutions and converge toward the optimal outcome by 
evaluating and improving upon intermediate results. The field of optimization encom
passes a wide range of methodologies and techniques that are best suited to specific 
types of problems.

Optimization is integral to various applications ranging from engineering design 
and supply chain management to financial planning and medicine. By ensuring op
timal decisions, system operations can be enhanced and made more efficient across 
diverse domains.

8.2.1 Types of optimization problems
Optimization problems can be broadly classified into either constrained or uncon
strained optimization problems based on the presence or absence of constraints. 
These classifications provide a foundational structure for formulating and solving 
optimization problems in various applications.

Unconstrained optimization problems
In unconstrained optimization, the objective is to find the optimal solution without 
any constraints on the decision variables. The domain of a decision variable is de
fined as the set of all of the values a variable can take, and this set can be either finite 
or infinite. The formulation of an unconstrained optimization involves minimizing 
or maximizing an objective function f (x) over the entire domain of the decision 
variables. These problems are simpler to solve as there are no additional constraints 
to consider while searching for the solution. Common methods for solving uncon
strained problems include gradient-based techniques such as gradient descent, New
ton’s method, and quasi-Newton methods. These approaches rely on the smoothness 
and differentiability of the objective function and therefore struggle with problems 
not possessing these properties.

Constrained optimization problems
Constrained optimization problems involve additional restrictions, expressed as 
mathematical equalities or inequalities, that the solution must satisfy. Mathemati
cally, these problems are formulated as:

minimize f (x)

subject to gi(x) ≤ 0, i = 1, . . . ,m,

hj (x) = 0, j = 1, . . . , p,
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where gi(x) and hj (x) represent the inequality and equality constraints, respectively. 
Constraints define a feasible domain within which the decision variables can exist. 
Constrained problems are inherently more complex than their unconstrained counter
parts, as the constraints may introduce non-linearities or limit the feasible decision 
space.

Constrained optimization techniques include methods that transform the problem 
into an unconstrained form, such as penalty methods, barrier methods, etc., which 
prevent exploration of the space outside the constraints, or those that deal directly 
with constraints, such as interior-point or augmented Lagrangian methods. These ap
proaches ensure that the solution satisfies all imposed constraints while optimizing 
the objective function.

The distinction between constrained and unconstrained problems is fundamental 
in optimization, influencing the selection of solution techniques and the complexity 
of the problem. While unconstrained optimization focuses purely on the properties 
of the objective function due to the absence of constraints, constrained optimization 
problems require a balance between objective optimization and constraint satisfac
tion, making them crucial in real-world applications where restrictions are inevitable.

8.2.2 Structure of an optimization problem
An optimization problem is mathematically represented by an objective function, 
decision variables, and constraints. A general form of an optimization problem is 
given by

minimize f0(x)

subject to fi(x) ≤ bi, i = {1, . . . ,m},
where x ∈ ℝ

n denotes the decision variables, f0(x) : ℝn → ℝ is the objective func
tion, and fi(x) : ℝn → ℝ are the functions defining the constraints. The constraints 
restrict the original domain of the decision variables to specify a smaller domain, of
ten denoted as ℱ , which represents all x that satisfy the constraints. A solution x⋆ is 
said to be optimal if it lies within the feasible domain and minimizes (or maximizes) 
the objective function compared to all other values in that domain. It is important to 
note that in the case of constrained optimization problems, the global optimum over 
the entire domain may be different from the optimum in the constrained domain of 
the decision variables. A mathematical structure is crucial for classifying optimiza
tion problems, such as linear, quadratic, or nonlinear, and for determining appropriate 
solution methods.

Objective
The objective of an optimization problem is the function f0(x) that numerically 
quantifies the goal to be achieved. For a minimization problem, the objective of the 
algorithm is to find a decision vector x⋆ such that f0(x

⋆) ≤ f0(x) for all x ∈ ℱ , where 
ℱ represents the feasible region. The cases involving function maximization can be 
handled by minimizing the negative of the function, i.e., −f0(x). The properties of 
the objective function, such as linearity, convexity, differentiability, and smoothness, 
significantly affect the complexity of the problem and the algorithms required to solve 
it.
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Metrics
Metrics are quantitative measures that evaluate the quality of solutions to optimiza
tion problems. The most commonly used metric is the value of the objective function 
at the optimal point, f0(x

⋆), which indicates how well the solution satisfies the prob
lem’s goal. However, in some use cases, the constraints involved in the optimization 
problem must be strictly met, e.g., power constraints on transmit antennas, load bal
ancing in network traffic, etc., to keep the system stable and operational. Constraint 
satisfaction metrics, employing residuals of fi(x) − bi for inequality constraints or 
hj (x) for equality constraints can also be used to measure the performance of an 
optimization algorithm. In multi-objective optimization, metrics such as Pareto dom
inance, Pareto front distance, or hypervolume are used to assess trade-offs among 
competing objectives. Metrics are also used to define stopping criteria, convergence 
rates, and computational efficiency.

Constraints
Real-world systems are inherently subject to constraints that must be taken into ac
count to ensure reliability and stability. These limitations are effectively modeled in 
constrained optimization problems, where constraints explicitly define the allowable 
values of decision variables. Mathematical optimization provides a rigorous frame
work for incorporating these limitations as constraints, ensuring that solutions remain 
feasible within the defined operational bounds.

Constraints delineate the feasible region in which decision variables can exist, and 
the optimal solution must be obtained within this region. Formally, constraints can be 
categorized into:

-- Equality Constraints: Requiring decision variables to satisfy specific exact rela
tionships, represented by equalities.

-- Inequality Constraints: Restricting decision variables to meet upper or lower 
bounds or other limiting conditions, represented by inequalities.

Constraints can be linear or nonlinear, and their interaction determines the geom
etry of the region formed by the feasible set. For instance, linear constraints form 
polyhedra, while nonlinear constraints often result in curved boundaries. Proper han
dling of constraints is crucial for problem formulation and solution, as setting loose 
constraints may affect the stability of complex systems and overly restrictive con
straints might explude the optimal solution.

Decision variables
Decision variables x = (x1, x2, . . . , xn) ∈ ℝ

n are the variables that need to be de
termined to solve the optimization problem. They serve as parameters for both the 
objective function and the constraints, with their values influencing the value of the 
metrics as well. Decision variables can belong to either continuous spaces or discrete 
spaces, each possessing different properties.

Discrete Spaces: A discrete space consists of elements that are distinct, and 
countable. They correspond to decision variables that can only take specific values, 
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e.g., integers or categorical values. These spaces are encountered in scheduling, or 
routing problems where the solutions involve selecting from a finite or countable set 
of possibilities. The set of integers {1,2,3, . . .} or the set of antennas to select for 
transmission are problems with discrete decision variables.

Continuous Spaces: In contrast, a continuous space is characterized by values 
within a specified range or domain of real numbers. Decision variables in continuous 
spaces are not restricted to discrete levels. These spaces are frequently used in prob
lems involving real-valued functions, such as beamforming optimization and power 
allocation, etc. The interval [0,1] or the entire Euclidean space ℝn are continuous in 
nature.

Mixed-integer optimization problems involve both types of variables and are gen
erally more complex. The domain boundaries of the decision variables are often 
explicitly specified by constraints, such as bounds l ≤ x ≤ u, where l, u ∈ ℝ

n.

8.2.3 Complexity of optimization problems
The complexity of an optimization problem is determined by the nature of its ob
jective function, constraints, and metrics. Problems with linear objectives and con
straints, called linear programming (LP) problems, are efficiently solvable in poly
nomial time using algorithms such as the simplex method or interior-point methods. 
For example, we have

minimize c⊤x

subject to Ax ≤ b,

x ≥ 0,

where the variables c ∈ ℝ
n, A ∈ ℝ

m×n, and b ∈ℝ
m form a linear programming prob

lem with a linear objective and linear constraints.
Quadratic programming (QP), where the objective function is quadratic and con

straints are linear, also allows polynomial-time solutions if the objective function is 
convex. For instance,

minimize 
1

2
x⊤Qx + c⊤x subject to Ax ≤ b

is a quadratic programming problem, where Q is a positive semidefinite matrix. The 
term x⊤Qx makes the objective function quadratic.

In contrast, nonconvex optimization problems, such as those with multiple lo
cal minima or combinatorial structures, are often NP-hard. These problems require 
heuristic or approximate methods, such as genetic algorithms or simulated annealing, 
for practical solutions. Combinatorial optimization problems, like the traveling sales
man problem (TSP), are also non-convex and NP-hard. The dimensionality of the 
problem and the sparsity of constraints further influence computational complexity. 
Examples of these constraints can be found in the literature on user association and 
resource allocation optimization [8].
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8.2.4 Types of optimization solutions
An optimum is determined by identifying the minimum or maximum value of an 
objective function within the domain of the decision variables. Since the optimum 
must represent the extremum value achievable within the feasible region, optimiza
tion algorithms can be categorized into two classes based on the nature of the optimal 
solution they identify. These classes are:

-- Global Optimization
-- Local Optimization

Global optimization
Global optimization focuses on identifying the best solution across the entire search 
space. Unlike local optimization, it avoids being confined to local optima and is 
particularly important for problems with multi-modal or highly complex response 
curves, where multiple local optima exist.

Techniques for global optimization, including simulated annealing and genetic 
algorithms, emphasize the exploration of the decision space. These methods utilize 
random, population-based, or probabilistic approaches to ensure broad coverage of 
the solution space. Global optimization is essential for problems where finding the 
true global optimum is critical, even at the cost of high computation.

Local optimization
Local optimization seeks the best solution within a restricted neighborhood of a ran
dom starting point. It assumes that the objective function behaves consistently and 
allows for iterative refinement of the solution using information such as gradients 
and curvatures. Typical gradient-based optimization techniques such as Newton’s 
method and quasi-Newton methods are widely used to solve problems with these 
assumptions.

Local optimization is computationally efficient as compared to global optimiza
tion, and effective when applied to smooth and convex problems where any local 
minimum is guaranteed to be a global minimum. However, it may fail in non-convex 
or multi-modal landscapes, where solutions may converge to a local optimum that 
may not be globally optimal.

8.3 Types of optimization frameworks
Optimization techniques can be broadly classified based on various criteria, such as 
the nature of the problem, the structure of the optimization space, and the methodol
ogy.

8.3.1 Mathematical optimization
Mathematical optimization focuses on systematically identifying the best solution 
to a problem by maximizing or minimizing an objective function within defined 
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constraints. Unlike other techniques that may rely on approximate and often problem
specific strategies or on learning patterns from data to make predictions or decisions, 
mathematical optimization provides exact or provably optimal solutions when the 
problem structure allows and models objectives and constraints for decision making.

Convex optimization
Convex optimization addresses problems where the objective function is convex, and 
the feasible region forms a convex set. A convex function is defined as a function 
in which the intermediate values between two function values are always lower than 
or equal to the line connecting the two function values. This property guarantees 
that every local minimum is also a global minimum. The mathematical structure of 
convex optimization problems allows for the development of efficient algorithms, 
such as gradient descent and interior-point methods.

-- Examples: Linear programming (LP), Quadratic programming (QP), Semidefi
nite programming (SDP), etc.

-- Advantages: Global optimum is guaranteed due to convexity.
-- Techniques: Gradient descent, interior-point methods, etc.
-- Applications: Beamforming, power allocation, etc.

Non-convex optimization
Non-convex optimization deals with problems where the objective function or con
straints lack convexity, leading to multiple local optima. Unlike convex optimization, 
there is no guarantee that a local minimum is a global minimum. Non-convex prob
lems rely on effective methods to explore the solution space and escape local optima. 
To address the problem of premature convergence, techniques such as simulated an
nealing allow for probabilistic ``jumps'' that explore regions beyond the current local 
solution, mimicking the physical process of cooling metals. Similarly, Genetic algo
rithms leverage evolutionary principles, such as selection and mutation, to explore 
diverse regions of the solution space. These methods, aim to balance optimal search 
and solution refinement to achieve robust results.

-- Examples: Non-linear programming, combinatorial optimization, etc.
-- Challenges: Fine-tuning to find the global optimum, computationally expensive, 

etc.
-- Techniques: Simulated annealing, genetic algorithms, branch and bound, etc.
-- Applications: Antenna selection, cell user association, etc.

Stochastic optimization
Stochastic optimization incorporates randomness into the optimization process or 
directly into the problem formulation, enabling the handling of uncertainties, and 
incomplete or noisy information. Instead of relying on precise function evaluations, 
these methods work with noisy or sampled data to iteratively improve solutions. A 
method called stochastic gradient descent (SGD) updates the solution using small 
random subsets of data (mini-batches), reducing the computational cost while main
taining significant convergence properties. These methods are particularly effective 
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for large-scale problems where deterministic approaches are computationally pro
hibitive. Stochastic optimization techniques are often sensitive to optimization pa
rameters like learning rate and stopping criteria therefore appropriate parameter se
lection is one of the challenges involved in stochastic modeling and optimization.

-- Examples: Stochastic gradient descent (SGD), particle swarm optimization 
(PSO), Monte Carlo methods, Bayesian optimization, etc.

-- Challenges: Convergence issues in complex scenarios, sensitivity to hyperparam
eters (e.g., learning rates), and computational overhead in large-scale systems.

-- Techniques: Mini-batch stochastic gradient descent, Markov Chain Monte Carlo 
(MCMC), Gaussian process-based Bayesian optimization, etc.

-- Applications:
• Dynamic spectrum allocation in cognitive radio networks.
• Power control in massive MIMO systems.
• User scheduling and beamforming optimization.
• Resource allocation in ultra-dense networks.
• Channel estimation in IoT-enabled networks.

Combinatorial optimization
Combinatorial optimization focuses on problems where the objective is to find the 
best solution from a finite or countably infinite set of feasible solutions, often char
acterized by discrete decision variables and complex constraints. The large solution 
spaces of combinatorial problems make exhaustive search impossible, and special 
optimization techniques have to be developed to efficiently explore the solution 
space. Techniques including integer dynamic programming and dynamic program
ming might be able to tackle smaller problems, but for large solution spaces, meta
heuristic algorithms have to be employed to find a feasible solution within reasonable 
time bounds.

Combinatorial optimization is well suited for problems with a structure consisting 
of discrete elements, such as graphs. These methods are sensitive to problem-specific 
factors such as the structure of the feasible region, the behavior of the cost function, 
and the complexity of the constraints, which influence the choice of algorithm and its 
effectiveness.

-- Examples: Scheduling problems, resource allocation, routing optimization, etc.
-- Challenges: Large solution spaces, NP-hard complexity, difficulty in finding 

globally optimal solutions, and computational infeasibility for real-time applica
tions.

-- Techniques: Integer programming, branch and bound, dynamic programming, ge
netic algorithms, greedy algorithms, etc.

-- Applications:
• Frequency assignment in wireless networks.
• User association in heterogeneous networks.
• Beam selection in millimeter-wave MIMO systems.
• Optimal routing in ad-hoc and sensor networks.
• Subcarrier and power allocation in OFDMA systems.
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8.3.2 Heuristic and metaheuristic techniques
Heuristic and metaheuristic techniques focus on efficiently finding near-optimal so
lutions to complex optimization problems, particularly where exact methods are 
computationally infeasible due to the size or structure of the problem. Unlike mathe
matical optimization, which relies on rigorous modeling of objectives and constraints, 
heuristic and metaheuristic methods use approximate, problem-independent strate
gies (in the case of metaheuristics) inspired by nature, physics, or random processes 
to optimize complex systems.

Heuristic methods
Heuristic methods are approximate strategies designed to produce good solutions 
within reasonable timeframes, especially for complex problems where exact solutions 
are infeasible. These methods rely on intuitive rules or insights about the problem 
structure rather than rigorous mathematical formulations. Hill climbing is one notable 
example of heuristic methods, in which the algorithm iteratively adjusts the current 
solution by evaluating neighboring solutions and moving toward the one with the 
highest improvement. While heuristic methods are not guaranteed to find the optimal 
solution, they are highly desirable for quickly obtaining optimized results that may 
prove to be much better than random selection. They often form the foundation for 
more advanced optimization frameworks by providing initial solutions or guidance.

-- Examples: Hill climbing, greedy algorithms, random search, etc.
-- Challenges: Prone to getting stuck in local optima, lack of scalability for complex 

problems, and no guarantee of global optimality.
-- Techniques: Constructive heuristics, neighborhood-based search, iterative im

provement, etc.
-- Applications:

• Channel allocation in wireless networks.
• Beamforming vector selection in MIMO systems.
• Resource scheduling in edge computing environments.
• Frequency planning in cellular networks.
• Pathfinding in ad-hoc and sensor networks.

Metaheuristic methods
Metaheuristic methods are generalized frameworks that enhance heuristic approaches 
by introducing mechanisms to explore the solution space more systematically. For 
instance, genetic algorithms simulate natural selection by evolving a population of 
candidate solutions utilizing crossover and mutation. Simulated annealing, inspired 
by the cooling process of metals, probabilistically accepts worse solutions to escape 
local optima early in the process. Other methods, such as particle swarm optimiza
tion, model collective behaviors to guide search efforts. Metaheuristics provide a 
versatile toolkit for tackling diverse and complex optimization problems while being 
adaptable to a wider class of problems than heuristic algorithms at the cost of added 
complexity.



8.3 Types of optimization frameworks 169

-- Examples: Genetic algorithms (GA), simulated annealing (SA), particle swarm 
optimization (PSO), ant colony optimization (ACO), differential evolution (DE), 
etc.

-- Challenges: High computational cost for large-scale problems, risk of premature 
convergence, difficulty in parameter tuning, and lack of problem-specific guaran
tees.

-- Techniques:
• Population-based techniques (e.g., GA, PSO, DE).
• Trajectory-based techniques (e.g., SA, ACO).
• Hybrid metaheuristics that combine elements of multiple algorithms.

-- Applications:
• Power allocation in heterogeneous networks.
• Beamforming optimization in massive MIMO systems.
• Resource allocation in multi-access edge computing (MEC).
• Spectrum sharing in cognitive radio networks.
• Clustering in wireless sensor networks.

8.3.3 Machine learning-based optimization
Machine learning-based optimization leverages the predictive and adaptive capabil
ities of machine learning models to guide the search for optimal solutions. Unlike 
traditional mathematical optimization, which relies on explicit models of objectives 
and constraints, machine learning-based approaches learn patterns and relationships 
directly from data. These techniques are particularly effective when the problem 
structure is not fully known or the problem is too complex to model using classical 
approaches. By integrating data-driven insights into the optimization process, ma
chine learning can significantly reduce the effort required in classical modeling while 
also providing comparable or better optimization results.

-- Examples: Supervised learning for optimization, deep learning-based optimiza
tion, Bayesian optimization, etc.

-- Challenges: High computational complexity, requirement for large datasets, sus
ceptibility to overfitting, lack of interpretability, and difficulty in convergence for 
complex wireless environments.

-- Techniques:
• Deep reinforcement learning (e.g., DDPG, PPO).
• Bayesian optimization for hyperparameter tuning.
• Supervised learning for predictive optimization.
• Transfer learning for dynamic network adaptation.
• Federated learning for distributed optimization.

-- Applications:
• Dynamic spectrum allocation in cognitive radio networks.
• Power control in energy-e˙icient communication systems.
• User scheduling in multi-user MIMO systems.
• Resource allocation in ultra-dense networks.
• Beamforming optimization in millimeter-wave systems.
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Gradient-based optimization
Gradient-based optimization uses derivatives to guide the search for optimal solutions 
in continuous spaces. For convex problems, gradient-based methods like gradient de
scent or Newton’s method are highly efficient, converging to the global minimum. 
Differential objective functions are necessary for the proper functioning of these 
techniques, therefore the design of smooth and differentiable objective functions is 
of significant interest in this domain of optimization. Proper tuning of parameters, 
such as learning rates or step sizes, is critical for achieving a balance between con
vergence speed and stability. Advanced variants, such as adaptive moment estimation 
(Adam), incorporate momentum and adaptive learning rates to enhance performance 
in complex problems.

-- Examples: Gradient descent, stochastic gradient descent (SGD), conjugate gradi
ent method, Newton’s method, quasi-Newton methods, etc.

-- Challenges: Dependence on the differentiability of objective functions, sensitivity 
to initial conditions, risk of convergence to local optima in non-convex problems, 
and computational inefficiency for high-dimensional systems.

-- Techniques:
• Adaptive gradient methods (e.g., Adam, RMSprop).
• Momentum-based optimization techniques.
• Line search and trust-region methods for step size optimization.

-- Applications:
• Beamforming optimization in massive MIMO systems.
• Power allocation in multi-user communication networks.
• Resource allocation in OFDMA-based networks.

Gradient-free optimization
Gradient-free optimization methods are designed for situations where gradients are 
unavailable, unreliable, or expensive to compute. These methods rely on sampling 
and evaluating the objective function directly, making them suitable for black-box 
problems where the internal structure of the function is unknown. Techniques like 
Bayesian optimization model the objective function probabilistically, using prior 
evaluations to guide exploration and exploitation. While these methods are com
putationally intensive, they are robust to noisy, non-differentiable, or multi-modal 
functions, making them effective for a broad range of optimization challenges, even 
in fields employing machine learning algorithms.

-- Examples: Bayesian optimization, random search, genetic algorithms (GA), par
ticle swarm optimization (PSO), evolutionary strategies, etc.

-- Challenges: High computational complexity for large solution spaces, slower 
convergence compared to gradient-based methods, sensitivity to algorithmic pa
rameters.

-- Techniques:
• Bayesian optimization with Gaussian processes for black-box functions.
• Evolutionary algorithms (e.g., genetic algorithms, differential evolution).
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• Metaheuristics (e.g., simulated annealing, particle swarm optimization).
• Direct search methods (e.g., Nelder-Mead, pattern search).

-- Applications:
• Beamforming optimization in multi-user MIMO systems without analytical 

gradients.
• Resource allocation in non-differentiable energy-e˙icient communication sys

tems.
• UAV placement and trajectory optimization in IoT-enabled wireless systems.

Reinforcement Learning (RL)
Reinforcement learning is an optimization framework where an agent learns to make 
sequential decisions by interacting with its environment. Unlike other optimization 
methods, RL focuses on maximizing long-term cumulative rewards rather than a sin
gle objective. The agent explores actions, observes outcomes, and adjusts its strategy 
based on the feedback from the environment. Techniques like Q-learning use value 
functions to estimate the expected rewards of actions in discrete spaces, while pol
icy gradient methods directly optimize the policy governing action selection and are 
more suitable for continuous space problems. RL is particularly effective in complex 
and dynamic environments with stochastic feedback.

-- Techniques: Q-learning, policy gradient methods.
-- Applications: sum-rate maximization, path planning, resource allocation, etc.

8.3.4 Multi-objective optimization
Multi-objective optimization addresses problems involving multiple conflicting ob
jectives that must be optimized simultaneously. Rather than seeking a single optimal 
solution, these problems yield a set of Pareto-optimal solutions, where improving 
one objective requires compromising another. The Pareto frontier represents these 
trade-offs, allowing decision-makers to evaluate and select solutions based on their 
priorities.

-- Techniques: Pareto optimization, NSGA-II (Non-dominated Sorting Genetic Al
gorithm).

-- Applications: Quality of service (QoS) vs Resource Utilization, Throughput vs 
Interference, etc.

8.4 Optimization in Green IoT
In this section, we will introduce optimization in the context of green IoT. In particu
lar, the allocation of network resources is an important aspect of effective network 
management, especially in wireless networks where resources such as frequency, 
bandwidth, and channel access are scarce. The reuse and optimal distribution of these 
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Table  8.1 Technical differences.
Aspect Convex Op

timization
Reinforcement 
Learning

Heuristic 
Methods

Metaheuristic 
Methods

Nature Deterministic, 
analytical

Stochastic, 
environment
based

Problem
specific, 
heuristic-driven

General-purpose, 
framework-driven

Objective 
Function

Convex Reward 
maximization

Any Any

Search 
Space

Continuous, 
convex

Sequential, 
dynamic

Discrete/contin
uous

Discrete/continu
ous

Optimality 
Guarantee

Global 
optimum

No guarantees No guarantees Near-optimal 
solutions

Computa
tional Cost

Moderate High (training 
over time)

Low to 
moderate

Moderate to high

Scalability High Problem
dependent

High High

Applications Engineering, 
economics

Robotics, AI Scheduling, 
basic 
optimizations

Complex and 
global 
optimizations

resources are necessary for enhancing network operation. For this reason, design
ing efficient resource allocation mechanism is crucial in multiple access systems, 
as it governs the management of both radio resources and interference, ensuring 
high-speed and reliable communication. In this context, next-generation multiple 
access (NGMA) has gained significant attention. From 1G to 5G, multiple access 
technologies have evolved with the goal of allocating orthogonal radio resources to 
users, thereby preventing multi-user interference. However, in conventional orthogo
nal multiple access (OMA) methods such as time division multiple access (TDMA), 
frequency division multiple access (FDMA), code division multiple access (CDMA), 
and orthogonal frequency-division multiple access (OFDMA), each user is assigned 
an individual orthogonal resource, which limits the number of users supported and 
reduces spectral efficiency (Table 8.1).

The next generation of communication systems aims to enhance user experience 
by supporting advanced applications and services like industrial automation, smart 
cities, virtual and augmented reality, remote medical surgery, autonomous vehicles, 
and unmanned aerial vehicles (UAVs). These emerging services introduce demanding 
requirements, including low latency, high data rates, massive connectivity, high reli
ability, and varied quality of service support. The massive connectivity needs in 5G 
and beyond are largely driven by the rapid expansion of IoT devices. Notably, 6G net
works are expected to support a connection density of 107 devices/km2, 1000 times 
higher than 4G and 10 times higher than 5G. However, traditional OMA schemes, 
which allocate distinct resource blocks (e.g., time and frequency) to individual users, 
face challenges in accommodating a larger number of devices. Specifically, since 
each orthogonal resource in OMA is assigned to one user, the maximum simultane
ous user capacity is limited by the number of available resources, restricting spectral 
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efficiency. Additionally, low-rate IoT users requiring minimal resources may occupy 
an entire resource block, leading to further inefficiency in spectrum utilization.

In contrast, non-orthogonal multiple access (NOMA) and rate-splitting multiple 
access (RSMA), using superimposed coding and successive interference cancella
tion (SIC), allow the same radio resource to be shared by multiple users, increasing 
spectral efficiency compared to OMA. Specifically, NOMA leverages superposition 
coding (SC) at the transmitter to layer user signals by power levels and applies SIC at 
the receivers, effectively managing multi-user interference by decoding other users’ 
signals. On the other hand, RSMA is based on the rate-splitting concept, where user 
messages are divided into common and private parts, enabling partial interference 
decoding, while treating some interference as noise. With their strong interference 
management capabilities, NOMA and RSMA are promising next-generation multi
ple access (NGMA) technologies for supporting massive IoT connectivity.

In addition, because of their remarkable compatibility with other technologies, 
NOMA and RSMA have been combined with techniques such as mobile edge com
puting (MEC) and simultaneous wireless information and power transfer (SWIPT) 
for IoT networks. Additionally, the flexibility of NOMA and RSMA is ready to sup
port emerging applications such as cell-free massive multiple-input multiple-output 
(CF-mMIMO), reconfigurable intelligent surfaces (RIS), and backscatter communi
cations (BackCom). Thus, NOMA and RSMA represent a promising approach for 
resource allocation in 6G that will transform the physical (PHY) and lower medium 
access control (MAC) layers in wireless communication network design. In this con
text, we have comprehensively investigated studies on NOMA- and RSMA-enabled 
resource allocation algorithms for green IoT networks. Further, we also describe the 
functional layers where optimization algorithms can be employed to enhance the op
erational feasibility of NOMA- and RSMA-assisted green IoT, followed by sections 
that focus on different technologies and paradigms where optimization would help in 
the development of feasible architectures supporting green IoT.

8.4.1 Network architectures
The rapid expansion of IoT brings significant concerns related to energy consumption 
and sustainability [9]. This challenge has driven the development of green IoT �- a 
paradigm focused on minimizing the energy footprint of IoT systems while maintain
ing their efficiency and performance. In order to achieve green IoT, it is essential to 
explore network architectures that prioritize energy efficiency and implement various 
optimization techniques aimed at reducing the carbon footprint of IoT ecosystems.

Green IoT network architectures prioritize energy efficiency and sustainability by 
adopting solutions such as fog computing, edge computing, and Low-Power Wide
Area Networks (LPWANs). These architectures optimize data processing, trans
mission, and storage to significantly reduce energy consumption while maintain
ing performance. This is essential for sustainably scaling IoT systems, minimizing 
their carbon footprint, and meeting environmental goals [10]. Additionally, optimiz
ing network architectures to reduce energy consumption lowers operational costs. 



174 CHAPTER 8 Optimizing techniques to support the development 

Energy-e˙icient networks reduce the need for frequent battery replacement, and by 
processing data locally, they minimize data transmission costs, which can otherwise 
be significant due to high bandwidth requirements, data center usage fees, and en
ergy consumed during transmission. This helps organizations reduce maintenance 
costs and improve the financial feasibility of large-scale IoT deployments.

Green IoT architectures, such as fog and edge computing, enable efficient man
agement of large-scale IoT deployments by distributing processing power closer to 
the devices [11]. This reduces the need for centralized cloud data centers, thereby 
reducing bandwidth consumption, latency, and power consumption. Additionally, 
LPWANs and other low-power communication protocols enhance the scalability of 
IoT networks, allowing them to accommodate billions of devices [12] with mini
mal environmental impact. By leveraging these architectures, IoT systems can handle 
massive data traffic and ensure high performance without excessive energy use. As 
IoT expands globally, these solutions enable networks to grow sustainably, ensuring 
both environmental and operational efficiency.

Green IoT network architectures improve reliability and performance, particu
larly in time-sensitive applications such as autonomous vehicles or industrial au
tomation. Edge and fog computing reduces data transfer distances, lowering latency 
and enhancing response times, resulting in faster, more responsive networks. More
over, energy-e˙icient architectures such as Software-Defined Networking (SDN) and 
Network Function Virtualization (NFV) allow for real-time adaptation to dynamic 
network conditions, adjusting resources, rerouting traffic, and modifying device op
erations based on energy availability or traffic changes [13]. This adaptability ensures 
efficient energy use and optimal performance, enhancing network resilience and ver
satility in fluctuating environments.

As IoT networks grow, the demand for efficient, scalable, and sustainable archi
tectures becomes critical. Green IoT systems future-proof ecosystems by ensuring 
that network expansion does not result in unsustainable energy consumption. By in
vesting in energy-e˙icient architectures today, organizations can prepare for future 
performance requirements while meeting stricter environmental and regulatory stan
dards. These architectures help reduce carbon footprints, ensure compliance with 
regulations on energy use and e-waste regulations, and support long-term sustain
ability goals. Proactively adopting green IoT solutions ensures that IoT ecosystems 
remain viable and adaptable to future environmental and technological challenges.

Network architectures in Green IoT
Several network architectures are being developed and researched with the goal 
of creating a more energy-e˙icient IoT. These architectures typically focus on the 
following key areas: data processing, communication protocols, and resource man
agement.

-- Fog Computing and Edge Computing Architectures: Traditional cloud-based 
IoT architectures often suffer from high latency and increased energy consump
tion due to the need to transfer large volumes of data to centralized cloud servers 
[14]. To address this issue, fog computing and edge computing architectures have 
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gained prominence. In these architectures, data processing occurs closer to the 
source of the data, such as IoT devices or local edge servers, reducing the need for 
long-distance data transfers and thereby reducing energy consumption [15].
Fog computing involves the deployment of intermediate layers between IoT de
vices and cloud data centers, enabling localized data processing [16]. This archi
tecture is critical to reduce the bandwidth load on central servers and minimizing 
the power required for long-range data transmissions. By processing data locally, 
fog computing can offload energy-intensive tasks from both the IoT devices and 
the cloud, thus reducing the overall energy consumption.
Similar to fog computing, edge computing brings the processing power even 
closer to IoT devices, typically at the device or gateway level [17]. This en
ables real-time data processing and analytics, significantly reducing the latency 
and energy costs associated with cloud-based architectures. Edge computing also 
reduces the energy consumed by data transmission, as only relevant data is sent to 
cloud servers when necessary.
Both fog and edge computing architectures offer substantial energy-saving po
tential by minimizing the reliance on centralized data centers. They also improve 
the scalability of IoT networks by distributing computational workloads, making 
these architectures central to the development of Green IoT systems.

-- Software-Defined Networking (SDN) and Network Function Virtualization 
(NFV): Software-Defined Networking (SDN) and Network Function Virtualiza
tion (NFV) have emerged as transformative approaches to network management, 
enabling greater flexibility, efficiency, and energy savings in IoT networks [18]. 
They can help IoT networks achieve significant energy savings through more ef
ficient resource management, dynamic routing, and the reduction of idle network 
functions.
In SDN, the control plane is separated from the data plane, allowing for central
ized network management and more efficient routing of data. This is particularly 
important for Green IoT, as SDN can dynamically optimize network resources and 
routes based on real-time traffic patterns, reducing unnecessary energy consump
tion [19]. SDN also allows for the intelligent allocation of resources to different 
devices, which can help ensure that energy is used efficiently across the network.
NFV complements SDN by virtualizing network functions (such as firewalls, load 
balancers, and routers) and running them on general-purpose hardware instead 
of dedicated, energy-hungry devices. NFV reduces the hardware footprint of IoT 
networks, thereby lowering both capital and operational energy costs. The abil
ity to virtualize and scale network functions dynamically also improves energy 
efficiency, as resources can be provisioned on demand rather than kept running 
continuously.

-- Low-Power Wide-Area Networks (LPWANs): Low-Power Wide-Area Net
works (LPWANs) are a category of wireless IoT communication standards that 
aim to reduce architectural requirements, specifically for energy-constrained IoT 
applications [15,16]. These networks, which include technologies such as Lo
RaWAN, Sigfox, and Narrowband IoT (NB-IoT), are optimized for long-range 
communication with minimal energy consumption [20].
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LoRaWAN is a popular LPWAN technology that supports low data rates and 
long-range communication. It is widely used in smart agriculture, environmen
tal monitoring, and smart cities [21] due to its ability to connect a large number 
of low-power devices over long distances. The architecture of LoRaWAN is opti
mized to minimize power consumption, making it ideal for battery-powered IoT 
devices that require infrequent communication with the network [22].
Sigfox is another LPWAN technology that focuses on ultra-narrowband com
munication, enabling energy-e˙icient transmission over long distances. Sigfox 
is designed for applications where small packets of data are sent intermittently, 
making it well-suited for remote sensing and monitoring applications. NB-IoT is 
a cellular-based LPWAN technology that leverages existing LTE infrastructure to 
provide wide coverage and low power consumption. It is highly energy-e˙icient 
and is optimized for IoT applications that require reliable, low-cost communica
tions with limited data throughput.
LPWANs are essential for Green IoT because they enable large-scale IoT deploy
ments without the high energy consumption typically associated with wireless 
communication technologies such as Wi-Fi or cellular networks. By optimizing 
communication protocols and focusing on low-power transmissions, LPWANs of
fer a promising solution for sustainable IoT networks.

Optimization Green IoT network architectures
While the aforementioned network architectures are inherently designed to improve 
energy efficiency, further optimization is needed to maximize their sustainability. 
Following are some of the optimization techniques critical to enhancing the energy 
efficiency of these architectures.

-- Energy-Aware Routing Protocols: One of the most significant sources of energy 
consumption in IoT networks is the data transmission process. Traditional routing 
protocols are not optimized for energy efficiency, often leading to unnecessary 
transmissions and energy wastage. To address this, energy-aware routing protocols 
have been developed.
Energy-aware routing protocols optimize the path that data takes through the net
work by considering the energy levels of devices and nodes. These protocols aim 
to minimize the energy consumed during data transmission and ensure that no sin
gle node is overburdened, which could lead to premature battery depletion [23]. 
Techniques such as multi-hop routing, where data is transmitted through multi
ple intermediate nodes rather than directly to a central hub, can further reduce 
transmission power requirements.

-- Sleep Scheduling and Duty Cycling: For battery-powered IoT devices, sleep 
scheduling and duty cycling are crucial for reducing energy consumption. These 
techniques involve periodically putting devices into low-power sleep modes when 
they are not actively transmitting or receiving data. By reducing the active time of 
IoT devices, significant energy savings can be achieved.
In duty cycling, devices alternate between active and inactive states based on pre
defined schedules or triggers. Optimization algorithms can be applied to determine 
the ideal duty cycles for different devices, balancing energy savings with the need 
for timely data collection and transmission.
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-- Data Aggregation and Compression: Data transmission is one of the most 
energy-intensive operations in IoT networks. To reduce the energy consumed by 
communication, data aggregation, and compression techniques can be employed. 
In data aggregation, multiple data packets from different sensors are combined 
into a single packet before being transmitted, reducing the total number of trans
missions required. Similarly, data compression algorithms can be used to mini
mize the size of the transmitted data, further reducing energy consumption [24].
Fog and edge computing architectures are particularly well suited to implement 
these optimization techniques, as they have the computational power to perform 
data aggregation and compression close to the data source, thus reducing the en
ergy overhead associated with long-distance transmissions to the cloud.

-- Machine Learning for Energy Optimization: Machine learning (ML) tech
niques have emerged as powerful tools for optimizing energy efficiency in Green 
IoT architectures. ML algorithms can analyze data on network traffic, device en
ergy consumption, and environmental factors to predict future energy needs and 
optimize resource allocation dynamically. By leveraging historical data, ML mod
els can intelligently adjust communication protocols, routing paths, and device 
duty cycles to minimize energy consumption without compromising performance.
For example, reinforcement learning algorithms can be used to dynamically ad
just the configuration of IoT networks based on real-time feedback, ensuring that 
energy is used efficiently in response to changing network conditions.

8.4.2 Resource allocation
SIC decoding order
In NOMA and RSMA systems, the SIC decoding process is crucial for allowing 
multiple users to share the same radio resource by eliminating interference from other 
users’ signals [25]. The order of SIC decoding plays a significant role in resource 
allocation performance. For single-cell NOMA, the decoding order is determined by 
the channel-to-noise ratio (CNR) [26], whereas in multi-cell NOMA, it is based on 
the signal-to-interference-plus-noise ratio (SINR), making the optimal solution more 
complex. To address this, a joint approach for SIC decoding and resource allocation 
using deep neural networks (DNN) is proposed for multi-cell NOMA [27]. However, 
even with an optimal order, decoding errors may still occur, requiring strategies to 
mitigate them.

RSMA, on the other hand, reduces the SIC decoding errors seen in NOMA, partic
ularly as the number of users increases. In the basic RSMA model, known as 1-layer 
RSMA, only one round of SIC is required, which helps reduce errors while offer
ing comparable or superior resource allocation performance to NOMA. Despite this, 
RSMA still faces challenges related to high complexity and error propagation dur
ing the SIC process. To tackle these issues, new receiver designs are being proposed 
for RSMA, that provide more options in terms of complexity and performance be
yond the conventional SIC receiver [28]. While the 1-layer RSMA scheme shows 
advantages over traditional schemes such as OMA and NOMA, in high-throughput 
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FIGURE 8.1 

SIC decoding procedure for two-user cases of NOMA and RSMA.

scenarios, schemes like rate splitting and common message decoding (RS-CMD), 
which perform multiple SIC processes, should be explored. This enhanced flexibility 
and message splitting capability lead to improved bit error rates [29]. Future studies 
will focus on optimizing the SIC decoding order in RS-CMD systems.

Power allocation
Power allocation is considered a critical aspect of resource allocation, as it is closely 
tied to the dynamically changing, time-varying nature of wireless channels. For this 
reason, it mostly considers MEC, SWIPT, and UAV scenarios, where efficient power 
management is critical. Similarly, in IoT networks, the large number of users in
creases the need for efficient power allocation, even with the advantages of NOMA 
and RSMA. Specifically, various power allocation algorithms are developed to op
timize key performance metrics such as spectral and energy efficiency, which are 
essential in NOMA- and RSMA-enabled IoT network systems. As a result, recent 
studies have analyzed the optimal conditions for power allocation coefficients in these 
systems [26,30]. However, applying traditional iterative algorithms for power alloca
tion in dense IoT networks can lead to high complexity. To address this issue, deep 
learning-based power allocation algorithms have been introduced, significantly re
ducing complexity while maintaining performance close to the optimal solution [31]. 
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This approach improves system metrics and enables rapid decision-making, result
ing in more efficient resource allocation for a sustainable and seamless green IoT 
network.

Beamforming
In the SIC decoding process, IoT devices are typically grouped into clusters to reduce 
error probability and signal processing load, a technique known as user clustering. 
SIC is then applied only within each cluster. However, inter-cluster interference per
sists between clusters, negatively impacting system performance. To address this 
problem, spatial beamforming is commonly employed at multi-antenna base station 
scenarios such as CF-mMIMO systems. Beamforming works by adjusting the signals 
from antenna array elements to create constructive interference at specific angles and 
destructive interference at others. As a result, beamforming in NOMA and RSMA
enabled IoT networks proves to be highly effective and robust in maximizing energy 
efficiency for large-scale IoT systems [32,33].

FIGURE 8.2 

Beamforming system model for the multiuser MIMO beamforming.

Channel access (MAC)
Medium Access Control (MAC) protocols are fundamental to the efficient operation 
of wireless networks. In wireless networks, MAC protocols manage access to the 
shared communication medium, ensuring that data transmission between nodes oc
curs without collision and with minimal interference. Techniques like time-division 
multiple access (TDMA), code-division multiple access (CDMA), and contention
based protocols such as IEEE 802.11 have been developed for managing medium 
access in voice and data networks. A key challenge in these networks is ensuring 
fairness, reducing latency, and maximizing throughput, while maintaining efficient 
use of bandwidth.

For the Internet of Things (IoT) network, however, the focus shifts toward en
ergy efficiency due to the limited power resources of IoT nodes, which are often 
battery-operated. In many IoT applications, replacing or recharging batteries is ei
ther impractical or impossible, making energy conservation the primary concern. As 
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a result, the design of MAC protocols for IoT networks must prioritize prolonging 
network lifetime. To meet this challenge, protocols are designed with mechanisms 
that address key sources of energy waste: collisions, overhearing, and idle listening.

Collisions, which occur when two nodes transmit simultaneously, result in packet 
corruption and retransmission, thereby wasting energy and increasing latency. Over
hearing happens when a node listens to packets intended for other nodes, consuming 
energy needlessly. Finally, idle listening, in which nodes remain in a listening state to 
detect possible transmissions even when there is no traffic, is particularly detrimental 
in sensor networks. Idle listening consumes more energy than the other factors of 
energy waste.

At the same time, IoT applications introduce new requirements, not only for en
ergy efficiency, but also for the evolution of the MAC protocol. The wide variety of 
IoT devices—ranging from wearable sensors and home automation systems to large
scale industrial applications—means that IoT networks must be flexible and scalable. 
Moreover, IoT networks often have unique demands such as long-range communica
tion, low power consumption, and robust performance in dynamic environments. For 
example, forest fire monitoring applications demand very large deployments, high re
liability, and high density of sensors. In contrast, a body sensor network should have 
a maximum latency of 125 ms for medical applications and 250 ms for non-medical 
applications such as healthcare [34--36]. It should also be low power consumption, 
low overhead, and adaptable to various topologies.

Moreover, especially in dense environments like smart cities or industrial IoT 
(IIoT) systems, the MAC layer must ensure efficient communication without exces
sive delays or collisions. In such scenarios, MAC protocols can employ techniques 
such as duty cycling, where nodes switch between active and sleep states to conserve 
energy, while maintaining network connectivity. Additionally, collision avoidance 
mechanisms are critical in IoT networks to prevent interference and ensure reliable 
data transmission across multiple devices.

In conclusion, the evolution of MAC protocols for IoT networks highlights the 
need for specialized designs that cater to the unique challenges of each applica
tion, whereas traditional MAC protocols focus on optimizing throughput, latency, and 
bandwidth utilization. In the IoT domain, MAC protocols must be flexible, scalable, 
and adaptable to diverse application requirements, balancing power consumption, 
transmission range, and data rate needs. As IoT continues to expand into new areas 
like smart cities, healthcare, and industrial automation, MAC protocols will remain 
at the forefront of ensuring efficient, reliable, and energy-conscious communication.

MAC protocol and optimization method
One of the primary challenges in IoT network design is balancing the trade-offs be
tween transmission range, delay, and data rates, as shown in Fig. 8.3 and Fig. 8.4, 
low power wide area network (LPWAN), such as LoRa and Sigfox, are optimized 
for long-range communication with minimal power usage, but they offer lower data 
rates compared to short-range networks. In contrast, wireless personal area networks 
(WPANs) such as IEEE 802.15.4, which underpins Zigbee, prioritize short-range 
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FIGURE 8.3 

Effect of data rate and delay on coverage area.

FIGURE 8.4 

Relationship between energy consumption and latency.

communication with higher data rates and energy efficiency, making them suitable 
for home automation and industrial control systems.

To efficiently address various requirements such as data rate, delay, latency, 
network efficiency, and connectivity, different MAC protocols tailored to network 
characteristics are required. This section briefly describes the MAC protocols used 
in BLE, NB-IoT, Zigbee, LoRa, and Sigfox. Additionally, optimization techniques 
based on the characteristics of these MAC protocols are discussed.

-- ALOHA: As shown in Fig. 8.5, Aloha is a random access protocol, which means 
that devices decide autonomously when to transmit over the shared channel. An 
important feature of this method is that a device does not check if the channel is 
free before transmitting. Devices transmit data as soon as they are ready, without 
checking whether other devices are transmitting.
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The protocol operates as follows: Devices transmit data as soon as they are ready. 
If two devices transmit simultaneously, a collision occurs. In such cases, the re
ceiver fails to send an acknowledgment (ACK), signaling a collision. The sender, 
upon not receiving an ACK, realizes a collision has occurred and waits for a ran
dom backoff time before retransmitting. This strategy reduces the likelihood of 
repeated collisions [37]. This slotted version of ALOHA is called S-ALOHA [38].

FIGURE 8.5 

Example of ALOHA and S-ALOHA.

Pure Aloha has a maximum throughput efficiency of approximately 18.4%, pri
marily due to frequent collisions and retransmissions. Slotted Aloha improves 
upon Pure Aloha by introducing time slots. Devices can only transmit at the start 
of a time slot, reducing the chance of collisions. Slotted Aloha achieves up to 
36.8% efficiency, nearly double that of Pure Aloha. Aloha’s design is straightfor
ward, making it easy to implement. Due to their simple structure and low cost, 
LoRa and Sigfox use a MAC protocol based on ALOHA. However, the downside 
is that as the number of devices in the network increases, the number of collisions 
and retransmissions also increases, making the network less scalable.
In [39], Metzner et al. analyzed a system with two transmit power groups: high 
and low. Packets transmitted with high power can be successfully decoded even 
when low-power packets are present. However, if multiple packets from the same 
power group are transmitted simultaneously, none can be decoded. As a result, 
packets sent with high transmit power gain higher priority and achieve greater 
throughput compared to those transmitted with low power.
Lee et al. introduced an algorithm designed to enhance the scalability of Lo
RaWAN by efficiently scheduling spreading factors (SFs), frequency channels, 
and time slots for wireless links between end nodes and gateways in [40]. This 



8.4 Optimization in Green IoT 183

algorithm is activated upon receiving a scheduling request message from a de
vice. Initially, the algorithm allocates an appropriate SF based on the device’s 
received signal strength. Subsequently, it assigns a frequency channel and a time 
slot. Compared to the ALOHA protocol used for LoRaWAN uplink transmissions, 
the proposed method demonstrated significant improvements, with simulation re
sults indicating over a 60% increase in the number of end devices that can be 
connected to a single gateway.
In addition, in [41], Polonelli et al. optimized LoRaWAN communication by im
plementing a S-ALOHA variant over the standard pure-ALOHA protocol. To 
ensure slot alignment across all end nodes, a lightweight synchronization method 
specifically designed for LoRaWAN devices was employed. This approach had 
minimal impact on the devices’ power consumption, while theoretically doubling 
network throughput and reducing packet collisions by 26% in a real-world de
ployment with 24 nodes.
On the other hand, various backoff algorithms for optimizing retransmission rates 
have been proposed in [42,43] to maximize the throughput of unslotted ALOHA 
systems. Van der Vleuten et al. [42] leverages information about the number of 
backlogged devices. An observation period is required to estimate backlog infor
mation. Seo et al. [43] proposed a particle filter (PF) algorithm to estimate the 
number of backlogged devices by monitoring idle period durations.
Additionally, studies in [44--46] apply multipacket reception (MPR) techniques to 
unslotted ALOHA systems. MPR-capable systems can decode multiple packets 
simultaneously using advanced signal processing methods, such as successive in
terference cancellation (SIC). Specifically, interference can be partially mitigated 
to enable successful decoding even when packets are transmitted during an ongo
ing transmission.

-- Carrier Sense Multiple Access: CSMA, developed in the early 1970s, is a pro
tocol designed to improve the efficiency of random access communication by 
introducing carrier sensing. It is widely used in wired networks such as Ether
net and can also be applied to wireless networks such as Zigbee. The fundamental 
concept of CSMA is carrier sensing. Before transmitting, a device checks whether 
the communication channel is free. If the channel is clear, the device transmits 
immediately. If the channel is busy, the device waits until the channel becomes 
available.
As described in Fig. 8.6, the protocol operates as follows: Devices check whether 
the channel is idle before transmission.
If the channel is busy, the device waits and periodically checks again. If a col
lision occurs, the device stops transmitting and waits for a random backoff time 
before attempting to retransmit. Different variations of CSMA employ distinct 
algorithms to decide when to begin transmission over a shared medium. The pri
mary differentiator among these algorithms is their level of aggressiveness or 
persistence in initiating transmission. More aggressive algorithms tend to start 
transmission sooner and make more efficient use of the available bandwidth. How
ever, this increased utilization often comes with a higher risk of collisions with 
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FIGURE 8.6 

Timing diagram by CSMA method.

other transmitting devices. Probabilistically, they can be categorized into three 
main categories 1-persistent, non-persistent, p-persistent [47].
1-persistent CSMA is considered an aggressive transmission algorithm. When the 
transmitting node is ready to send data, it first checks the transmission medium to 
determine if it is idle or busy. If the medium is idle, the node transmits immedi
ately. If the medium is busy, the node continues to monitor it until it becomes idle, 
at which point it transmits the frame without any further conditions. In the event 
of a collision, the sender waits for a random period before attempting to retrans
mit using the same procedure. This method is commonly used in CSMA/collision 
detection (CD) systems, such as Ethernet.
Non-persistent CSMA is a less aggressive transmission algorithm. When the trans
mitting node is ready to send data, it first checks whether the transmission medium 
is idle or busy. If the medium is idle, it transmits immediately. If the medium 
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is busy, the node skips to the final random waiting step of 1-persistent CSMA 
before restarting the entire logic cycle. Unlike 1-persistent CSMA, it does not 
continuously monitor the busy channel in an attempt to transmit, which is why 
it is considered non-persistent. This method reduces the chance of collisions and 
increases overall throughput, but it incurs a longer initial delay compared to 1
persistent CSMA.
p-persistent CSMA lies between 1-persistent CSMA and pure non-persistent 
CSMA in terms of behavior. In this protocol, when the node is ready to trans
mit, it first checks the channel. If the medium is idle, the transmission proceeds 
immediately. If the medium is busy, the node waits until the channel becomes 
idle and then transmits with a probability p. If it does not transmit(i.e., 1 −p), the 
node waits for a random period before attempting the process again, with the same 
probability. This probabilistic backoff continues until the frame is transmitted, or 
if the medium becomes busy again, in which case the node restarts the entire pro
cedure. p-persistent CSMA is commonly used in CSMA/collision avoidance (CA) 
systems, including Zigbee and other packet radio systems.
In [48], the authors introduced a memorized backoff scheme that utilizes the ex
ponentially weighted moving average (EWMA) method to dynamically adjust the 
contention window size. This adaptive approach enables more efficient handling 
of network congestion by smoothing past transmission outcomes and optimizing 
the backoff interval based on recent network conditions.
In [49], the authors derived contention window sizes optimized for both energy ef
ficiency and delay performance as functions of the number of contending devices. 
This optimization addresses the critical trade-off between collision probability and 
idle listening time, where a larger contention window reduces collisions but in
creases idle listening, and a smaller window lowers idle time but raises the risk of 
collisions.
Jing et al. [50] optimized network throughput using an analytical model formu
lated through convex optimization and proposed an adaptive backoff mechanism 
to maximize performance. This algorithm is based on an approximate and simple 
Markov model to achieve adaptive backoff for maximum throughput.
Shakir et al. [51] proposed a hybrid node prioritization technique based on IEEE 
802.15.6 CSMA/CA. By prioritizing nodes based on the power and size of the 
contention window and restricting channel access according to their priorities, the 
proposed technique reduces the average backoff time for channel access and mini
mizes the number of retransmissions. The authors provide experimental results on 
various network metrics such as throughput, bandwidth efficiency, energy usage, 
and network lifetime.

-- Multiple Access: Efficient allocation of communication resources is critical in 
communication systems. For certain applications, there are constraints on contin
uous connectivity and quality, and the allocation of dedicated resources to specific 
users is commonly referred to as multiple access. Dedicated channels can be ob
tained by partitioning resources, typically using time, frequency, or code.
Frequency-division multiple access (FDMA) is a method of assigning different 
frequency channels to each user by organizing non-overlapping channels along the 
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frequency axis. Guard bands are often set up to compensate for interference from 
channels in the frequency band, imperfections in filters, spectrum spreading due 
to Doppler, etc. It is also commonly used for analog signals, but can be used for 
both analog and digital signals. Unlike FDMA, TDMA organizes non-overlapping 
channels along the time axis, so that each user is assigned a different timeslot 
that repeats periodically. The advantage of TDMA is that by assigning multiple 
timeslots, the effect of assigning multiple channels can be achieved. However, 
in periodically repeating timeslots, the channel characteristics can change from 
period to period, making channel estimation techniques such as equalization es
sential in each period.

These methods have been widely used as core technologies in communication 
systems, with various techniques such as orthogonal frequency division multiple 
access (OFDM), frequency division duplexing (FDD), and time division duplex
ing (TDD). In particular, OFDM has been a crucial technology in LTE systems, 
where it utilizes a large number of orthogonal subcarriers to significantly increase 
data transmission rates and effectively mitigate the challenges posed by multipath 
fading. Additionally, narrowband IoT (NB-IoT) is designed to be suitable for IoT 
environments with a focus on low power consumption and cost-e˙iciency, follow
ing the architecture of LTE systems. As a result, the MAC protocol of NB-IoT 
adopts the single carrier frequency division multiple access (SC-FDMA), which 
is also a key feature of LTE [52].

Time allocation
With the rapid advancement of smart grid services such as demand response, preci
sion load control, and advanced metering infrastructure, each IoT device generates 
a large volume of computation-intensive and delay-sensitive tasks such as demand 
response, precision load control, and advanced metering infrastructure. However, as 
the number of devices grows exponentially, the conflict between massive connectivity 
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demands and limited spectrum resources becomes more pronounced. Multi-timescale 
resource allocation, as noted in [53], significantly reduces interactions and signaling 
overhead, ensuring reliable service delivery for large-scale connectivity. Therefore, 
optimizing resource block allocation in each timeslot is crucial for effective task 
splitting. This time slot allocation enables seamless resource distribution and task 
splitting, optimizing factors like energy consumption, queuing delay, queue backlog, 
and connection success rate in massive IoT networks.

Subchannel allocation
Many studies on NOMA-enabled IoT networks have focused on enhancing resource 
allocation to efficiently support large-scale connectivity of IoT devices, which can be 
an effective solution for ultra-dense network scenarios. To accommodate a high num
ber of users, multicarrier NOMA (MC-NOMA) has been introduced, where users 
are assigned to different subchannels, each acting as an isolated resource block. In 
MC-NOMA, proper management of subchannel allocation is crucial to fully exploit 
the multiplexing gain from the fading channel. Various strategies for subchannel al
location, such as heuristic approaches, greedy algorithms, genetic algorithms, and 
matching algorithms, have been proposed. However, these methods often fall short 
due to the complexity of mixed-integer nonlinear programming (MINLP) problems. 
In response, [31] presents a mathematical analysis of optimal power allocation and 
reformulates the joint subchannel and power allocation problem in MC-NOMA into 
a binary decision problem for subchannel allocation, which can be easily integrated 
into heuristic algorithms. This reformulation allows the proposed scheme to effec
tively support massive IoT connectivity while maintaining feasible complexity in 
real-world applications. This work is anticipated to inspire future studies on efficient 
resource allocation in more complex network environments.

Coordinated multi-point transmission
To cope with the rapid increase in network traffic, the deployment of heterogeneous 
networks (HetNets) has emerged as a promising approach. HetNets help address the 
growing number of network devices and the rising demand for massive IoT network 
services. In HetNets, coordinated multi-point (CoMP) transmission has been intro
duced to improve both coverage and energy efficiency. CoMP transmission allows 
heterogeneous base stations to work together at the symbol level to transmit data to a 
user. CoMP methods are generally categorized into three types: dynamic point selec
tion, coordinated scheduling/beamforming, and joint transmission. Given the strong 
potential of NOMA and RSMA, incorporating these CoMP techniques has demon
strated their ability to meet the diverse user requirements of future communication 
networks.

Rate splitting
In RSMA, the transmitted message is divided into a common message and a pri
vate message. The common message is decoded by multiple users, while the private 
message is intended for and decoded by a specific user. By adjusting the division 
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FIGURE 8.7 

Multi-cell-based CoMP transmission.

between common and private messages, it is possible to manage both the compu
tational complexity and the data rate achieved by RSMA. However, implementing 
RSMA in wireless networks poses several challenges, including how to optimally 
split the common and private messages, managing resources for efficient private mes
sage transmission, and ensuring synchronization during message transmission. To 
address these challenges, an optimal rate allocation for a fixed common message is 
derived based on mathematical analysis [30]. This approach enables seamless spec
tral efficiency for users in RSMA-assisted IoT networks [54].

Machine learning
Recently, to overcome the high complexity of traditional approaches in practical 
applications such as voice and image recognition, language interpretation, and se
mantic analysis, various machine learning-based resource allocation techniques have 
been developed, enabling efficient management of large and complex data sets. In 
particular, deep learning, through the use of pre-trained DNN, can deliver supe
rior performance without requiring an iterative convergence process, which can be a 
promising solution for traditional resource allocations. Machine learning algorithms 
are categorized into three types based on their training strategies: supervised learn
ing, unsupervised learning, and reinforcement learning. Given its ability to reduce 
the challenges of iterative algorithms, many deep learning-based resource allocation 
methods have been proposed. Moreover, due to the SIC decoding process in NOMA 
and RSMA, optimizing resource allocation is generally more challenging than in 
conventional OMA. As a result, DNN-based training algorithms are essential for ad
dressing the optimization challenges in NOMA and RSMA-enabled IoT networks, 
which tend to introduce significant complexity in practical scenarios [31,55].
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FIGURE 8.8 

A concept of machine learning-enabled resource allocations.

8.4.3 IRS
The unprecedented demand for ubiquitous wireless services and high-quality data 
poses significant challenges for existing cellular networks. Applications such as rate
centric enhanced mobile broadband (eMBB), ultra-reliable low-latency communica
tions (URLLC), and massive machine-type communications (mMTC) have shaped 
the design targets for 5G systems. In contrast, 6G wireless communication systems 
aim to be transformative, focusing on applications like data-driven, instantaneous, 
ultra-massive, and pervasive wireless connectivity, as well as integrated intelligence. 
To support these advanced applications, innovative transmission technologies are re
quired. Reconfigurable intelligent surfaces (RISs) consist of a 2D array of reflective 
elements designed to adjust the phase and amplitude of incident signals [56]. Given 
their ability to actively reshape the wireless environment, RISs have garnered signif
icant interest as a solution to various challenges across diverse wireless networks.

FIGURE 8.9 

An illustration of RIS-assisted wireless systems.
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For their superior functionality, RIS-enhanced IoT networks are viewed as a 
promising technology for 6G, particularly useful in intelligent wireless sensor net
works, smart agriculture, and intelligent manufacturing. Additionally, RISs can align 
users’ channel directions, reinforcing the potential for NOMA and RSMA technol
ogy implementation. Further, RIS can create a virtual line-of-sight (LoS) link in 
NOMA and RSMA systems. Therefore, combining the benefits of RIS with NOMA 
and RSMA technologies is crucial for advancing future IoT networks [55,57]. How
ever, research on RIS-enhanced wireless networks remains in the early stages, with 
substantial room for contributions in areas like channel state information (CSI) ac
quisition and Pareto optimization for balancing multiple objectives.

8.4.4 AmBS / backscatter
BackCom technology, leveraging passive radio frequency (RF) identification (RFID),
has become a promising approach for IoT systems. A standard BackCom system 
consists of three key components: a signal source, a backscatter transmitter with an
tennas, and a backscatter receiver. In BackCom, there are two path-loss effects to 
consider: one from the signal source to the backscatter transmitter and another from 
the transmitter to the receiver. Enhanced configurations across these components 
can help reduce or compensate for path loss, boosting communication performance. 
Many studies have explored ambient backscatter communications, covering system 
design, coherent, semi-coherent, and non-coherent signal detection, coding, and mod
ulation. Extensive research has also focused on energy harvesting within backscatter, 
addressing energy harvesting module design, system design, and analysis. Given its 
low cost and flexibility, ambient backscatter with energy harvesting offers a viable 
solution for future low-power, widespread communications, including IoT applica
tions.

Due to its compatibility, BackCom is often integrated with RIS to extend cell 
coverage. The BackCom RIS-NOMA-based system discussed in [13] has been ex
tensively studied, demonstrating that this approach significantly improves the per
formance of IoT devices. Despite significant progress in BackCom research, further 
advancements are needed to meet the practical demands of future green and ubiqui
tous communication, especially in IoT applications. Four primary challenges persist: 
data transmission rate, coverage, energy efficiency, and deployment cost. To address 
these, future BackCom systems should integrate essential techniques such as energy 
harvesting, backscatter relays, full-duplex communication, millimeter-wave commu
nications, hybrid backscatter, and quantum communications.

8.4.5 CF-mMIMO
The IoT requires low power usage, extremely low latency, and support for numerous 
devices. CF-mMIMO is a strong candidate for achieving ultra-low latency by mini
mizing the distance between access points (APs) and devices, thus reducing power 
consumption. NOMA’s high connectivity potential is well-suited to IoT needs, and 
when combined with CF-mMIMO, it enhances system spectral efficiency through 
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non-orthogonal transmission. Notably, NOMA and RSMA can be used for both 
fronthaul and backhaul links. In the fronthaul, where APs communicate with users 
wirelessly, NOMA and RSMA serve as effective user access methods. In backhaul, if 
the AP-CPU connection is wireless, NOMA and RSMA can facilitate access for both 
uplink and downlink. Although NOMA and RSMA improve spectral efficiency, they 
introduce complexity, particularly in designing efficient resource allocation mecha
nisms for NOMA and RSMA-based CF-mMIMO networks.

The CF-mMIMO architecture is pivotal for its potential to revolutionize future 
mobile networks by resolving challenges faced by cell-edge users and the uneven 
coverage typical of current cellular networks. It also enhances network performance 
by boosting connectivity, signal strength, interference control, and macro-diversity. 
Research, including the study of estimator impacts on system spectral efficiency, has 
laid a foundation for further work to maximize the potential of CF-mMIMO sys
tems research examines a wide array of issues within CF-mMIMO networks, such 
as system models, communication techniques, channel estimation, pilot contami
nation, deployment challenges, and downlink potential. Additionally, applications 
and avenues for future research are highlighted, promising advancements for next
generation solutions.

8.5 Conclusion
The evolution of the Internet of Things (IoT) has ushered in a transformative 
paradigm within the domain of wireless communications, presenting unprecedented 
opportunities for enabling intelligent automation across diverse industries. By facil
itating massive interconnectivity, IoT systems have the potential to redefine opera
tional efficiencies and processes, paving the way for fully automated, data-driven en
vironments. Central to this revolution is the concept of machine-to-machine (M2M) 
communication, which underpins the functionality of IoT systems. The requirements 
and capabilities of M2M communications have been effectively addressed through 
the development of massive, interconnected networks, marking a significant mile
stone in the advancement of communication technologies.

Market trends unequivocally underscore a growing demand for IoT systems, 
driven by their ubiquity and potential to seamlessly integrate into various facets of 
daily life. However, the large-scale deployment of IoT systems introduces critical 
challenges, particularly in terms of energy efficiency, scalability, and sustainability. 
These challenges necessitate focused optimization efforts to ensure the practical fea
sibility of Green IoT systems. Green IoT, as a paradigm, emphasizes the efficient use 
of resources and minimal environmental impact, making optimization a fundamental 
requirement for its widespread adoption and long-term viability.

In this chapter, we systematically introduced foundational concepts integral to 
the design and realization of Green IoT systems. The discussion encompassed oppor
tunities and challenges that are pivotal in making these extensive networks feasible 
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and sustainable. Furthermore, we identified emerging technologies, such as reconfig
urable intelligent surfaces (RIS) and backscatter communications, that hold immense 
potential in enhancing the performance and energy efficiency of Green IoT systems. 
These technologies, when integrated into IoT networks, can play a transformative role 
in achieving cohesive, adaptive, and high-performance communication architectures.

Looking forward, the synergy between Green IoT systems and enabling tech
nologies is expected to form the backbone of next-generation intelligent networks. 
This convergence will not only address the operational and environmental challenges 
of IoT deployments but also open new avenues for research and development. The 
practical realization of these systems, driven by increasing consumer demand and 
market dynamics, underscores the need for continued exploration of optimization 
techniques and resource allocation strategies. Ultimately, Green IoT systems, coupled 
with advanced technological solutions, will be instrumental in shaping the future of 
intelligent, sustainable, and connected ecosystems.
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9.1 Introduction
The Internet of Things (IoT) has transformed global connectivity by integrating phys
ical objects with sensors and software to facilitate data exchange, driving efficiency 
and performance across several domains. The concept of the IoT was formalized by 
British technologist Kevin Ashton in 1999, envisioning a global network of intercon
nected devices capable of autonomous communication without human intervention. 
The advancement of high-speed internet, ubiquitous smartphone and wearable adop
tion, and the development of communication protocols have facilitated the rapid 
expansion of IoT. As a result, IoT has evolved into a vast ecosystem encompassing 
billions of interconnected devices across diverse domains, including personal, resi
dential, industrial, and urban environments. On an individual level, IoT systems in
clude health and lifestyle tracking to improve quality of life. The Healthcare Internet 
of Things (H-IoT) revolutionizes healthcare by enabling remote patient monitoring, 
personalized treatment, and improved diagnostics. Wearable devices track vital signs, 
activity levels, and sleep patterns, transmitting data to healthcare providers for contin
uous monitoring. IoT facilitates telemedicine, allowing patients to receive care from 
remote locations. Smart pills with embedded sensors track medication adherence, and 
connected medical equipment enhances hospital efficiency and patient outcomes. Key 
applications of IoT in the residential sphere or ``smart homes'' include smart systems 
such as adaptive lighting systems that adjust to ambient light levels or mood settings, 
smart thermostats that optimize energy consumption based on occupancy and user 
preferences, and connected security systems with real-time monitoring through cam
eras and sensors. Additionally, IoT facilitates predictive maintenance in household 
appliances and integrates voice-activated assistants for seamless task management. 
These innovations collectively contribute to developing intelligent and automated 
living environments. The Industrial Internet of Things (I-IoT) enhances productivity, 
Design and Analysis of Green and Sustainable IoT Technologies for Future Wireless Communications 
https://doi.org/10.1016/B978-0-44-333000-1.00014-6
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safety, and efficiency through sensor-equipped industrial facilities, which enable pre
dictive maintenance, minimizing downtime and costs. Real-time monitoring and an
alytics optimize production, supply chain management, and inventory control, while 
automation and robotics improve operational efficiency, safety, and product quality in 
manufacturing and industrial environments. IoT enhances agricultural efficiency by 
optimizing resource use and increasing yield. Soil sensors enable precise irrigation 
and fertilization through real-time moisture, nutrients, and temperature data. Drones 
and satellite imagery monitor crop health and detect issues early, while livestock 
tracking improves animal health, location monitoring, and overall productivity. Smart 
governance leverages IoT to facilitate data-driven decision-making, improve public 
services, and enhance citizen engagement through digital platforms. IoT supports 
intelligent transportation by enabling real-time traffic monitoring, adaptive traffic 
signal control, and smart parking solutions, optimizing mobility and reducing con
gestion. Security is strengthened through IoT-based surveillance, predictive policing, 
and emergency response systems, ensuring safer urban environments. Furthermore, 
IoT enhances essential services such as waste management, energy distribution, and 
water supply by enabling predictive maintenance and efficient resource allocation. 
Networks of sensors detect air and water quality, radiation levels, and weather condi
tions. IoT devices can monitor deforestation levels, glacier movements and melting 
rate, and wildlife habitats, providing data essential for environmental protection and 
climate research. Collectively, these advancements contribute to the sustainability, 
efficiency, and resilience of our human habitation and ecosystems.

The rapid expansion of the IoT offers significant benefits; however, it also raises 
critical concerns regarding environmental sustainability. The energy consumption 
required to power billions of connected devices, the increasing strain on data cen
ters, and the growing volume of electronic waste (e-waste) contribute to ecological 
challenges. According to the International Energy Agency (IEA), data centers and 
data transmission networks accounted for approximately 1% of global electricity 
consumption in 2022, with projections indicating continued growth as IoT adop
tion increases [1]. Additionally, the International Telecommunication Union (ITU) 
reports that global e-waste reached 62 million metric tons in 2022, with only 22.3% 
being formally recycled [2]. The World Health Organization (WHO) reports that the 
informal dumping of waste leads to adverse health effects, especially in women and 
children [3]. In response to these concerns, the Green Internet of Things (G-IoT) 
has emerged as a sustainable alternative that integrates energy-e˙icient technologies, 
eco-friendly materials, and optimized data processing strategies to mitigate IoT’s en
vironmental impact. G-IoT focuses on reducing the environmental impact of IoT 
technologies through key strategies like energy-e˙icient communication and data 
processing protocols, using sustainable materials to manufacture sensors and com
munication devices, and improving lifecycle management. Energy-e˙icient devices, 
powered by low-power designs and energy harvesting methods such as solar and ki
netic energy, help to minimize electricity consumption. Optimized communication 
protocols like Zigbee, LoRaWAN, and NB-IoT further reduce energy use during data 
transmission. Sustainable manufacturing practices emphasize using eco-friendly ma
terials, such as biodegradable and recyclable components, and cleaner production 
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methods to reduce emissions. G-IoT also promotes design for longevity, encourag
ing modularity to extend device lifespans and prevent e-waste. Responsible recycling 
and disposal systems reclaim valuable materials and mitigate environmental harm. 
IoT applications in environmental monitoring and resource optimization further sup
port sustainability by tracking pollution, conserving resources, and enhancing energy 
and water efficiency. By integrating these approaches, G-IoT aims to minimize the 
ecological footprint of IoT devices while supporting sustainability and conservation 
efforts across industries.

Artificial Intelligence (AI) is critical in enhancing the performance and reliabil
ity of wireless communication systems in the IoT domain. AI techniques such as 
supervised learning and deep neural networks are used for tasks like channel estima
tion, which improves real-time prediction of channel responses, and beamforming, 
which optimizes signal transmission to reduce interference. Reinforcement learning 
(RL) is also applied in dynamic resource allocation, ensuring efficient utilization of 
spectrum and bandwidth based on users’ data rate requirements and channel con
ditions. Furthermore, AI facilitates data acquisition and pre-processing from IoT 
sensors, followed by pattern recognition through deep learning (DL) algorithms to 
detect anomalies and predict trends. AI-driven predictive models analyze data from 
IoT devices to anticipate potential failures, enabling proactive actions that enhance 
operational efficiency. These techniques collectively contribute to advancing smarter, 
more efficient wireless communication networks for IoT.

This chapter presents an overview of G-IoT, its definition, architecture, and key 
enablers. It primarily focuses on the role of AI in supporting its development within 
the constraints of sustainability and compliance with the quality of service (QoS).

9.2 Green-Internet of Things
G-IoT refers to designing, deploying, and operating IoT systems that focus on en
ergy efficiency, reduced carbon emissions, and sustainable practices. G-IoT aims to 
minimize the environmental impact of IoT systems while maintaining their function
ality and scalability. G-IoT can be pivotal in advancing several of the United Nations 
Sustainable Development Goals (UN-SDGs). Goal 7 �- Affordable and Clean En
ergy �- optimizes energy usage and integrates renewable sources like solar and wind 
through smart grids and energy management systems. G-IoT supports efficient en
ergy distribution and consumption by leveraging the smart grid paradigm. For Goal 
9 �- Industry, Innovation, and Infrastructure �- G-IoT contributes by improving in
dustrial sustainability with eco-friendly technologies and optimized processes, while 
real-time monitoring ensures resilient infrastructure. In alignment with Goal 11 �- 
Sustainable Cities and Communities �- G-IoT supports smart mobility, pollution 
management, and urban planning through data analytics, fostering efficient and sus
tainable urban development. In relation to Goal 12 �- Responsible Consumption 
and Production �- G-IoT encourages sustainable consumption by promoting circular 
economy models, improving supply chain transparency, and empowering consumers 
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with data on environmentally conscious choices. Finally, in line with Goal 13 �- 
Climate Action �- G-IoT facilitates climate monitoring and mitigation by providing 
data on emissions and climate predictions and offering early warning systems for 
natural disasters. Overall, G-IoT drives progress in sustainability and environmental 
stewardship across diverse sectors, demonstrating its alignment with the UN SDGs.

FIGURE 9.1 

A General IoT architecture framework.

The advancement of green IoT necessitates robust standardization frameworks 
and collaborative global initiatives to address energy efficiency challenges across het
erogeneous networks and devices. A general IoT system architecture can be drawn 
up from recommendations from the Institute of Electrical and Electronics Engineers 
(IEEE) [4] and the International Telecommunication Union (ITU) [5] as illustrated 
in Fig. 9.1, which considers existing IoT architectures [6]. Efficient protocols and 
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technologies support each layer of this architecture, some of which are standard
ized. Several standardization and innovation efforts have begun since the inception of 
IoT. Earlier research efforts like the Energy Aware Radio and neTwork tecHnologies 
(EARTH) project pioneered energy-e˙icient broadband systems by optimizing net
work architectures and adaptive management strategies, reducing operational energy 
consumption by 50% while maintaining quality of service (QoS) [7]. Toward Real 
Energy-E˙icient Network Design (TREND) project evaluates and proposes energy
saving potentials in network protocols and architectures, emphasizing scalable solu
tions for IoT ecosystems [8]. The GreenTouch Consortium proposed an end-to-end 
network power model to evaluate energy consumption and minimize the carbon foot
print through innovations in spectrum efficiency and low-power hardware design in 
optical networks [9]. Japan’s Green IT Initiative was among the pioneering initiatives 
that prioritized environmental protection while achieving economic growth using in
formation technology (IT) [10]. Standardization bodies such as the IEEE Technical 
Subcommittee on Green Communications and Computing (TSCGCC) and the Inter
net Engineering Task Force (IETF) have established the IPv6 over Low-Power Wire
less Personal Area Networks (6LoWPAN) [11] and Routing Over Low-Power and 
Lossy Networks (ROLL) [12], respectively, enabling energy-aware communication 
in resource-constrained IoT devices. Radio Frequency Identification (RFID) innova
tions by government agencies, industry, and non-profits promote sustainable designs 
such as biodegradable RFID tags, energy-harvesting sensor nodes, and broader oper
ating frequency ranges.

The key technologies pushing energy efficiency in G-IoT were explored in [13]. 
These enablers can be classified into three categories: green tags, green sensing tech
nologies, and green internet technologies as illustrated in Fig. 9.2. Green tags like 
RFID and Near-Field Communication (NFC) are foundational for G-IoT. RFID tags. 
RFID tags are essentially microchips, which are passive devices that harvest energy 
for their operation from an RFID reader, while NFC, being active, is powered by a 
battery. RFID can identify and track objects without a direct line of sight. NFC op
erates at a shorter range of up to 20 cm and is particularly customer-oriented due 

FIGURE 9.2 

Enabling technologies for G-IoT.
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to its integration into mobile devices, allowing for seamless interaction with hyper
connected environments. These devices are used to monitor vehicle emissions, track 
waste disposal, waste management and recycling, and energy management systems 
in buildings and public spaces. However, the enormous number of these tags used 
in such applications may contribute to e-waste. Therefore, paper-based, printable, or 
biodegradable RFIDs are proposed as a potential solution. The sheer number of these 
devices may increase the complexity of such systems.

The second category, green sensing technologies, includes Wireless Sensor Net
works (WSNs), which are critical for enabling IoT applications in environmental 
monitoring, industrial automation, and smart cities. WSNs comprise sensor nodes 
that collect data from the environment and communicate it to a central base station or 
a sink. These networks are typically characterized by low-power, low-bit-rate com
munication and energy-e˙icient protocols. They are primarily based on the IEEE 
802.15.4 standard. WSNs can leverage energy harvesting techniques, such as solar, 
kinetic, and thermal energy, to power the sensing nodes, reducing the reliance on 
batteries and minimizing environmental impact. However, true battery-free opera
tion has yet to be achieved. Furthermore, As the number of IoT devices increases, 
spectrum congestion and interference will become significant issues. Cognitive Ra
dio (CR) technologies, which allow devices to select communication channels dy
namically, are being explored to ensure efficient spectrum utilization. Protocols like 
6LoWPAN and ZigBee are designed to optimize energy usage in low-power devices, 
enabling seamless integration into the IoT ecosystem.

Finally, the third enabler—green internet technology—includes several innova
tive solutions to support energy-e˙icient operations without compromising perfor
mance. Cloud computing is pivotal in G-IoT by providing scalable, on-demand 
computing resources and storage. Additionally, edge computing further improves 
the performance of G-IoT systems, offering some of the advantages of cloud com
puting. This shift from on-device infrastructure to remote services reduces energy 
consumption by consolidating resources in centralized or distributed, energy-e˙icient 
data centers or devices [14]. However, the energy demands of data centers remain a 
concern, necessitating further innovations in low-power processing hardware, effi
cient data processing algorithms, and lightweight software. Using renewable energy 
to power and cool data centers is a significant step towards sustainable technology. 
There are efforts to develop cooling systems for data centers to maintain stable per
formance with a minimal carbon footprint.

AI is becoming integral to wireless network design and deployment and has be
come a key enabler of G-IoT. It plays a crucial role in improving the efficiency and 
functionality of IoT systems. AI is primarily used to process and analyze large vol
umes of data generated by IoT devices, thus enabling real-time decision-making and 
automation. This is particularly important in G-IoT, where energy consumption and 
resource management are critical. For instance, AI algorithms can optimize energy 
usage in smart grids, reducing waste and promoting sustainability. The decision sup
port capability is vital for predictive maintenance, where AI algorithms can predict 
equipment failures and schedule maintenance activities, thereby reducing downtime 
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and extending the lifespan of devices. This improves operational efficiency and min
imizes the environmental impact by reducing the need for frequent replacements and 
repairs. AI enhances the security of IoT systems by detecting and mitigating potential 
threats, such as cyber-attacks and data breaches. This is crucial for maintaining the in
tegrity and reliability. Additionally, AI can enhance user experience and accessibility, 
making it easier for network designers and administrators to interact with intelligent 
environments. AI-driven automation reduces the need for human intervention in rou
tine tasks, allowing for more efficient and sustainable operations [15], [14].

9.3 Artificial intelligence models for Green-Internet of 
Things

AI is a key enabler of G-IoT by improving data management, energy efficiency, 
security, and decision-making across various application domains. AI-driven ma
chine learning (ML) and DL techniques facilitate the analysis of vast amounts of 
IoT-generated data, enabling efficient data filtering and reducing redundancy. AI 
minimizes bandwidth usage and improves response times by optimizing the data of
floading mechanisms and processing data at the network edge. Additionally, AI plays 
a crucial role in energy optimization by monitoring real-time power consumption and 
performing predictive analysis to adjust energy usage dynamically. ML models can 
anticipate environmental conditions and system load variations, allowing IoT devices 
to optimize power allocation and minimize energy waste. Beyond efficiency improve
ments, AI enhances the security and reliability of IoT networks. Artificial neural 
networks (ANNs) and AI-driven anomaly detection systems can identify potential 
cyber threats, enabling proactive security measures. The use of federated learning 
(FL) ensures the security of data by leveraging its capacity for ``distributed learn
ing'', which shares the learning parameters without requiring the transfer of data 
between the nodes and sink in an IoT system. AI is also instrumental in optimizing 
fog and edge computing architectures, alleviating the computational burden on cloud 
data centers. By distributing data processing closer to the source, AI mitigates net
work congestion, reduces latency, and improves system responsiveness, particularly 
in applications requiring real-time decision-making. This further reduces the burden 
on communication networks, significantly improving energy and spectral efficiency. 
Furthermore, AI can proactively perform predictive maintenance to enhance IoT de
vices’ reliability and longevity. AI minimizes downtime and reduces maintenance 
costs by identifying anomalies and diagnosing faults before they lead to failures. 
Therefore, AI integration into G-IoT fosters an energy-e˙icient, secure, and scalable 
ecosystem, ensuring the sustainable deployment of IoT technologies across diverse 
applications [16]. Based on the discussion presented in [16], the key AI models that 
enable G-IoT can be grouped under the following categories:

1. Supervised learning models.
2. Unsupervised learning models.
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3. Semi-supervised learning models.
4. Deep learning models.
5. Reinforcement learning models.
6. Federated learning models.

In general, we can classify the AI into three broad functional categories, further 
divided into sub-categories, as illustrated in Fig. 9.3. A summary of the key ideas and 
applications of these models in G-IoT system are tabulated in Table 9.1.

FIGURE 9.3 

Functional classification of AI. ML models can be further classified on the basis of the learn
ing models.

9.3.1 Supervised learning
Supervised learning (SL) [17] is a type of ML in which a model is trained on la
beled datasets containing samples of input data paired with a label. The model learns 
from these labeled samples to make accurate predictions or classifications of unseen 
samples or test data. During the training process, the model iteratively adjusts its 
parameters to minimize the difference between the predicted and actual labels us
ing techniques such as regression and classification. SL is primarily used for pattern 
recognition, predictive modeling, and decision-making tasks.

SL models can be used in G-IoT applications by leveraging historical data for 
accurate predictions and decision-making. In energy consumption optimization, SL 
models can predict energy demand based on past usage patterns, optimize power con
sumption in smart grids and buildings, and automate electrical systems to minimize 
energy waste. Additionally, in predictive maintenance, these models detect poten
tial faults in IoT-connected devices before failures occur and utilize sensor data to 
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Table  9.1 AI Models with their working principles, their applications, and key 
benefits in G-IoT summarized.
AI Model Working 

Principle
Applications Key Benefits

Super
vised 
Learning

Trains models on 
labeled datasets 
to predict or 
classify unseen 
data.

-- Energy consumption 
optimization 
– Predictive maintenance in 
IoT devices 
– Environmental monitoring 
and pollution control 
– Smart agriculture 
– Traffic management

-- Optimal decision-making 
– Reduced energy waste 
– Enhanced fault detection 
– Optimized traffic flow and 
resource allocation

Unsuper
vised 
Learning

Analyzes 
unlabeled data to 
find hidden 
patterns, 
structures, or 
relationships 
within datasets.

-- Energy distribution 
optimization 
– Predictive maintenance 
– Environmental monitoring 
– Smart agriculture 
– Smart city traffic and public 
transport analysis

-- Reduced energy 
consumption 
– Fault detection and prediction 
– Improved resource allocation

Semi
supervised 
Learning

Combination of 
small labeled 
datasets with 
large unlabeled 
datasets for better 
efficiency.

-- Predictive modeling for 
energy usage 
– Load balancing in smart 
grids 
– Energy optimization in 
residential/commercial 
settings 
– Applications in smart cities, 
smart agriculture, and smart 
living

-- Lower resource utilization 
– Improved learning accuracy 
– Enhanced adaptability in 
G-IoT systems 
– Optimized energy patterns 
and consumption prediction

Reinforce
ment 
Learning

An agent learns by 
interacting with its 
environment and 
receiving rewards 
or penalties for its 
actions.

-- Resource Allocation 
– Routing and congestion 
control 
– Sustainable agriculture 
– Traffic management

-- Optimized resource utilization 
– Continuous learning and 
adaptation 
– Reduced energy 
consumption 
– Minimal environmental impact 
– Efficient network operation

Federated 
Learning

Trains models 
locally on devices 
with only model 
parameters 
shared with a 
central server.

-- Wireless communication 
optimization by CSI 
prediction and resource 
allocation 
– Predicting real-time 
network traffic flows 
– Energy-e˙icient 
communication 
– Secure IoT applications

-- Reduced energy 
consumption 
– Enhanced privacy and 
security 
– Reduced network congestion 
– Improved scalability 
– Sustainable and efficient IoT 
networks

forecast industrial equipment maintenance needs, thereby reducing downtime and 
conserving energy. Environmental monitoring and pollution control also benefit from 
SL models by analyzing sensor data from air and water quality monitoring systems, 
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which helps predict pollution levels and classify regions based on environmental 
risks for improved decision-making. In smart agriculture, SL models can predict 
crop yields by analyzing weather patterns, soil quality, and historical production data 
while detecting plant diseases through image analysis from IoT-connected cameras 
and drones. Furthermore, SL models can analyze traffic congestion patterns in traffic 
management to optimize vehicle routing and dynamically adjust traffic light opera
tions to minimize fuel consumption and emissions.

9.3.2 Unsupervised learning
Unsupervised learning (UL) [17] is a type of ML where models analyze unlabeled 
datasets to identify hidden patterns, structures, or relationships without predefined 
output labels. Unlike SL, UL uses self-organizing techniques to classify data or ex
tract insights. It is primarily used for clustering and dimensionality reduction. UL 
includes algorithms such as K-means clustering, hierarchical clustering, principal 
component analysis (PCA), and autoencoders.

UL supports G-IoT by improving energy efficiency, security and building fault 
tolerance. Clustering techniques are used to analyze consumption patterns of users 
and devices, enabling efficient power distribution while detecting inefficiencies in 
smart grids through the identification of anomalies in power usage. Additionally, be
havioral pattern analysis facilitates the implementation of optimized energy-saving 
protocols. UL can predict issues by detecting unusual sensor readings that indicate 
impending equipment failures. Clustering device performance data can identify po
tential faults before they cause disruptions. Environmental monitoring and pollution 
control benefit from clustering techniques applied to air and water quality data, al
lowing for the detection of pollution hotspots. Anomaly detection in climate sensor 
data enables the prediction of environmental hazards. Clustering can be applied to 
segment agricultural land based on soil quality and crop health patterns, enabling tar
geted interventions. Furthermore, clustering image data from IoT-connected drones 
enhances the early detection of plant diseases. Similarly, irrigation systems can be 
optimized by analyzing water usage patterns across different clusters of agricultural 
facilities. Clustering techniques can be used in smart cities to analyze traffic flow 
data, optimize urban transportation systems by identifying congestion hotspots, and 
improve route planning. Additionally, trends in public transport usage can be ana
lyzed by UL models to ensure optimal resource allocation, thereby contributing to 
sustainable and efficient mobility solutions.

9.3.3 Semi-supervised learning
Semi-supervised learning [18] is an ML approach that combines SL and UL. It lever
ages a small amount of labeled data combined with a large volume of unlabeled 
data to improve learning accuracy and efficiency. This approach mitigates training 
costs in the absence or shortage of labeled data, as it allows the model to gener
alize from a limited set of labeled samples while learning patterns from the vast 
pool of unlabeled data. Semi-supervised learning techniques include self-training, 
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co-training, and graph-based methods, which help to refine decision boundaries and 
improve model performance.

Semi-supervised learning can play a critical role in enhancing the efficiency, 
adaptability, and accuracy of G-IoT applications by using labeled and unlabeled data 
collected by the sensors and managing underlying network usage patterns. Semi
supervised learning enables predictive modeling of energy usage trends, improves 
load balancing in smart grids by identifying consumption patterns and anomalies, 
and optimizes energy patterns in residential and commercial settings to reduce energy 
waste. Semi-supervised learning can offer benefits in smart cities, smart agriculture, 
and smart living settings by leveraging its capabilities to use a small set of labeled 
data to learn patterns in the vast unlabeled datasets with a higher accuracy and lower 
resource utilization.

9.3.4 Reinforcement learning
Reinforcement learning (RL) [17] is a type of ML where an agent learns to make de
cisions by taking actions in an environment to maximize some notion of a cumulative 
reward. The agent receives feedback in the form of rewards or penalties based on its 
random actions and learns to optimize its policy over time. Unlike SL or UL, where 
the model learns from pre-existing datasets, RL uses trial and error to discover the 
best policy. Applications of RL span several domains, including robotics, gameplay, 
autonomous vehicles, and natural language processing (NLP). These applications 
benefit from RL’s ability to optimize performance through continuous learning and 
adaptation.

In G-IoT, RL presents significant potential for advancing sustainability and effi
ciency. Key applications include smart grid management, building energy manage
ment, sustainable agriculture, traffic management, and supply chain optimization. By 
leveraging RL, G-IoT systems can optimize resource utilization, reduce energy con
sumption, and minimize environmental impact, thus contributing to greener and more 
sustainable technological ecosystems. RL models are inherently lightweight com
pared to the previously stated models due to the absence of explicit training datasets. 
Therefore, RL is integrated with the network design without increasing the opera
tion cost of underlying wireless networks powering the G-IoT systems. RL can be 
integrated into channel access methods, routing, and congestion control to ensure 
efficient network operation.

9.3.5 Federated learning
Federated learning (FL) [17] decentralizes the training of models by leveraging dis
tributed data across multiple devices or agents. Contrary to centralized learning, 
where the training and test data is sent to a central server for processing, FL al
lows the model to be trained locally on the sensor or edge nodes, with only model 
parameters shared with a central server. This approach addresses significant privacy, 
security, and data efficiency challenges while offering solutions for network manage
ment and data processing at the same time. FL enhances wireless communication
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by improving channel state information (CSI) prediction, optimizing resource alloca
tion, and reducing interference through personalized, locally trained models. It also 
aids in predicting real-time network traffic flows and adapting to local conditions. 
FL enables more accurate device behavior modeling, supporting personalized ser
vices like adaptive streaming and energy-e˙icient communication, while minimizing 
privacy risks by keeping user data on-device. Additionally, FL improves security by 
ensuring that sensitive data does not leave the user’s device, reducing the risk of data 
breaches and complying with privacy regulations.

FL contributes to energy-e˙icient and sustainable solutions in the G-IoT paradigm 
significantly. The local model training in FL minimizes energy consumption, espe
cially for battery-powered devices, by reducing the need for continuous communi
cation with central servers and utilization of resource-heavy data processing. Addi
tionally, FL optimizes data efficiency and bandwidth usage by limiting network trans
mission to just model parameters, alleviating congestion in bandwidth-constrained G
IoT networks. FL usually employs edge processing, which enables decision-making 
within the network to optimize energy consumption without overwhelming the cen
tral servers. This decentralization reduces latency, enhances scalability, and supports 
sustainability by lowering the carbon footprint through decreased data transfer and 
less reliance on centralized data centers, thereby promoting greener IoT infrastruc
tures.

9.4 Leveraging AI for Green-Internet of Things
The scope of sixth-generation (6G) cellular networks, especially machine-type com
munication (MTC), includes support for 1000 devices per square meter, delivering 
high data rates and reliability. Energy efficiency and sustainability are integral to 
the network design, especially for IoT networks [19]. AI models are widely adopted 
to transform IoT to G-IoT at all layers of the IoT architecture, as illustrated in 
Fig. 9.1. Furthermore, AI models are evolving to achieve higher energy and com
putational efficiency. Green AI development necessitates optimizing computational 
efficiency across dimensions. Algorithm optimization techniques, such as sparse 
training, quantization, and pruning, reduce the memory requirements and compu
tational complexity, thereby lowering energy consumption. Hardware efficiency can 
be enhanced by utilizing energy-e˙icient hardware, leveraging parallelization, and 
implementing edge computing to process data locally, minimizing energy-intensive 
cloud transmissions. Data center optimization strategies, including dynamic server 
load balancing, cooling system adjustments, and efficient resource allocation, further 
reduce energy demands. Finally, scaling reductions, such as limiting algorithm itera
tions and hyper-parameter tuning, help mitigate unnecessary computational overhead 
while maintaining performance [20]. The available research literature on the conver
gence of AI and IoT to manifest G-IoT can be arranged according to each layer of 
Fig. 9.1. Each application requires a minimum performance, which the underlying 
layers can deliver. These layers work in tandem with each other, supporting a criti
cal function enabling an application. Therefore, the contributions of AI in supporting 
G-IoT, which translates to energy-e˙icient operation, can be summarized under the 
following headings.
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9.4.1 IoT architecture
AI techniques are predominantly centralized, i.e., the models are run on a central 
server. However, this architecture faces challenges in terms of accuracy, computa
tional complexity, power consumption, memory constraints, and explainability. Edge 
computing moves the computational process from a central server to the ``edge of the 
network''. Therefore, this shift warrants a similar distributed AI paradigm, with frag
mented training and inference processes to optimize computation and memory while 
maintaining privacy and low latency. As large-scale IoT applications drive further 
decentralization, the need for interoperability, scalability, and dynamic resource allo
cation has led to the emergence of Pervasive AI, which integrates AI with pervasive 
computing to manage resource constraints intelligently [21].

Edge computing reduces latency and computational burden by bringing compu
tational resources closer to IoT devices, enabling real-time decision-making while 
reducing data transfer to cloud servers, thereby freeing up bandwidth and reduc
ing hardware requirements. This localized processing lowers the power consump
tion associated with cloud infrastructure and network transmission. Additionally, AI 
algorithms in the edge nodes facilitate intelligent resource management, optimiz
ing energy consumption in IoT networks. Techniques such as DL-based predictive 
analytics enable devices to operate in an energy-e˙icient manner by dynamically 
adjusting their processing loads based on demand. Furthermore, model partition
ing and offloading strategies allow computationally intensive tasks to be distributed 
between edge and cloud servers, balancing efficiency and accuracy [22][23]. FL re
duces redundant data movement by training models locally on edge devices, further 
enhancing energy efficiency while preserving data privacy. Low-power AI models 
designed for edge deployment, such as quantized DL models and lightweight neural 
networks (NNs), ensure reduced computational complexity without compromising 
accuracy performance. Software optimization techniques make AI-driven edge com
puting solutions more sustainable. Adaptive energy management strategies within 
IoT systems leverage RL and heuristic optimization algorithms to dynamically allo
cate resources, reducing overall power consumption. Additionally, edge computing 
facilitates event-driven architectures, where data processing is performed only when 
necessary, minimizing idle power usage in IoT devices. Context-aware AI models 
running at the edge can predict optimal operating conditions, enabling proactive 
energy-saving measures in applications such as smart grids, intelligent transportation 
systems (ITS), and industrial automation. AI-driven edge computing enhances real
time load balancing and renewable energy forecasting, improving energy efficiency 
in smart grid applications. AI models optimize proactive predictive maintenance to 
minimize energy-intensive downtimes in industrial settings [23].

9.4.2 Communication networks
The radio access technologies powering G-IoT communication include low-power 
technologies including Wi-Fi, Zigbee, and Bluetooth Low Energy (BLE). However, 
regardless of the underlying communication standard, AI is increasingly integrated in 
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the design of IoT systems. In the context of wireless communication, AI offers sev
eral advantages. The growing data traffic load and the complexity of modern wireless 
applications have made it difficult for traditional systems to meet demands. AI aids 
at the physical layer in signal processing by enabling adaptive channel modeling, 
reducing reliance on accurate mathematical models. The intelligent methodologies 
for accurate channel modeling and estimation use models including generative net
works and deep learning methods. These methods can accurately predict the channel 
conditions and adapt the transmission parameters, which help in improving energy 
efficiency, especially for battery-powered nodes. However, the NN-based models re
quire a significant computational resources. Gathering accurate channel conditions 
through the channel state information (CSI) leveraging deep NNs. In addition, learn
ing models improve data processing by identifying patterns and reducing redundancy, 
optimizing data storage and processing. Furthermore, AI supports network optimiza
tion and resource allocation, which are crucial for the efficiency and scalability 
of wireless systems. Traditional optimization tools struggle to handle large-scale, 
real-time applications, especially with complex objectives and constraints in next
generation wireless systems. RL-based resource allocation reduces reliance on train
ing, and considering the distributed nature of the WSNs with resource constraints, RL 
provides the required performance without reliance on computational resources. AI 
integration into wireless communications also enhances practical applications, such 
as localization and positioning accuracy, which are vital for indoor navigation and 
asset tracking. AI algorithms can dynamically optimize beamforming and antenna 
adjustments to reduce interference and enhance network performance. Additionally, 
AI enables better allocation of wireless resources such as bandwidth, power, and 
frequency spectrum, ensuring more efficient use and improving overall network per
formance [24]. RL models further optimize routing decisions in WSN by reducing 
the signaling overhead and remove network congestion. This reduces ``sinkholes'' 
and energy consumption, and increase network life.

Despite these advances, the deployment of in wireless networks faces several 
challenges. Effective reasoning of signal meanings remains difficult, and the scarcity 
of computing resources poses significant hurdles, limiting the robustness of networks. 
Efficient management of computing resources is just as critical as wireless resource 
management. Furthermore, the selection of appropriate ML algorithms for specific 
tasks remains an ongoing challenge. While data-driven ML methods have proven 
successful in many contexts, model-driven methods are still relevant in some cases, 
making algorithm selection a key consideration.

9.4.3 Security
There is an inherent risk of sensitive and private data exposure during its transmis
sion and storage. For critical applications, ensuring users’ privacy and data security
is of the utmost priority. Among the most prevalent security and privacy concerns 
are eavesdropping, data record exposure, user identity exposure, and location in
formation exposure features across the literature. The commonly adopted solutions 
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to these issues include data encryption during storage and transmission, assigning 
pseudo identities, and distribution of data at several remote locations [25].

AI offers several advantages over traditional methods for ensuring network and 
data security. AI-based methods have yielded a high accuracy rate in intrusion de
tection systems (IDS) [26] [27]. These methods employ SL, UL, and several RL 
algorithms against denial of service (DoS), jamming, spoofing, intrusion and malware 
detection, and eavesdropping attacks. Q-Learning is an RL method that is employed 
successfully to authenticate sensor nodes, avoid signal jamming, and prevent man
in-the-middle attacks. NN offer very high accuracy in data offloading and intrusion 
detection. While UL can provide a lightweight solution for encrypting the sensed 
data at the sensor nodes before transmission [28]. However, non-RL methods require 
resource-intensive training and datasets. Therefore, there is a tradeoff in accuracy 
and computational cost in the case of SL, UL, and DL methods. Therefore, including 
edge computing can help offset these tradeoff losses [29].

9.5 Conclusion
The fast paced adaption of AI in several faculties of IoT systems have yielded an 
energy efficient and sustainable paradigm called G-IoT. The exponential growth of 
sensor devices including trackers, climate and environment monitors, camera, and 
imaging sensors are contributing to the enormous levels of e-waste. The improve
ments in battery technology and software design can significantly improve the energy 
efficiency. AI can further improve the energy efficiency when integrated in the IoT
system operation and design. The distributed computing architectures decentralize 
the processing hardware. Intelligent algorithms offload the processes to the edge 
nodes to reduce communication bandwidth and computational resources. Addition
ally, light-weight AI models reduce the energy and computational requirements. At 
the network level, AI models can optimize channel access and data transmission to 
reduce the transmission overhead and maximize throughput. Furthermore, AI-based 
encryption algorithms foster data and network security.

This integration also opens up several challenges, including energy efficiency, 
limited computing resources, scalability, privacy risks, and interoperability issues 
[30]. The heterogeneity of IoT devices and network technologies further complicates 
this integration, as variations in hardware and communication protocols can affect 
model performance. Moreover, AI models must be sustainable, as AI training and 
inference can have a high carbon footprint. The lack of standardized protocols for 
AI-powered G-IoT systems hinders seamless integration, leading to interoperability 
issues. Explainability and trust in AI decisions are also critical, especially in appli
cations such as smart grids and healthcare, where regulatory compliance and user 
confidence are essential. Cost constraints present a significant challenge in develop
ing economies, as AI-based G-IoT solutions require investments in energy-e˙icient 
hardware and infrastructure. Furthermore, AI models must adapt to dynamic envi
ronmental conditions, such as fluctuating energy availability and changing network 
loads, without excessive retraining.
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Future research should focus on developing lightweight and energy-e˙icient AI 
models optimized for resource-constrained IoT devices. Advancements in FL and 
edge-based AI can help reduce dependency on centralized computing while enhanc
ing data privacy. Standardization efforts should be prioritized to ensure interoperabil
ity across diverse IoT ecosystems. Additionally, explainable AI techniques should 
be explored to improve transparency and trust in AI-driven decisions. Sustainable 
AI training methodologies, such as low-power neural networks and green computing 
frameworks, can help mitigate the environmental impact of AI deployment. Finally, 
adaptive AI models capable of learning in real time with minimal retraining should 
be developed to address the challenge of dynamic environmental conditions.
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10.1 Introduction
The road ahead for Green IoT (GIoT) technologies has many challenges and promis
ing ways to innovation and environmental benefits. With the rapid expansion of 
connected devices, there is an increasing urgency to tackle issues related to energy 
use, resource management, and ecological consequences. GIoT seeks to balance tech
nological growth with sustainability by adopting energy-saving methods, leveraging 
renewable energy, and prioritizing environmentally conscious designs.

The Internet of Things (IoT) is a transformative technology that connects a wide 
network of devices, enabling them to communicate and exchange data over the In
ternet [1][2]. These interconnected devices, such as sensors, actuators, and software, 
operate autonomously through Machine-to-Machine (M2M) communication, allow
ing them to collect, share, and analyze data without human intervention. This capa
bility drives efficiency and automation across various sectors, including healthcare, 
transportation, agriculture, and industrial operations. For example, IoT enables smart 
home systems to automate lighting and heating, while in agriculture it optimizes irri
gation and crop monitoring. One of the most significant contributions of the IoT is its 
role in the development of smart cities, where it improves resource management, im
proves public services, and elevates overall quality of life by optimizing energy use, 
traffic flow, and waste management [3]. The rapid increase in IoT devices is changing 
the way we interact with technology and our environment. By 2030, it is estimated 
that more than 100 billion devices will be connected globally, creating an extensive 
ecosystem of smart, data-driven solutions [4]. However, this growth comes with chal
lenges, particularly in terms of energy consumption and resource management. The 
increasing number of connected devices demands substantial energy, raising concerns 
about sustainability and environmental impact [5--7]. As IoT continues to expand, 
there is a pressing need to adopt greener practices, such as energy-e˙icient hard
ware, integration of renewable energy, and sustainable design principles, to ensure 
that technological progress aligns with environmental preservation. Addressing these 
challenges will be crucial for realizing the full potential of IoT while minimizing its 
ecological footprint.
Design and Analysis of Green and Sustainable IoT Technologies for Future Wireless Communications 
https://doi.org/10.1016/B978-0-44-333000-1.00015-8
Copyright © 2026 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

215

https://doi.org/10.1016/B978-0-44-333000-1.00015-8


216 CHAPTER 10 Road ahead for Green IoT technologies 

The rapid expansion of IoT has significantly transformed various industries by en
hancing efficiency and connectivity. However, this technological advancement also 
brings serious environmental concerns, primarily due to the high energy consump
tion and carbon emissions associated with connected devices [8,9]. Each IoT device 
requires power to function, and with billions of these devices in operation, the cumu
lative energy demand becomes substantial. Large-scale IoT applications, particularly 
those involving extensive data processing and analytics, require considerable compu
tational power, further increasing energy consumption. This contributes to an increase 
in CO2 emissions, which can undermine sustainability efforts. Projections indicate 
that carbon dioxide emissions from cellular networks alone could reach hundreds 
of millions of tons annually, emphasizing the environmental burden posed by IoT 
expansion [10].

Beyond energy consumption, IoT devices also impact the environment through 
the extraction and disposal of materials used in their production. The demand for raw 
materials, including rare earth metals, leads to resource depletion and environmental 
degradation. Furthermore, improper disposal of obsolete IoT devices contributes to 
Electronic Waste (e-waste), posing further ecological risks. Without sustainable man
agement, the widespread adoption of IoT could exacerbate existing environmental 
problems rather than alleviate them. While IoT has the potential to optimize resource 
use and reduce inefficiencies, its environmental footprint must be addressed through 
sustainable practices. Adopting renewable sources of energy, integrating green tech
nologies, and better managing e-waste are all critical measures to lessen these im
pacts. It is crucial that IoT has both an innovative and a sustainable approach, in 
order to develop in harmony with the resonating environmental objectives around the 
world aligning with global environmental goals [11].

As a new concept, GIoT addresses the shortcomings of traditional IoT frame
works for environmental issues. It shifts the design thinking of IoT systems archi
tecture towards an energy-centric vertical to empower efficiency and sustainability at 
all stages of IoT spanning design, production, operation, and even decommissioning. 
GIoT aims to reduce the carbon footprint and other resources utilized in supporting 
IoT infrastructure and integrating eco-friendly approaches. The main directions of 
such an approach are reconsidering modern methods of software development, adopt
ing energy-e˙icient, low-power computing technologies such as microcontrollers 
and wireless sensors, and solar powering of the devices. For instance, innovations 
like green Radio Frequency Identification (RFID) tags and energy-sensitive sensing 
networks reduce energy demands without compromising functionality. GIoT also em
phasizes ``smart'' resource management, where context-aware systems dynamically 
adjust operations, such as sleep modes during inactivity, to conserve energy. Further
more, cloud-based solutions enable centralized data processing, reducing the energy 
burden on individual devices [12].

A core principle of GIoT is the adoption of sustainable design frameworks, ensur
ing devices are built with recyclable or biodegradable materials and engineered for 
longevity to curb electronic waste. Lifecycle management practices, such as efficient 
recycling protocols, further mitigate environmental harm. By reimagining communi
cation protocols—like Low-power Wide-area Network (LPWAN) or edge computing 
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GIoT minimizes data transmission energy and latency. Such innovation not only 
reduces costs, but also integrates the expansion of the IoT with international sustain
ability targets like cutting down greenhouse gas emissions and advancing circular 
economies. In the end, the GIoT achieves a balance between fostered climate and 
technological development, which results in smarter cities and industries while con
serving natural resources. As evolution progresses within this domain, prospective 
work could consider components such as Artificial Intelligence (AI)-controlled en
ergy optimizers, biodegradable sensors and devices, or even decentralized renewable 
energy IoT ecosystem. Embracing GIoT is not just an environmental imperative, but 
a strategic pathway to ensure that the scalability of IoT remains compatible with a 
sustainable future.

10.1.1 Motivation and objectives
The rapid proliferation of IoT technologies has revolutionized global connectivity, yet 
their environmental costs, escalating energy demands, carbon emissions, and elec
tronic waste pose significant threats to ecological balance. With billions of devices 
projected to dominate infrastructure by 2030, the urgency to align IoT innovation 
with sustainability principles is critical. This research is motivated by the imperative 
to transform conventional IoT into environmentally responsible systems, ensuring 
technological progress does not compromise planetary health.

The primary objective of this work is to explore and systematize strategies for ad
vancing GIoT technologies—innovations that prioritize energy efficiency, renewable 
resource integration, and lifecycle sustainability. This research seeks to:

-- Investigate energy-e˙icient technologies and systems, including low-power hard
ware, renewable energy integration, and intelligent algorithms, to minimize the 
ecological footprint of IoT operations.

-- Develop holistic frameworks for sustainable IoT design, emphasizing lifecycle 
management, recyclable materials, and circular economy practices to reduce waste 
and extend device longevity.

-- Advocate for cross-disciplinary strategies that combine policy reforms, industry 
standards, and ethical innovation to address scalability challenges and steer IoT 
growth toward global sustainability goals.

By addressing these objectives, this research aims to bridge the gap between IoT’s 
transformative potential and environmental stewardship, empowering stakeholders to 
adopt solutions that harmonize connectivity, efficiency, and ecological preservation.

10.1.2 Chapter organization
This chapter is structured to systematically explore the multi dimensions of GIoT, 
guiding readers through technological innovations, practical implementations, and 
policy-driven strategies for sustainability. Section 10.2 examines emerging tech
nologies for GIoT systems, introducing cutting-edge advancements such as energy
e˙icient hardware, low-power communication protocols, and AI-driven optimisation 
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tools that form the backbone of sustainable IoT ecosystems. Section 10.3, Col
laborative Intelligence and Software Optimization, explores intelligent algorithms 
and distributed computing frameworks that enhance energy efficiency by minimis
ing computational redundancy and enabling adaptive resource management. Section 
10.4, Energy Harvesting and Renewable Integration, addresses methods to power IoT 
devices through renewable energy sources like solar, kinetic, and thermal harvest
ing, reducing reliance on non-renewable power. Section 10.5, Sustainable System 
Design, focuses on lifecycle-aware engineering principles, emphasising recyclable 
materials, modular architectures, and circular economy practices to control elec
tronic waste. Section 10.6, Regulatory and Policy Frameworks for GIoT, analyzes 
global standards, government incentives, and industry regulations necessary to align 
IoT growth with environmental goals. Section 10.7, Future Challenges and Oppor
tunities, identifies unresolved issues such as scalability, interoperability, and ethical 
considerations, while highlighting pathways for innovation in biodegradable elec
tronics and decentralized energy systems. Finally, Section 10.8, Conclusion: Path to 
a Sustainable Future, synthesises key insights and outlines actionable strategies to 
harmonize IoT’s transformative potential with planetary sustainability. Each section 
builds on the previous, offering an organized roadmap for researchers, policymakers, 
and industry stakeholders to advance GIoT technologies responsibly.

10.2 Emerging technologies for Green IoT systems
Emerging technologies play a crucial role in the advancement of GIoT systems by 
focusing on enhancing energy efficiency and promoting sustainable practices within 
interconnected networks.

The fundamental part is the wireless identification and tracking of objects with the 
use of eco-friendly tagged RFID systems, which significantly enhance the resource 
management level. Green RFID tags, which obtain power from the reader’s signal 
instead of batteries, are an important example of this. These tags enable effective 
tracking and identification processes in various applications while further reducing 
energy use. Green RFID tags require no batteries; furthermore, these tags reduce en
ergy while retrieving information through lightweight power collection. These tags 
not only facilitate seamless data collection but do so with a significantly lower power 
footprint, thereby contributing to overall energy conservation. Near Field Communi
cation (NFC) is similar to RFID, but designed for short-range communication, NFC 
enables interactions between devices within a close distance. This technology is par
ticularly useful in smart devices and payment systems, where it operates efficiently 
with low power usage, contributing to the overall energy efficiency of IoT applica
tions. Alongside this, Green Wireless Sensor Network (WSN) play a crucial role by 
optimizing the energy usage of wireless sensors that gather extensive data without 
adverse ecological impacts. By leveraging advanced algorithms and efficient device 
management, these networks ensure that significant amounts of information can be 
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collected while keeping power consumption at a minimum. These networks are de
signed to operate with minimal power consumption, intelligently managing energy 
use while providing robust data collection and monitoring capabilities. WSNs allow 
for real-time data analysis and decision-making processes that optimize energy use. 
Applications in agriculture, smart cities, and industrial monitoring demonstrate how 
WSNs can enhance efficiency and sustainability by enabling adaptive management 
based on sensor feedback [13].

Moreover, Cloud Computing: The backbone of modern IoT systems, cloud in
frastructure supports vast amounts of data generated by IoT devices while providing 
necessary computational resources. Therefore, Green Cloud Computing focuses on 
creating hardware and software solutions that minimize energy usage and utilize en
vironmentally sustainable resources, ensuring high performance with a lower carbon 
footprint. The growth of low-power Microcontroller Unit (MCU)s and Integrated Cir
cuits (IC)s designed for energy efficiency is driving the development of sustainable 
IoT applications. Coupled with innovations in low-power communication protocols, 
these advancements are transforming how devices interact, ensuring that data trans
mission is both efficient and energy-saving. Additionally, the shift towards edge 
computing enables data processing to occur closer to its source, reducing reliance on 
centralized servers and conserving energy. Context-aware systems further enhance 
these capabilities by dynamically adjusting device operations based on environmen
tal conditions, enabling real-time optimizations that minimize energy consumption 
[14].

Furthermore, advanced communication networks enhance data transmission effi
ciency, minimizing energy consumption and supporting sustainable smart cities. As 
urban areas change into smarter ecosystems, integrating energy-e˙icient technolo
gies becomes crucial for reducing CO2 emissions and achieving sustainability goals. 
However, a key focus is developing low-power communication protocols that main
tain seamless device connectivity while minimizing energy use. Given the vast num
ber of connected IoT devices, these protocols are essential for efficient data exchange. 
Smart algorithms using AI and machine learning further optimize resource utilization 
by analyzing usage patterns and dynamically adjusting operations to reduce waste. 
Therefore, we have M2M Communication technology that facilitates direct commu
nication between devices, allowing them to share information autonomously and its 
Green M2M communication version implements efficient protocols and optimization 
strategies to reduce energy consumption [15].

In GIoT systems, one of the important technologies is energy harvesting, which 
captures renewable energy from natural sources such as solar, wind, thermal, and ki
netic energy to power IoT devices. This process significantly reduces dependency on 
conventional batteries, minimizing environmental impact and waste. Coupled with 
energy harvesting, renewable integration enables the seamless incorporation of these 
energy sources into IoT infrastructures, ensuring that devices can operate sustainably 
even in off-grid locations, thus significantly lowering the overall carbon footprint of 
IoT ecosystems. The use of biodegradable materials in the production of IoT hard
ware complements these efforts, focusing on sustainability not only during the de
vice’s operational life, but also at its end-of-life stage. This holistic approach reflects 
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a significant advancement towards achieving an eco-friendly IoT ecosystem, where 
technology and environmental responsibility coexist, driving the future of technology 
in a direction that emphasizes sustainability and resource efficiency. Finally, Green 
Data Centers prioritize energy efficiency by integrating renewable energy sources, 
recycling electronic waste, and using sustainable building materials to enhance their 
ecological impact [16].

These technologies collectively represent a strategic shift towards a more sustain
able and resilient IoT infrastructure, addressing the challenges of energy consumption 
and environmental degradation. All emerging technologies for GIoT systems are il
lustrated in Fig. 10.1. 

FIGURE 10.1 

Emerging technologies for Green IoT systems.

10.3 Collaborative intelligence and software optimization
The rapid growth of IoT ecosystems has necessitated innovative approaches to man
age energy consumption and computational resources effectively [17]. Collaborative 
intelligence and software optimization are emerging as critical enablers of GIoT, 
leveraging advanced algorithms, distributed computing, and adaptive frameworks to 
minimize energy waste while maintaining system performance. Let us explore key 
strategies and technologies driving this transformation. Federated Learning (FL) is a 
decentralized machine learning paradigm that enables IoT devices to collaboratively 
train models without sharing raw data. By processing data locally and transmitting 
only model updates,FL significantly reduces the energy overhead associated with 
data transmission to centralized servers. Federated Edge AI framework demonstrated 
a 60% reduction in energy consumption for IoT applications like smart healthcare 
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and predictive maintenance. FL also enhances privacy and scalability, making it ideal 
for large-scale IoT deployments [18]. Recent advancements in FL include adaptive 
aggregation algorithms that dynamically adjust the frequency and size of model up
dates based on device energy levels and network conditions.

Edge and fog computing architectures bring computational resources closer to 
IoT devices, reducing the need for energy-intensive data transmission to distant 
cloud servers. By processing data locally, these frameworks minimize latency and 
energy consumption while improving system responsiveness. For example, Ama
zon Web Services (AWS)’s Wavelength platform embeds micro-data centers in 6G 
towers, enabling real-time analytics for smart city applications with 30% lower en
ergy use compared to traditional cloud-based systems [19]. Fog computing extends 
this concept by creating a distributed network of intermediate nodes that collabora
tively process and store data. fog-based energy management systems optimize power 
distribution in smart grids, reducing energy losses by 22%. These architectures are 
particularly effective for applications requiring real-time decision-making, such as 
autonomous vehicles and industrial automation.

AI plays a key role in optimizing resource allocation and energy use in IoT 
systems. Reinforcement Learning (RL) algorithms, for instance, dynamically adjust 
device operations based on environmental conditions and energy availability. An RL
based system for smart agriculture that reduces irrigation energy use by 45% while 
maintaining crop yields [20]. AI-powered predictive maintenance is another key ap
plication, enabling IoT devices to anticipate failures and optimize energy use proac
tively. For example, Siemens MindSphere platform uses AI to monitor industrial 
equipment, reducing energy waste by 25% through timely maintenance interventions 
[21]. These intelligent systems not only enhance energy efficiency, but also extend 
the lifespan of IoT devices, contributing to sustainability goals. Table 10.1 showcas
ing energy savings achieved through AI-driven predictive maintenance in industrial 
IoT.

Table  10.1 Energy savings by industry and application.

Industry Energy Savings (%) Application
Manufacturing 25% Equipment monitoring and maintenance
Energy 30% Smart grid optimization
Transportation 20% Fleet management
Healthcare 15% Medical device maintenance

To address the computational constraints of IoT devices, researchers are devel
oping lightweight algorithms that deliver high performance with minimal energy 
use. For instance, CRYSTALS-Kyber cryptographic algorithm provides robust se
curity with 70% less computational overhead than traditional methods, making it 
ideal for energy-constrained IoT devices [22]. Energy-aware communication pro
tocols, such as LPWAN and Bluetooth Low Energy (BLE), further optimize data 
transmission. LPWAN protocols reduce energy consumption by 90% compared to 
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Wireless Fidelity (Wi-Fi), enabling long-range communication for applications like 
environmental monitoring and asset tracking.

Blockchain technology is increasingly being integrated into IoT ecosystems to 
enable secure, transparent, and energy-e˙icient collaboration. Blockchain platform 
tracks the carbon footprint of IoT supply chains, ensuring compliance with sustain
ability standards. Blockchain also facilitates peer-to-peer energy trading in smart 
grids, allowing IoT devices to exchange surplus energy efficiently. Collaborative IoT 
ecosystems leverage blockchain to create decentralized networks where devices share 
resources and data securely with reduced energy waste. Collaborative intelligence 
and software optimization are transforming GIoT by enabling energy-e˙icient, adap
tive, and scalable systems. From federated learning and edge computing to AI-driven 
resource management and blockchain integration, these technologies can unlock the 
full potential of GIoT while minimizing its environmental impact.

10.4 Energy harvesting and renewable integration
The components of GIoT systems include energy harvesting along with renewable 
integration, both of which actively work in capturing energy and integrating it in 
the best way possible for usage [23]. This in turn ensures that IoT devices are able 
to operate sustainably and with minimal environmental impact. Renewable sources 
of energy include solar, wind, thermal and even kinetic energy, all of which can be 
coupled to power IoT devices. This approach greatly reduces dependency on tradi
tional batteries, and in turn, lowers carbon footprints and waste. Energy harvesting, 
on the other hand, uses solar panels or piezoelectric devices to power sensors and 
actuators in remote locations, bypassing off-grid limitations. Furthermore, efficient 
and sustainable device operations are also ensured through islands of renewable en
ergy integrated into the IoT systems with the aid of sophisticated renewable energy 
management approaches through integration. Such levels of integration are made pos
sible through the coordination of energy consumption and generation hosted through 
variable loads. These advanced algorithms and smart technologies greatly allow for 
greater utilization of renewable energy significantly improving eco-sustainability and 
energy efficiency in IoT environments. In conclusion, energy immersion and renew
able integration together form an ecosystem through which the arcs of GIoT in energy 
balancing and restraining harmful energy consumption practices.

The use of RFID and NFC technologies is becoming increasingly popular within 
IoT systems, as technologies are capable of collecting information about objects 
wirelessly. The recent focus has been on improving the energy consumption of these 
technologies. Green RFID systems are now optimized through energy harvesting fea
tures and improved signal processing, allowing them to operate with minimal power 
consumption. For example, batteryless NFC sensors that harvest energy from am
bient sources have been developed, eliminating the need for batteries and reducing 
environmental impact. The shift toward self-sustaining IoT systems is accelerating 
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with breakthroughs in energy harvesting. Solar-powered IoT nodes now leverage per
ovskite solar cells, which achieve 33% efficiency under low light conditions, making 
them viable for indoor or urban deployments. In one study, kinetic energy harvesting 
has advanced the prototype of a piezoelectric floor tile that generates 4 W per step, 
sufficient to power environmental sensors in smart buildings [24]. Meanwhile, Ra
dio Frequency (RF) energy scavenging is gaining traction, researchers developed an 
RF harvester that extracts 1 µW/cm2 from ambient Wi-Fi signals, enough to sustain 
low-power sensors [25]. Thermal energy recycling is another boundary; therefore, re
searchers are Testing Thermoelectric Generators (TEGs) that convert industrial waste 
heat into electricity for IoT monitoring systems [26]. A report by the International En
ergy Agency (IEA) estimates that renewable energy-powered IoT could reduce global 
CO2 emissions by 1.2 gigatons annually by 2030, underscoring their role in achieving 
net-zero targets [27]. These energy-e˙icient identification and tracking technologies 
not only minimize power consumption, but also contribute to the sustainability of IoT 
systems by reducing electronic waste. By leveraging energy harvesting mechanisms, 
these devices can operate indefinitely without the need for battery replacements, 
making them ideal for applications in logistics, inventory management, and envi
ronmental monitoring. In Fig. 10.2, a flowchart illustrates how renewable energy is 
integrated into IoT systems, from harvesting to consumption.

FIGURE 10.2 

Integration of renewable energy into IoT systems, from harvesting to consumption.

The development of low-power MCU has enabled IoT devices to operate with 
minimal power. Advancements in MCU design, such as the integration of energy
e˙icient architectures and power-management features, have significantly reduced 
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the energy consumption of IoT devices. These developments are crucial for battery
powered applications, where energy efficiency directly impacts device longevity and 
environmental sustainability. Low-power MCUs, such as ARM’s Cortex-M55 with 
Ethos-U55 neural processing units, now integrate machine learning capabilities at un
der 1 milliwatt of power, enabling real-time data analytics without draining batteries. 
These MCUs are increasingly paired with biodegradable substrates; for instance, re
cently researchers developed transient circuits using silk proteins that dissolve harm
lessly after use, reducing e-waste. Complementing these hardware innovations are 
ultra-e˙icient communication protocols like Long Range Wide Area Network (Lo
RaWAN) and Narrowband IoT (NB-IoT), which optimize data transmission ranges 
and frequencies to cut energy use by up to 90% compared to traditional Wi-Fi or 
Bluetooth [28]. One study highlighted passive backscatter systems, such as battery
free RFID tags powered by ambient radio waves, which are revolutionizing retail and 
logistics by eliminating the need for disposable batteries [29]. Further, energy-aware 
5G/6G networks now employ dynamic spectrum sharing and AI-driven beamforming 
to reduce base station energy consumption by 30 to 40% [30]. These technologies 
collectively address the ``energy paradox'' of IoT, balancing functionality with sus
tainability by redefining how devices are built and communicate. Table 10.2 compares 
the efficiency, applications, and energy output of various energy harvesting methods. 
Energy harvesting and renewable integration are crucial for the advancement of GIoT 

Table  10.2 Comparison of energy harvesting technologies.

Energy Source Efficiency Energy Output Applications

Solar (Perovskite) 33% (low light) 10--20 mW/cm2 Outdoor sensors, smart agri
culture

Kinetic (Piezoelectric) 10--20% 4 W per step Smart buildings, wearable de
vices

RF (Ambient Wi-Fi) 1 μW/cm2 1--10 μW/cm2 Low-power sensors, retail 
tracking

Thermal (TEGs) 5--10% 1--5 mW/cm2 Industrial monitoring, waste 
heat recovery

systems, facilitating sustainable energy utilization while optimizing the efficiency of 
IoT devices. Through the deployment of energy harvesting solutions and intelligent 
energy management strategies, IoT systems can operate autonomously and sustain
ably, significantly contributing to a reduction in carbon emissions and energy waste. 
The implementation of these technologies supports the goal of creating environmen
tally friendly IoT solutions that enhance operational efficiency and promote a greener 
future.

10.5 Sustainable system design
Sustainable System Design in the context of GIoT focuses on creating systems that 
minimize environmental impact throughout their lifecycle, from design and pro
duction to utilization and disposal. At its core, this philosophy integrates energy 
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efficiency, resource optimization, and renewable materials to create an eco-friendly 
infrastructure. For example, low-power sensors and adaptive management systems 
significantly reduce energy consumption in smart cities, as demonstrated in Amster
dam’s smart grid deployments, where energy use is optimized through decentralized 
renewable sources. Additionally, modular architectures enhance sustainability by en
abling easy upgrades and repairs, extending device lifespans, and reducing e-waste 
[31].

A critical aspect of sustainable system design is the use of biodegradable materials 
such as cellulose-based circuits and organic semiconductors that decompose harm
lessly after use. Researchers have developed transient electronics using silk proteins 
that dissolve within weeks post-deployment, reducing electronic waste accumulation. 
Circular economy principles are embedded into design frameworks, promoting mate
rial reuse and recycling. For example, Dell’s closed-loop recycling program recovers 
plastics from retired IoT devices for reuse in new products, significantly reducing the 
demand for virgin materials and mitigating environmental degradation [32].

From a technical standpoint, sustainable system design incorporates hardware, 
software, and circular economy principles to enhance energy efficiency and reduce 
waste. On the hardware front, innovative energy-e˙icient components play a crucial 
role in reducing power consumption in IoT systems. Devices such as ARM’s Cortex
M55 microcontroller operate at ultra-low power levels, enabling real-time analytics 
without excessive energy draw [33]. Renewable energy integration is another piv
otal strategy; solar-powered IoT nodes using perovskite cells and piezoelectric floor 
tiles that generate energy from foot traffic exemplify how sustainable energy sources
can support IoT infrastructures [34]. Meanwhile, software optimizations are crucial 
for energy conservation. Smart algorithms and communication protocols enhance 
IoT sustainability by optimizing resource use. Machine learning algorithms dynam
ically adjust energy consumption, as seen in Barcelona’s smart streetlights, which 
automatically dim when no movement is detected, cutting energy costs by 30%. Ad
ditionally, lightweight communication protocols like LoRaWAN significantly reduce 
data transmission energy compared to Wi-Fi, making them ideal for remote agri
cultural sensors and industrial monitoring applications [35]. Furthermore, circular 
economy integration sustainable system design also emphasizes modular and recy
clable hardware. Fairphone’s modular smartphones serve as an inspiration for IoT 
architectures, promoting replaceable sensors and extendable device lifecycles. Ad
ditionally, smart recycling programs, such as sensor-equipped waste bins, optimize 
collection routes, reducing truck emissions by 40% [36]. Blockchain technology 
further supports sustainability by enabling lifecycle tracking of materials, ensuring 
compliance with environmental regulations and reducing illicit waste disposal.

Real-world implementations of sustainable system design showcase its practical
ity in various sectors, including smart agriculture, smart buildings, and urban waste 
management. Precision farming solutions, using soil moisture sensors enabled by 
the IoT, have helped reduce water consumption by 50% while maintaining crop 
yields [37]. Solar-powered microclimate monitoring nodes in vineyards have also 
slashed reliance on grid power, enhancing energy efficiency. In urban settings, smart 
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buildings like The Edge Building in Amsterdam leverage IoT-based Heating, Ven
tilation, and Air Conditioning (HVAC) and lighting systems, achieving 70% energy 
savings through automated adjustments based on occupancy patterns [38]. Table 10.3
comparing real-world applications of sustainable IoT systems, highlighting their en
vironmental and operational benefits.. By embedding sustainability into the core of 
IoT development, GIoT technologies can drive significant environmental benefits, 
supporting global sustainability goals while enhancing efficiency and innovation. 

Table  10.3 Comparison of sustainable IoT applications.

Application Key Features Environmental 
Benefits

Operational Benefits

Smart 
Agriculture

Soil moisture sensors, 
solar-powered nodes

50% reduction in 
water usage

Increased crop yields, 
reduced costs

Smart 
Buildings

IoT-enabled HVAC, 
occupancy sensors

70% energy 
savings

Lower utility bills, 
improved comfort

Urban Waste 
Management

Sensor-equipped bins, 
route optimization

35% reduction in 
fuel consumption

Cost savings, reduced 
emissions

Smart Grids Real-time energy 
monitoring, renewable 
integration

30% reduction in 
energy waste

Stable energy supply, 
lower carbon footprint

10.6 Regulatory and policy frameworks for Green IoT
Regulatory and policy frameworks play a key role in shaping the development and 
deployment of GIoT technologies. These frameworks ensure that IoT systems align 
with global sustainability goals, such as reducing carbon emissions, minimizing 
e-waste, and promoting energy efficiency. Now more than ever, governments and 
global agencies appreciate encouraging the adoption of renewable energy sources, 
energy-e˙icient designs, and sustainable manufacturing processes. For instance, the 
Eco-design Directive of the European Union (EU) requires that IoT devices are manu
factured with high energy efficiency and recyclability, which leads to less innovation, 
more adoption, and greater environmental protection [39]. One of the most important 
features of these frameworks is how they regulate socioeconomic development along
side environmental protection. Policies that define minimum energy consumption 
levels, maximum materials able to be used, and other such criteria enable policy
maker restrictions that serve concern for the environment in regard to IoT evolution. 
For instance, Energy Star for IoT certifies devices that are power efficient, thus limit
ing the number of such devices in circulation permits the devices to be more widely 
accepted [40]. Besides, the Circular Economy Action Plan as well as other initiatives 
emphasize the importance of IoT of components, minimizing e-waste and enabling a 
circular economy.

Internationally GIoT practices will require global standards. These objectives are 
being pursued by the International Organization for Standardization (ISO) and the 



10.6 Regulatory and policy frameworks for Green IoT 227

Institute of Electrical and Electronics Engineers (IEEE) through the establishment of 
protocols aimed at the interoperability and energy efficiency of IoT systems. For in
stance, the ISO 14000 series provides guidelines for environmental management sys
tems, helping IoT manufacturers minimize their ecological footprint [41]. Similarly, 
the IEEE P2413 standard focuses on unifying IoT architectures to enhance energy 
efficiency and scalability [42]. International agreements, reinforce the importance of 
GIoT for achieving climate goals. Countries participating in these agreements are 
adopting policies that promote the research and development of sustainable IoT tech
nologies. For example, Singapore’s Smart Nation Initiative subsidizes IoT projects 
that align with carbon neutrality targets, fostering innovation in energy-e˙icient sys
tems [43]. These collaborative efforts ensure that GIoT technologies are not only 
environmentally friendly, but also globally scalable and interoperable.

National governments play a critical role in driving the adoption of GIoT through 
targeted policies and incentives. For example, carbon tax rebates in different countries 
encourage companies to invest in energy-e˙icient IoT solutions. Similarly, e-waste 
legislation, such as the EU’s Waste Electrical and Electronic Equipment (WEEE) 
Directive, mandates that IoT manufacturers manage end-of-life recycling of their 
products, reducing environmental degradation [44]. In addition, public awareness 
campaigns educate consumers and businesses about the benefits of GIoT, encour
aging the adoption of energy-e˙icient practices. For example, the GIoT Initiative in 
the UK is helping organizations shift towards sustainable IoT solutions through ded
icated resources and training [45].

The industry, through its corporate initiatives, is working hand in hand with 
the government to formulate best practice standards and sustainability frameworks 
for IoT implementation. Alliance for IoT Innovation (AIOTI) is one such organi
zation that put together a GIoT best practices publication that focuses on energy 
efficiency, resource optimization, and lifecycle management. An equally important 
initiative is that of the GSMA that aims for IoT climate action, with a target of 
net-zero IoT networks by 2040. Achieving this goal would engrave the use of re
newable energy and energy-e˙icient infrastructures. All these efforts highlight the 
necessity for a combined effort from all stakeholders, governments, industries, and 
academia, to drive initiatives on GIoT further. The above-mentioned initiatives cite 
the EU’s Smart Cities and Communities Initiative, which collaborates with munici
palities to create IoT solutions for cities like smart grids and energy-e˙icient lighting 
systems. Surely, such collaborations enable innovation; however, they also guarantee 
that GIoT technologies work practically, are scalable and, most importantly, environ
mentally friendly.

To foster sustainable development practices at the intersection of the regulatory, 
organizational and the IoT sectors, governments should support the GIoT by enhanc
ing energy efficiency and reducing environmental impact. These frameworks will 
help IoT technology provide global solutions for sustainability and address signifi
cant environmental issues.
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10.7 Future challenges and opportunities
The rapid innovation of GIoT technologies offers a unique blend of challenges and 
opportunities. Efforts on improving energy efficiency, integrating renewables, and 
promoting sustainable development provided a good starting point, but there are 
challenges still. It is essential to tackle these challenges while leveraging available 
opportunities in order to unlock the potential of GIoT towards the sustainability ob
jectives.

-- Challenges in Green IoT Implementation

One of the primary challenges in GIoT is balancing performance with sustainabil
ity. Although the use of energy-e˙icient hardware and the integration of renewable 
energy have succeeded in power consumption efficiency, the power supply of many 
IoT devices is still based on traditional batteries or non-renewable energy sources. 
The high cost of sustainable materials, such as biodegradable circuits and graphene
based components, remains a barrier to mass adoption. For instance, biodegradable 
IoT sensors, while promising in reducing e-waste, are currently 2--3 times more ex
pensive than traditional alternatives, limiting their large-scale deployment.

Another critical concern is the scalability of GIoT solutions. Many sustainable 
technologies, such as self-powered sensors and energy-harvesting devices, remain 
in the prototype or early adoption phase. Large-scale manufacturing of transient 
electronics and bio-based components faces production limitations, preventing their 
mainstream commercialization. Additionally, interoperability issues arise due to the 
diverse range of IoT communication protocols, such as Zigbee, LoRaWAN, and NB
IoT, which lack standardization. The absence of a unified framework for integrating 
different sustainable IoT systems makes deployment complex, particularly in large 
urban environments.

Additionally, the data security issues in GIoT bring forward privacy concerns that 
need to be addressed. Numerous communication protocols that design IoT devices 
focus on energy efficiency and neglect security, thus making these devices prone to 
hacking. For example, passive backscatter systems may inadvertently disclose im
portant information when energy usage is minimized, due to their weak encryption. 
To resolve these issues, significant effort is needed in innovation, coordination, and 
development of overarching policies and regulations for GIoT.

-- Opportunities for Growth and Innovation

Despite these challenges, GIoT offers vast opportunities for innovation, partic
ularly in energy harvesting, sustainable computing, and AI-driven resource opti
mization. Recently developed self-sustaining IoT systems introduce revolutionary 
biohybrid sensors powered by algae, kinetic energy harvesting Triboelectric Nano
generators (TENGs), and organic solar photovoltaics operating in low-light condi
tions. These technologies have great potential for powering remote or off-grid IoT 
systems without the use of conventional energy sources.
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Another significant saturator is the IoT manufacturing and deployment models 
based on a circular economy. More and more firms are developing modular IoT ar
chitecture within which separate sensors and processors can be altered or upgraded. 
This design will greatly improve the efficiency of IoT systems, as well as extend the 
useful life of the devices and lessen electronic waste. Furthermore, blockchain-based 
IoT devices enhance the accountability of recycling and material recovery, thus im
proving sustainability and facilitating IoT lifecycle management.

The capability of AI-based means for sustainability optimization suggests GIoT 
may be transformed by the emerging need for vertically integrated power manage
ment for various components’ energy consumption and system performance. Ad
vanced machine learning techniques may process real-time data from a multitude of 
sensors and analyze energy demand prediction, thus boosting the dependability of 
power distribution, cutting the need for transmitting data, and significantly minimiz
ing energy waste. For example, AI-powered dynamic spectrum sharing in 5G and 6G 
networks can optimize network resource allocation, reducing energy consumption by 
30--40% while maintaining seamless IoT connectivity.

Policy and regulatory frameworks are also evolving to support sustainableIoT ini
tiatives. Governments worldwide are implementing stricter regulations on e-waste 
management, energy efficiency standards, and carbon footprint reduction for elec
tronic devices. The EU Ecodesign Directive mandates that IoT manufacturers adopt 
sustainable design practices, ensuring that devices are energy efficient, repairable, 
and recyclable. These regulatory measures provide a strong incentive for industries 
to transition toward GIoT solutions, driving large-scale adoption and innovation.

10.8 Conclusion: path to a sustainable future
The evolution of GIoT technologies marks a pivotal shift toward a more sustain
able, energy-e˙icient, and intelligent digital ecosystem. The growth of IoT systems 
in industries calls for the combination of new technologies, collaborative intelli
gence, renewable energy, and design sustainability to decrease environmental impact. 
Overreliance on traditional power sources for GIoT systems is achieved through in
novations like low-power MCUs, AI-enhanced edge computing, and self-sustaining 
sensors. With advanced hardware architectures, AI driven optimisations, and reg
ulatory frameworks, the GIoT world is creating a reality where sufficiency meets 
ecological preservation.

Furthermore, biohybrid sensors, biodegradable circuits, and transient electronics 
have improved the sustainability of IoT. Collaborative intelligence coupled with soft
ware optimisation renders change in IoT performance while empowering AI-driven 
energy management. With the integration of lightweight communication protocols 
and intelligent data processing, devices consume fewer resources, which allows for 
efficient device usage.

The combination of energy harvesting and renewable energy approaches has be
come one of the primary methods within GIoT, allowing devices to operate without 
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frequent battery changes. Two technologies, namely RF energy scavenging, piezo
electric harvesting, and even perovskite solar cells are revolutionizing IoT applica
tions with autonomous power supplies. In addition, the aspects of sustainable system 
design, such as modular designs, circular economy systems and material reprocess
ing, guarantee the sustainability and environmental friendliness of IoT implementa
tions in smart cities, modern agriculture and industrial automation.

While GIoT presents remarkable opportunities, regulatory and policy frameworks 
remain essential in driving its large-scale adoption. Governments and international 
organizations are formulating eco-design mandates, energy efficiency standards, and 
lifecycle tracking regulations to ensure compliance and promote green innovation. 
However, challenges such as high costs, interoperability issues, and cybersecurity 
risks still pose hurdles that require collaborative efforts between industry leaders, 
researchers, and policymakers.

Looking ahead, GIoT is poised to redefine the future of smart systems by in
tegrating AI-driven efficiency, renewable energy solutions, and sustainable system 
designs. Through continuous innovation, cross-sector collaboration and regulatory 
support, GIoT can help achieve global sustainability goals, reduce carbon footprints, 
and foster resilient, low-impact digital ecosystems. The road ahead for GIoT is both 
challenging and promising, but with the right technological and policy-driven strate
gies, it holds the potential to create a greener, smarter, and more sustainable future.
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