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Abstract

This paper is concerned with estimating the available bandwidth of a single-server queueing system
whose service rate and the input traffic load are not known in advance, called anunidentified queueing
systemin this paper. In order to estimate the available bandwidth, we propose a probing method called
a minimal-backlogging methodand propose two statistics. The first statistic is based on the delay of
each probing packet and the second statistic is based on the amount of probing packets served in a
specific time interval. We first show that anM/G/1 queueing system is stable when probing packets
are sent to the system according to the minimal-backlogging method. We also show that the available
bandwidth can be estimated by using either of the two statistics if the probing packets are sent to the
queueing system by the minimal-backlogging method. We also estimate the available bandwidth for
a local server that is connected to the probing source node with non-zero delay as an application of
the theory developed for a single-server queue. We evaluate the accuracy of the proposed available
bandwidth estimation scheme numerically under a Poisson and a self-similar traffic loads.

Keywords: M/G/1 queue; minimal backlogging; probing; available bandwidth; G/G/1 queue; unidenti-
fied queueing system;

I. I NTRODUCTION

Estimation of the residual processing capacity called the available bandwidth for a local server

such as a web server or a router is one of important issues to service providers or network

operators. If a web server admits every service request without limitation, the throughput of the

server and the quality of service (QoS) provided for customers can be significantly degraded

[1]. The same situation can be expected for a local router in case of overload. Thus, in order

to protect severe degradation in throughput and to improve QoS, it is necessary to monitor and

manage the available bandwidth of the local server. The configuration information of the local

server such as service rate may not be easily accessible to a monitoring entity. Even though such

information is available, the service rate of each class may change over time if the local server
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probing packets

Figure 1. Unidentified Queueing System

serves multiple classes. Thus, in this paper, we assume that the service rate of the server is not

known in advance.

In this paper, we investigate how to estimate the available bandwidth of a queueing system

with an unknown service rate. Fig. 1 shows a queueing system of interest.C andλ denote the

service rate and the arrival rate of packets except probing packets, respectively. LetL denote

the average size of packets except probing packets. Then, for the queueing system, available

bandwidthCa is defined as

Ca = C(1− ρ),

whereρ = λL/C. If all of the parametersC, λ andL representing a queueing system are

unknown, this system is said to beunidentifiedin this paper. We propose a new method to

estimate the available bandwidthC(1− ρ) of an unidentified queueing system.

Sharma and Mazumdar [2] considered a similar problem. They investigated the problem of

estimating the traffic intensity of a local node by sending a probing traffic stream. Thus, a queue

receives two streams of traffic: one is a probing stream of local user and the other is the data

traffic stream obtained by superposition of all the data traffic passing through the node. Their

result for the estimation of available bandwidth is valid under the assumption that the total input

load of the probing and non-probing streams is less than 1. However, this assumption is not

reasonable. If we do not know the available bandwidth, then it is difficult to find the appropriate

probing rate which makes the total traffic load less than 1. They also assume that the service

time of probing traffic stream or cross traffic stream is known in advance. For the model of

Fig. 1, this is equivalent to assuming thatC is known in advance. On the contrary, we propose a

method to estimate the available bandwidth under an assumption of unknownC.
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Alouf et al. [3] developed inference models based on finite capacity single server queues

for estimating the buffer size and the intensity of cross traffic. They consider two inference

models based onM/M/1/K andM/D/1/K queues. They also assume that the service rateµ

is known and the estimation performance is usually evaluated for congested queues since their

relatively good estimation scheme is based on loss probability. However, congestion may not

occur frequently and congesting a queue for estimation purpose may significantly degrade the

QoS of cross traffic.

Recently, estimation problems of available bandwidth on an end-to-end internet path have

received a lot of attentions and many techniques have been proposed [4–11]. Most of them

are based either on the probe gap model (PGM), which exploits the property that the time gap

between two successive probe packets is closely related with the amount of cross traffic at the

bottleneck node, or the probe rate model (PRM), which exploits the concept of self-induced

congestion [11].

In this paper, we propose a probing method based on the concept of a minimal backlogging

and develop a theory to estimate the available bandwidth of a single-server queueing system.

The concept of minimal backlogging was introduced by Knightly [12, 13] in order to define

available servicebetween a specific node pair in communication networks. The available service

is a useful concept to understand the service capability of a network path. In order to investigate

the residual service capability of a queueing system, we define the available service differently

from that defined in [12] and [13]. We investigate the limiting behavior of the available service

in detail and find that the available service is closely related with the available bandwidth in

the limiting case, in other words, the available service normalized with time converges to the

available bandwidth. Thus, we can estimate the available bandwidth of an unidentified queueing

system by sending minimally backlogging probing packets and monitoring the probing packets.

Assuming that it is possible to send minimally backlogging probing packets, we propose two

estimation schemes. The first scheme is to estimate the available bandwidth by measuring the

delay of each probing packet, and the second scheme is to estimate the available bandwidth by

measuring the total amount of probing packets served during a specific time period. The first

estimation scheme is analyzed for anM/G/1 queueing system. Furthermore, both schemes can
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be used to estimate the available bandwidth of aG/G/1 queueing system.

The rest of this paper is organized as follows. In Section 2, we propose a probing method

called a minimal-backlogging method and investigate the stability of anM/G/1 queueing sys-

tem when the minimal-backlogging method is used. We also analyze the effect of the minimal-

backlogging method on the delay of non-probing traffic. In Section 3, we propose a statistic

based on the delay of each probing packet to estimate the available bandwidth of theM/G/1

queueing system. In Section 4, we propose another statistic based on the amount of probing

packets served in a specific time interval to estimate the available bandwidth of aG/G/1 queue-

ing system. In Section 5, we consider estimation of available bandwidth for a local server that is

separated from a probing source by a fixed delay as an application of the theory developed for a

single-server queue. In Section 6, we evaluate the performance of the proposed available band-

width estimation schemes numerically under a Poisson and a self-similar traffic loads. Finally,

conclusions are presented in Section 7.

II. M INIMAL -BACKLOGGING METHOD

We consider anM/G/1 queueing system with a First-Come-First-Served (FCFS) service

policy. λ denotes the arrival rate of packets andL is the average packet size. Suppose that

the service time of a packet is given by the packet size divided by the service rateC of the

system. LetG be the service time distribution of the packets and letS be a random variable

corresponding toG. Then, the traffic load to the system isρ = λE[S], which has the same

value asλL/C. We assume thatρ < 1 for the stability of the system. To consider the problem

generally, we assume thatGp, the service time distribution of probing packets, may be different

fromG. We letSp denote a random variable corresponding toGp. We define some terminologies

as follows:

Definition 1: A session is a sequence of packets sent to a queueing system by a user. A session

is said to be in a backlogging state if there is at least one packet belonging to the session in the

queueing system.

Definition 2: Suppose that probing packets are sent to a queueing system so that there exists

one and only one probing packet in the system. This probing method is called a minimal-

backlogging method.
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If we send a new probing packet to a queueing system just at the departure time of the previous

probing packet, then there exists one and only one probing packet in the system. LetXi, i =

1, 2, . . . be the number of non-probing packets in the system seen by thei-th probing packet

on arrival. Suppose that we start the probing for theM/G/1 queueing system in a stationary

state. Then,X1, the number of packets in the system seen by the first probing packet, is equal to

the stationary queue length in number of packets, whose moment generating function is given

in [14] as

Π(z) =
(1− ρ)(1− z)G̃[λ(1− z)]

G̃[λ(1− z)]− z
, (1)

whereG̃(s) =
∫∞
0

e−sx dG(x) is the Laplace transform ofG.

Clearly,Xi+1 is the number of packets arriving during the total service time of theXi packets

and thei-th probing packet. LetN i
k be the number of non-probing packets arriving during the

service time of thek-th non-probing packet among theXi packets and letN i
p be the number of

non-probing packets arriving during the service time of thei-th probing packet. Since the arrival

process of non-probing packets is a Poisson process,N i
k depends only on the service time of

thek-th packet. Thus, for alli andk, N i
k’s are independent and identically distributed. By the

same reason, for alli, N i
p are also independent and identically distributed. Now, we obtain the

following relation:

Xi+1 =

Xi∑

k=1

Nk + Np, (2)

where for allk, Nk is a random variable with the same distribution asN1
1 andNp with the same

distribution asN1
p , and each random variable is independent of the others. For simplicity, we

will useN instead ofN1
1 .

The probing based on the minimal-backlogging method keeps the queueing server continu-

ously busy. Thus, the probing may make the queueing system unstable. Theorem 1 answers this

question.

Theorem 1:Let Xi be the number of packets in the system upon arrival of thei-th probing

packet. Then,{Xi, i = 1, 2, . . .} is an aperiodic and irreducible Markov Chain and it is positive

recurrent.

Proof. By Eqn. (2), we can see that{Xi, i = 1, 2, . . .} is a Markov chain. SinceNk, k =

1, 2, . . . andNp can have any nonnegative integers with a positive probability,{Xi, i = 1, 2, . . .}
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is irreducible and aperiodic. By Pakes [15], in order to show the positive recurrence, it suffices

to show

i) |E[Xi+1 −Xi|Xi = n]| < ∞, n = 0, 1, 2, . . . .

ii) lim sup
n→∞

E[Xi+1 −Xi|Xi = n] < 0.

By conditioning onXi in Eqn. (2), we have

E[Xi+1|Xi = n] = nE[N ] + E[Np]. (3)

SinceN is the number of Poisson arrivals during a random time of meanE[S], it can be easily

shown thatE[N ] = λE[S]. By the similar reason,E[Np] = λE[Sp]. Then, Eqn. (3) is rewritten

as

E[Xi+1|Xi = n] = nρ + λE[Sp]. (4)

By subtractingn from the both sides of the above equation, we have

E[Xi+1 −Xi|Xi = n] = n(ρ− 1) + λE[Sp].

Thus, for anyn, E[Xi+1 −Xi|Xi = n] is finite. From the assumption thatρ < 1, it follows that

limn→∞ E[Xi+1 −Xi|Xi = n] = −∞. ¤

By taking expectation onXi in Eqn. (4), we derive

E[Xi+1] = λE[Sp] + ρE[Xi], i = 1, 2, . . . .

The solution of the above recurrence relation is given by

E[Xi] =
λE[Sp]

1− ρ
+ ρi−1

(
E[X1]− λE[Sp]

1− ρ

)
, i = 1, 2, . . . , (5)

whereE[X1] has a value ofλ2E[S2]/[2(1 − ρ)] + ρ, the expected queue length of a stationary

M/G/1 queueing system.

Let Wi be the waiting time of thei-th probing packet. By conditioning onXi, we derive the

Laplace transform ofWi as follows:

E[e−sWi ] =
∞∑

n=0

E[e−sWi|Xi = n] Pr{Xi = n}

=
∞∑

n=0

G̃p(s)G̃(s)n Pr{Xi = n}

= G̃p(s)Πi(G̃(s)).

(6)
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whereG̃p is the Laplace transform ofGp andΠi(z) is the moment-generating function ofXi.

Differentiating the above equation and substitutings = 0, we obtain

E[Wi] = E[Sp] + E[S]E[Xi], i = 1, 2, . . . . (7)

From Theorem 1 we can see that the embedded Markov chain{Xi} has a limiting distribution.

To extend this result to the queue length process of anM/G/1 queueing system probed by the

minimal-backlogging method, we obtain the following theorem:

Theorem 2:Suppose that we start probing anM/G/1 queueing system according to the

minimal-backlogging method. Let{X(t), t ∈ [0,∞)} be the queue length process of the queue-

ing system. Then,{X(t)} is a stable process, i.e.{X(t)} converges to a stationary process.

Proof. We assume that the first probing packet is sent to the queueing system at time 0 with-

out loss of generality. Consider the epochs{τ1, τ2, τ3, . . .} such that there is no non-probing

packet upon arrival of probing packets. Then,{X(t)} is a regenerative process with regenera-

tion points of{τ1, τ2, τ3, . . .}. In order to show that{X(t)} is stable, it is sufficient to show that

the expectation of the length of a regeneration cycle is finite [14, Theorem 17 of Chapter 2].

Let ap
t be the number of probing packets arriving until timet, i.e.,

ap
t = 1 + max{n|

n∑
i=1

Wi ≤ t}. (8)

Let Z(t) = Xap
t
, where{Xn} is the Markov chain defined in Theorem 1. Since the sojourn time

of Z(t) in statek is the total sum of service times of the number ofk non-probing packets and a

probing packet, the sojourn time only depends onk. This implies that{Z(t)} is a semi-Markov

process with embedded Markov chain{Xn}. Let µk be the expectation of the sojourn time of

Z(t) in statek, andπk be the stationary distribution of{Xn}. Then,

∞∑

k=0

πkµk =
∞∑

k=0

πk(kE[S] + E[Sp])

= E[S]E[X∞] + E[Sp].

SinceE[X∞] is finite by Eqn. (5),
∑∞

k=0 πkµk is also finite. By [14, Theorem 9 of Chapter 4],

we can see that{Z(t)} is positive recurrent. Thus, the expectation ofτi+1 − τi is finite. Now,

we have shown that{X(t)} is a stable process. ¤
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Thus, we can know that anM/G/1 queueing system is stable when it is probed by the

minimal-backlogging method. Now we investigate the impact of the minimal-backlogging

method upon the performance of the non-probing traffic. Especially, we derive the average num-

ber of non-probing packets under probing analytically and compare it with the case of no prob-

ing. LetX ′
i be the number of non-probing packets seen by thei-th departing probing packet. If

probing packets are sent to the queueing system according to the minimal-backlogging method,

the(i + 1)-th probing packet arrives at the queueing system upon departure of thei-th probing

packet. Thus,Xi+1 = X ′
i for i = 1, 2, · · · . Let X ′

i,j be the number of non-probing packets

in the system seen by thej-th departing non-probing packet (j ≤ X ′
i) amongX ′

i non-probing

packets observed by thei-th departing probing packet. LetN ′
i,j be the number of non-probing

packets arriving during the service time of thej-th departing non-probing packet amongX ′
i non-

probing packets. Then, when thej-th non-probing packet departs from the system, onlyX ′
i − j

non-probing packets remain amongX ′
i non-probing packets andN ′

i,1 + · · · + N ′
i,j non-probing

packets additionally arrive. Thus, we haveX ′
i,j = X ′

i − j +
∑j

k=1 N ′
i,k. Then, the following

theorem gives an analytical result for the average number of non-probing packets in the system

under probing.

Theorem 3:Let L(n) be the average number of non-probing packets observed by
∑n

i=1 X ′
i

departing non-probing packets. Then,

lim
n→∞

L(n) = ρ +
λ2E[S2]

2(1− ρ)
+

λE[S2
p ]

2E[Sp]
+

2λ2E[Sp]E[S]

2(1− ρ)
. (9)

Proof. The proof is given in Appendix A. ¤

If we letL = limn→∞ L(n), thenL is also equal to the average number of non-probing packets

in the system due to Burke’s theorem [16, p.7] and PASTA property. The summation of the first

two terms of Eqn. (9) is equal toE[X1], i.e. the expected queue length of a stationaryM/G/1

queueing system. Thus, the last two terms correspond to the excess delays induced by probing

packets. The excess delay is finite forρ < 1 and the delays of non-probing packets and probing

packets are also numerically evaluated in Section 6.
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III. E STIMATION BASED ON DELAY

In this section, we investigate how to estimate the available bandwidth of anM/G/1 queue-

ing system by measuring the delay of each probing packet sent according to the minimal-

backlogging method.

Theorem 4:Let Wi be the waiting time of thei-th probing packet. If we fix the size of the

probing packets to a constant ofLp and letW̄n = (W1 + W2 + . . . + Wn)/n, then

lim
n→∞

E

[
W̄n

Lp

]
= [(1− ρ)C]−1.

Proof. It follows from Eqn. (7) that

E

[
n∑

i=1

Wi

]
= nE[Sp] + E[S]

n∑
i=1

E[Xi].

Sincelimi→∞ E[Xi] = λE[Sp]/(1− ρ) by Eqn. (5), we obtain

lim
n→∞

E

[∑n
i=1 Wi

n

]
= E[Sp] + E[S]E[X∞]

=
E[Sp]

1− ρ
.

Since the size of the probing packets is fixed toLp, Sp is equal toLp/C, which completes the

proof. ¤

Theorem 4 says that̄Wn/Lp can be a candidate for an estimator of the available bandwidth.

By the following theorem and corollary, we can observe thatW̄n/Lp is a good candidate.

Theorem 5:Let Wi be the waiting time of thei-th probing packet and let̄Wn = (W1 + W2 +

. . . + Wn)/n. Then, the variance of̄Wn converges to zero with order of1/n, moreover, for a

constantc not depending onn,

V ar[W̄n] ≤ c

n
.

Proof. The proof is given in [17, Appendix]. ¤

Corollary 6: Let Wi be the waiting time of thei-th probing packet. If we fix the size of the

probing packets to a constant ofLp and letW̄n = (W1 + W2 + . . . + Wn)/n, then

lim
n→∞

E

[∣∣∣∣
W̄n

Lp

− [C(1− ρ)]−1

∣∣∣∣
2
]

= 0.
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Proof. Let Zn = W̄n/Lp. Then, by Minkowski’s inequality, we can obtain

E
[∣∣Zn − [C(1− ρ)]−1

∣∣2
] 1

2 ≤ E
[|Zn − E[Zn]|2]

1
2 +

∣∣E[Zn]− [C(1− ρ)]−1
∣∣ .

By Theorems 4 and 5, the right hand side of the above inequality converges to zero. This

completes the proof. ¤

We can obtain the following relation by Chebychev’s inequality:

Pr

(∣∣∣∣
W̄n

Lp

− 1

C(1− ρ)

∣∣∣∣ > ε

)
≤

E
[∣∣W̄n/Lp − 1/(C(1− ρ))

∣∣2
]

ε2
.

Since the right hand term of the above inequality goes to zero by Corollary 6,W̄n/Lp is a

consistent estimator [18] of[C(1− ρ)]−1.

IV. ESTIMATION BASED ON THE AMOUNT OF PACKETS

In Section 3, we proposed a statistic to estimate the available bandwidth of an unidentified

queueing system when the arrival process of non-probing packets is a Poisson process. We

can estimate the available bandwidth by measuring the delay of each probing packet. In this

section, we propose another statistic to estimate the available bandwidth of a queueing system

when the arrival process of non-probing packets is a general process. The available bandwidth

can be estimated by measuring the total amount of minimally backlogging probing packets that

are served during a specific time period. We define the concept ofAvailable Service, which is

defined in a different way from that in [12, 13].

Definition 3: The available servicêY[s,t] for a queueing system is the amount of probing pack-

ets served in interval[s, t] when probing packets are sent to the queueing system according to

the minimal-backlogging method.

Before we investigate the characteristics of the available service analytically, we briefly ex-

plain why the term ofavailable serviceis used forŶ[s,t]. In case that the minimal-backlogging

method is not used, anidle period, i.e. a time interval when the server is not busy, can exist if

the load of non-probing packets are less than 1. In case that the probing packets are sent to the

queueing system according to the minimal-backlogging method, there always exists at least one

probing packet in the queueing system, and thus, there is no idle period during the probing time.
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If there is no non-probing packet in the system, probing packets will be served continuously

until a new non-probing packet arrives. Thus, we can know that the amount of probing packets

served in a given time interval will be at least the maximum amount of service that the server can

additionally support while serving all arriving non-probing packets according to an FCFS policy.

On the other hand, the available service defined in [12, 13] represents the maximum amount of

service that the server can do in a given time interval.

The size of each probing packet is fixed to a constant ofLp in this section. We assume that

the first probing packet is sent to the system at time 0 without loss of generality. For simplicity,

we will useŶt instead ofŶ[0,t]. Then, the available servicêYt is expressed as

Ŷt = Lp ·max{n|
n∑

i=1

Wi ≤ t}.

Let Qt denote the amount of packets in the queueing system at timet. Then,

Qt = Lp +

Xn
t∑

k=1

Lk,

whereXn
t is the number of non-probing packets in the system at timet andLk is the size of the

k-th non-probing packet in the system. LetAt be the amount of packets arriving during[0, t] and

let Yt be the amount of packets served during[0, t]. Note thatAt consists of probing packets,

Ap
t , and non-probing packets,An

t . Then,

Qt = Q0 + At − Yt = Q0 + An
t + Ap

t − Yt. (10)

The following lemma and theorem say thatŶt/t converges toC(1− ρ) in Lq.

Lemma 7:Letap
t be the number of probing packets arriving until timet. If probing packets are

sent according to the minimal-backlogging method, thenlimt→∞ ap
t = ∞ almost surely (a.s .).

Proof. Eqn. (10) is rewritten as

Ap
t = Qt −Q0 + Yt − An

t .

SinceQt ≥ 0, we haveAp
t ≥ Yt − An

t −Q0. Thus,

lim inf
t→∞

Ap
t

t
≥ lim inf

t→∞
Yt − An

t −Q0

t
. (11)
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By the assumption that the input load of non-probing packets isρ, limt→∞ An
t /t = ρC a.s.

Since the server is continuously busy during the period of probing,limt→∞ Yt/t = C a.s. Thus,

it follows from Eqn. (11) that

lim inf
t→∞

Ap
t

t
≥ (1− ρ)C, a.s. (12)

SinceAp
t = Lpa

p
t , lim inft→∞ ap

t /t ≥ (1− ρ)C/Lp a.s. Then,lim inft→∞ ap
t = ∞ a.s. because

ρ < 1. ¤

Theorem 8:Let Ŷt be the available service for aG/G/1 queueing system. The size of each

probing packet is fixed to a constant ofLp. Then, for0 < q < ∞,

lim
t→∞

E

[∣∣∣∣∣
Ŷt

t
− C(1− ρ)

∣∣∣∣∣

q]
= 0.

Proof. The proof is given in [17, Theorem 3.7]. ¤

SincePr(|Ŷt/t−C(1− ρ)| > ε) ≤ E[|Ŷt/t−C(1− ρ)|2]/ε2 by Chebychev’s inequality and

the right hand term of the inequality goes to zero by Theorem 8,Ŷt/t is a consistent estimator

of C(1− ρ).

We need to note that the statistic based on delay of probing packets are closely related with the

statistic based on the amount of packets. We consider the case that probing packets are sent to

the queueing system according to the minimal-backlogging method. The first statisticW̄n/Lp is

a consistent estimator of1/((1− ρ)C). Thus,Lp/W̄n is an estimator of the available bandwidth

and it can be rewritten asnLp/
∑n

i=1 Wi. If we consider timet until the service completion time

of then-th probing packet, then̂Yt = nLp and thus, both statistics agree with each other exactly.

Thus, though we showed that the statistic based on the amount of probing packets is a consistent

estimator of the available bandwidth for aG/G/1 queueing system, the statistic based on packet

delay can also be used to estimate the available bandwidth of aG/G/1 queueing system since

the two statistics are identical as the time goes to infinity.

V. A PPLICATION TO ESTIMATION OF AVAILABLE BANDWIDTH OF A LOCAL SERVER

Thus far, we considered a problem of estimating the available bandwidth of a queueing system

which is directly accessible with no access delay. However, in real situation, an unidentified

queueing system may be physically separated from the probing site such that the access time
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Figure 2. A measurement setup for estimation of the available bandwidth at a local server

delay is not zero due to a propagation delay of pre-processing time. Thus, we consider the

problem of estimating the available bandwidth when there exists access time delay between the

target queueing system, also called a local server, and a probing site. Extending the approach

developed in the previous sections, we propose a scheme to estimate the available bandwidth of

a local server based on the minimal backlogging concept.

Fig. 2 illustrates a measurement process for estimation of the available bandwidth of a local

server. The application or machine at a measurement pointA sends probing packets to the local

server and receives feedback information. Probing packets sent from NodeA arrive at the local

server after a delay ofDf . Probing packets served by the local server return to NodeA after

a delay ofDb. We assume that both delays are fixed and known to the monitoring nodeA in

advance.

Due to the delays ofDf andDb, it is not easy to send probing packets while maintaining one

and only one probing packet in the server. Thus, we attempt to maintain a minimal-backlogging

condition with the following heuristic method. The proposed method is based on the idea that

if probing packets are sent to the server according to the minimal-backlogging method, the

inter-packet spacing between two consecutive probing packets is equal to the sojourn time of

the former probing packet of the two. The proposed available bandwidth estimation method is

described as follows:

1) The measurement node sends a probing packet to the local server and obtains the round-

trip delayd0 of the probing packet upon receiving the returning packet.

2) The measurement node sends the first probing packetp1 for estimation of the available
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bandwidth after acquiringd0.

3) Letpj be the last probing packet that was sent toward the server and letvj be the time when

pj was sent to the server. If the last round-trip delay value available to the measurement

node isdi, we estimate the sojourn time ofpj in the server asdi − Df − Db, and thus,

the next probing packet is sent at timevj + (di − Df − Db). Exceptionally, if the last

probing packetpj arrives beforevj + (di − Df − Db), there is no probing packet in the

path, especially in the server. Thus, the next probing packet is sent upon arrival ofpj in

order to maintain at least one probing packet in the server.

4) The measurement node measures the available serviceŶt or the delay experienced by

each probing packet in the server whenever a returning packet arrives, and estimates the

available bandwidth by using either of the two statistics proposed in Sections 3 and 4.

Since the round-trip delay can be measured solely at NodeA only if all probing packets are

returned to NodeA, there is no clock synchronization problem.

VI. N UMERICAL RESULTS

In this section, we compare the performance of the two proposed statistics with that of the

method proposed in [2] in terms of accuracy and the effect on the delay of non-probing packets.

Sharma and Mazumdar proposed a method to estimate the utilization of the system by sending

probing packets according to a Poisson process in Subsection 2.3 of their paper [2]. Then,

the available bandwidth (AB) can be obtained if the service rateC of the system is known

in advance. This estimation scheme is called aPoisson probing schemein this paper, and this

scheme is compared with our proposed scheme. In addition, we also evaluate the accuracy of the

available bandwidth estimation scheme developed in Section 5 for a local server whose access

time is non-zero from a probing source.

Fig. 2 shows a measurement node interconnected to an unidentified queueing system. We

first consider the case of no access delay, i.e.Df = Db = 0. The measurement node directly

connected to the queueing system sends probing packets to the queueing system by the minimal-

backlogging method, i.e., the node sends a new probing packet upon arrival of the previous

probing packet and calculates the values of two statistics. The measurement node bypasses

every non-probing packet.
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Two types of traffic patterns are used for non-probing packet traffic streams: Poisson and

self-similar traffic. The traffic patterns of today’s IP networks have been known to exhibit self-

similarity and long-range dependence [19–21]. Neither of them can be modeled using conven-

tional Markovian models. Thus, we use a multi-fractal model [22] to generate self-similar traffic.

The Hurst parameter is 0.8. The sizes of both probing and non-probing packets are fixed to 500

bytes. The service rate (C) of the unidentified queueing system is 10 Mbps.

Figs. 3, 4 and 5 compare our proposed scheme with the Poisson probing scheme under a

Poisson cross traffic load of 0.3, 0.5, and 0.7, respectively. The proposed estimation scheme is

based on the minimal-backlogging method and the statistic of probing packet delay. Since both

statistics based on the delay and the amount of probing packets yield an identical estimation

result, we show only the result obtained from the statistic based on the delay of probing pack-

ets. The value ofMeasured ABis obtained in the queueing system by subtracting the service

rate of non-probing packets from the service rateC when the probing traffic is not sent. The

same traffic patterns are used for both estimation and measurement of the AB at the same load.

We can observe that the estimation results of the minimal-backlogging method agree with the

measured AB for all traffic loads. Furthermore, the estimation results are accurate even when

the observation time duration is short. The reason is explained as follows. We know that the

estimation result converges to an AB value ofC(1 − ρ) when the observation time goes to in-

finity by Theorem 8. Let us consider a finite time interval[s, t] after start of probing. Then,

the server is continuously busy for the interval[s, t] because there is at least one probing packet

in the queueing system. When the server does not serve non-probing packets, the server surely

serves probing packets. Thus, all unused capacity of the server is used by probing packets in any

finite interval. If the probing traffic is greedy like TCP flows, then the throughput of non-probing

packets may be degraded. However, since probing traffic tries to prevent from being greedy by

maintaining only one probing packet in the queueing system, the AB is estimated reasonably in

a finite time interval.

On the other hand, the Poisson probing scheme is inaccurate and sometimes does not con-

verge when the probing rate is as low as 0.1 Mbps. As the probing rate increases, the accuracy

improves and the convergence time decreases. However, if the probing rate increases so that
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Figure 3. Comparison of the proposed scheme and the Poisson probing scheme under a Poisson traffic load of 0.3
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Figure 4. Comparison of the proposed scheme and the Poisson probing scheme under a Poisson traffic load of 0.5

the aggregate input traffic load approaches to 1, the accuracy is not guaranteed as observed in

Figs. 4 and 5. Especially, if the total input load exceeds 1, then the system becomes unstable

and the Poisson probing scheme yields erroneous results.

Tables I, II, and III compare the performance of our proposed scheme and the Poisson probing

scheme in terms of average delay under a Poisson traffic load of 0.3, 0.5, and 0.7, respectively.

We can observe that the average delay of probing packets is lower than that of non-probing
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Figure 5. Comparison of the proposed scheme and the Poisson probing scheme under a Poisson traffic load of 0.7

packets in case of the minimal-backlogging method. This is because the probing packets are sent

to the queueing system in a special way to maintain only one probing packet in the queueing

system. On the other hand, the average delay of non-probing packets is very close to that of

probing packets in case of Poisson probing since both cross traffic and probing traffic follow

Poisson processes. The Poisson probing scheme yields smaller delays of non-probing packets

than for the minimal-backlogging method when the aggregate traffic load is rather low. However,

when the aggregate traffic load exceeds 0.8 in Tables I and II or 0.9 in Table III, the Poisson

probing scheme yields worse delay performance. From Figs. 3, 4 and 5, we can observe that the

convergence time is rather long and thus, it is difficult to obtain an accurate estimate of available

bandwidth in a short time by the Poisson probing scheme. Increasing probing rate improves

convergence time and accuracy. However, high probing rates in the Poisson probing scheme

may degrade the delay performance of non-probing packets, as observed in Tables I, II, and

III. Thus, it is a challenging and difficult problem to find a good probing rate of the Poisson

probing scheme without knowing the available bandwidth. Especially, if the aggregate input

traffic load exceeds 1, the system becomes unstable and the Poisson probing scheme can not

give the correct value of the available bandwidth. However, our proposed scheme based on the

minimal-backlogging method does not suffer from such problems and the delay of non-probing
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TABLE I

COMPARISON OF THE PROPOSED SCHEME AND THEPOISSON PROBING SCHEME IN TERMS OF AVERAGE DELAY(LOAD =

0.3)

Method Total input load non-probing probing
packet delay packet delay

Minimal-backlogging method 1.0 0.000856 0.000569
probing rate = 0.1Mbps 0.31 0.000488 0.000482

Poisson probing rate = 0.5Mbps 0.35 0.000505 0.000504
probing probing rate = 1.0Mbps 0.4 0.000531 0.000531
scheme probing rate = 2.0Mbps 0.6 0.000597 0.000598

probing rate = 5.0Mbps 0.8 0.001203 0.001200
probing rate = 7.0Mbps 1.0 0.048535 0.048348

TABLE II

COMPARISON OF THE PROPOSED SCHEME AND THEPOISSON PROBING SCHEME IN TERMS OF AVERAGE DELAY(LOAD =

0.5)

Method Total input load non-probing probing
packet delay packet delay

Minimal-backlogging method 1.0 0.001199 0.000800
probing rate = 0.1Mbps 0.51 0.000604 0.000599

Poisson probing rate = 0.5Mbps 0.55 0.000644 0.000654
probing probing rate = 1.0Mbps 0.6 0.000698 0.000702
scheme probing rate = 2.0Mbps 0.7 0.000867 0.000865

probing rate = 3.0Mbps 0.8 0.001206 0.001207
probing rate = 5.0Mbps 1.0 0.109547 0.109673

packets are maintained stable for any load of cross traffic.

Fig. 6 compares our proposed scheme with the Poisson probing scheme under a self-similar

traffic load. The sigma/mean ratio of self-similar traffic is approximately 0.5 for all traffic loads

of 0.3, 0.5, and 0.7. The probing rate of the Poisson probing scheme is fixed to 1.0Mbps. First,

we can observe that the traffic is even burstier than the case of Poisson traffic. The AB estimation

results of the minimal-backlogging method agree well with the measured AB for all traffic loads

and even for short duration of observation time. However, it takes several seconds to obtain a

converged value of available bandwidth by the Poisson probing scheme.

Thus far, we have evaluated the performance of the proposed estimation scheme based on the

proposed statistics and the minimal-backlogging method for an unidentified queueing system

that is directly connected to the probing source without delay. We now evaluate the accuracy

of the available bandwidth estimation algorithm proposed in Section 5 for a local server that is
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TABLE III

COMPARISON OF THE PROPOSED SCHEME AND THEPOISSON PROBING SCHEME IN TERMS OF AVERAGE DELAY(LOAD =

0.7)

Method Total input load non-probing probing
packet delay packet delay

Minimal-backlogging method 1.0 0.002032 0.001344
probing rate = 0.1Mbps 0.71 0.000902 0.000907

Poisson probing rate = 0.5Mbps 0.75 0.001016 0.001018
probing probing rate = 1.0Mbps 0.8 0.001221 0.001210
scheme probing rate = 2.0Mbps 0.9 0.002274 0.002288

probing rate = 3.0Mbps 1.0 0.142773 0.142999
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Figure 6. Comparison of the proposed scheme and the Poisson probing scheme under a self-similar traffic load

accessible with delay from the probing source, i.e.Df ≥ 0 andDb ≥ 0 in Fig. 2. The local

server is a queueing system with an FCFS polity and the service rateC is fixed to 10 Mbps.

The value of the forward delayDf is assumed to be the same as that of feedback delayDb

and is increased from 0 to 0.5 msec in the simulation. The sizes of both probing packets and

non-probing packets are fixed to 500 bytes.

Fig. 7 shows the accuracy of the proposed AB estimation algorithm for various values of

fixed delay when the self-similar traffic loads of 0.3, 0.5, and 0.7 are offered. The observation

time duration is 50 seconds. In this case, we used the statistic based on the amount of probing

packets. We can observe that the accuracy degrades as the value of fixed delay(Df + Db)

increases. The reason is that long response time makes it difficult to maintain the minimal
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backlogging condition for the local server. Especially, as considered in the third stage of the AB

estimation procedure, if the last probing packet sent arrives before the next probing packet is

sent, the local server remains in the probing-packet-free state for at least(Df + Db). In other

words, the next probing packet arrives late at the local server(Df + Db), compared with the

case that the probing packets are sent ideally according to the minimal-backlogging method.

Thus, the amount of probing packets sent to the local server in a given time is always less than

that of the ideal case due to(Df + Db). Thus, the estimation result of the proposed method is

conservative if(Df + Db) is significantly large. However, if the value of(Df + Db) is not much

larger than the queueing delay at a local server or router, the proposed estimation method can

work reliably. Similar tendency is observed for Poisson traffic loads.

VII. C ONCLUSIONS

A new estimation method of the available bandwidth for an unidentified queueing system is

proposed using a minimal backlogging concept. Two statistics are also proposed to estimate the

available bandwidth: the first one is based on the delay of each probing packet and the second

one is based on the amount of probing packets served during a specific time period. If the

probing packets are sent to the queueing system according to the minimal-backlogging method,

the available bandwidth of the system can be estimated by either of two statistics. If the load

of input traffic for anM/G/1 queueing system is less than 1, the queueing system is still stable



21

when the minimal-backlogging method is used. The first statistic is a consistent estimator of

the reciprocal of the available bandwidth and the mean square error converges to zero. The

second statistic is a consistent estimator of the available bandwidth with a mean square error

converging to zero. Both statistics can be used to estimate the available bandwidth of aG/G/1

queueing system. Though the two statistics are unbiased estimators of the available bandwidth

or its reciprocal in case of an infinite probing time duration, since infinite probing time can not

be realized, we evaluated the performance of two statistics by simulation and observed that two

statistics agree well with the measured available bandwidth even for a finite probing time.

We also proposed a scheme to estimate the available bandwidth of a local server that is sepa-

rated from the probing source by a fixed delay by exploiting the theory for a single-server queue.

The proposed scheme yields an accurate estimation result for various traffic loads when the fixed

delay is relatively small compared with the queueing delay at the local server.

APPENDIX

A. Proof of Theorem 3

L(n) can be expressed as

L(n) =
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Since{Xi, i ≥ 0} is an ergodic Markov chain,{X ′
i, i ≥ 0} is also an ergodic Markov chain.

Since the possible values ofX ′
i ’s are non-negative,{(X ′

i)
2, i ≥ 0} is also an ergodic Markov
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By using the indicator functionI(X ′
i ≥ j), we have
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. (A.1)
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To apply the renewal rates theorem for Markov-chain [14, p.164], we assign the rewardRj(k) =

I(k ≤ j)N ′
i,j to the visit to the statek of X ′

i. Note thatN ′
i,j ’s are i.i.d andE[N ′

i,j] = λE[S].

Then, we have for eachj ≥ 0,

lim
n→∞

∑n
i=1 I(X ′

i ≥ j)N ′
i,j

n
=

∞∑

k=0

πkE[Rj(k)]

= λE[S]
∞∑

k=j

πk

(A.2)

under the condition that for any initial states,

E

[
Ts∑
i=1

I(X ′
i ≥ j)N ′

i,j

]
< ∞, (A.3)

whereTs is the first return time tos of {X ′
i, i ≥ 1} starting from the initial states. Clearly,

E[
∑Ts

i=1 I(X ′
i ≥ j)N ′

i,j] ≤ E[
∑Ts

i=1 N ′
i,j]. SinceTs is the stopping time for the random sequence

{N ′
1,j, N

′
2,j, · · · } andN ′

i,j are i.i.d, we obtain from the Wald’s identity [14, p.97]

E[
Ts∑
i=1

N ′
i,j] = E[Ts] · λE[S].

Since{X ′
i, i ≥ 1} is positive recurrent,E[Ts] < ∞. This implies Eqn. (A.3). From Eqns. (A.1)

and (A.2), we have
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Thus, we can obtain
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(A.4)

Eqn. (5) impliesE[X∞] = λE[Sp]/(1 − ρ). From Eqn. (2), we can obtain the following

relation betweenΠi(z) andΠi+1(z):

Πi+1(z) = G̃p(λ(1− z))Πi(G̃(λ(1− z))).
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By differentiating twice the above equation with respect toz and substitutingz = 1 into the

equation, we can obtain a recurrence relation betweenE[X2
i ] andE[X2

i+1]. From the recurrence

relation, we have

E[X2
∞] =

λ2E[S2
p ]

1− ρ2
+

(1− ρ2 + 2λ2E[Sp]E[S] + λ2E[S2])λE[Sp]

(1− ρ)(1− ρ2)
. (A.5)

Combining Eqns. (A.4) and (A.5) yields

lim
n→∞
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