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Abstract

This paper is concerned with estimating the available bandwidth of a single-server queueing system
whose service rate and the input traffic load are not known in advance, calleddemtified queueing
systenin this paper. In order to estimate the available bandwidth, we propose a probing method called
a minimal-backlogging methoand propose two statistics. The first statistic is based on the delay of
each probing packet and the second statistic is based on the amount of probing packets served in a
specific time interval. We first show that &d/G /1 queueing system is stable when probing packets
are sent to the system according to the minimal-backlogging method. We also show that the available
bandwidth can be estimated by using either of the two statistics if the probing packets are sent to the
gqueueing system by the minimal-backlogging method. We also estimate the available bandwidth for
a local server that is connected to the probing source node with non-zero delay as an application of
the theory developed for a single-server queue. We evaluate the accuracy of the proposed available
bandwidth estimation scheme numerically under a Poisson and a self-similar traffic loads.

Keywords M/G/1 queue; minimal backlogging; probing; available bandwidth; G/G/1 queue; unidenti-

fied queueing system;

I. INTRODUCTION

Estimation of the residual processing capacity called the available bandwidth for a local server
such as a web server or a router is one of important issues to service providers or network
operators. If a web server admits every service request without limitation, the throughput of the
server and the quality of service (QoS) provided for customers can be significantly degraded
[1]. The same situation can be expected for a local router in case of overload. Thus, in order
to protect severe degradation in throughput and to improve QoS, it is necessary to monitor and
manage the available bandwidth of the local server. The configuration information of the local
server such as service rate may not be easily accessible to a monitoring entity. Even though such

information is available, the service rate of each class may change over time if the local server



probing packets

Figure 1. Unidentified Queueing System

serves multiple classes. Thus, in this paper, we assume that the service rate of the server is not
known in advance.

In this paper, we investigate how to estimate the available bandwidth of a queueing system
with an unknown service rate. Fig. 1 shows a queueing system of intéfestd \ denote the
service rate and the arrival rate of packets except probing packets, respectively.desbte
the average size of packets except probing packets. Then, for the queueing system, available
bandwidthC, is defined as

Co=C(1-0p),

wherep = AL/C. If all of the parameterg’, A and L representing a queueing system are
unknown, this system is said to hmidentifiedin this paper. We propose a new method to
estimate the available bandwidfi{1 — p) of an unidentified queueing system.

Sharma and Mazumdar [2] considered a similar problem. They investigated the problem of
estimating the traffic intensity of a local node by sending a probing traffic stream. Thus, a queue
receives two streams of traffic: one is a probing stream of local user and the other is the data
traffic stream obtained by superposition of all the data traffic passing through the node. Their
result for the estimation of available bandwidth is valid under the assumption that the total input
load of the probing and non-probing streams is less than 1. However, this assumption is not
reasonable. If we do not know the available bandwidth, then it is difficult to find the appropriate
probing rate which makes the total traffic load less than 1. They also assume that the service
time of probing traffic stream or cross traffic stream is known in advance. For the model of
Fig. 1, this is equivalent to assuming tl@ais known in advance. On the contrary, we propose a

method to estimate the available bandwidth under an assumption of unkrown
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Alouf et al. [3] developed inference models based on finite capacity single server queues
for estimating the buffer size and the intensity of cross traffic. They consider two inference
models based o/ /M /1/K andM/D/1/K queues. They also assume that the serviceurate
is known and the estimation performance is usually evaluated for congested queues since their
relatively good estimation scheme is based on loss probability. However, congestion may not
occur frequently and congesting a queue for estimation purpose may significantly degrade the
QoS of cross traffic.

Recently, estimation problems of available bandwidth on an end-to-end internet path have
received a lot of attentions and many techniques have been proposed [4-11]. Most of them
are based either on the probe gap model (PGM), which exploits the property that the time gap
between two successive probe packets is closely related with the amount of cross traffic at the
bottleneck node, or the probe rate model (PRM), which exploits the concept of self-induced
congestion [11].

In this paper, we propose a probing method based on the concept of a minimal backlogging
and develop a theory to estimate the available bandwidth of a single-server queueing system.
The concept of minimal backlogging was introduced by Knightly [12,13] in order to define
available servicdetween a specific node pair in communication networks. The available service
is a useful concept to understand the service capability of a network path. In order to investigate
the residual service capability of a queueing system, we define the available service differently
from that defined in [12] and [13]. We investigate the limiting behavior of the available service
in detail and find that the available service is closely related with the available bandwidth in
the limiting case, in other words, the available service normalized with time converges to the
available bandwidth. Thus, we can estimate the available bandwidth of an unidentified queueing
system by sending minimally backlogging probing packets and monitoring the probing packets.

Assuming that it is possible to send minimally backlogging probing packets, we propose two
estimation schemes. The first scheme is to estimate the available bandwidth by measuring the
delay of each probing packet, and the second scheme is to estimate the available bandwidth by
measuring the total amount of probing packets served during a specific time period. The first

estimation scheme is analyzed for @&fYG /1 queueing system. Furthermore, both schemes can



be used to estimate the available bandwidth 6f/& /1 queueing system.

The rest of this paper is organized as follows. In Section 2, we propose a probing method
called a minimal-backlogging method and investigate the stability af/é//1 queueing sys-
tem when the minimal-backlogging method is used. We also analyze the effect of the minimal-
backlogging method on the delay of non-probing traffic. In Section 3, we propose a statistic
based on the delay of each probing packet to estimate the available bandwidth\af ¢ha
gueueing system. In Section 4, we propose another statistic based on the amount of probing
packets served in a specific time interval to estimate the available bandwidth/af Al queue-
ing system. In Section 5, we consider estimation of available bandwidth for a local server that is
separated from a probing source by a fixed delay as an application of the theory developed for a
single-server queue. In Section 6, we evaluate the performance of the proposed available band-
width estimation schemes numerically under a Poisson and a self-similar traffic loads. Finally,

conclusions are presented in Section 7.

1. MINIMAL -BACKLOGGING METHOD

We consider anV//G/1 queueing system with a First-Come-First-Served (FCFS) service
policy. A denotes the arrival rate of packets ahds the average packet size. Suppose that
the service time of a packet is given by the packet size divided by the servic€' rat¢he
system. LetG be the service time distribution of the packets andSldie a random variable
corresponding td@>. Then, the traffic load to the systemis= AFE[S], which has the same
value as\./C. We assume that < 1 for the stability of the system. To consider the problem
generally, we assume th@t,, the service time distribution of probing packets, may be different
from G. We letS, denote a random variable corresponding-to We define some terminologies
as follows:

Definition 1: A session is a sequence of packets sent to a queueing system by a user. A session
is said to be in a backlogging state if there is at least one packet belonging to the session in the
gueueing system.

Definition 2: Suppose that probing packets are sent to a queueing system so that there exists
one and only one probing packet in the system. This probing method is called a minimal-

backlogging method.
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If we send a new probing packet to a queueing system just at the departure time of the previous
probing packet, then there exists one and only one probing packet in the systers;, Let
1,2,... be the number of non-probing packets in the system seen bittherobing packet
on arrival. Suppose that we start the probing for #1¢G /1 queueing system in a stationary
state. ThenX;, the number of packets in the system seen by the first probing packet, is equal to

the stationary queue length in number of packets, whose moment generating function is given

in [14] as
(1= p)(1 = 2)GA — 2)]
II(z) = ~ , 1
) GAN1—2)] -z )
whereG(s) = [, e™** dG(z) is the Laplace transform af.

Clearly, X, is the number of packets arriving during the total service time ofthpackets
and thei-th probing packet. LefV; be the number of non-probing packets arriving during the
service time of th&-th non-probing packet among tk¢ packets and IeN;; be the number of
non-probing packets arriving during the service time ofittie probing packet. Since the arrival
process of non-probing packets is a Poisson prodg€ssiepends only on the service time of
the k-th packet. Thus, for all andk, N/'s are independent and identically distributed. By the
same reason, for all N;; are also independent and identically distributed. Now, we obtain the

following relation:
Xip = Z Ni + N, 2)

where for allk, N, is a random variable with the same dlstributiorv\a}sande with the same
distribution asN;, and each random variable is independent of the others. For simplicity, we
will use N instead of/V;.

The probing based on the minimal-backlogging method keeps the queueing server continu-
ously busy. Thus, the probing may make the queueing system unstable. Theorem 1 answers this
guestion.

Theorem 1:Let X; be the number of packets in the system upon arrival ofiitieprobing
packet. Then{ X;, i = 1,2,...} is an aperiodic and irreducible Markov Chain and it is positive
recurrent.

Proof. By Eqn. (2), we can see thatX;, i = 1,2,...} is a Markov chain. SincéVy, k =

1,2,...andN, can have any nonnegative integers with a positive probabjlky, i = 1,2, ...}
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is irreducible and aperiodic. By Pakes [15], in order to show the positive recurrence, it suffices
to show
|) ‘E[X’LJrl - Xz’Xz = 77,” < oo,n = O, 1,2, e

By conditioning onX; in Eqgn. (2), we have

SinceN is the number of Poisson arrivals during a random time of niggf), it can be easily
shown thatE'| N| = AE[S]. By the similar reasoni[N,| = AE[S,]. Then, Eqn. (3) is rewritten
as

By subtracting: from the both sides of the above equation, we have

Thus, for anyn, E[X; 1 — X;|X; = n] is finite. From the assumption that< 1, it follows that

By taking expectation oX; in Egn. (4), we derive

The solution of the above recurrence relation is given by

E[Xi}:/\lEf[S;}"f‘Pi_l (E[Xl]_/\lEf[S;})7 1=1,2,..., (5)

where E[X] has a value oA?E/[S?]/[2(1 — p)] + p, the expected queue length of a stationary
M /G /1 queueing system.
Let IW; be the waiting time of theé-th probing packet. By conditioning oi;, we derive the

Laplace transform ofV; as follows:

E[e*sWi] _ ZE[efst' X, = n| Pr{X; = n}
= 3" G,(s)G(s)" Pr{X, = n} (6)
= Gy (s)IL(G(s)).
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Where@p is the Laplace transform a¥, andIl;(z) is the moment-generating function 4f;.

Differentiating the above equation and substituting 0, we obtain
EWi] = E[S,] + EIS|E[X)], i=12,.... @)

From Theorem 1 we can see that the embedded Markov ¢iginhas a limiting distribution.

To extend this result to the queue length process a¥/aid7 /1 queueing system probed by the
minimal-backlogging method, we obtain the following theorem:

Theorem 2:Suppose that we start probing d/G/1 queueing system according to the
minimal-backlogging method. L€tX (¢),t € [0, 00)} be the queue length process of the queue-
ing system. Ther{ X (¢)} is a stable process, i.X(¢)} converges to a stationary process.
Proof. We assume that the first probing packet is sent to the queueing system at time 0 with-
out loss of generality. Consider the epodhs, 72, 73, ...} such that there is no non-probing
packet upon arrival of probing packets. TheéX (¢)} is a regenerative process with regenera-
tion points of{7, 75, 73, ...}. In order to show thaf X (¢) } is stable, it is sufficient to show that
the expectation of the length of a regeneration cycle is finite [14, Theorem 17 of Chapter 2].

Let ! be the number of probing packets arriving until timee.,

a; = 1+ max{n| i W; < t}. (8)
=1
Let Z(t) = X,», where{X,,} is the Markov chain defined in Theorem 1. Since the sojourn time
of Z(t) in statek is the total sum of service times of the numbekafon-probing packets and a
probing packet, the sojourn time only depends:oithis implies thaf Z(¢) } is a semi-Markov
process with embedded Markov chdiX,, }. Let . be the expectation of the sojourn time of

Z(t) in statek, andr, be the stationary distribution ¢fX,,}. Then,

Zﬂ'kﬂk = Zﬂk(kE[S] + E[S,))
k=0 k=0
= E[S|E[Xw] + E[S,).
SinceE[X ] is finite by Eqn. (5),) ., mxu is also finite. By [14, Theorem 9 of Chapter 4],
we can see thalt”Z(t)} is positive recurrent. Thus, the expectationrgf, — 7; is finite. Now,

we have shown thgtX (¢)} is a stable process. d
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Thus, we can know that ai//G/1 queueing system is stable when it is probed by the
minimal-backlogging method. Now we investigate the impact of the minimal-backlogging
method upon the performance of the non-probing traffic. Especially, we derive the average num-
ber of non-probing packets under probing analytically and compare it with the case of no prob-
ing. Let X/ be the number of non-probing packets seen byitthedeparting probing packet. If
probing packets are sent to the queueing system according to the minimal-backlogging method,
the (i 4+ 1)-th probing packet arrives at the queueing system upon departure sfttherobing
packet. ThusX;,, = X fori = 1,2,-... Let X;, be the number of non-probing packets
in the system seen by theth departing non-probing packet € X/) amongX, non-probing
packets observed by thieth departing probing packet. L&t ; be the number of non-probing
packets arriving during the service time of tih departing non-probing packet amaignon-
probing packets. Then, when thig¢h non-probing packet departs from the system, otly- j
non-probing packets remain among non-probing packets andl; ; + -- - + N/ ; non-probing
packets additionally arrive. Thus, we ha¥g, = X; — j + Zi:1 N Then, the following
theorem gives an analytical result for the average number of non-probing packets in the system
under probing.

Theorem 3:Let L(n) be the average number of non-probing packets observeéd by X/

departing non-probing packets. Then,

NE[S?] | AE[S)] 2N E[S)]E[S]

lim L(n) =p+ + + 9
R =0t oq ) Y aEs T e ) ©
Proof. The proof is given in Appendix A. O

Ifwe let L = lim,,_., L(n), thenL is also equal to the average number of non-probing packets
in the system due to Burke’s theorem [16, p.7] and PASTA property. The summation of the first
two terms of Eqn. (9) is equal tB[X,], i.e. the expected queue length of a stationahyG/1
gueueing system. Thus, the last two terms correspond to the excess delays induced by probing
packets. The excess delay is finite fox. 1 and the delays of non-probing packets and probing

packets are also numerically evaluated in Section 6.



[11. ESTIMATION BASED ON DELAY
In this section, we investigate how to estimate the available bandwidth df &r/1 queue-
ing system by measuring the delay of each probing packet sent according to the minimal-
backlogging method.
Theorem 4:Let IV; be the waiting time of theé-th probing packet. If we fix the size of the
probing packets to a constant bf and letW,, = (W, + Wy + ... + W,,)/n, then

lim £ {%] =[(1-p)C] .

n—00
p

Proof. It follows from Eqn. (7) that

>
i=1

Sincelim;_... E[X;] = AE[S,]/(1 — p) by Eqn. (5), we obtain

— nE[S,] + E[9] Z E[X)].

=1

E

lim E {Z”:_lW} = E[S,) + E[S|E[X.]

n—oo n
_ B[S)]
IL—p

Since the size of the probing packets is fixedtp S, is equal toL,,/C, which completes the

proof. O

Theorem 4 says theﬁ/n/Lp can be a candidate for an estimator of the available bandwidth.
By the following theorem and corollary, we can observe thay L, is a good candidate.

Theorem 5:Let I¥; be the waiting time of thé-th probing packet and I8V, = (W, + W, +
...+ W,)/n. Then, the variance df/,, converges to zero with order @fn, moreover, for a
constant not depending on,

Var[W,| <

3|0

Proof. The proof is given in [17, Appendix]. O

Corollary 6: Let W; be the waiting time of the-th probing packet. If we fix the size of the
probing packets to a constant bf and letW,, = (W, + Wy + ... + W,,)/n, then
W, ?
W, ]:o_

p

lim F

n—oo

—[ca-p]
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Proof. Let Z, = W,,/L,. Then, by Minkowski's inequality, we can obtain
E||Z,—(C0=p)]'[|" < B[1Z, - EZIP)? +|ElZ) - (€= p)] .

By Theorems 4 and 5, the right hand side of the above inequality converges to zero. This

completes the proof. O

We can obtain the following relation by Chebychev’s inequality:

7! 1
pr(%_

E ||Wa/Ly = 1/(C(L=p))*]
L, C(—p) '

>5) < =

Since the right hand term of the above inequality goes to zero by Corollafy, 8L, is a

consistent estimator [18] o€'(1 — p)] .

IV. ESTIMATION BASED ON THE AMOUNT OF PACKETS

In Section 3, we proposed a statistic to estimate the available bandwidth of an unidentified
gueueing system when the arrival process of non-probing packets is a Poisson process. We
can estimate the available bandwidth by measuring the delay of each probing packet. In this
section, we propose another statistic to estimate the available bandwidth of a queueing system
when the arrival process of non-probing packets is a general process. The available bandwidth
can be estimated by measuring the total amount of minimally backlogging probing packets that
are served during a specific time period. We define the conceftaifable Servicewhich is
defined in a different way from that in [12, 13].

Definition 3: The available servicé’[svt] for a queueing system is the amount of probing pack-
ets served in intervdk, t] when probing packets are sent to the queueing system according to
the minimal-backlogging method.

Before we investigate the characteristics of the available service analytically, we briefly ex-
plain why the term ofwvailable services used forf/[s,t]. In case that the minimal-backlogging
method is not used, adle period i.e. a time interval when the server is not busy, can exist if
the load of non-probing packets are less than 1. In case that the probing packets are sent to the
gueueing system according to the minimal-backlogging method, there always exists at least one

probing packet in the queueing system, and thus, there is no idle period during the probing time.
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If there is no non-probing packet in the system, probing packets will be served continuously
until a new non-probing packet arrives. Thus, we can know that the amount of probing packets
served in a given time interval will be at least the maximum amount of service that the server can
additionally support while serving all arriving non-probing packets according to an FCFS policy.
On the other hand, the available service defined in [12, 13] represents the maximum amount of
service that the server can do in a given time interval.
The size of each probing packet is fixed to a constart,oh this section. We assume that
the first probing packet is sent to the system at time O without loss of generality. For simplicity,
we will useY; instead ofYj, ;. Then, the available servidé is expressed as
Y; = L, - max{n| Zn:VVZ < t}.
i=1

Let @, denote the amount of packets in the queueing system at tifrteen,

X
Qt = Lp + Z Lk’a
k=1

where X" is the number of non-probing packets in the system at tiav&l L, is the size of the
k-th non-probing packet in the system. L&gtbe the amount of packets arriving durifigt| and
let Y; be the amount of packets served durjfigf]. Note thatA, consists of probing packets,

A?, and non-probing packetd;’. Then,
Qir=CQo+ A =Y, = Qo+ A} + Ay = V.. (10)

The following lemma and theorem say thaft converges t@(1 — p) in L.
Lemma 7:Leta! be the number of probing packets arriving until titnéf probing packets are
sent according to the minimal-backlogging method, then ... a} = co almost surely (a.s.).

Proof. Eqn. (10) is rewritten as
Al =Qr— Qo+ Y, — Af.

Since@; > 0, we haveA? > Y, — A? — Q. Thus,

AP Y, — AP —
li{n inf =t > li%n inf tft%.

(11)
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By the assumption that the input load of non-probing packets 1an; .., A} /t = pC a.s.
Since the server is continuously busy during the period of probing,.., Y;/t = C a.s. Thus,

it follows from Eqgn. (11) that

p

lim inf % > (1-p)C, a.s. (12)

t—o0
SinceA} = Lya}, liminf, . a}/t > (1 — p)C/L, a.s. Then,liminf; .., a} = co a.s. because

p<1. O

Theorem 8:Let Y; be the available service for@/G/1 queueing system. The size of each

probing packet is fixed to a constantof. Then, for0 < ¢ < oo,

»

SincePr(|Y;/t — C(1 — p)| > €) < E[|Y;/t — C(1 — p)|?] /2 by Chebychev’s inequality and

~

Y,
lim £ ?t—C'(l—p)

t—o0

Proof. The proofis given in [17, Theorem 3.7].

the right hand term of the inequality goes to zero by Theorefﬁ/&, IS a consistent estimator
of C(1 — p).

We need to note that the statistic based on delay of probing packets are closely related with the
statistic based on the amount of packets. We consider the case that probing packets are sent to
the queueing system according to the minimal-backlogging method. The first stafistic, is
a consistent estimator of ((1 — p)C). Thus,L, /W, is an estimator of the available bandwidth
and it can be rewritten asl,/ Y, W;. If we consider time until the service completion time
of then-th probing packet, thel, = nL, and thus, both statistics agree with each other exactly.
Thus, though we showed that the statistic based on the amount of probing packets is a consistent
estimator of the available bandwidth fot4 G /1 queueing system, the statistic based on packet
delay can also be used to estimate the available bandwidtlizgf&/ 1 queueing system since

the two statistics are identical as the time goes to infinity.

V. APPLICATION TOESTIMATION OF AVAILABLE BANDWIDTH OF A LOCAL SERVER

Thus far, we considered a problem of estimating the available bandwidth of a queueing system
which is directly accessible with no access delay. However, in real situation, an unidentified

gueueing system may be physically separated from the probing site such that the access time
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Figure 2. A measurement setup for estimation of the available bandwidth at a local server

delay is not zero due to a propagation delay of pre-processing time. Thus, we consider the
problem of estimating the available bandwidth when there exists access time delay between the
target queueing system, also called a local server, and a probing site. Extending the approach
developed in the previous sections, we propose a scheme to estimate the available bandwidth of
a local server based on the minimal backlogging concept.

Fig. 2 illustrates a measurement process for estimation of the available bandwidth of a local
server. The application or machine at a measurement posainds probing packets to the local
server and receives feedback information. Probing packets sent fromANade/e at the local
server after a delay ab;. Probing packets served by the local server return to Noadter
a delay ofD,. We assume that both delays are fixed and known to the monitoring Aidale
advance.

Due to the delays oD, and D, it is not easy to send probing packets while maintaining one
and only one probing packet in the server. Thus, we attempt to maintain a minimal-backlogging
condition with the following heuristic method. The proposed method is based on the idea that
if probing packets are sent to the server according to the minimal-backlogging method, the
inter-packet spacing between two consecutive probing packets is equal to the sojourn time of
the former probing packet of the two. The proposed available bandwidth estimation method is
described as follows:

1) The measurement node sends a probing packet to the local server and obtains the round-

trip delayd, of the probing packet upon receiving the returning packet.

2) The measurement node sends the first probing pagkir estimation of the available
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bandwidth after acquiring.
3) Letp, be the last probing packet that was sent toward the server anddethe time when
p,; was sent to the server. If the last round-trip delay value available to the measurement
node isd;, we estimate the sojourn time pf in the server agd;, — Dy — D,, and thus,
the next probing packet is sent at time+ (d; — Dy — D,). Exceptionally, if the last
probing packep; arrives beforey; + (d; — Dy — D), there is no probing packet in the
path, especially in the server. Thus, the next probing packet is sent upon arrpahof
order to maintain at least one probing packet in the server.
4) The measurement node measures the available servioe the delay experienced by
each probing packet in the server whenever a returning packet arrives, and estimates the

available bandwidth by using either of the two statistics proposed in Sections 3 and 4.

Since the round-trip delay can be measured solely at Nbdaly if all probing packets are

returned to Nodel, there is no clock synchronization problem.

VI. NUMERICAL RESULTS

In this section, we compare the performance of the two proposed statistics with that of the
method proposed in [2] in terms of accuracy and the effect on the delay of non-probing packets.
Sharma and Mazumdar proposed a method to estimate the utilization of the system by sending
probing packets according to a Poisson process in Subsection 2.3 of their paper [2]. Then,
the available bandwidth (AB) can be obtained if the service €atef the system is known
in advance. This estimation scheme is calldébéson probing schemie this paper, and this
scheme is compared with our proposed scheme. In addition, we also evaluate the accuracy of the
available bandwidth estimation scheme developed in Section 5 for a local server whose access
time is non-zero from a probing source.

Fig. 2 shows a measurement node interconnected to an unidentified queueing system. We
first consider the case of no access delay, .= D, = 0. The measurement node directly
connected to the queueing system sends probing packets to the queueing system by the minimal-
backlogging method, i.e., the node sends a new probing packet upon arrival of the previous
probing packet and calculates the values of two statistics. The measurement node bypasses

every non-probing packet.
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Two types of traffic patterns are used for non-probing packet traffic streams: Poisson and
self-similar traffic. The traffic patterns of today’s IP networks have been known to exhibit self-
similarity and long-range dependence [19-21]. Neither of them can be modeled using conven-
tional Markovian models. Thus, we use a multi-fractal model [22] to generate self-similar traffic.
The Hurst parameter is 0.8. The sizes of both probing and non-probing packets are fixed to 500
bytes. The service rat€’] of the unidentified queueing system is 10 Mbps.

Figs. 3, 4 and 5 compare our proposed scheme with the Poisson probing scheme under a
Poisson cross traffic load of 0.3, 0.5, and 0.7, respectively. The proposed estimation scheme is
based on the minimal-backlogging method and the statistic of probing packet delay. Since both
statistics based on the delay and the amount of probing packets yield an identical estimation
result, we show only the result obtained from the statistic based on the delay of probing pack-
ets. The value oMeasured ABs obtained in the queueing system by subtracting the service
rate of non-probing packets from the service ratevhen the probing traffic is not sent. The
same traffic patterns are used for both estimation and measurement of the AB at the same load.
We can observe that the estimation results of the minimal-backlogging method agree with the
measured AB for all traffic loads. Furthermore, the estimation results are accurate even when
the observation time duration is short. The reason is explained as follows. We know that the
estimation result converges to an AB value(¢fl — p) when the observation time goes to in-
finity by Theorem 8. Let us consider a finite time inter@lt| after start of probing. Then,
the server is continuously busy for the interjsalt] because there is at least one probing packet
in the queueing system. When the server does not serve non-probing packets, the server surely
serves probing packets. Thus, all unused capacity of the server is used by probing packets in any
finite interval. If the probing traffic is greedy like TCP flows, then the throughput of non-probing
packets may be degraded. However, since probing traffic tries to prevent from being greedy by
maintaining only one probing packet in the queueing system, the AB is estimated reasonably in
a finite time interval.

On the other hand, the Poisson probing scheme is inaccurate and sometimes does not con-
verge when the probing rate is as low as 0.1 Mbps. As the probing rate increases, the accuracy

improves and the convergence time decreases. However, if the probing rate increases so that
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Poisson, Poisson probing & Minimal backlogging (load = 0.3)
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Figure 3. Comparison of the proposed scheme and the Poisson probing scheme under a Poisson traffic load of 0.3

Poisson, Poisson probing & Minimal backlogging (load = 0.5)
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Figure 4. Comparison of the proposed scheme and the Poisson probing scheme under a Poisson traffic load of 0.5

the aggregate input traffic load approaches to 1, the accuracy is not guaranteed as observed in
Figs. 4 and 5. Especially, if the total input load exceeds 1, then the system becomes unstable
and the Poisson probing scheme yields erroneous results.

Tables I, I, and lll compare the performance of our proposed scheme and the Poisson probing
scheme in terms of average delay under a Poisson traffic load of 0.3, 0.5, and 0.7, respectively.

We can observe that the average delay of probing packets is lower than that of non-probing
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Poisson, Poisson probing & Minimal backlogging (load = 0.7)
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Figure 5. Comparison of the proposed scheme and the Poisson probing scheme under a Poisson traffic load of 0.7

packets in case of the minimal-backlogging method. This is because the probing packets are sent
to the queueing system in a special way to maintain only one probing packet in the queueing
system. On the other hand, the average delay of non-probing packets is very close to that of
probing packets in case of Poisson probing since both cross traffic and probing traffic follow
Poisson processes. The Poisson probing scheme yields smaller delays of non-probing packets
than for the minimal-backlogging method when the aggregate traffic load is rather low. However,
when the aggregate traffic load exceeds 0.8 in Tables | and Il or 0.9 in Table Ill, the Poisson
probing scheme yields worse delay performance. From Figs. 3, 4 and 5, we can observe that the
convergence time is rather long and thus, it is difficult to obtain an accurate estimate of available
bandwidth in a short time by the Poisson probing scheme. Increasing probing rate improves
convergence time and accuracy. However, high probing rates in the Poisson probing scheme
may degrade the delay performance of non-probing packets, as observed in Tables I, Il, and
lll. Thus, it is a challenging and difficult problem to find a good probing rate of the Poisson
probing scheme without knowing the available bandwidth. Especially, if the aggregate input
traffic load exceeds 1, the system becomes unstable and the Poisson probing scheme can not
give the correct value of the available bandwidth. However, our proposed scheme based on the

minimal-backlogging method does not suffer from such problems and the delay of non-probing
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COMPARISON OF THE PROPOSED SCHEME AND THBOISSON PROBING SCHEME IN TERMS OF AVERAGE DELAYLOAD =

0.3)
Method Total input load| non-probing| probing
packet delay packet delay

Minimal-backlogging method 1.0 0.000856 | 0.000569
probing rate = 0.1Mbps 0.31 0.000488 0.000482

Poisson| probing rate = 0.5Mbps 0.35 0.000505 | 0.000504
probing | probing rate = 1.0Mbps 0.4 0.000531 0.000531
scheme| probing rate = 2.0Mbps 0.6 0.000597 0.000598
probing rate = 5.0Mbps 0.8 0.001203 0.001200

probing rate = 7.0Mbps 1.0 0.048535 0.048348

TABLE II
COMPARISON OF THE PROPOSED SCHEME AND THBOISSON PROBING SCHEME IN TERMS OF AVERAGE DELA{LOAD =
0.5)
Method Total input load| non-probing| probing
packet delay packet delay

Minimal-backlogging method 1.0 0.001199 0.000800
probing rate = 0.1Mbps 0.51 0.000604 0.000599

Poisson| probing rate = 0.5Mbps 0.55 0.000644 0.000654
probing | probing rate = 1.0Mbps 0.6 0.000698 0.000702
scheme| probing rate = 2.0Mbps 0.7 0.000867 0.000865
probing rate = 3.0Mbps 0.8 0.001206 0.001207

probing rate = 5.0Mbps 1.0 0.109547 0.109673

packets are maintained stable for any load of cross traffic.

Fig. 6 compares our proposed scheme with the Poisson probing scheme under a self-similar

traffic load. The sigma/mean ratio of self-similar traffic is approximately 0.5 for all traffic loads

of 0.3, 0.5, and 0.7. The probing rate of the Poisson probing scheme is fixed to 1.0Mbps. First,

we can observe that the traffic is even burstier than the case of Poisson traffic. The AB estimation

results of the minimal-backlogging method agree well with the measured AB for all traffic loads

and even for short duration of observation time. However, it takes several seconds to obtain a

converged value of available bandwidth by the Poisson probing scheme.

Thus far, we have evaluated the performance of the proposed estimation scheme based on the

proposed statistics and the minimal-backlogging method for an unidentified queueing system

that is directly connected to the probing source without delay. We now evaluate the accuracy

of the available bandwidth estimation algorithm proposed in Section 5 for a local server that is
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COMPARISON OF THE PROPOSED SCHEME AND THBOISSON PROBING SCHEME IN TERMS OF AVERAGE DELAYLOAD =

0.7)
Method Total input load| non-probing| probing

packet delay packet delay
Minimal-backlogging method 1.0 0.002032 0.001344
probing rate = 0.1Mbps 0.71 0.000902 0.000907
Poisson| probing rate = 0.5Mbps 0.75 0.001016 | 0.001018
probing | probing rate = 1.0Mbps 0.8 0.001221 0.001210
scheme| probing rate = 2.0Mbps 0.9 0.002274 0.002288
probing rate = 3.0Mbps 1.0 0.142773 0.142999

Self-similar, Poisson probing & Minimal backlogging

Available bandwidth (Mbps)

Measured AB —X— 4
Minimal backlogging —+—
Poisson probing: p_rate = 1.0Mbps ----- i

0 5 10 15 20 25 30 35 40 45 50
Duration of observation time (sec)

Figure 6. Comparison of the proposed scheme and the Poisson probing scheme under a self-similar traffic load

accessible with delay from the probing source, ii&: > 0 andD, > 0 in Fig. 2. The local
server is a queueing system with an FCFS polity and the servic&raddixed to 10 Mbps.

The value of the forward delay; is assumed to be the same as that of feedback delay

and is increased from 0 to 0.5 msec in the simulation. The sizes of both probing packets and
non-probing packets are fixed to 500 bytes.

Fig. 7 shows the accuracy of the proposed AB estimation algorithm for various values of
fixed delay when the self-similar traffic loads of 0.3, 0.5, and 0.7 are offered. The observation
time duration is 50 seconds. In this case, we used the statistic based on the amount of probing
packets. We can observe that the accuracy degrades as the value of fixedZdelayD,)

increases. The reason is that long response time makes it difficult to maintain the minimal
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self-similar cross traffic load
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Figure 7. Comparison of the estimated AB and the measured AB for various values of fixedldelayD,)

backlogging condition for the local server. Especially, as considered in the third stage of the AB
estimation procedure, if the last probing packet sent arrives before the next probing packet is
sent, the local server remains in the probing-packet-free state for atIeast D,). In other

words, the next probing packet arrives late at the local seier+ D,), compared with the

case that the probing packets are sent ideally according to the minimal-backlogging method.
Thus, the amount of probing packets sent to the local server in a given time is always less than
that of the ideal case due {(®; + D;). Thus, the estimation result of the proposed method is
conservative if D; + D) is significantly large. However, if the value @b + D,) is not much

larger than the queueing delay at a local server or router, the proposed estimation method can

work reliably. Similar tendency is observed for Poisson traffic loads.
VII. CONCLUSIONS

A new estimation method of the available bandwidth for an unidentified queueing system is
proposed using a minimal backlogging concept. Two statistics are also proposed to estimate the
available bandwidth: the first one is based on the delay of each probing packet and the second
one is based on the amount of probing packets served during a specific time period. If the
probing packets are sent to the queueing system according to the minimal-backlogging method,
the available bandwidth of the system can be estimated by either of two statistics. If the load

of input traffic for an) /G /1 queueing system is less than 1, the queueing system is still stable
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when the minimal-backlogging method is used. The first statistic is a consistent estimator of
the reciprocal of the available bandwidth and the mean square error converges to zero. The
second statistic is a consistent estimator of the available bandwidth with a mean square error
converging to zero. Both statistics can be used to estimate the available bandwidifi Gf &
gueueing system. Though the two statistics are unbiased estimators of the available bandwidth
or its reciprocal in case of an infinite probing time duration, since infinite probing time can not
be realized, we evaluated the performance of two statistics by simulation and observed that two
statistics agree well with the measured available bandwidth even for a finite probing time.

We also proposed a scheme to estimate the available bandwidth of a local server that is sepa-
rated from the probing source by a fixed delay by exploiting the theory for a single-server queue.
The proposed scheme yields an accurate estimation result for various traffic loads when the fixed

delay is relatively small compared with the queueing delay at the local server.

APPENDIX
A. Proof of Theorem 3
L(n) can be expressed as
n X
L) = S 2 Xy
> et Xi

AL XD S (X = N1

21 X 2

Since{X;,i > 0} is an ergodic Markov chair{ X/, > 0} is also an ergodic Markov chain.
Since the possible values &f!’s are non-negative{(X/)? i > 0} is also an ergodic Markov

chain. Thus, we have

noX! ) n (X!
—lel L — E[X.], with prob. 1 an i1 (X

2
L E[X2] with prob. 1
n n
Now, we consider the problem of evaluatihg’_, Zﬁl(X; —j + 1)Nj,;/n. SinceNj’s are

ii.d, Zﬁl(){i’ —J+1)N; andZﬁlei”j have the same distribution. Thus,

lim Doict 2 mo(X] =3 + )N/ ~ im doim1 2o I NG
n—oo n n—oo n

By using the indicator functiof( X, > j), we have

n X . o . w=n .
Doic1 21 JNG _ Zj:l 32 i 1(X] > §)N

n n

(A1)
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To apply the renewal rates theorem for Markov-chain [14, p.164], we assign the rBwand=
I(k < j)N;; to the visit to the staté of X]. Note thatV; ;s are i.i.d andE[N; ;] = AEI[S].

Then, we have for each> 0,

i XN &
lim == = mE[R; (k)]
A (A.2)
= AE[S] >
k=j
under the condition that for any initial staie
T§
By I(X] z¢>N£,j] < o0, (A.3)
=1

whereT is the first return time ta of {X/,i > 1} starting from the initial stats. Clearly,
B[} I(X] > j)N/,] < E[Y2, N/,]. SinceT, is the stopping time for the random sequence
{N];, Ny j,---} andN; ; are i.i.d, we obtain from the Wald's identity [14, p.97]

Z |- AE[S].

Since{X!,i > 1} is positive recurrentE[T;] < oo. This implies Eqn. (A.3). From Egns. (A.1)

and (A.2), we have

R [SJf:m
b=

_ pg P ;E[X ]
Thus, we can obtain
lim L(n) — E[X2]/2+ AE[S](E[X2]+ E[X.])/2 1
am L(n) = E[X.)] 2
1 B[R 1 (A4)

Eqn. (5) impliesE[X .| = AE[S,]/(1 — p). From Eqn. (2), we can obtain the following

relation betweenl;(z) andIl;,(2):

it (2) = Gy(A(L = 2DIL(GA( = 2))).
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By differentiating twice the above equation with respect tand substitutingg = 1 into the
equation, we can obtain a recurrence relation betweeff] and £[X?, ,]. From the recurrence

relation, we have

piyr ) MEIS (1= + 2VE[S,]E[S] + ME[SDABLS)
=T (=)0 =) |

2 (A.5)
Combining Egns. (A.4) and (A.5) yields

, CNE[SY AE[SZ] 2)2E[S,|E[S]
) = ) TR, T )
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