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A simple convolution approximation scheme is proposed to reduce the number of op-

erations and the required amount of data. This approximation method can be used to

estimate the end-to-end cell delay variation (CDV) using local information about cell

delays in Asynchronous Transfer Mode (ATM) networks.

Introduction: Direct convolution calculation of two N -point sequences requires a num-

ber of arithmetic operations of the order of N2. For a large convolution, the corre-

sponding processing load becomes rapidly excessive and, thus, considerable e�ort has

been devoted to devising faster computational methods. Conventional approaches for

speeding up convolution calculations are based on FFT, which requires a number of

operations of the order of N log2N , where N is the power of two [1].

This Letter introduces a simple convolution approximation method. The number of

operations can be reduced at the expense of approximation errors. Another advantage

of this approximation method is that it is possible to obtain an approximation result

with a small amount of required information. This feature can be useful in estimating

end-to-end CDV in ATM networks by successive convolutions of the delay distribu-

tion of each node [2]. Due to signaling constraints [3][4] the proposed approximation

mechanism is preferable to conventional fast convolution methods.
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Approximation Method: The proposed convolution approximation method uses the

following property:

Property 1. Let X1 and X2 be discrete random variables that take integer values

and satisfy the following condition for an integer k:

Pr(X1 � k) =
1X
i=k

Pr(X1 = i) �
1X
i=k

Pr(X2 = i) = Pr(X2 � k) (1)

Letting Z1 = X1 + Y , Z2 = X2 + Y for a nonnegative discrete random variable Y

independent of both X1 and X2, the following relation holds:

Pr(Z1 � k0) � Pr(Z2 � k0); 8k0

For a random variable X1 with a probability mass function (PMF) of

PX1
(i) = Pr(X1 = i) =

(
ai; if i � 0;

0; otherwise;

if we introduce X2 with the following PMF using data compression factor �, which is

a positive integer:

PX2
(i) = Pr(X2 = i) =

( Pi
h=i��+1 ah; if i = j�� 1; j = 1; 2; � � � ;

0; otherwise;
(2)

then the following relation holds for a nonnegative integer k:

Pr(X1 � k) =
1X
i=k

ai �
1X

i=bk=�c�

ai = Pr(X2 � k) (3)

X1 and X2 satisfy the condition of the Property 1. Thus, convolution of the PMFs

of X2 and a discrete random variable Y1 yields the upper bound of the complementary

cumulative distribution function (CDF) that can be obtained from convolution of the

PMFs of X1 and Y1. Since the random variable X2 retains compressed information

about X1, it is possible to reduce the amount of transmitted data by use of X2 instead

of X1.
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Information about random variable Y1 can also be compressed into Y2 by the same

mechanism, as follows:

PY2(i) =

( Pi
h=i��0+1 PY1(h); if i = j�0 � 1; j = 1; 2; � � � ;

0; otherwise;
(4)

where �0 is a positive integer.

The convolution of PMFs of X2 and Y2 can be calculated as follows when � is equal

to �0:

PX2
� PY2(k) =

8><
>:

kX
i=0

PX2
(i)PY2(k � i); if k = n�� 2; n = 2; 3; 4; � � � ;

0; otherwise;

(5)

PX2
� PY2(n�� 2) =

n��2X
i=0

PX2
(i)PY2(n�� 2� i)

=
n�1X
i=1

PX2
(i�� 1)PY2((n� i)�� 1) =

n�2X
j=0

PX�

2
(j)PY �

2
(n� 2� j)

= PX�

2
� PY �

2
(n� 2); (6)

where PX�

2
(i) = PX2

((i + 1)�� 1) and PY �

2
(i) = PY2((i + 1)�� 1) for i = 0; 1; 2; � � � :

This result indicates that convolution of the PMFs of X2 and Y2 can be obtained

by convolution of PX�

2
(i) and PY �

2
(i), followed by rescaling. Let the maximum values

of X1 and Y1 be DX and DY , respectively. The number of probability values of PX�

2
(i)

is approximately 1=� times less than for PX1
(i). Therefore, convolution of the PMFs

of X2 and Y2 instead of for X1 and Y1 can reduce the number of multiplications from

(DX + 1)� (DY + 1) to (bDX=�c+ 1)� (bDY =�c+ 1).

When � is di�erent from �0, �� denotes the greatest common divisor (GCD) of �

and �0. Then, the number of multiplications can be reduced from (DX +1)� (DY +1)

to (bDX=�
�c+ 1) � (bDY =�

�c+ 1) by the proposed mechanism. Increasing �� can

reduce the number of operations at any level at the expense of approximation errors.

Now we consider the upper bound of approximation errors. Let X1 and Y be

nonnegative integer random variables. X2 is obtained by Eqn. (2) from X1. When we
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use X2 instead of X1 in the convolution with Y , the approximation error is expressed

as

jPr(X2 + Y � z)� Pr(X1 + Y � z)j

Pr(X1 + Y � z)
�

zX
i=0

n z�i�1X
j=max(0;z�i��+1)

Pr(X1 = j)
o
Pr(Y = i)

zX
i=0

Pr(X1 � z � i)Pr(Y = i) +
1X

i=z+1

Pr(Y = i)

(7)

As an example, let X1 and Y be two waiting times in two consecutive M/M/1 sys-

tems. The waiting time distribution in the M/M/1 system is an exponential distribution

[5]. Since a discrete version of an exponential distribution is a geometric distribution,

the two geometric random variables X1 and Y are introduced with parameters p and

q, respectively.

Pr(X1 = i) = (1� p)ip; Pr(Y = i) = (1� q)iq; i = 0; 1; 2; � � � : (8)

In this case the upper bound of the convolution approximation error can be obtained

by Eqns. (7) and (8), as follows:

jPr(X2 + Y � z)� Pr(X1 + Y � z)j

Pr(X1 + Y � z)

�

8>><
>>:
� 1

1� p

���1 p((1� q)=(1 � p))z��+2 � q

p((1� q)=(1� p))z+1 � q
� 1; if p 6= q;� 1

1� p

���1n
1�

p(�� 1)

1 + pz

o
� 1; if p = q:

(9)

Regardless of the equality of p and q, the approximation error has the following

looser upper bound.

jPr(X2 + Y � z)� Pr(X1 + Y � z)j

Pr(X1 + Y � z)
�
� 1

1�min(p; q)

���1
� 1: (10)

This result indicates that the relative error is upper-bounded. The absolute error bound

decreases if Pr(X1 + Y � z) decreases as z increases. This error bound increases as �

increases. Thus, there is a trade-o� that the approximation error may increase while

the required amount of data decreases as � increases.
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Application and Simulation Result: The proposed fast convolution approximation method

is applied to a serially connected three bu�er model, as shown in Fig. 1. Xi (i = 1; 2; 3)

is the cell delay experienced in the i-th node and Xe is the end-to-end cell delay. Xe is

equal to
P3

i=1Xi. Consequently, the distribution of Xe can be obtained by successive

convolutions of the distributions of X1, X2, and X3 if delays experienced in consecutive

nodes are uncorrelated, or nearly so.

Constant bit rate (CBR) tra�c and variable bit rate (VBR) tra�c for foreground

and background tra�c are considered. VBR tra�c is modeled as a two-state Markov

process that consists of an active state and a silent state. Fig. 2 compares comple-

mentary CDFs obtained from three di�erent methods. The �rst method is to obtain

the delay distribution by measuring the delay of each cell through time stamps. The

second method is to take successive convolutions of the delay distributions of the three

nodes. The last method is to use the fast convolution approximation mechanism. The

data compression factors of the three nodes are all �'s. The amount of data required

for fast convolution approximation is 1=� times less than for conventional convolution

mechanisms. The fast convolution approximation method yields a close estimate of the

delay distribution when � is small, as shown in Fig. 2. Hence, the fast convolution

approximation mechanism makes it possible to estimate the delay distribution with a

reduced amount of data.

Conclusions: A simple convolution approximation method is proposed. Unlike conven-

tional fast convolution mechanisms this method can reduce the number of operations

at any low level at the expense of approximation errors. The proposed method closely

estimates convolution results with a small amount of required data. This is a useful

feature in calculating the end-to-end �-quantile CTD from the local delay information

of each node in ATM networks.
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Figure captions:

Fig. 1. A serially connected three bu�er model.

Fig. 2. Comparison of the time stamp, convolution, and fast convolution approxi-

mation methods.
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