
 
 
 
 
 

 
 

Scanner Detection Based on Connection Attempt 
Success Ratio with Guaranteed False Positive and 

False Negative Probabilities 
 

Seung Yeob Nam and Hyong S. Kim 
 

June 20, 2006 
CMU-CyLab-06-011 

 
 
 
 
 
 
 

CyLab 
Carnegie Mellon University 

Pittsburgh, PA 15213 
 
 
 
 
 

 



Scanner Detection Based on Connection Attempt 

Success Ratio with Guaranteed False Positive and 

False Negative Probabilities 

Seung Yeob Nam and Hyong S. Kim 

Dept. of ECE and CyLab, Carnegie Mellon University 

Pittsburgh, PA 15213 

synam@andrew.cmu.edu, kim@ece.cmu.edu 

 

 

 
Abstract— Since the link rate is very high up to 40Gbps these days, scanning packets can spread very fast. At this high speed, only 

a small chance of missing on-going scanning activity can lead to catastrophic results. Thus, fast and accurate detection of scanners 

is a very important problem. High-speed packet processing usually requires high-speed memory, SRAM, and the size of SRAM is 

very limited compared with DRAM. We propose a connection attempt success ratio based scanning detection scheme which 

guarantees false positive and false negative probabilities under a memory-limited environment. Our scheme can also detect slow 

scanners with guaranteed performance. A sampling-based extended version can overcome the limitation of short-history-based 

scanning detection schemes and detects enhanced scanners with a list of pre-acquired IP addresses with guaranteed performance. 

The proposed scheme reduces the required memory size from O(N2) to O(N), where N is the number of active hosts. We apply 

Bloom filter in order to further reduce the memory size. We evaluate the performance of the proposed scheme through simulation. 

Keywords – scanner, slow scanner, scanner detection, connection attempt success ratio, Bloom filter 

I.  INTRODUCTION 

Internet attacks such as distributed denial-of-service (DDoS) attacks and worm attacks are increasing in 
severity. According to CERT [1], the number of reported incidents by network attack has grown almost 
exponentially and it continues to increase. Computer worms and bots are substantial threats to large networks 
because they can spread very rapidly and used for DDoS [2]. The first phase of worms and bots begin with 
scanning of vulnerable hosts.  In this paper, we address the detection of such scanners in order to prevent further 
attacks and damage.  

There are many important issues that need to be considered in order to make a practical scanning detection 
system. First, memory constraints should be considered. Since inter-packet arrival time can be very short due to a 
high link rate, SRAM is usually required for fast packet processing [3]. Thus, the required memory size needs to 
be small enough to fit in SRAM in this case. Second, low false positive and false negative probabilities need to be 
guaranteed since at a very high link speed only a small chance of missing on-going scanning activity can lead to 
catastrophic damages. Third, the detection algorithm should be simple and the number of memory accesses should 
be small so that it can cope with bursts of packets arriving at a high speed. Fourth, fast detection is important 
because the damage can be minimized with early detection. Fifth, detection of slow scanners is also important 
since most of window-based schemes can be defeated by slow scanners. There have been many approaches to the 
scanner detection problem [3-12], but there is no scheme addressing all the above issues collectively.  

We can classify most of existing schemes into four categories depending on the metric used to detect scanners. 
The metrics are connection attempts [7], connection attempt rate [4, 5, 6], connection attempt failure rate [8, 11], 
connection attempt failure ratio [3, 9, 10]. Among them, connection attempt-based schemes, e.g. Bro [7], can 
detect slow scanners, but they usually have high false positive rates. In case of either connection attempt rate-
based scheme or connection failure rate-based scheme, the scanners can evade detection by lowering the scanning 
rate if the threshold is estimated by them. A low detection threshold may incur many false alarms, and thus, 
determining the threshold is very difficult problem. Thus, we use the statistic of connection attempt success ratio 
to detect scanners. But, our statistic is different from the ones used in [9, 10] since we directly use the statistics of 



connection attempt success ratio, while Jung et al. [9] and Schechter et al. [10] use a likelihood ratio for 
sequential hypothesis testing or reverse sequential hypothesis testing.  

Based on the connection attempt success ratio, our scheme addresses five important issues stated above. In 
more detail, the contribution of this paper can be summarized as follows: 

- Threshold Random Walk (TRW) [9] and the optimized TRW [10] are the state-of-the-art technique in 
the scanning detection area and they can guarantee the false positive and false negative probabilities 
when there is no memory constraint. Since TRW needs to parse every arriving packet, SRAM would be 
required for high speed packet processing [3]. Since the size of SRAM is highly limited to around tens or 
hundreds of Megabytes, any scheme using SRAM is subjected to memory conflict issues such as 
collisions in hash tables. The original TRW scheme [9] and the optimized TRW [10] are not addressing 
this memory issues and these schemes may not guarantee the false positive and false negative 
probabilities under the memory-limited environment. Weaver et al. [3] propose a modified version of the 
TRW scheme considering this memory issues, but this modified scheme does not guarantee the false 
positive and false negative probabilities [3]. The proposed scheme is designed considering this memory 
conflict issues, and thus, it can guarantee the false positive and false negative probabilities under a 
memory-limited environment. This means that the proposed scheme is the first approach which attempts 
to guarantee the required performance under the realistic memory-limited environment. 

- It is said that per-flow state needs to be kept in order to detect stealthy port-scanning [11]. When N is the 
total number of active hosts, the storage space of O(N

2
) will be required in order to detect slow scanners. 

However, in our scheme, a decision is made based on a rather small, less than 25, and fixed number of 
connection attempts. Thus, each source address occupies only a fixed size of memory and the memory 
size is kept on the order of O(N).  

- Since our scheme is not time window-based and the connection log of a source IP with a low connection 
success ratio can be kept longer than those of other source addresses with higher connection success 
ratios, our scheme can detect slow scanners. Although there are some other schemes which can detect 
slow or stealthy scanners [7, 12], the proposed scheme is the first one which detects slow scanners with 
guaranteed performance under a memory-limited environment.  

- Many scanning detection schemes usually assume malicious hosts are doing random scanning without 
any knowledge of valid IP addresses. But, our sampling-based extended scheme can detect enhanced 
scanners which has a limited number of valid IP addresses in advance. However, if the malicious hosts 
have the complete lists of assigned IP addresses like complete scan in [13] or Flash Worm in [14], then it 
would be very difficult to detect such scanners based on their connection activities. Detection of such 
scanners is out of the scope of this paper. 

Only assumption for the guarantee of false positive and false negative probabilities is that the malicious 
scanner and benign scanner have distinct behaviors in terms of the connection success ratio. We apply Bloom 
filter in order to reduce the size of memory required for connection state information. We find that 16 MB SRAM 
is adequate to handle millions of flows in core routers [15]. 

The rest of the paper is organized as follows. In Section II, we discuss related work. In Section III, we explain 
the proposed scanner detection scheme and the structure of the hash table used to store connection information in 
detail. In Section IV, we analytically derive the detection threshold which can guarantee the performance of our 
scheme in terms of false positive and false negative probabilities under collisions in Bloom filters. In Section V, 
we extend our detection scheme by incorporating a sampling technique to complement the drawback of the basic 
version. In Section VI we evaluate the performance of the proposed scheme through simulation. Finally, 
conclusions are given in Section VII. 

 

II. RELATED WORK 

Historically most scan detection schemes detect N events within a time interval of T seconds. The Network 
Security Monitor (NSM) [5] detect any source IP address connecting to more than 15 distinct destinations within 
a given time window. Snort [6] also implements similar methods. If the detection threshold or the measurement 
time interval is known to the malicious hosts, then the attackers can evade the detection by simply decreasing the 



scanning rate. Bro [7] manages the number of distinct destination addresses for each source address and alerts an 
alarm if the number reaches a threshold.  Without the time window, the Bro could detect slow scanners at the risk 
of non-negligible false alarms and it would require very large memory.  

Large number of false positive occurs since there are many legitimate scanners such as in Internet search 
engine applications. The connection failures are known to be a better metric for detection of scanners. Robertson 
et al. focus on failed connection attempts, using a threshold method [8]. Determination of a good threshold is a 
challenging problem. Low threshold generates excessive false positives. High threshold may miss many slow 
scanners. Robertson et al. show that the performance varies greatly based on the threshold value.  

Spice [12] manages the probability distribution of normal traffic and detects scans, including stealthy scans, 
based on the deviations from the normal behavior. But, it may not be suitable for fast detection on high-speed 
links since it requires too much computation and selecting the threshold for the anomalous event reporting is very 
difficult since traffic characteristics varies from site to site and over time, too. 

Jung et al. propose Threshold Random Walk (TRW) detection scheme [9] and Schechter et al. propose 
optimized TRW scheme [10]. Both of them detect the scanning activity rapidly with a small number of connection 
attempts, usually less than 20, with guaranteed performance. However, memory constraint is not considered in 
both cases. Thus, false positive and false negative probabilities may not be guaranteed under a memory-limited 
environment, e.g. collisions in the connection status table or limited space for each source IP address. Weaver et 
al. [3] uses a simplified version of TRW in order to reduce the complexity. However, it does not guarantee the 
false positive and negative rates due to collisions in the connection cache [3].  

There are also some approaches focusing on network attacks with reduced memory size [4, 11, 16]. Kompella 
et al. [11] attempts to detect scanning as well as some other network attacks using partial completion filters 
without keeping per-flow states. The connection failure rate is calculated from the difference the number of TCP 
SYN packets and TCP FIN packets. Determining the detection threshold is usually a difficult problem and it is not 
easy to detect slow scanners because the contribution of slow scanners to difference metric is not likely to be 
significant.  

Venkataraman et al. propose a scheme to detect superspreaders using connection attempt rates or connection 
failure rates [4]. It uses a sampling technique in order to reduce the packet processing and the memory size. 
Sampling could reduce the number of packets to be processed by a few orders of magnitude and leads to simpler 
implementation. Detection of scanners based on connection attempt or connection failure rates could be evaded by 
slow scanners with a low probing rate. We use this sampling technique in the extended version in order to reduce 
the load for the connection table and overcome the limitation of the short-history based scanner detection scheme.  

Estan et al. propose a family of efficient bitmap algorithm for counting active flows [16]. Triggered bitmap 
may be useful to count the number of connection attempts for each source address with a moderate error. But, in 
our scheme we make a decision with a rather small number of connection attempts and responses, less than 25. 
Since the number is usually small, the triggered bitmap is likely to be reduced to the direct bitmap. The direct 
bitmap can be considered as a special case of Bloom filters [17, 18] with only one hash function. In our scheme, 
accuracy in counting is very important to guarantee false positive and false negative probabilities and the accuracy 
can usually be improved with more than one hash functions under the same memory size. Thus, we use Bloom 
filters to count connection attempts and responses. 

III. SCANNER DETECTION SCHEME 

We now describe the operation of the proposed scanner detection scheme in detail. 

A. Detection Rule 

The scanner is detected based on the connection attempt success ratio of the source host. The connection 
attempt success ratio of a source s, q(s), is defined as follows. 

     
)(

)(
)(

sATTEMPT

sRESPONSE
sq = ,      (1) 

where the ATTEMPT(s) is the number of distinct IP addresses that a source s attempts to connect to and the 
RESPONSE(s) is the number of distinct IP addresses that responded to the source s.  We define two timers, 



TIMER1(s) and TIMER2(s). The scanner detection decision is made after observing n connection attempts for 
each source address. For the n-th connection attempt, our scheme waits up to TIMER1(s) for its response.  
TIMER1(s) is used to allow sufficient time for the response to the last attempt to be counted. According to [19], 
the median round-trip time (rtt) is measured to be lower than 450 msec by IPMON system of Sprint even 
including transcontinental connections. We set the value of TIMER1(s) to 500 msec. TIMER2(s) tracks how long s 
has been idle since its last connection attempt. TIMER2(s) is used to delete source addresses which have a high 
connection success ratio and have been idle for a long period when the memory storing connection status 
information is overloaded because these addresses are likely to be innocent.  When the ATTEMPT(s) reaches a 
pre-selected threshold n and the TIMER1(s) expires, then we detect the source as a scanner if the following 
condition is satisfied: 

      η≤)(sq ,      (2) 

where η  is the detection threshold.  Variable parameters n and η  are determined according to the required false 

positive and false negative probabilities and it will be discussed in Sections IV and V. 

B. Implementation 

We address the implementation complexity and the memory and processing requirement for the proposed scheme.  
We first describe the data structure of the scheme and then the connection status update procedure. 

1) Bloom filters 

 

Using the statistic of connection failure ratio, the proposed scheme has to manage the connection status for 
each source and destination IP address pair

1
. Although we allocate a connection status-related hash table with a 

million entries, occasionally the total number of connections including connection attempts can exceed the limit. 
Weaver et al. [3] considers the use of a million-entry connection cache which tracks the connection status in each 
direction between a pair of hosts. When the total number of connection attempts exceeds a million or different 
host pairs hash to the same entry of the connection cache, two different connection states are merged into a single 
entry. This aliasing policy increases false negatives as failed connection attempts of different pairs are used jointly. 
According to [3], if the table is 20% full, then they fail to detect roughly 20% of individual scanning attempts. The 
false negatives may not be guaranteed due to such failures. In order to avoid such limitation, we manage 
connection states and data in the follow way using the Bloom filters. 

If we allocate w bits for each source and destination address pair (s, d) in order to track its connection status, 
we then need the storage space of the order of O(N

2
) in the worst case, where N is the total number of valid IP 

addresses. However, if a fixed number of bits are allocated for each source address, then the memory size 
decreases to the order of O(N). More specifically we reduce the memory space by storing a limited set of the 
distinct destination addresses for a source s in an m-bit Bloom filter [17, 18]. We define a vector V of m bits to 
contain the destination address information.  Each element of the vector is initially set to 0. k independent hash 
functions, h1, h2, …, hk, each of which has a range of {1, …, m}, are used to map each destination address d into 
the vector V. 

If a packet from the source s to the destination d is observed, then the bit vector corresponding to the source 
address s is determined by hashing the source address s. The destination address d is then registered in the bit 
vector as follows. The bits at positions h1(d), h2(d), …, hk(d) in V are set to 1. Destination d of the first packet from 
s to d gets registered using the Bloom filter and the subsequent packets with the same (s, d) do not get registered. 
The bits at positions h1(d), h2(d), …, hk(d) represent the existence of the prior packets of (s, d).  However, it is 
possible that h1(d), h2(d), …, hk(d) bits are set by other destinations as the Bloom filter gets filled. We define this 
blocking in the Bloom filter as a collision. One of the advantages of Bloom filters is that it is possible to control 
the probability of collision by adjusting parameters k and m.  

If the number of destinations associated with the source address s is increased, then the number of bits m 
should be increased to keep the collision probability at the same level. In the proposed scheme, source s is 
determined to be a scanner or not if the number of distinct destinations reaches a pre-determined threshold n. Thus, 
the number of destination IP addresses associated with one source address does not exceed n and the bitmap size 

                                                           
1 Although we consider only horizontal scanning over distinct IP addresses, our scheme can be readily extended to detection of vertical 

scanning over the distinct port numbers by considering the pair of destination address/port number instead of just destination address. 



m can be kept constant. We analyze the effect of collisions on the false positive and false negative probabilities in 
Sections IV and V. 

2) Data Structure 

 

We manage the connection status, especially connection attempt status and response status, of each source 
address in a table called connection status table. Fig. 1 shows the detailed structure of the connection status table. 
The table can be considered as a hash table which is indexed by the hash value of the source IP address. If we let 
hs denote this hash function, then a source address s can occupy an entry at the address of hs(s). Occasionally two 
or more different source addresses may have the same hash value. In order to cope with this collision, we put four 
entries for each hash value

2
 and we put IP address (source address) field in each entry to discriminate different 

source addresses which have the same hash value. Thus, the position of the entry corresponding to a source 
address s is determined by the (hs(s), s) pair. Two bit vectors are allocated for each entry to manage connection 
attempt status and response status of the corresponding source address. For an entry corresponding to a source 
address s, V1(s) is a bit vector which manages connection attempt status of s and V2(s) is a bit vector which 
manages the status of responses to s. If the first packet from s to d is observed, then the address d is registered in 
the bit vector field V1(s). If the response packet from d to s arrives following the request packet from s to d, then 
the address d is recorded in the bit vector field V2(s). V1(s) manages the set of distinct destinations that the host s 
attempts to connect to and V2(s) manages the set of destinations which responded to s.  

As explained in the previous subsection, ATTEMPT(s) counts the number of attempts made by s and it is equal 
to the number of destinations registered in V1(s). RESPONSE(s) counts the number of responses to s and it is 
equal to the number of addresses registered in V2(s).  

 

Source IP address s h  (s)s

IP address s bit vector V (s)

ATTEMPT(s) RESPONSE(s) TIMER2(s)

32 bits m bits

5 bits 5 bits 8 bits

bit vector V  (s)

m bits

1 2

TIMER1(s)

4 bits  
Fig. 1. The structure of connection status table 

 

In case of TCP connection request through TCP SYN packet, no response will be sent back to the source if the 
destination IP address is inactive. If the SYN packet is sent to inactive port of an active host, then the host is likely 
to reply with TCP RST packet. If scanners usually send packets to invalid IP addresses, then we do not count TCP 
RST packets as a connection attempt failure. However, in the case of vertical scanning, we interpret TCP RST 
packets as a connection attempt failure. In the current scheme, only unanswered connection attempts are 
considered as the connection attempt failure. Our scheme can be extended so that TCP RST responses are counted 
as the connection attempt failure in such a scenario.  

Two timers, TIMER1(s) and TIMER2(s), are associated with the source s as discussed previously.  If the 
ATTEMPT(s) reaches n, then TIMER1(s) is increased by 1 every 50 msec. This timer need not be increased 
individually for each source address s. All TIMER1’s with the ATTEMPT value of n can be increased 
simultaneously or asynchronously within 50 msec. If we let t1 denote the threshold for the TIMER1(s), then the 

                                                           
2 This structure can be implemented by either a linked list in software or a 4-way cache in hardware. 



TIMER1(s) value of t1 means that at least 50x(t1-1) msec has passed since the  arrival time of the last n-th attempt. 
Since we wait at least 500 msec after the arrival of the n-th attempt as discussed in the previous subsection, the 
default value of t1 is set to 11. If the value of TIMER1(s) reaches t1, then the decision on the scanning activity of s 
is made according to the rule described in the previous subsection. If the source address s is detected as a scanner, 
we report s as a scanner and clear every field corresponding to s. Otherwise, we just delete the entry of s. 

TIMER2(s) is used to delete the entries of the seemingly innocent and less active, in terms of scanning activity, 
hosts when the connection status table is overloaded. The timer is reset to 0 whenever the value of ATTEMPT(s) is 
increased and it is increased by 1 every minute. The increment period of 1 minute is determined with the 
following reasoning. Let Ns denote the maximum number of source addresses which can be accommodated by the 
connection status table (Ns = 10

6
 in the current setting). There are 4 entries for each address of the hash table. If 

we assume the hash function hs is perfectly random, then a source address in one entry of the hash table sees the 
next different source address which maps to the same hash table address after about Ns/4 more distinct source 
addresses by the expectation of the geometric distribution. Fraleigh et al. [19] report that the average number of 
active flows per minute is less than 300,000 for all measured OC-48 links. The flow arrival rate is usually not 
higher than this rate and the arrival rate of distinct source addresses is uaually lower than the flow arrival rate. If 
the distinct-source-address arrival rate is as high as 250,000 per minute, then the interarrival time of different 
source addresses to the same hash address is about Ns/4/250,000 = 1 minute for Ns = 10

6
. In order to discriminate 

the age of different source addresses mapping to the same hash address, the increment interval of TIMER2(s) 
needs to be not longer than 1 minute. Currently we select 1 minute. We need not put any upper limit on 
TIMER2(s), but 8 bits are allocated to the TIMER2(s) considering memory constraints. With 8 bits we can count 
up to 255 minutes. Since Ns/4 is usually a large number, it is not likely that more than 2 scanners map to the same 
hash address. In addition, innocent sources are not likely to stay long in the hash table due to the entry eviction 
policy explained in the next subsection. We expect that 8 bits are enough for TIMER2(s). 

3) Connection Status Table Update Procedure 

 

The connection status table is updated when a packet arrives. Let us assume that a packet from s to d arrives at 
the monitoring node. Then, the connection status table is updated as follows. 

Step 1: On the packet arrival, we check whether the packet is a response to an existing connection attempt. We 
check whether the address s is registered in both V1(d) and V2(d). If s exists in both V1(d) and V2(d), then the 
packet is a duplicate response to d. We just neglect the packet and exit the routine. If s exists in V1(d), but not in 
V2(d), then the packet is a new response for the attempt from d. We increase RESPONSE(d) by 1 and we register s 
in V2(d). If s does not exist in either V1(d) or V2(d), then the packet is not a response and we go to Step 2. 

Step 2: We check whether the arriving packet is a new connection attempt. If it’s true, we register d in V1(s). We 
check whether the destination d is registered in V1(s). If d exists in V1(s), then the packet is not a new connection 
attempt and we exit the routine. If d does not exist in V1(s), the packet is a new attempt of s. Before registering d 
in V1(s), we check whether the value of ATTEMPT(s) is n or not. If the threshold is reached, then we neglect the 
new attempt until the decision is made with the current data sets. If the threshold is not reached, we register d in 
V1(s), increase the value of ATTEMPT(s) by 1, and exit the routine. 

In the update procedure, there are 2 memory reads (one for the source address s and another for the destination 
address d) and 1 memory write at most.  The processing overhead is thus adequate for high speed links. 

In order to accommodate the hash collision, especially when more than 4 source addresses are mapped to the 
same hash address, we have the following eviction policy. We first evict the source address with the highest 
connection success ratio. If more than one source addresses has the same highest connection success ratio, then 
we evict the oldest entry, which has the largest value of TIMER2(s), first.  If more than one source addresses have 
the same age, then we select one randomly. By the first rule, IP addresses of scanners, including slow scanners, 
are likely to stay longer than benign IP addresses due to low connection success ratio. Thus, the first eviction rule 
enables detection of slow scanners. In the following analysis we assume that the entries corresponding to scanners 
are not evicted because of the low connection success ratio. The effect of each rule in the eviction policy will be 
investigated in more detail in the future.  



IV. PERFORMANCE ANALYSIS CONSIDERING COLLISIONS IN BLOOM FILTERS 

In this section, we show that our detection scheme provides guaranteed performance in terms of false positive 
and false negative probabilities if scanners and benign hosts exhibit different behavior in terms of connection 
success ratio. In addition, we investigate how many bits are required for Bloom filters in order to guarantee the 
false positive and false negative probabilities. Table 1 summarizes the major parameters and variables. 

Table 1. Major parameters and variables 

n Number of attempts required for detection decision  

1θ  Maximum connection attempt success ratio of scanners 

2θ  Minimum success ratio of benign hosts 

1δ  False negative requirement 

2δ  False positive requirement 

η  Detection threshold of connection success ratio 

Y1 Number of responses to a scanner monitored until the number of attempts reaches n 

Y2 Number of responses to a benign source monitored until the number of attempts reaches n 

m Bit vector size of a Bloom filter 

k Number of hash functions used for Bloom filters 

pc Collision probability of a Bloom filter 

 

We use the statistic of connection success ratio in order to detect scanners. Let 
1θ  and 

2θ  denote the maximum 

connection success ratio of scanners and the minimum connection success ratio of benign hosts, respectively. 
Based on the data analysis result in [9], we assume that 

21 θθ < . Let Y1 denote the number of distinct destinations 

which responded to a scanner (s1) until the number of addresses which are registered in the Bloom filter V1(s1) 
reaches a pre-specified threshold n. Y2 denotes the number of distinct hosts which responded to a benign source 
(s2) until the number of addresses registered in V1(s2) reaches n, that is, until the value of ATTEMPT(s2) becomes 
n. Then, the requirements on the false positive and false negative probabilities can be expressed as: 

- Low false negatives: 11 )/Pr( δη <>nY ,                  (3) 

- Low false positives: 22 )/Pr( δη <≤nY ,                  (4) 

where 
1δ  and 

2δ  are the user-specified performance requirements on false negatives and false positives, 

respectively. Parameters, n and η , can be adjusted to satisfy the above two performance requirements. We need 

to keep the bit vector size m as small as possible for efficient memory usage. We also need to keep n as small as 
possible in order to detect scanners rapidly with a small number of connection attempts. The minimum value of m 
and n may not be achieved simultaneously. We attempt to minimize m while keeping n as small as possible. In 
this section, we find the set of parameters (n,η ) which minimize m while satisfying both of the false positive and 

false negative conditions and keeping the value of n small. The minimum value of m is found as well. 

A. Collision Probabilities of Bloom Filters 

Let m and k be the number of bits allocated for the bit vector of the Bloom filter and the number of hash 
functions used for the Bloom filter, respectively. After inserting (n-1) destination addresses into a bit vector of 

size m, the probability that a particular bit is still 0 is )1(
)/11(

−− nk
m . The collision of Bloom filters occurs when a 

new destination address sees 1 in every bit position indicated by k hash functions. The collision probability of the 
arriving destination addresses after the (n-1)-th registered address is then 

    .)1())/11(1( /)1()1( kmnkknk em −−− −≈−−     (5) 

The right hand side of (5) is minimized when )1/(2ln −×= nmk . It then becomes  

     
)1/()6185.0()2/1( −= nmk
     (6) 



From both (5) and (6), we know that the collision probability decreases as m/(n-1) increases. We also find that if n 
is increased for a given k, then m also should be increased in order to keep the collision probability at the same 
level. Thus, the value of n needs to be small in order to reduce the memory size. 

B. False Positive and False Negative Probabilities in the Presence of Collisions in Bloom Filters 

We now analyze the effect of collisions in Bloom filters on the false positive and false negative probabilities. 
The collision occurs when a packet corresponding to a new source/destination pair (s, d) arrives and finds that 
every value of bits corresponding to the hash values of d is set to 1. If collisions occur in both V1(s) and V2(s), 
ATTEMPT(s) is not increased since it is not considered a new attempt. Even though a response packet from d to s 
is observed, RESPONSE(s) is not increased either because the address d already exists in the bit vector V2(s). 
Thus, the source/destination pair (s, d) that experiences collisions in both V1(s) and V2(s) does not affect either 
ATTEMPT(s) or RESPONSE(s).  

If a new source/destination pair (s, d) experiences collision in V1(s) but not in V2(s), then ATTEMPT(s) is not 
increased since it is not considered as a new attempt of s. But, if there is a response from d to s, then the 
RESPONSE(s) is increased by 1. Since the new attempt is not counted and only the response is counted in this 
case, this kind of source/destination pairs tend to increase the success ratio compared to the case with no collision. 
If s is a benign source, then the collision only in V1(s) is likely to decrease the false positive ratio. If s is a scanner, 
then this kind of collision is likely to increase the false negative ratio. Thus, we investigate the false negative 
probability of a malicious source in more detail when such collisions occur.  

The first address to be registered in the Bloom filter does not experience collision. As the number of the 
registered addresses in the Bloom filter increases, the new destination address of s tends to experience higher 
collision probability as shown in (5). After n-1 addresses are registered, the collision probability is highest 

at
kmnke )1( /)1( −−− . cp  denotes the highest collision probability, i.e.  

     
kmnk

c ep )1( /)1( −−−= .      (7) 

As a conservative approximation to obtain an upper bound of the false negative probability, we assume that every 
new connection attempt of a given source s experiences the same collision probability of 

cp  except the first 

attempt which experiences no collision. We now define the following property of binomial distribution. 

Lemma 1. Let ),( rnX  denote a binomial random variable with n trials and the success probability of r. Then, 

for r1, r2, r3, and r4 (0 ≤ r1 ≤ r2 < η < r3 ≤ r4 ≤ 1), we have  

    )/),(Pr()/),(Pr( 21 ηη >≤> nrnXnrnX ,    (8) 

    )/),(Pr()/),(Pr( 34 ηη ≤≤≤ nrnXnrnX .    (9) 

Proof: The proof is given in Appendix A. 

Due to the collision in Bloom filters, it is likely that more than n attempts are required to fill the Bloom filter 
which accommodates only n addresses. Let A denote the total number of connection attempts that a source address 
s makes until the n-th connection attempt is counted by the Bloom filter. Y1(j) and Y2(j) denote the conditional 

random variables jAY =|1
 and jAY =|2

, respectively. Let )('1 nY  denote Y1(n) when the scanner has the highest 

success ratio of 
1θ . Let )('2 nY  denote Y2(n) when the benign source has the lowest success ratio of 

2θ . We assume 

that the response result of each attempt is independent and identically distributed (i.i.d.) for the same source 
address. We then prove the following about the false positive and false negative probabilities.  

Proposition 1. If a set of (n, η) satisfy (10) and (11), then the false positive and false negative probability 
requirements of (3) and (4) are satisfied. 

    1

1

1 )1(1))('Pr( δη <−−+> −n

cpnnY ,     (10) 

    
22 ))('Pr( δη <≤ nnY ,       (11) 

where ),(Binomial~)(' 11 θnnY  and ),(Binomial~)(' 22 θnnY . 

Proof: The proof is given in Appendix B. 



We now solve (10) and (11) simultaneously to find the value of n and η which guarantee the false positive and 
false negative probabilities. In order to solve the inequality (10) explicitly in terms of n, we consider the following 
set of decomposed inequalities: 

     xnnY <> ))('Pr( 1 η ,      (12) 

     xp
n

c −≤−− −
1

1)1(1 δ ,      (13) 

where 10 δ<< x . If we find the set of (n, η ) which satisfies both (12) and (13) simultaneously, then those 

values of (n, η ) also satisfy (10). 

Thus, if we show that there exists n and η  that satisfy (11), (12), and (13) simultaneously, then it proves that 

our scheme guarantees the false positive and false negative probabilities even in the presence of collisions in 
Bloom filters. Because it is not easy to obtain the range of n which satisfies (11) and (12) in a closed form with 
the exact binomial distribution, we first consider a simple form of upper bound for binomial distribution. For a 
binomial random variable X ~ Binomial(n, p), the following inequalities can be derived using Chernoff bounds 
[20]: 

),/2exp()Pr( 2 nnpX ξξ −≤≥−  

)./2exp()Pr( 2 nnpX ξξ −≤−≤−  

If we apply the above inequalities, we then obtain 

     })(2exp{))('Pr( 2

11 θηη −−≤> nnnY ,    (14) 

     })(2exp{))('Pr( 2

22 ηθη −−≤≤ nnnY .    (15) 

If we consider (12) and (14) simultaneously, then n that satisfies  

      
2

1)(2

ln

θη −

−
>

x
n       (16) 

also satisfies (12). If we consider (11) and (15) simultaneously, then n that satisfies 

      
2

2

2

)(2

ln

ηθ

δ

−

−
>n       (17) 

also satisfies (11). Let )('1 ηh  and )('2 ηh  denote the lower bounds on the right hand side of (16) and (17), 

respectively. (13) leads to  

      1
)1ln(

)1ln( 1 +
−

+−
≤

cp

x
n

δ
.     (18) 

Let ))1/(('3 −nmh  denote the right hand side term of (18). The set of (n, η ) that satisfies (16), (17), and (18) 

simultaneously is expressed as a shaded area in the Fig. 2. Let *η  and *
n  denote the value of η  and n that is on 

the intersection of )('1 ηh  and )('2 ηh .  From Fig. 2, we find that the minimum value of n is obtained when *ηη = . 

The value of *η  is then 

x

x

ln/ln1

ln/ln

2

122*

δ

θδθ
η

+

+
= . 

The minimum value of n is determined as   1* +n , where  u  denotes the largest integer that is smaller than or 

equal to u.  

The required size of bit vector m and the number of hash functions k can be determined by (18). We assume 
that the value of m/(n-1) is preserved by adaptively changing the value of m according to the value of n. In order 

to assure that   )1,( ** +nη  exists in the shaded area of Fig. 2,   1* += nn  has to satisfy (18). We substitute   1* +n  

for n and solve it in terms of cp . We then have  



       */1

1 )1(1
n

c xp +−−≤ δ .    (19) 

Since the minimum value of cp  is )1/(6185.0 −nm  from (5), (6), and (7), the range of m/(n-1) is given by (19) as  
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Fig. 2. Solution area for (16), (17), and (18) 

 

The value of m is minimized when n has the minimum value of   1* +n  and the minimum value of m is 

determined as  
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 +−−
=

δ
,    (20) 

where  u  denotes the smallest integer that is larger than or equal to u. The value of corresponding k is 

determined by  ** /2ln nmk ×=  from (6) and (20). We find a set of parameters (n, η , m, k) for any given 

constraints 1δ  and 2δ , and we thus prove that our scheme guarantees false positive and false negative 

probabilities even in the presence of collision in Bloom filters.  

C. Required Memory Size 

We now show the required memory size for the required performance in terms of false positive and false 
negative probabilities. We find the set of parameters (n, η , m, k) which can minimize the required memory size 

for given constraints, 
1δ  and 

2δ . 

In the previous subsection, we show the parameter selection process for an arbitrary value of )0( 1δ<< xx  

in (12) and (13). In order to find the minimum value of m, we need to perform the same parameter selection 
process for various values of x in the interval of ),0( 1δ . We find the minimum bit vector size m as follows: 

- For each value of x in ),0( 1δ , we find the set of parameters (n, η , m, k) according to the given selection 

process. We then minimize the value of n and m while satisfying the false positive and false negative 
probabilities.  

- In the next step, we select the set (n, η , m, k) which minimizes m after obtaining a list of the set (n, η , m, 

k) for various values of x in ),0( 1δ . 

Fig. 3. shows the values of m computed using the above procedure for various values of )0( 1δ<< xx  when 

2.01 =θ , 8.02 =θ , and 05.021 == δδ . The value of x changes from 0.0005 to 0.0495 (=
199.0 δ ) with an 



increment of 0.0005. Since the value of m takes discrete values from a very limited set of integers as shown in Fig. 
3, we find a minimum value of m through the exhaustive search. In Figure 3, the minimum value of m (252) is 

obtained at 025.0=x . Although 252 is the minimum value of m when the Chernoff bound is used, Chernoff 

bound is a rather loose bound. If we use the binomial distribution for )('1 nY  in (12) and )('2 nY  in (11) in order to 

find the minimum value of n that satisfies (12) and (11) simultaneously, then we find smaller value of n.  The 
optimal value of η  can not be solved explicitly using the binomial distribution. Thus, we use the value of η  

obtained from Chernoff bound-based scheme to compute the near-optimal value of n with binomial distributions 
assuming that the optimal value of η  for the binomial distribution is not much different from the value obtained 

from Chernoff bound-based scheme.  
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Table 2 shows the set of parameters (n, η , m, k) that minimize the value of m under the given conditions of 

( 1θ , 2θ , 1δ , 2δ ) when Chernoff bound is used. Table 3 shows the result when the binomial distribution is used. 

The parameters in Table 3 guarantee the required false positive and false negative probabilities. Comparing the 
results in Table 2 and 3, we find that the values of n and m obtained from the Chernoff bound are always upper 
bound of the results obtained from binomial distribution. The value of n is kept smaller than 25 for every case in 
Table 3.  

Fig. 1 shows that 54 + 2m (=32 + 2m + 5 + 5 + 4 + 8) bits are required for each source address. For one million 
source addresses, (54+2m) Mbits of SRAM memory is required to implement our scheme. For example, when 

1.01 =θ , 9.02 =θ , and 05.021 == δδ , 20 bits are required for m as shown in Table 3. In this case, the total 

memory requirement is 94 Mbits. This can be implemented with a 16 MB SRAM. Table 3 shows that more strict 
performance can be provided in terms of false positive and false negative probabilities as the memory is increased.  

 

Table 2. Parameters which minimize m when Chernoff bound is used 

θ1 θ2 δ1 δ2 η n m k 

0.2 0.8 0.05 0.05 0.516 19 252 10 

0.2 0.8 0.01 0.01 0.511 28 486 13 

0.2 0.8 0.005 0.005 0.508 31 600 14 

0.2 0.8 0.001 0.001 0.506 40 936 17 

0.1 0.9 0.05 0.05 0.528 11 120 9 

0.1 0.9 0.01 0.01 0.508 15 252 13 

0.1 0.9 0.005 0.005 0.516 18 306 13 

0.1 0.9 0.001 0.001 0.512 23 484 16 

 

 



Table 3. Parameters which minimize m when Binomial distribution is directly used 

θ1 θ2 δ1 δ2 η n m k 

0.2 0.8 0.05 0.05 0.516 7 78 10 

0.2 0.8 0.01 0.01 0.511 13 216 13 

0.2 0.8 0.005 0.005 0.508 15 294 15 

0.2 0.8 0.001 0.001 0.506 24 506 16 

0.1 0.9 0.05 0.05 0.528 3 20 7 

0.1 0.9 0.01 0.01 0.508 5 68 12 

0.1 0.9 0.005 0.005 0.516 7 102 12 

0.1 0.9 0.001 0.001 0.512 9 192 17 

 

V. SAMPLING-BASED EXTENSION 

In this section, we introduce a sampling technique to address a short history-based scanner detection scheme. 
If a scanner detection scheme makes decisions based on a small number of connection attempts, then it is possible 
to evade the detection system with only a small number of known IP addresses. 

Up to this point, a scanner is assumed to select target IP addresses randomly without knowing any valid IP 
addresses in advance.  However, more advanced worms and bots use valid IP addresses to accelerate the 
spreading or evade detection like the hit-list scanning technique [13, 14]. In this section, we extend our detection 
scheme with a sampling technique and show that our sampling-based extended scheme can detect scanners with a 
fixed number of valid IP addresses while guaranteeing false positive and false negative probabilities.  

We explain the shortcoming of the current version of our detection scheme with an example. Knowing the 
value of n, the scanner s with n valid IP addresses can operate without being detected by our current scheme. Let 
us assume that the detection threshold η  is 0.5 and n is fixed to 10. Let d1, …, d10 denote the valid IP addresses 

that the scanner s already knows.  Let a1, a2, … denote the random addresses to be scanned. If the scanner scans 
with 6 of valid IP addresses among d1 ~ d10, and 4 random addresses from a1, a2, …, then the success ratio would 
be at least 0.6 every time. With the success ratio of 0.6, the scanner is not detected. This kind of problem also has 
been noted in [10]. We combine a sampling technique with our scheme to detect such scanners.  We randomly 
sample source/destination pairs with a probability of 0.1 and consider the connection attempts of only those 
sampled source/destination pairs.  Then, on average, only 1 destination among d1 ~ d10 is likely to be considered 
in the connection success ratio. Thus, the effect of pre-acquired valid IP addresses on the connection success ratio 
can be controlled by the sampling probability. We use the sampling technique suggested in [4] to sample 
source/destination pairs. We use a uniform random hash function hm to map (s, d) pairs to [0,1). If the random 
number allocated to (s, d) is less than the sampling probability ps, then the (s, d) pair is sampled and the 
connection status is monitored

3
.  

For the performance analysis, we assume that the number of valid IP addresses known to the scanner is limited 

to l . We also assume that the scanner continues to scan after the scanning of valid IP addresses.  We then show 
that the following statement is valid. 

Proposition 2. For x1 and x2 ( 12121 ,0,0 δ<+>> xxxx ), if the 5-tuple of (n, η , m, k, ps) satisfy the following 

relations, 

     ,)1(1 1xp
n

c ≤−−       (21) 
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     (22) 

     ,)),(ˆPr( 2111 xxnlnY −−<> δηα     (23) 

     ,))('Pr( 22 δη <≤ nnY       (24) 

                                                           
3 Since the sampling is based on (s, d) pair and the attempt and the response are counted at most one time for each (s, d) pair, duplicate 

attempts to the same valid IP address can not affect the connection success ratio of s. 



where 
sp  is a source/destination pair sampling probability, α  is a real number larger than )/()1( 121 θθθ −− , and 

)/)1(,(Binomial~),(ˆ
111 αθθα −+nlnY . Then the false positive and false negative probability requirements of (3) 

and (4) are satisfied. 

Proof: The proof is given in Appendix C. 

(21), (23) and (24) have the same form as (13), (12) and (11), respectively, although the success probability is 

increased by αθ /)1( 1−  in case of Y1 and the power of cp−1  is increased from n-1 to n. Thus, the set of (n, η , 

m, k) can be obtained from (21), (23), and (24) in the similar way as in Section III. The value of α  should be 

larger than )/()1( 121 θθθ −−  in order to prevent the increased success probability of the scanner, ( αθθ /)1( 11 −+ ), 

from being larger than the minimum success probability of benign hosts, 
2θ . If )/()1( 121 θθθα −−> , then the 

false positive and false negative probability requirements are guaranteed. We now study the effect of α . 

We induce the property of α  from (22). If we let As denote the number of attempts required to sample n 
attempts with no collision in Bloom filter, i.e. pc = 0, then (22) becomes 

      .)Pr( 2xlAs ≤< α      (25) 

From (22), the expectation of As is given by 
ss pnAE /][ = . From the Markov inequality [21], we obtain 

     )/(][1)Pr( lAElA ss αα −≥< .     (26) 

Combining (25) and (26) yields lxlAE s αα ≈−≥ )1(][ 2
, since 

2x  is usually negligibly small compared with 1. If 

we consider the collision in Bloom filters, then ][))1(/(][ scs AEppnAE ≥−=  and we have  

      lAE α≥][ .      (27) 

If we combine 
ss pnAE /][ =  and lAE s α≥][ , we get 

      ./ lnps α≤       (28) 

If we increase α , then the effective success ratio of the scanner ( αθθ /)1( 11 −+ ) decreases. α  thus decreases the 

effect of scanners with known valid IP addresses. As the difference between the success ratios of scanners and 
benign hosts increases, our detection system operates faster with smaller number of connection attempts (n) and 
the smaller memory size. However, the sampling increases the time to detect scanners. (27) shows that a large 
value of α  tend to increase data collection time. As α  increases, the memory size is decreased, but the data 
collection time is increased due to the decrease of the sampling probability in (28).  

The value of sampling probability ps can be computed from (22) when the value of n is determined. If we 
focus on the minimization of the memory size or bit vector size (m), then the optimal case is likely to be achieved 

when 
2x  is negligibly small. If the value of 

2x  is very small, then ps should be small according to (22).  The small 

value of ps leads to long data collection time. In order to avoid too small value of ps, we add the constraint that 

12 1.0 xx =  to (21), (22), and (23). 

Table 4 shows the set of parameters (n, η , m, k, ps) obtained from (21) ~ (24) when Chernoff bound is used to 

approximate Binomial distributions. Table 5 shows the set of parameters (n, η , m, k, ps) obtained from (21) ~ 

(24) when Binomial distribution is used without approximation. Table 4 and 5 shows that the resulting parameters 

except ps are not changed even though the number of known addresses l  is changed. Only ps is dependent on l as 
shown in (22).  If we compare the results of Table 5 with the same cases in Table 3, the values of the parameters 
(n, m, k) are identical especially when 20=α . Thus, the cost of adding the sampling to our detection scheme is 

not significant. Tables 4 and 5 show that the large α  tends to decrease the required memory size, but 

])[(/ AEpn s ≈  increases as α  increases. The value of α  can be determined considering the relative importance 

between memory budget and short data collection time. 

 

 



Table 4. Parameters which minimize m when sampling technique and Chernoff bound are used ( 8.0,2.0 21 == θθ ) 

δ1(=δ2) α  l η n m k ps 

10 0.550 24 345 11 0.13047 10 

1000 0.550 24 345 11 0.00122 

10 0.539 22 294 10 0.05764 

 

0.05 

20 

1000 0.539 22 294 10 0.00056 

10 0.546 41 840 15 0.24621 10 

1000 0.546 41 840 15 0.00220 

10 0.530 37 720 14 0.10206 

 

0.005 

20 

1000 0.530 37 720 14 0.00097 

 

Table 5. Parameters which minimize m when sampling technique and Binomial distribution are used ( 8.0,2.0 21 == θθ ) 

δ1(=δ2) α  l η n m k ps 

10 0.550 7 78 10 0.01687 10 

1000 0.550 7 78 10 0.00016 

10 0.539 7 78 10 0.00830 

 

0.05 

20 

1000 0.539 7 78 10 0.00008 

10 0.546 18 306 13 0.07380 10 

1000 0.546 18 306 13 0.00069 

10 0.530 15 294 15 0.02301 

 

0.005 

20 

1000 0.530 15 294 15 0.00022 

 

Additional benefit of the sampling is that we can cover more connection attempts with a limited memory size. 
Let us assume that the memory space can accommodate only M source/destination pairs. Without sampling, we 
can track only M source/destination pairs. But with sampling with probability of ps, an average of M/ps (s, d) pairs 
can be tracked. For ps = 0.1, we can cover 10 times more (s, d) pairs with the same memory.  

If we fix the sampling probability to a very small number in order to detect scanners with large l , then it takes 

long time to detect scanners with small l . We alleviate this problem by running two detection systems in parallel 

with different sampling probabilities. If a scanner finishes probing just after scanning the known l  addresses, the 
success ratio of the scanner would remain near 1.0. This kind of scanners with high success ratio can not be 
detected based on the attempt success ratio. Our extended detection system can detect a scanner with a large l  

only when the real success ratio of the scanner drops sufficiently lower than 
2θ  by scanning random IP addresses.  

VI. NUNERICAL RESULTS 

In this section, we evaluate the performance of our scheme by simulation. We use packet traces taken from 
NLANR archive [22] as the base traffic. We also inject packet traces of 1000 normal hosts with a success ratio of 
0.8 (

2θ ) and 1000 malicious hosts with a success ratio of 0.2 (
1θ ). We model a successful attempt with a single 

pair of bidirectional packets.  The response time of the response packet is distributed uniformly in the interval of 
[0, 450] msec. The interval between successive attempts is modeled with an exponential distribution. The base 
traces from NLANR are described in Table 6.  

Table 6. Description of NLANR traces 

Trace Duration (sec) No. packets No. distinct sources No. distinct source-

destination pairs 

1 6720 3496843 752617 1166423 

2 12900 2116553 536554 810486 

3 4615 1837565 445712 650009 

 

We limited the number of total entries to 0.5 million. The number of addresses in the connection status table is 
125,000 and there are 4 entries at each hash value. MD5 is used for hash functions. Table 7 shows the simulation 
results for several scenarios. For the scanner without any valid IP addresses in advance, i.e. l = 0, we use the 



parameters given in Table 3 for our detection system.  For the scanner with 10 valid IP addresses in advance, i.e. l 

= 10, the sampling-based extended scheme is applied with the parameters corresponding to α = 10 in Table 5.  

For l = 0, we observe that the false positive probabilities are guaranteed. The false negative probability is 
guaranteed in scenarios 5 and 6 for trace 3, but it is not guaranteed in scenarios 1~4 for traces 1 and 2. When we 
compute the false positives, we include benign traffic in NLANR traces as well as the injected packets. Although 
the injected connection attempts of normal behavior have a success ratio of 0.8, each IP address in the real trace 
does not make many connection attempts to distinct hosts and has a rather high success ratio. Since the number of 
sources corresponding to this normal behavior in the original trace is much larger than the number of injected 
source addresses, the false positive probability tends to be very small. In Section IV and V, we assume that the 
memory is not overloaded and the entries corresponding to scanners are not evicted due to the low connection 
success ratio. If we compare the number of distinct sources of traces 1, 2, and 3 with the total number of entries in 
the memory, 0.5 million, the number of distinct sources is larger than 0.5 million for traces 1 and 2. We find that 
the NLANR traces also contain some hosts with a rather low connection success ratio of below 0.8 and they are 
competing for memory space with injected scanners causing eviction of entries of scanners sometimes. Since this 
kind of contention is severe especially when the memory is overloaded, the resulting eviction events increase the 
false negative probability for the overloaded cases (traces 1 and 2). For example, in the scenarios 1, 3 and 5 the 
decision is made based on 7 attempts according to Table 3. Thus, we have each scanner send only 10 attempt 
packets with a low rate during the whole simulation period. If the entry corresponding to this scanner is evicted 
after the arrival of 4-th attempt due to temporal overload on the memory, then the remaining 6 attempts are not 
sufficient to make a decision and this scanner may not be detected. However, even for the scenarios 1 and 2, the 
obtained false positive probability is still close to the target value. We note that only 10 and 25 scanning packets 
have been sent by a scanner in scenarios 5 and 6, respectively. Thus, the scanning rate is as low as 1 packet per 
several hundred seconds. However, our scheme detects those slow scanners with guaranteed performance in those 
scenarios when the memory is not heavily overloaded.  

In scenarios 7~10 with scanners using 10 valid IP addresses in advance, we use sampling-based scheme 
described in Section V. The environment is similar to that of scenario 1~4, but each scanner sends 1.5 times more 
packets than the number required to fill Bloom filters under sampling. We observe that the false positive and false 
negative probabilities are satisfied in these scenarios. Since sampling has the effect of reducing load to the 
memory by sampling probability, the number of evictions is decreased significantly as shown in Table 7.  The 
false positive and false negative probabilities are guaranteed according to the Proposition 2 in Section V. 
Although the sampling technique is incorporated to detect more intelligent scanners with valid IP address 
information, we also find that the sampling is useful to resolve the overload problem on memory as shown by 
results for scenarios 1~4 and those for 7~10.  

 

Table 7. Simulation results ( 8.0,2.0 21 == θθ ) 

Scenario Known 

addresses ( l ) 

Trace δ1/δ2 False 

positives 

False 

negatives 

No. evictions 

1 0 1 0.05/0.05 3.64e-5 0.070 306210 

2 0 1 0.005/0.005 2.68e-6 0.008 307766 

3 0 2 0.05/0.05 5.50e-5 0.053 130214 

4 0 2 0.005/0.005 3.75e-6 0.006 131037 

5 0 3 0.05/0.05 6.82e-5 0.035 73632 

6 0 3 0.005/0.005 1.13e-5 0.004 74091 

7 10 1 0.05/0.05 9.29e-5 0.013 1 

8 10 1 0.005/0.005 7.97e-6 0 209 

9 10 2 0.05/0.05 1.00e-4 0.020 0 

10 10 2 0.005/0.005 1.49e-5 0.001 13 

 

VII. CONCLUSIONS 

A new scanning detection scheme is proposed based on the connection attempt success ratio. The proposed 
scheme can detect scanners, including slow scanners, with guaranteed false positive and false negative 



probabilities under a memory-limited environment. Since a high priority is given to source addresses with a low 
connection success ratio, the entries corresponding to scanners can be retained in the connection status table 
longer than those of benign IP addresses, and thus, detection of slow scanners is possible in our scheme. The 
detection threshold, the required memory size, and other system parameters are analytically derived in order to 
guarantee false positive and false negative probabilities.  

Usually detection of slow scanners require management of per-flow states with the O(N
2
) of memory [7, 11], 

but our scheme reduces the memory requirement to O(N) by making decisions with a fixed number of connection 
attempts. We used Bloom filters to further reduce the memory size. Our scheme can detect scanners with a rather 
small number of connection attempts, less than 25, and the complexity of the proposed scheme is sufficiently low 
to allow monitoring at high speed links. By applying a sampling technique to our detection algorithm, we can 
detect more intelligent scanners that use pre-acquired valid IP addresses while maintaining the guaranteed false 
positive and false negative probabilities. We evaluate the performance of our schemes by simulation and find that 
the fast detection and detection of slow scanners are achieved while maintaining both the false positive and the 
false negative probabilities. 
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APPENDIX A – PROOF OF LEMMA 1 

Since n is a fixed number, we have )),(Pr()/),(Pr( ηη nrnXnrnX >=>  and it can be expressed as 
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Since n and η  are usually fixed in the above equation, we consider the right hand side term as a function of r and 

let f(r) denote the right hand side term of the above equation. If we differentiate f(r) with respect to r, then we 
have  
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Let us consider r less than η , i.e. η<r . Since ηnj > , we have nrnj >> η . Thus, 0)(' >rf  for η<r  by 

(A1) and we have )()( 21 rfrf ≤  since η<≤ 21 rr . Thus, (8) is proved. (9) can also be proved in a similar way. 

n  

 

APPENDIX B – PROOF OF PROPOSITION 1 

 A is the total number of connection attempts of a source address s until the n-th connection attempt is counted 
by the Bloom filter. Since the packet arriving at an empty Bloom filter does not experience collision, the 
distribution of A is given as 
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where i = 0, 1, 2, …. Let us investigate the distribution of Y1(j), i.e. jAY =|1
. In real case, the value of 

RESPONSE may not reach j due to collisions in V2. But, we assume that there is no collision in V2 and the value of 
RESPONSE can reach up to j as a conservative approximation in terms of false negative probability. This 
assumption is conservative because large value of RESPONSE implies high false negatives for scanners. Let Z1(i) 
be a random variable that represents the result of the i-th connection attempt of a malicious source. Z1(i) is 1 if the 
i-th attempt is a success, and 0 if the attempt is a failure. Then, Y1(j) can be expresses in terms of Z1(i) as 
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Since we assume that the random variables Z1(i)’s (i = 1, 2, …) are independent and identically distributed (i.i.d.), 
Y1(j) has a binomial distribution. 

In order to discriminate the hosts with the success ratio of 
1θ  from the hosts with the success ratio of 

2θ , we 

need to put the detection threshold η  between them. Thus, we assume 
21 θηθ << . The false negative probability 

of a scanner s1 can be expressed as 
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By the definition of )(1 nY , we have )|/Pr( 1 nAnY =>η )/)(Pr( 1 η>= nnY . Since 
1)1()Pr( −−== n

cpnA  by 

(B1), (B2) can be changed into 
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Since we can obtain ))(Pr())('Pr( 11 ηη nnYnnY >≥> from Lemma 1 and 1)1( 1 ≤− −n

cp  to the right hand side 

of the above inequality, we have 
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Thus, if we find the set of (n, η ) which satisfies (10), then for those set of (n, η ) the false negative probability is 

guaranteed by (B3) and (10).  

 

Y2 is the number of connection successes of a benign host observed until n attempts are counted by the Bloom 
filter. Then, we have 
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In this case, we do not assume that there is no collision in V2 since this assumption leads to decrease of the above 
false positive probability optimistically. Let R denote the maximum number the RESPONSE value can reach in 
this case. We consider only the attempts which can contribute to the RESPONSE value without collision in the 
Bloom filter V2 in Y2. Then, we have  
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Since we assumed that the outcomes of the attempts of a benign host are i.i.d., we have  

    ))(
~

Pr(),|Pr( 22 ηη niYjAiRnY ≤===≤     (B6) 

where )(
~

2 iY  denotes jAiRY == ,|2  and ),(Binomial~)(
~

22 piiY , where p2 is the success probability of the 

benign source. We can easily show that ))(
~

Pr( 2 ηniY ≤  is a non-increasing function with respect to i when ni ≥  

and ηθ >≥ 22p , that is, 
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Then, from (B4), (B5), (B6), and (B7), we can obtain the following bound: 
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When A=n, there is no collision in the Bloom filter and R is also equal to n. Thus, we have 

))(Pr())(
~

Pr( 22 ηη nnYnnY ≤=≤  from (B5), where )(2 nY  denotes nAY =|2
, and (B8) can be changed into 

     ).)(Pr()Pr( 2
2 ηη nnY

n

Y
≤≤≤      (B9) 

Since ))(Pr())('Pr( 22 ηη nnYnnY ≤≥≤  by Lemma 1, from (B9) we have 
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By (B10), the false positive probability is guaranteed if (11) is satisfied. n  

 

APPENDIX C – PROOF OF PROPOSITION 2 

As the scanner tries more known IP addresses before the sampling is over, the monitored success probability is 
likely to increase. Thus, the connection success ratio can be maximized only when the scanner tries as many 
known IP addresses as possible before the sampling is over. The false negative probability is also maximized 
when the scanner tries as many valid IP addresses as possible. If we can guarantee the false negative probability in 
this worst case, the false negative probability should be guaranteed in other cases, i.e. when the scanner tries less 
number of known IP addresses, too. Thus, we assume that scanners attempts to scan known IP addresses as early 
as possible for a high connection success ratio. 

Let A denote the number of connection attempts made until the ATTEMPT value of a given source address 
reaches n. Let B denote the number of sampled attempts until the ATTEMPT value of the source address reaches n.  



As a conservative approximation we assume that every sampled attempt or (s, d) pair experience the collision 
probability of pc given by (7) in Bloom filters. An attempt can be registered into a Bloom filter if it is sampled and 
does not experience collision in Bloom filters. Thus, the distribution of A is given by  
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where i = n, n+1, …. 

By conditioning on A, we can obtain the following relation regarding false negative probability: 
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By conditioning on B, we can obtain 
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In order to obtain an upper bound of a false negative probability, if we assume that the responses of the 
sampled attempts does not experience collisions in V2 of the corresponding source address as a conservative 

approximation, then the RESPONSE value can reach up to j when B=j. Let us consider the case of li >  since 

li α≥  in (C2) and 1>α  by the assumption. Since we assumed that the scanner attempts to scan l  known IP 

addresses first, those attempts to l  known IP addresses are included in the total number of attempts i. If the 
sampling probability is fixed to ps, then whether a specific attempt among i attempts is sampled or not is 
independent of sampling of other attempts by our sampling scheme. Then, the probability that the first sampled 

attempt is from the list of known IP addresses of a scanner is ./ il  Before evaluating (C3), let us investigate the 

distribution of iAnBY == ,|1 . Let C denote the number of attempts to known addresses among B sampled 

attempts. Then, the distribution of iAnBY == ,|1  can be expressed as  
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Although ),|Pr( iAnBkC ===  is given as a hypergeometric distribution of 
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larger than n, then it can be approximated by the binomial distribution [23] as  
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If we assume that the attempt to any known addresses is always successful, then we have  
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where 1p  is the attempt success probability of a scanner for random IP addresses and 11 θ≤p . Combining (C4), 

(C5), and (C6) yields 
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where ilppip /)1()(ˆ
111 −+= . Let ),(*

1 inY  denote iAnBY == ,|1 , then ))(ˆ,(Binomial~),( 1
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1 ipninY  by (C7).  



In order to evaluate (C3), we now calculate ).|Pr( iAnB ==  Since === )|Pr( iAnB  

)Pr(/),Pr( iAiAnB ===  and )Pr( iA =  is given by (C1), we need to evaluate ),Pr( iAnB == . Since B and A 

are reflecting sampled attempts and total attempts, respectively, until n distinct attempts are registered in the 
Bloom filter V1, the event of B = n and A = i means all of the n sampled attempts are registered in V1 without 
collision and all other i-n attempts are not sampled. In addition, the final attempt is always sampled and registered 
without collision by the definition of B and A. Thus, ),Pr( iAnB ==  can be evaluated as 
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From (C1), (C8), and the definition of conditional probability, we have  
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From (C3) and (C9), we can obtain 
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We need to select α  larger than )/()1( 121 θθθ −−  so that the increased success probability of the scanner 

)/)1(()(ˆ
111 ilppip −+=  can not be larger than the minimum success probability of a normal host 2θ . Since 

))(ˆ,(Binomial~),( 1

*

1 ipninY  and )(ˆ
1 ip  decreases as i increases, by Lemma 1 we can obtain 
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From (C2), (C10), and (C11), the following relation can be derived: 
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We assumed that α  is selected such that lα  is an integer. In the above relation, ~),(|
*

1,1 lnYY lAnB αα ===  

)./)1(,(Binomial 11 αppn −+  If we ),(ˆ
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1 lnY α  especially when 1p  has the maximum value of 

1θ , then ααθθ /)1(/)1( 1111 pp −+≥−+  and by Lemma 1, we have  
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Combining (C12) and (C13) yields 
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From (3) and (C14), we can know that if (21), (22), and (23) are satisfied, then the false negative probability 
constraint of (3) is satisfied.  

The false negative probability is not affected by the known IP addresses of scanners since it is determined by 
the behavior of benign hosts. We can show the following relation is valid in the same way as that used for Y2 in 
Appendix B although we need to condition one more time about the sampled attempts B between A and R: 
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Thus, if (24) is satisfied, then the false positive probability is guaranteed by (C15). n  


