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Abstract—We propose a new arbitration algorithm, called the desyn-
chronized two-dimensional round-robin (D2DRR), for input queued
packet switches in which each input port maintains a separate logical
queue for each output. D2DRR is an enhanced version of 2DRR, and
thus improves fairness over 2DRR without a starvation problem. Iter-
ative maximal matching schemes including iSLIP yield better through-
put with more iterations. However, since many iterations require much
time for arbitration, it is not desirable for high speed switching. Thus,
D2DRR attempts to resolve contentions with less iterations, while yield-
ing high throughput. The proposed arbitration algorithm is compared
in terms of average cell latency with conventional algorithms, especially
iSLIP and wrapped wave front arbitration (WWFA).

I. INTRODUCTION

Explosively increasing internet traffic has led to a greater
demand for high-speed switches and routers with a through-
put of higher than 1-Tbit/s [1]. Crossbar switching fabrics
are widely adopted because of their non-blocking capabil-
ity, simplicity, and market availability. Since it has been
shown possible to increase the throughput of input-buffered
switches from 58.6� to 100� using a virtual output queu-
ing (VOQ) scheme [2], input queuing schemes are currently
being adopted in many high-speed switching systems [3][4].

Even if input buffered switches maintain a virtual output
queue at each input port, there remain contention problems at
the input and output ports. In order to solve these contentions
and to increase the utilization of the switch, proper arbitra-
tion algorithms are used. Maximum matching algorithms
have been proposed to achieve 100� throughput. However,
such a high complexity [2] makes implementation difficult
for high-speed systems. Maximal matching schemes, such as
parallel iterative matching (PIM) [5], round-robin matching
(RRM), iSLIP [6], FCFS in round-robin matching (FIRM)
[7], wave front arbitration (WFA) [8], and two-dimensional
round-robin (2DRR) [9], have been considered as an alterna-
tive to maximum matching schemes.

iSLIP provides 100� throughput for uniform, independent
traffic and yields better performance as the number of itera-
tions increases until it converges in about ���

�
� iterations

for an � � � switch. However, since it takes more time
to perform multiple iterations, the number of iterations be-
comes a bottleneck as the switching speed increases.

In this paper we propose a new arbitration algorithm,
called the desynchronized two-dimensional round-robin
(D2DRR), which yields good performance with just a sin-
gle iteration. D2DRR is similar to the 2DRR algorithm [9].
However, it provides a better fairness property than 2DRR.
We propose two types of D2DRR algorithms. The first one
is D2DRR with a single matching which does not allow a
nonempty VOQ to remain unserved indefinitely. The sec-
ond one is D2DRR with double matching which inherits the
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starvation-free property of a single matching algorithm and
improves delay performance by using the bandwidth released
free after the first matching.

This paper is organized as follows: In Section II, we
present a basic D2DRR algorithm with a single matching
and describe its properties. In Section III, we describe an en-
hanced D2DRR algorithm with double matching. In Section
IV, we evaluate the performance of the proposed arbitration
algorithms by simulation. Finally, we present conclusions in
Section V.

II. BASIC D2DRR ARBITRATION ALGORITHM

The 2DRR algorithm was introduced as a two-dimensional
generalization of the one-dimensional round-robin scheme
[9]. We enhance the 2DRR from the aspect of fairness. In
this section, we describe a basic D2DRR scheduling algo-
rithm, while in a later section, we will describe an enhanced
version of the D2DRR.

In this paper we consider an � �� input queued switch
which uses virtual output queueing (VOQ), where a separate
queue is maintained at each input port for each output. � ���

denotes the virtual output queue that stores the cells passing
from the �-th input port to the �-th output port.

D2DRR with a single matching consists of three steps: Re-
quest, Matching, and Pointer update. All the three steps are
performed within a time slot, where a time slot is the time
between packet arrivals at input ports.

Step 1: Request
Let � denote the request matrix for an � � � input

buffered switch, then it can be expressed as

� �

�
����

���� ���� � � � ����

���� ���� � � � ����

...
. . .

...
���� ���� � � � ����

�
���� (1)

where ���� takes one value among 0, 2, and 4. If � ��� is
non-empty, the value of ���� becomes 2 or 4. Otherwise, it
becomes 0 or 2.

In the D2DRR algorithm, time is logically partitioned into
variable-length intervals called the frames. Each frame is
determined independently for each column of request matrix.
During a frame, all non-empty VOQs belonging to the same
column of the request matrix are served just once. At the
beginning of a frame, the values of all � ���

�� corresponding
to non-empty VOQs are 4 and the values of the other � ���

��
are zero. When ���� acquires a grant to transmit a cell into
the switch fabric, the value of ���� is changed into 2 and the
VOQ can not obtain any more grant until the current frame
is over since the grant is given to the VOQ whose request
value is equal to 4. If a new cell arrives at an empty VOQ
���� during a frame, the value of ���� is changed from 0 to



4. However, if a new cell arrives at the ������ whose request
value is 2, the value of ������ is not changed. If all non-empty
VOQs for column � are served once, all the request values
are reset since the current frame is over and the next frame
begins with new request values.

Step 2: Matching
The D2DRR scheduler allocates one pointer for each col-

umn in order to resolve output contentions for each output.
This is a major difference from the WFA [8] or the 2DRR [9]
which uses a fixed set of pointer array. However, the pointer
array for D2DRR can have any pattern. Let �� ��� be the
pointer allocated for column �. Thus, there are � pointers in
total. Initially, all the values of � pointers are different from
each other, and the values are ever kept different thereafter,
i.e., the pointers move desynchronized with each other. Thus,
there is only one pointer per each row and there is only one
pointer per each column. An output � chooses the request
that has a value equal to 4 and appears next in a round-robin
schedule starting from the position of �� ���.

Step 3: Pointer Update
Pointer update is very important because it can affect the

throughput of the switch and it also determines whether the
algorithm suffers from a starvation problem or not. In the
D2DRR algorithm, the pointer update stage is further divided
into three steps.

First, if there is at least one request for a column, but no
matching is made for the column, a pointer value is incre-
mented (modulo � ) by one for the column.

Second, pointers for the columns where at least one match-
ing is made are updated. Pointers for these columns are in-
cremented (modulo � ) to one location beyond the granted
input. However, if another pointer from other column has
already occupied the input, the later one can not be fixed
there. Such a pointer should be incremented (modulo � )
one by one until it is allocated to the free input (or row)
where no previous pointer allocation is made. Since the ini-
tial points (i.e., the granted inputs) of the pointers are differ-
ent, all pointers can be incremented concurrently.

Third, pointers for the columns where there is no request
are updated. The procedure is almost the same as the second
case. Each pointer is incremented (modulo � ) one by one
from the initial position until it is allocated to the free input.

We compare the D2DRR with the WFA and the 2DRR
from the aspect of fairness. Fig. 1 shows a vertical line-
shaped traffic pattern. We assume that requests are always
present for the three input/output pairs that are indicated with
1’s in Fig. 1. If the line-shaped pattern includes all � � � of
the input/output pairs in the third column, then each one has
a throughput of 		� � 

	�� for any arbitration algorithm.
However, in the reduced length line of Fig. 1 WFA yields
a throughput of 

	��� 

	��� 

��� or 

��� 

	��� 

	���
for the pairs �� ��� �� ��� �� ���, respectively. Even the ba-
sic 2DRR or the enhanced 2DRR algorithm does not show
a throughput of 		�� 		�� 		�� because they use only fixed
pointer patterns [9].

On the other hand, in D2DRR the pattern of pointer array
is not fixed and the pointer for each column can move more
freely. D2DRR partitions time into variable-length intervals
called the frames. During a frame, all non-empty VOQs be-
longing to the same column of the request matrix are served
just once. Thus, all three input/output pairs in Fig. 1 have
the same throughput of 		�, and furthermore, all non-empty
VOQs contending for the same output always receive fair ser-
vices.
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Fig. 1. Request pattern for line-shaped traffic case

We now consider a starvation-free property of the D2DRR
algorithm.

Lemma 1 If there is any request for a column, at least one
request is granted for transmission for � time slots.

Proof) Let us assume that no request is granted from a col-
umn with at least one request for � time slots. Then, accord-
ing to the pointer update rule this column is given the highest
priority and the pointer for the column is incremented (mod-
ulo � ) by one for each time slot. Since no request is granted
during � time slots, the pointer has passed through every
input. The condition there is at least one request for the col-
umn implies at least one input has a request at the column
and at least one match should have occurred for� time slots.
Therefore, proof is done by contradiction. �

Theorem 1 The duration of one frame does not exceed� �

time slots.
Proof) Since we consider the maximum value of the dura-

tion of a frame, it is sufficient to consider only one generic
frame. Fig. 2 shows the sample of a frame. As shown in
Fig. 2, time is counted from the beginning of a frame in time
slots.

Let ��� be the number of requests coming to the head of
the VOQs corresponding to the selected column (or output)
during � time slots of a frame. ��� does not count the re-
quests coming to the head of the VOQ that is already served
in the frame, i.e., ��� counts the requests for each VOQ
at most once in a frame. Let �� be the number of grants
given to the selected column of the request matrix during �
time slots of a frame. Then, the number of the requests re-
maining in the column without being served during the time
interval �
� ��, ��� can be expressed as

��� � ������
 (2)

We can easily know the following relation from the defini-
tion of ���:

��� � �
 (3)

If we define �� as the time interval between the ��	�-th
and �-th grants given to the column, �� can be expressed
as

�� � ���

��
	� �

�

���

�� � �

��
 
 (4)

If the frame ends before � � time slots, the proof is over.
Thus, we assume the frame does not end before � � time



0

S1 S2 S3 S4

time (slot)

# of remaining 
requests

0

1

2

N

t

Fig. 2. Change of the remaining requests over time

slots. Then, since �� � � holds for each � � 	� �� 
 
 
 � � by
lemma 1, the following relation also holds:

�

���

�� � ��
 (5)

From (4) and (5), the following relation can be obtained:

��� � ���

��
	� �

�

���

�� � ��

��
 � �
 (6)

Combining (2), (3), and (6) yields the following equation:

���� � �������� � � �� � 
 (7)

Q.E.D.�
This theorem states that any frame does not last longer

than � � time slots. Since a frame ends only after every non-
empty VOQ for the column is served once, the following re-
sult can be obtained easily.

Corollary 1 Any head-of-line request can be served within
��� time slots.

Proof) trivial �
This corollary implies that no request is starved by the

D2DRR algorithm.

III. ENHANCED D2DRR ARBITRATION ALGORITHM

Thus far, we have considered the operation of D2DRR
with a single matching (1-D2DRR). We now examine an
enhanced D2DRR algorithm that performs two matchings
within a time slot (2-D2DRR).

The performance of iSLIP improves as the number of iter-
ations increases (up to about ���

�
� , for an � �� switch).

The performance of D2DRR improves significantly with one
more matching. A single iteration of 1-D2DRR consists of
3 steps: Request, Matching, and Pointer Update. The oper-
ation of 2-D2DRR requires one more step, and thus, a sin-
gle iteration of 2-D2DRR consists of 4 steps: Request, first
Matching, second Matching, and Pointer Update.

The operation of 2-D2DRR follows the basic operation of
1-D2DRR. We examine the 2-D2DRR algorithm based on
the difference with 1-D2DRR.

Step 1: Request
The structure of the request matrix is the same as (1), but

the value of its element is different. ���� is set to 0, 1, 2, or
4 depending on the situation. If � ��� is non-empty, the value

of ���� is 2 or 4. Otherwise, it is 0 or 1. The definition of a
frame is similar. At the beginning of a frame, the values of all
����

�� corresponding to non-empty VOQs are set to 4 and the
values of the other ����

�� are set to zero. When ���� acquires
a grant to transmit a cell into the switch fabric, the value of
���� is changed into 2 if ���� has any remaining cell and it
is changed to 1 if ���� has no cell to transmit. If a new cell
arrives at the ������ whose request value is 1 or 2, the value of
������ is changed into 2. If all non-empty VOQs for column �
are served at least once, all the request values are reset since
the current frame is over and the next frame begins with new
request values.

Step 2: First Matching
The second step of 2-D2DRR is the same as the second

step of 1-iteration algorithm, i.e., a grant is given to the re-
quest whose value is equal to 4.

Step 3: Second Matching
At the first matching stage, a grant is given only to the

request with a value of 4 in order to support fairness and to
avoid a starvation problem. At the step of second matching,
the grant is given only to the request whose value is equal
to 2 in order to increase the throughput irrespective of the
constraints of fairness and starvation-free.

Step 4: Pointer Update
Step 4 neglects the matching made at Step 3, and the

pointer update is performed, as shown in the third step of
1-D2DRR. The pointer is updated by considering the match
made at the first matching step in order to support fairness
and to avoid a starvation problem.

Since the pointer is updated in the same way, the
starvation-free property obtained for the 1-D2DRR algorithm
also holds for 2-D2DRR. From the aspect of fairness, the
throughput provided to each input by the 1-D2DRR is also
guaranteed. Thus, minimum throughput is provided fairly to
each input. Since the remaining bandwidth is utilized to in-
crease total throughput, the remaining bandwidth may not be
distributed evenly.

Since the second matching of 2-D2DRR does not affect
the pointer update step, the second matching and the pointer
update steps can be performed concurrently. Thus, the arbi-
tration time of 2-D2DRR is the same as that of 1-D2DRR.

IV. SIMULATION RESULTS

The performance of the proposed arbitration algorithm is
evaluated through simulation for an � � � input buffered
switch. The input and output link rates are 622 Mbps and
the length of packets is fixed to that of ATM cell, i.e., 53
bytes. One traffic source is connected to each input port and
the destined output ports of generated cells are randomly se-
lected among 8 output ports.

Input traffic models for simulation include random and
bursty traffic. For random traffic, cells arrive at each in-
put port according to a Bernoulli process with parameter �,
where � is the offered load per each input port. Bursty traf-
fic is modeled by an on-off arrival process where the on and
off interval lengths are exponentially distributed with differ-
ent parameters. The source alternately generates a burst of
cells followed by an idle period of no cells. During the on
period cells are generated at the link rate and the destined
output ports of the cells belonging to the same on period are
all identical. The average burst length is set to 32 cells.

The performance of the basic D2DRR (1-D2DRR) and
the enhanced D2DRR (2-D2DRR) algorithms are compared
with other arbitration algorithms including the iSLIP and the



wrapped wave-front arbitration (WWFA) arbitration algo-
rithms, and are also compared with that of an output buffered
switch.

Fig. 3 compares the average delay distributions obtained
from several different algorithms under a Bernoulli traffic
load. We can observe that the 1-D2DRR algorithm yields
low latency compared with the SLIP algorithm with a sin-
gle iteration. This is because in case of SLIP grant arbiters
suffer from blocking. The pointer of grant arbiter of iSLIP
is incremented if, and only if, the grant is accept. Thus, if
the highest priority element at the output is not accepted, the
grant can not be allowed to other lower priority element be-
cause the position of the pointer is not changed. However,
in the D2DRR algorithm, if the highest priority element can
not be granted because the input has already selected another
element for different output, the grant can be given to other
lower priority element. And fairness is guaranteed by an-
other mechanism. Since D2DRR can give more grants than
iSLIP, it yields higher throughput.

Since one frame ends only after all non-empty VOQs re-
ceive service just once, any non-empty VOQ that is served
should wait for the frame to end in order to be served again.
The throughput of 1-D2DRR is limited by the above con-
straint. 2-D2DRR relaxes this constraint by introducing a
second matching step which allows the bandwidth left free
after the first matching to be used freely. Fig. 3 shows that 2-
D2DRR yields slightly better performance than WWFA and
2-SLIP and its performance is close to that of 3-SLIP.

Fig. 4 compares the average cell latency of the proposed
D2DRR algorithms with that of the conventional algorithms
under a bursty traffic load. The differences among different
algorithms seem clear under the worse scenario. However,
we can observe a similar trend to Fig. 3. The performance of
2-D2DRR is better than for 2-SLIP and is very close to that
of 3-SLIP.

V. CONCLUSIONS

In this paper we proposed two new arbitration algorithms
for input buffered switches; a basic D2DRR and an en-
hanced D2DRR algorithms. The D2DRR algorithm yields
high throughput with just a single iteration. The single
matching scheme (1-D2DRR) guarantees fairness and avoids
the starvation problem, and the double matching scheme (2-
D2DRR) improves the throughput by utilizing the bandwidth
released after the first matching while preserving fairness and
starvation-free properties.

Simulation results show that the basic D2DRR algorithm
yields better performance than the SLIP with a single itera-
tion and the enhanced D2DRR algorithm yields the perfor-
mance close to the maximum throughput of conventional it-
erative algorithms. Thus, it is more competitive than other
iterative algorithms requiring many iterations from the view-
point of high speed implementation.
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