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Abstract 
 

We propose a new Distributed Denial of Service (DDoS) defense mechanism that protects http 
web servers from application-level DDoS attacks based on the two methodologies: 
whitelist-based admission control and busy period-based attack flow detection. The attack 
flow detection mechanism detects attach flows based on the symptom or stress at the server, 
since it is getting more difficult to identify bad flows only based on the incoming traffic 
patterns. The stress is measured by the time interval during which a given client makes the 
server busy, referred to as a client-induced server busy period (CSBP). We also need to protect 
the servers from a sudden surge of attack flows even before the malicious flows are identified 
by the attack flow detection mechanism. Thus, we use whitelist-based admission control 
mechanism additionally to control the load on the servers. We evaluate the performance of the 
proposed scheme via simulation and experiment. The simulation results show that our defense 
system can mitigate DDoS attacks effectively even under a large number of attack flows, on 
the order of thousands, and the experiment results show that our defense system deployed on a 
linux machine is sufficiently lightweight to handle packets arriving at a rate close to the link 
rate.  
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1. Introduction 

DoS attack is a malicious attempt to disrupt the service provided by networks or servers. The 
power of a DoS attack is amplified by incorporating over thousands of zombie machines 
through botnets [1] and mounting a distributed denial-of-service (DDoS) attack. Although 
many defense mechanisms have been proposed to counter DDoS attacks [2], this remains a 
difficult issue, especially because the attack traffic tends to mimic normal traffic recently [3]. 

If a small number of machines are participating in a DoS attack to a selected server, the IP 
addresses of those attack machines might be detected using the approaches of [4][5] without 
managing per-flow states. However, if the number of machines participating in a DoS attack 
increases, each attack node needs not send attack traffic at a high rate, since the aggregate rate 
of attack traffic from many bot nodes can be sufficiently high to cause critical damage to the 
target node. This kind of low rate DoS attacks may not be easily detected by conventional 
metrics of per-flow traffic rate or SYN packet rates, since such low rate attack traffic is not 
much different from the traffic of normal users in terms of those metrics. Thus, the decrease of 
attack traffic rate due to the large population of attack machines recruited through a botnet is 
becoming a challenge to DDoS defense. 

There is another factor that makes it more difficult to discriminate attack traffic of bots from 
the traffic of normal users. If DoS attack is launched at the application layer, then the attack 
can be effective with a small number of packets. For example, some specially crafted http 
request packets might induce an extensive database search, inject, or modify the data in the 
database disabling the target server ultimately. Netbot, blackenergy, and slowloris [6][7][8] 
are well-known tools that can launch network/transport layer DoS attacks as well as 
application layer DoS attacks such as http get flooding attack and CC attack.  

These low rate application-level attacks may not be detected by conventional DoS detection 
mechanisms based on SYN packet rate or traffic rate. Thus, a new approach is investigated to 
detect these application-level DoS attacks, especially targeting http web servers, in this paper. 
Recently emerging application-level DoS attacks may not be distinguished from normal user 
traffic. However, the intention of the attacking machines differs from that of normal users. 
Although normal users just want to get the information in which they are interested, malicious 
machines attempt to burden the target server as much as possible. Thus, we attempt to 
discriminate the attack flows from normal user flows based on the time interval during which 
each client makes the server busy. Since this step requires at least tens of seconds, this attack 
flow detection mechanism may be insufficient to protect a given web server in real time. Thus, 
we use an additional step of whitelist-based admission control to protect the given web server 
or server farm in real time. 

The remainder of this paper is organized as follows. We first discuss related work in Section 
2. In Section 3, we describe the outline of the proposed two-stage DDoS defense mechanism. 
In Section 4, we investigate whitelist-based admission control scheme, as the first stage of the 
proposed defense mechanism. In Section 5, we propose a new attack flow detection 
mechanism based on the the time interval during which a given host makes the server busy. In 
Section 6, the performance of the proposed DDoS defense mechanism is evaluated by OPNET 
simulation and experiment. Finally, conclusions are presented in Section 7. 
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2. Related Work 
Mirkovic et al. [9] has classified DoS attacks into two categories. The first type is the flooding 
attack, which targets overwhelming the resource of the victims, by sending a sufficiently large 
amount of traffic to the victims. The second type is the vulnerability attack, which takes 
advantage of vulnerability in the victim. In this paper, we focus only on the first type of attack. 

Several types of low-rate DoS attacks have been reported recently. One example is Shrew 
attack against TCP [10]. The attacker sends bursts of packets to create packet losses in a link 
and increments the retransmission timeout for certain TCP flows. The bursts are sent only 
around the expiration times of these flows to reduce the overall throughput. Another example 
is low-rate DoS attacks against application servers [11]. 

Regarding the defense against these low-rate DoS attacks, Sun et al. [12] reports that the 
ON/OFF traffic pattern of the Shrew attack can be detected using the autocorrelation of the 
traffic rate signal and dynamic time warping (DTW). Several attempts have been made to 
discriminate attack flows from normal flows based on the anomaly-based detection concept by 
building a legitimate network traffic model in terms of characteristics of arriving traffic such 
traffic rate correlation or flow correlation [13][14][15]. However, since the attack traffic itself 
is generated by the attacker, there is a possibility that the attackers evade these traffic 
signature-based detection mechanisms by changing the traffic pattern. Thus, we attempt to 
detect attack flows based on the symptoms appearing at the server, rather than based on the 
incoming traffic pattern. 

Some researchers have investigated the defense mechanism for the attacks against 
application servers. Macia-Fernandez et al. [16] investigated an approach to change the 
behavior of the server to lower the efficiency of the low-rate DoS attacks by making the instant 
when the server resource is available less predictable. This mechanism needs to be deployed 
on the server to be effective. However, it may not be easy to modify the internal system of 
many servers in an environment where many heterogeneous types of servers coexist. 

Srivasta et al. [17] suggested a mechanism based on admission control and congestion 
control. In the admission control step, the client is required to solve a computational puzzle 
that is implemented through javascript. In the congestion control step, the server monitors the 
behavior of each flow to give a higher priority to well-behaving flows. The congestion control 
functions are performed in the server-side kernel or firewall. However, since these defense 
functions can be a burden to the server itself, we consider the defense mechanism that can 
protect the servers while running on a machine physically separated from the servers. 

Ranjan et al. [18] tried to provide DDoS resilience to web servers by allocating suspicion 
measure to each session and scheduling the requests of each session based on the suspicion 
measure. It is very important to set up a reliable normal model for this scheme. However, the 
normal model construction is usually difficult, and normal model might be susceptible to 
pollution by the attackers. Ranjan's mechanism does not consider large scale attacks that 
involve a large number of attack sessions, but our proposed scheme can cope with such a large 
scale attack, because our mechanism registers malicious flows in a blacklist and drops the 
packets from the blacklisted IP addresses, instead of allowing them with a lower priority. 
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3. Outline of the Proposed Defense Mechanism 
In this paper, we propose a mechanism that can protect a given web server farm from 
application-level DoS attacks, especially, the attacks targeting the resources, including CPU, 
sockets, or memory, of the web server. 

The traffic rate of the source node including the SYN packet rate and the http request rate 
may not be effective any longer in discriminating the normal flows from the DoS attack flows, 
since the DoS attack can be effective, even with a low traffic rate after the emergence of 
low-rate attack tools, such as slowloris. Instead, we focus on the symptoms at the server, rather 
than the attack traffic pattern itself. Since almost all the DoS attack tools intend to disable the 
server or degrade the performance of the server by offering excessive work to the server or 
holding the resource of the server, we attempt to detect the malicious node based on the 
amount of work given by each source node. We use the concept of client-induced busy period 
to measure the amount of work given by each node. This will be investigated in more detail in 
Section 5. 

This attack flow detection mechanism is insufficient to protect the servers from the sudden 
large scale DDoS attacks, since it might take tens of seconds to detect malicious flows based 
on the client-induced busy period. We use whitelist-based admission control, as an additional 
measure to protect the server in real-time, even before most malicious flows are identified. 
Thus, the proposed DoS defense mechanism consists of two defense methodologies: busy 
period-based attack flow detection scheme and whitelist-based admission control scheme, as 
shown in Fig. 1. According to the flowchart in Fig. 1, when a packet arrives, if that packet is 
destined to a victim node that is under DoS attack, then the whitelist-based admission control 
policy is applied to the packet. The policy is simply to accept the packet, if the source IP 
address is registered in the whitelist already, but to drop the packet, if the source IP address is 
not registered in the whitelist. Thus, this idea constitutes the first stage of the two-stage 
defense mechanism. The attack flow detection algorithm is applied to the packet afterwards, in 
the second stage. 

 
Fig. 1. Outline of the proposed 2-stage DdoS defense mechanism 
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When the defense system monitors a packet destined to or outgoing from the protected 
servers, it first checks if the packet is coming from the blacklisted IP addresses. In that case, 
the packet is dropped promptly. If the non-dropped packet is destined to the victim inside the 
protected subnet, then we check if that packet is coming from the whitelisted IP addresses. 
When the packet is destined to a victim, if that packet is not from the IP addresses in the 
whitelist, then that packet is dropped, as described before. All the non-dropped packets are 
inspected with the attack flow detection mechanism. If the source IP address is regarded as 
behaving maliciously, then that IP address is registered in the blacklist, and the packet is 
dropped. If the packet passes this stage, then the load on each internal IP address is monitored. 
If the number of nodes accessing a specific server exceeds some pre-defined threshold, then 
the whitelist is constructed for that server. If the load on the server exceeds another threshold, 
then the server is declared as a victim, and only the IP addresses in the whitelist are allowed to 
access the server.  
    We need to note that the whitelist-based admission control scheme is activated only when 
the DoS attack is detected based on the load on the server. Thus, whitelist-based packet 
filtering is not used in a normal situation. On the other hand, the busy period-based attack flow 
detection scheme always works and protects the server with the blacklist.  

4. Whitelist-based Admission Control 
As we explained with Fig. 1, the first stage, i.e. the whitelist-based admission control stage, 
consists of two phases. The first is packet filtering based on the whitelist, especially for the 
victim servers. The second is the whitelist construction phase for the potential victim nodes. 
We discuss the second phase of the first stage, i.e. the last block in Fig. 1, in more detail in this 
section, since the first phase has been described in the previous section. 

Whitelist or IP access history-based DDoS defense approach has been investigated by other 
researchers. According to Jung et al. [19], when the number of clients increases during a DDoS 
attack, most of them are from new IP addresses that have not been seen before. Based on this 
observation, Peng et al. [20] tried to manage the normal IP addresses in a whitelist using access 
history for each IP address, e.g. using the condition on the access days or the number of 
packets per IP address. However, even the malicious nodes can easily satisfy these conditions, 
if the threshold values are disclosed. Thus, the whitelist can be easily poisoned and the 
efficacy is likely to be limited in the presence of real DDoS attacks. Another whitelist-based 
DDoS defense mechanism has been proposed by Nam et al. [21] to reduce the memory 
requirement of the system compared to Peng et al.'s scheme. In [21], the whitelist is 
constructed during a rather short time interval to reduce the possibility of whitelist poisoning. 
However, even that approach did not resolve the whitelist poisoning issues clearly. Our 
proposed defense scheme can cope with this whitelist poisoning problem better, since the 
attack flow detection mechanism can identify the malicious flows even within the whitelist. 

We use a modified version of the whitelist proposed in [21] for our whitelist-based 
admission control mechanism. However, we investigate one important issue on the whitelist 
that was not resolved in [21]. Although it is very important to control the size of the whitelist 
so that the servers in the protected region do not crash, the issue of determining the whitelist 
size was not discussed in [21]. This issue will be discussed in more detail after explaining the 
whitelist used in our proposed mechanism. 

Fig.2 shows the procedures performed in the last block of Fig. 1. The whitelist construction 
phase consists of two substages. In the first substage, we detect potential victims. If the 
number of external machines accessing an internal IP address is larger than or equal to the 
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threshold 1
thN , then that internal IP address is considered as a potential victim. In order to 

reduce the storage space and packet processing overhead, packets are sampled and only 
sampled packets are inspected at this substage. The IP addresses of the potential victims are 
managed in the connection status table T2. This will be explained shortly. 

In the second substage, the whitelist is constructed for the potential victim nodes, and the 
victims are detected based on the offered load. If an internal IP address is declared as a victim, 
then the whitelist will be used to perform admission control, as shown in Fig. 1. We now 
describe more details on the first and second substages. 
 

 
Fig. 2.. Flowchart describing the whitelist construction process 

 
In the first substage, we select internal IP addresses accessed from multiple external IP 

addresses by sampling. The internal IP addresses selected in the first substage are called 
potential victims, and the whitelist is constructed only for those selected potential victims in 
the second substage to reduce the memory size required for the whitelist. 

In the first substage, a flow is defined by a pair of source and destination IP addresses, i.e. 
(SrcIP, DstIP), and we sample flows with the sampling probability ps [21]. In Fig. 3, 
connection status table T1 counts the number of distinct IP addresses accessing a specific 
internal IP only for the sampled flows, in a given time interval I1. COUNT1(d) counts the 
number of sampled IP addresses accessing an internal address d. Each sampled client IP 
address is registered in the Bloom filter B1, which is M1-bit long and has k hash functions, as 
shown in Fig. 3(b). We use Bloom filters [22] to reduce the memory size and B1 is shared 
among different destination IP addresses in order to raise efficiency of the limited memory 
space. 

If the value of COUNT1(d) reaches a pre-specified threshold 1
thN , then the IP address d is 

considered as a potential victim and the whitelist is constructed for d in the second substage. 
Since COUNT1(d) counts only sampled source addresses accessing d, the total number of IP 
addresses that accessed d is 

sth pN /1  on average when COUNT1(d) = 1
thN . The value of 1

thN  is 
set to 3, which is the same as the one used in [21].  
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In the second substage, the whitelist is constructed only for the internal IP addresses 
selected in the first substage. After constructing the whitelist, if the load on the internal server 
is considered high, then existing flows, i.e. packet streams from the IP addresses registered in 
the whitelist, are served, but new flows are dropped to prevent the failure of the protected 
server. For the second substage, it is important to establish the criterion to determine if the 
server is under a heavy load or not. This issue is discussed hereafter. 
 

 
               (a) Connection status table (T1)       (b) Bloom Filter (B1) for source address tracking 

Fig. 3. The structure of tables managed in the first substage (ha is a uniform random hash function) 
 

We model each web server as a queueing system to investigate the issue of estimating the 
load on the servers. Since the defense system may not be able to see all the internal behavior of 
many web servers in the protected network, we investigate how to estimate the load on each 
web server based on the packets exchanged between the internal server and the external clients. 
In more detail, we first estimate the packet sojourn time in the server, i.e. the time interval 
from the arrival time of the http request message to the time when the http response message 
departs from the web server. Since the packet sojourn time is dependent on the traffic load on 
the system, we attempt to estimate the load based on the change of sojourn time. Realistic 
modeling of web server can be a complex problem. Since the detailed server modeling is not a 
goal of this paper, we investigate the problem in a simplified environment of an M/M/1 
queueing system to suggest a simple guideline for this issue. The average sojourn time (W) for 
an M/M/1 queueing system is well-known to be [23] 

,
)1(

1

ρµ −
=W     (1) 

where µ/1  is the average service time of the server, and ρ  is the offered load to the queueing 
system. From (1), we can easily find when the offered load is very low, i.e. 0≈ρ , µ/1≈W . 
If 8.0=ρ , then µ/5=W . Thus, if the load is 80%, then the sojourn time or the server 
response time increases up to five fold compared to the case of a negligibly small load. Using 
this analysis as a guideline, if the ratio of the average sojourn time in the current time window 
to the minimum average sojourn time is less than five, then the server is not considered to be 
under attack, and new source IP addresses are accepted into the whitelist. However, if the ratio 
exceeds five, then the server is regarded as a victim, and no more new IP addresses are 
accepted into the whitelist. 
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(a) Connection status table (T2)                (b) Whitelist implemented as a Bloom Filter (B2) 

 

Fig. 4. The structure of tables managed in the second substage 
 

In the second substage, we manage one connection status table T2 and one Bloom filter B2 as 
shown in Fig. 4. The hash table T2 tracks the load on each internal node selected in the first 
substage via the metric of sojourn time. The field of ACC_DEL(d) measures the access delay 
between the defense system and the server with the IP address d. The access delay is used to 
estimate the sojourn times from the packet monitoring times at the defense system, and the 
access delay can be estimated using the technique discussed in Subsection IV.A of [24]. The 
field of MIN_SOJ_T(d) retains the minimum value of the average sojourn time in server d. 
The field of SOJ_T(d) has the average sojourn time in the current window. SOJ_RATIO(d) is 
equal to the ratio of SOJ_T(d) to MIN_SOJ_T(d). 

The Bloom filter B2 is the whitelist that manages the list of normal IP addresses accessing 
the potential victim nodes, and the whitelist B2 is shared by the all potential victims in the 
protected subnet. We calculate the maximum value of the sojourn time ratios for all the 
selected servers, since the whitelist B2 is shared among different servers. If the maximum 
sojourn time ratio exceeds five, then no more client IP addresses are accepted into the whitelist. 
If the maximum sojourn time ratio falls below five, then new IP addresses can be accepted into 
the whitelist again. 

In B2, a timer is allocated for each bit, as shown in Fig. 4(b). TIMER(i) represents the timer 
allocated for the i-th bit in the Bloom filter B2. Whenever a new IP address is registered in B2, 
the timers corresponding to the hash positions of the IP address are set to R. The timers are 
refreshed on each subsequent packet arrival from that IP address, and all timers are decreased 
by one at the interval of IT. If any timer reaches zero for a given IP address, then the connection 
from that IP address is considered to be inactive. We use similar values for the parameters 
related to B2, i.e. the number of hash functions used in the Bloom filter k2, the default value of 
the timer R, and the timer update interval IT, as the ones used in [21]: k2 = 7, R = 7, and IT = 30 
secs. Then, if there is no packet exchange between a node pair over 180 seconds, the 
connection between the node pair will be regarded as being disconnected [21]. 

5. Busy Period-based Attack Flow Detection Mechanism 
In this section, we discuss a new DoS attack flow detection mechanism. We use a new metric 
termed client-induced server busy period (CSBP) to detect low-rate application-level DoS 
attack flows. 

We explain the concept of CSBP using an example interaction between a client and a server 
in Fig. 5. c

it  represents the time of i-th packet departure or arrival event at the client node. d
it  

and s
it  denote the i-th packet arrival or departure time at the defense system and the server, 

respectively. The lower part of the figure shows a workload (or unfinished work) process at the 
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web server, where the workload U(t) at time t is defined as the time required to complete the 
service of all messages present at time t [23], assuming that the web server can be modeled as 
a queueing system. In Fig. 5, the server was busy serving the three http request packets from 
the selected client in two time intervals, ],[ 21

ss tt  and ],[ 63
ss tt . These time intervals become the 

CSBP between the selected client and the server. Since the malicious node participating in a 
DoS attack tends to make the server as busy as possible even with a small number of packets, 
we use the ratio of CSBP to the measurement interval, called CSBP ratio, to discriminate the 
normal clients from the malicious bots. 

If the defense system is physically separated from the web server, then the defense system 
cannot monitor the internal status of the server, especially the resource utilization, directly. 
However, as shown in Fig. 5, the http response packet can be sent back to the client, only when 
the required task is completed by the server. Thus, we track the server busy period using the 
http response departure times and the http request arrival times at the server. As an example, 
the length of the first busy period can be calculated as ss tt 12 −  from the http request packet 
arrival time st1

 and the http response packet departure time st 2
 in Fig. 5. However, since the 

defense system does not know the packet departure and arrival times at the server, the defense 
system estimates the busy period length, based on its own packet monitoring time, assuming 
that the access delay is negligibly small between the defense system and the server. Although 
the busy period (CSBP) length can be estimated more accurately if we estimate the access 
delay by the mechanism described in Subsection IV.A of [24] and use that value, the effects 
are likely to be limited, since the CSBP lengths are usually much longer than the access delay. 
 

 
Fig. 5. Detection of client-induced busy period based on transit packet monitoring time 

 
The busy period can be easily tracked, if the http response message is not segmented. Let us 

assume that the defense system monitored N http request packets and N http response packets. 
Let ai denote the time when the defense system monitors the i-th http request packet, and let di 
denote the time when the i-th http response packet is monitored. If the i-th response packet is 
monitored earlier than the (i+1)-th request packet, then there will be N disjoint busy periods of 
[ai, di] ( Ni ,,1= ). When 2≥k , if 

1+++ ≥ mjmj ad  for all ]2,0[ −∈ km , then we have an 
extended busy period of [aj, dj+k-1] for k consecutive http request packets. 

Even when a single http response message is divided into multiple TCP segments, if we can 
identify the last segment of each response message, and di is redefined as the monitoring time 
of the last segment of the i-th http response message, then the busy period can be accurately 
tracked by the above approach. However, it is not possible to know if the current segment is 
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the last segment of a long message solely based on the TCP header. It may be possible to 
identify the last segment of a http response message, if we use both of the TCP header and the 
http header information. However, the more http information we use, the higher the 
complexity of the defense system will be. Thus, we investigate a scheme that can estimate the 
busy period, i.e. CSBP, with an acceptably small error, while minimizing the use of the http 
header information. 

Since the CSBP is managed for each pair of client and server IP addresses, the proposed 
defense mechanism needs to maintain per-flow information, as shown in Fig. 6. The Arr_T 
field tracks the starting time of each busy period. When a new TCP connection is set up, Arr_T 
is set to the time when the first SYN packet is monitored for the first busy period to 
accommodate the case where the server resource is exhausted by SYN flooding attacks. In 
case of persistent http mode where multiple http requests are sent during one TCP session, the 
http request arrival time is written into the Arr_T field from the second busy period of the 
selected TCP session. The Req_cnt field counts the number of http request packets observed in 
the current busy period. The Dept_T field tracks the potential finish time of the current busy 
period based on the monitoring time of the http response packets from the server. The 
Resp_cnt field estimates the number of the http response messages in the current busy period. 
The number of http response messages is estimated, since it is difficult to identify the last 
segment of each http response message without complete reassembly of the message. This 
field is used to track the end of each busy period. The First_SYN field is set to one, when a new 
SYN packet starting a new busy period is monitored. This field is used to include the TCP 
connection set-up time as part of the first busy period of that TCP session. The default value of 
the Large_File field is zero, and it is set to 1 only when the value of content length field in the 
header of the http response packet is larger than a threshold Lth. This field is used to prevent 
false positives for the special cases of streaming or huge file downloading, as described below. 
The BP_sum field accumulates all the busy period lengths detected in the current measurement 
interval. If T is the length of the measurement interval, then the CSBP ratio is calculated as 
BP_sum/T, at the end of each measurement time interval. If the CSBP ratio exceeds a 
predefined threshold ζ , then one alarm is raised for the client. If the number of consecutive 
alarms is larger than or equal to a predefined threshold Na, then the corresponding client IP 
address is considered malicious and is registered in the blacklist. The Alarm_cnt field counts 
the number of consecutive alarms. The Last_alarm_T field retains the last alarm time (in 
seconds) for the client IP, and this field is used to check the consecutiveness of the alarms. For 
example, when a new alarm is raised for a specific IP address, if the last alarm occurred more 
than the measurement time interval ago, then Alarm_cnt will be set to 1, since the alarms are 
not consecutive. On the other hand, if the last alarm occurred just the measurement time 
interval ago, then Alarm_cnt will be incremented by one, since the alarms are consecutive. 
 

 
Fig. 6. Per-flow busy period management table 
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The algorithms in Figs. 7 and 8 comprise the proposed busy period estimation algorithm. In 
more detail, the goal of these algorithms is to estimate the CSBP ratio as accurately as possible 
at the end of each measurement time window. The algorithm in Fig. 7 is applied to the packets 
coming from the clients, and the algorithm in Fig. 8 is applied to the packets outgoing from the 
internal server. If the http response messages are not divided into multiple segments, then we 
can easily identify the last packet closing the current busy period by comparing the number of 
http request packets to that of http response packets. For example, if the number of http request 
packets is n and the number of http response packets is n-1, this means that the current busy 
period is not closed, since one http response packet has not yet arrived. If a new http response 
packet arrives under that condition, then all the http response packets have arrived, and the 
busy period must be closed, since we assumed that the http response messages are not 
segmented. This is the basic idea of the proposed busy period detection algorithm. Even 
though the http response messages are segmented, this algorithm can accurately detect the 
busy period, if we can identify the last segment of each http response message and the http 
response packet count is increased only at the arrival of the last segment of each http response 
message. 
 

 
Fig. 7. Busy period detection algorithm applied to the packets coming from clients 

 
However, it is not easy to identify the last segment of each http response message accurately 

if we do not reassemble the message on each segment arrival. On the other hand, we observed 
that the PSH bit in TCP header is always set to 1, if that packet is the last segment of any long 
message. However, we also found that the PSH bit is set to 1 in the middle segments 
occasionally, but the frequency of those events was not very high. Thus, we use the following 
approach to estimate the last segment of each http response message. When we observe a TCP 
segment from the server whose source port number is 80 and PSH bit is set to 1, we increase 
the response count, Resp_cnt, by 1, only if Resp_cnt < Req_cnt. If the currently received TCP 
segment is not the last segment, then that packet is usually accompanied by another TCP 
segment whose PSH bit is not set. Thus, if we observe such a TCP segment, whose PSH bit is 
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not set subsequently, then we decrease the response count, Resp_cnt, by 1 to minimize CSBP 
ratio estimation error due to early closing of a busy period, only when Resp_cnt = Req_cnt. 

The currently described version of the algorithm has one important limitation. When a client 
accesses a server for streaming services or it downloads a huge file from the server, a long 
busy period might be observed while the streaming service is provided or the huge file is 
downloaded. Thus, false positives can occur for the clients using those services. We treat those 
cases as exceptions, since the streaming service and huge file downloading are not malicious 
behavior, as shown in the box denoted by (A) in Fig. 8. Those special services inducing a high 
resource utilization over an extended period can be identified by the content length field in the 
http header of the first http response segment, since this field represents the total size of the file 
that will be delivered subsequently through the requested service. Thus, in the final version of 
the algorithm, if the content length value exceeds a threshold Lth, then the busy period 
corresponding to that specific service is not reflected in the calculation of the CSBP ratio, as 
shown in box (A) of Fig. 8. The value of Lth is fixed to 50,000 Bytes after extensive 
experiments. 
 

 
Fig. 8. Busy period detection algorithm applied to the packets outgoing from servers 

 
The interleaving of any other types of http attack packets with the http request packets 

inducing the huge file downloading cannot be used to mask the underlying attacks, since any 
subsequent http request packet will be detected as a start of a new busy period, as shown in Fig. 
7. 

6. Numerical Results 
In this section, we evaluate the performance of the proposed DDoS defense mechanism via 
simulation and experiment. 
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6.1 Evaluation of the busy period-based attack flow detection mechanism 
In this subsection, we evaluate the accuracy of busy period estimation algorithm described in 
Figs. 7 and 8 of Section 5. Then, we investigate the efficacy of the busy period-based attack 
flow detection mechanism. 

We use the following three types of normal and malicious traffic patterns to evaluate our 
proposed scheme: 

 web browsing to cnn web server (normal traffic pattern) 
 huge file downloading (normal traffic pattern)  
 Blackenergy attacker (attack traffic pattern) 

We captured 20 minute long packet traces for each traffic pattern. We captured the packets that 
corresponded to normal behavior, while consenting volunteers were accessing a specific 
external web server, i.e. cnn.com in this study. For the attack traffic patterns, we generated http 
get flooding attacks using Blackenergy attack tool, and used the traffic trace of as low a traffic 
rate as possible for the evaluation. 

We investigate the accuracy of the proposed busy period detection algorithm with the 
normal web browsing traffic pattern. Fig. 9 compares the cumulative distribution function 
(cdf) of the busy period estimated by the proposed busy period detection algorithm to that of a 
manually measured busy period. Manual detection means that the busy period is determined 
based on the information about the correct last segment of each http response message. The 
well-known packet capture tool wireshark usually provides such information. We can observe 
that the cdf of the estimated busy period agrees well with that of the manually measured busy 
period. Although Fig. 9 is obtained from the web browsing traffic pattern, we find a similar 
tendency for other traffic patterns, that is, the proposed busy period detection algorithm 
closely estimates the true busy period. 
 

 
Fig. 9. Accuracy of busy period detection algorithms described in Figs. 7 and 8 

 
Fig. 10 shows the estimated CSBP ratio over time, especially for the web browsing traffic 

pattern. The measurement time window length is 30 seconds. There are several points in each 
measurement window, as the graphs for multiple web servers related with CNN are 
superposed in one figure. From the figure, we can observe that the CSBP ratios stay below 0.2 
most of the time. We find that CSBP ratios tend to exceed 0.2 as the window length gets 
smaller. Thus, the measurement window size is fixed to 30 seconds, and the threshold for the 
CSBP ratio, ζ , is fixed to 0.2 hereafter. The client IP address is registered in the blacklist, 
only when that IP address exceeds the threshold for the CSBP ratio, ζ , three times 
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consecutively, to lower the false positives. That is, Na is set to 3. 
Fig. 11 shows the busy period detection results for the remaining two types of traffic 

patterns. For the web browsing case in Fig. 10, some points exceed the CSBP threshold of 0.2. 
However, there is no case where the CSBP ratios exceed the threshold ζ  three times 
consecutively. In Fig. 11, the CSBP threshold is rarely violated for the other normal traffic 
pattern corresponding to the huge file downloading case. Conversely, the attack traffic pattern 
violates the threshold for the CSBP ratio almost all the time. Thus, the attack nodes will be 
blacklisted when the number of the CSBP threshold violations reaches Na, i.e. 3. We find that 
the false positives are zero for the normal traffic patterns in Figs. 10 and 11(a), and the false 
negatives are zero for the malicious traffic pattern in Fig. 11(b). 

When we do not include the exception rule of (A) in the busy period detection algorithm of 
Fig. 8, we find that the CSBP ratios are kept high, close to 100%, for the huge file 
downloading case. However, when the exception rule of (A) is included, the CSBP ratios 
remain low for that case, as shown in Fig. 11(a), even when such a behavior occurs in the 
middle of normal web browsing events. 

 
Fig. 10. CSBP estimation result over time obtained from the web browsing traffic pattern 

(Measurement time window (T) = 30 sec) 
 

  
(a) Huge file downloading                                        (b) Blackenergy attcker 

Fig. 11. CSBP estimation results for different types of traffic patterns (T = 30 sec) 
 

6.2 Evaluation of the proposed DDoS defense mechanism via simulation and 
experiment 
In this subsection, we evaluate the performance of the proposed DoS defense mechanism via 
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OPNET simulation and experiment. We investigate the efficacy of the proposed defense 
mechanism in protecting web servers from low-rate but resource-consuming attacks, by 
measuring the server response time with and without the defense mechanism. 

Fig. 12 shows the network topology for simulation. N1 is the edge router located at the 
boundary of the subnet, where the protected set of servers exists. N2 is the node where the 
defense system is deployed. N3 can be a router, a LAN switch, or a load balancer. In our 
simulation model, the attackers and the normal users are uniformly distributed to U servers, 
and thus, N3 simply performs the forwarding function based on the destination address. Z1 and 
Z2 represent the number of the attackers and the normal clients, respectively. All the link rates 
are fixed to 100 Mbps, and the propagation delay on each hop is fixed to 0.25 msec. 

We use the same traffic model for both normal flows and attack flows to investigate the 
scheme when the attack traffic pattern is indistinguishable from the normal traffic pattern. 
Each normal client or attack node makes only one TCP connection to an internal server, and 
sends http request packets in a persistent mode without closing the TCP connection. In order to 
consider the worst case scenario, we let each newly established session persist until the end of 
the simulation. Session arrival is modeled as a Poisson process, as in [18]. Normal sessions 
arrive from the beginning of the simulation with an average inter-arrival time of 1 sec. Attack 
flows arrive after 1000 sec from the start of the simulation, with an average inter-arrival time 
of 0.5 sec. The http request packets are sent to the server with an exponentially distributed 
inter-arrival time within each session. The average inter-arrival time of request packets is set 
to 1 sec for both normal flows and malicious flows. However, we assume that the request 
packets of the attackers require more processing time at the server. Thus, the processing time 
of request packets from normal nodes is modeled by an exponential distribution with an 
average of 5 msec, and that of request packets from malicious nodes is exponentially 
distributed with an average of 250 msec. The simulation time is 2500 sec, and Z1 and Z2 are 
set to 2500 and 3000, respectively. 

 

 
Fig. 12. Network topology for simulation 

 
Fig. 13 shows the simulation result. The server response time is measured at the defense 

system. The result corresponding to No defense is obtained without deploying any defense 
mechanism at N2. Thus, N2 works just as a FIFO queue in this case. The result corresponding 
to First stage only is obtained by deploying only the first stage of our proposed mechanism in 
N2. The first stage only scheme is very close to the history-based IP filtering mechanism 
discussed in [21]. However, the first stage only mechanism is a more enhanced version, since 
the victim detection rule is discussed in more detail based on the packet sojourn time in the 
server. The 2-stage scheme means the full version of our proposed mechanism, even including 
the malicious flow detection stage. The Peng’s scheme means the IP history-based DDoS 
defense mechanism based on [20] and [25]. The DDoS attack starts from 1000 sec. The Peng’s 
scheme detects DDoS attack based on the sudden increase of the number of IP addresses, and 
we find that the attack detection simply based on IP address numbers does not work effectively. 
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In the Peng’s scheme, the attack detection decision is made only at the interval of 10 sec, the 
default interval duration [25]. On the other hand, early detection is possible in both the first 
stage only and the 2-stage schemes since the detection decision is made on each packet arrival. 
Thus, the first stage only and 2-stage schemes perform better than Peng’s scheme in terms of 
the server response time.  

However, the server response time still increases over time when the first stage only scheme 
is used. When the first stage only mechanism is used, the average sojourn time increases over 
5 times the minimum sojourn time, in about tens of seconds after the arrival of malicious flows. 
Thus, no more good or bad flows are accepted afterwards, since the ratio of the average 
sojourn time to the minimum sojourn time remains over 5. However, some attacker nodes are 
luckily registered in the whitelist at the initial stage of the DDoS attack, and these nodes offer 
persistently high load to degrade the performance of the servers. On the other hand, when the 
full version of the proposed mechanism is deployed in N2, the server response time is rather 
high during a limited period of [1000, 1400], but it is reduced to the normal level afterwards. 
Differing from the first stage only mechanism, the 2-stage mechanism purifies the whitelist by 
evicting the malicious flows based on the CSBP ratio. In the simulation, all the malicious 
flows are blacklisted before 1400 sec has elapsed, and thus, the normal level of server response 
time resumes for the existing normal flows. 
 

 
Fig. 13. Comparison of server response time obtained under the proposed defense mechanism to that 

obtained under other or no defense mechanism 
 

We also tested the performance of the proposed defense system through experiment. The 
defense system is implemented as a combination of the packet monitoring application and the 
whitelist and blacklist deployed in the Linux kernel firewall. Our packet monitoring 
application detects the IP addresses to register in the whitelist or blacklist, and registers the 
detected IP addresses using iptables command [26]. Fig. 14 shows the detailed commands that 
we used to add an IP address to the blacklist or whitelist.  
 

# iptables  -A FORWARD -s [source IP address] -j DROP 
(a) Iptables command for adding an IP address to the blacklist 

# iptables  -A FORWARD -s [source IP address] -j ACCEPT 
(b) Iptables command for adding an IP address to the whitelist 

 
Fig. 14. Iptables command for adding an IP address to the blacklist or whitelist 
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The topology is the same as the one in Fig. 12. We put only one server machine with a 
1.86GHz dual-core CPU, and Z1 and Z2 are set to 7 and 1, respectively. Our defense system is 
deployed on Node N2, which is a linux machine in our experiment, in Fig. 12. Node N2 also 
works as a router, and we configured the routing table of the linux system statically using 
“route add” command so that the server can exchange packets with the single normal user and 
seven attackers. The Blackenergy attack tool has been used to launch http get flooding attacks 
from the start of the experiment for the attack scenarios.  

Table 1 shows the experiment results. When DoS attack is applied, the response time 
increases by a factor of more than 10 compared to the normal situation. On the other hand, 
when the defense system is running, all the attackers are detected by the attack flow detection 
mechanism of Section 5 after 90 seconds. Thus, the server response time resumes to the 
normal level after 90 seconds in Table 1. This experiment also shows that our defense system 
running on a linux machine is sufficiently lightweight to handle packets arriving at a rate close 
to the link rate.  

 
Table 1. Average server response time with or without the proposed defense system 

Scenarios Measurement interval 
0 ~ 90 sec 90 ~ 180 sec 

Normal condition (no attack) 2.62 msec 1.88 msec 
DoS attack without defense system 46.2 msec 41.3 msec 
DoS attack with defense system 41.1 msec 2.24 msec 

6.3 Memory Requirement 
The number of zombie machines actively participating in a DoS attack is usually less than 
60,000, according to recent studies [18][27][28]. High speed memory, such as SRAM is 
usually required to process packets arriving at the speed of 1 Gbps or more [29]. However, the 
size of SRAM is still very limited [29]. Thus, we briefly check whether it is possible to 
implement our proposed system to be capable of handling 60,000 malicious nodes with a 
4.5MByte SRAM. 

In our proposed mechanism, the below six tables need to be retained in SRAM. 
 Connection status table T1 of the first substage  
 Bloom Filter B1 for the first substage  
 Connection status table T2 for the second substage  
 Whitelist B2 implemented as a Bloom Filter  
 per-flow busy period management table (Fig. 6)  
 Blacklist implemented as a Bloom Filter 

The sizes of T1, B1 and T2 are usually much smaller than for other tables. Thus, we focus on 
the sizes of the remaining three tables: one whitelist, one blacklist and one per-flow table. The 
blacklist should be sufficiently large to accommodate at least 60,000 malicious IP addresses. If 
we intend to accommodate Nb IP addresses in the blacklist, while maintaining a collision 
probability of less than 1%, then the blacklist size M3 can be determined by the analysis result 
of [21] as  

  .bits1.1043 bNM ××=  
Similarly, if we want to manage up to Nw normal flows in the whitelist, the whitelist size M2 is 
determined as 

  .bits1.1042 wNM ××=  
Since the size of each row of the per-flow busy period management table in Fig. 6 is 292 bits, 
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if the number of rows is RBP, then the total size of the three major tables MT is given as 
    .bits2924.404.40 BPwbT RNNM +×+×=  

If we select the parameters as Nb = Nw = 220,000, and RBP = 60,000, then MT = 4.412 MBytes. 
Thus, our proposed system can be implemented with a 4.5MByte SRAM. 

7. Conclusion 
In this paper, we investigated a new two-stage mechanism that can protect web servers from 
low rate resource-consuming DoS attacks. The proposed mechanism is based on two key ideas. 
The first one is a whitelist-based admission control scheme in the first stage, which protects 
the servers from a sudden surge of attack flows. We also investigated the condition to detect 
the victim servers and freeze the whitelist based on the server response time in detail. The 
second key idea is to detect attack flows based on the concept of a busy period defined for each 
pair of client and server IP addresses in the second stage. The simulation results show that our 
defense system can mitigate DDoS attacks effectively even under a large number of attack 
flows, on the order of thousands, and the experiment results show that our defense system 
deployed on a linux machine is sufficiently lightweight to handle packets arriving at a rate 
close to the link rate. Thus, performance evaluation results show that the whitelist-based 
admission control scheme protects the server at the initial stage of DDoS attack, and the busy 
period-based attack flow detection mechanism distinguishes attack flows from normal flows 
and effectively filters the IP addresses of the attackers from the whitelist based on the CSBP 
ratio. Although we focused on protecting http-based web servers in this paper, the proposed 
approach will be extended to other types of web servers in future study. 
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