
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Detector SherLOCK: Enhancing TRW with Bloom filters
under memory and performance constraints

Seung Yeob Nam a,*, Hyu-Dae Kim b, Hyong S. Kim c

a Department of Information and Communication Engineering, Yeungnam University, Gyeongsan 712-749, Republic of Korea
b KAIST Institute for Information Technology Convergence, Korea Advanced Institute of Science and Technology,

Daejeon 305-701, Republic of Korea
c Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States

Received 23 February 2007; received in revised form 11 January 2008; accepted 17 January 2008
Available online 1 February 2008

Responsible Editor: L. Salgarelli

Abstract

Computer worms and bots are significant threats to large networks because they can spread very rapidly and are used
for DDoS. The first phase of worms and bots begins by scanning vulnerable hosts. Missing on-going scanning activity can
significantly deteriorate network performance. We propose a new scanning detection scheme, SherLOCK, based on the
connection attempt success ratio. The proposed scheme can detect scanners with guaranteed false positive and false neg-
ative probabilities and with a limited memory size. Detection of scanners at high-speed links requires a high-speed memory
and such memory devices are expensive and limited in size. We reduce the memory requirement by applying the Bloom
filter. We show how slow scanners can be detected with a guaranteed performance for a given offered traffic load and mem-
ory size. This study can help to design the system that satisfies the target performance requirement. The detection perfor-
mance is guaranteed under the assumption that malicious scanners and benign hosts have distinct behaviors in terms of the
connection success ratio. We extend the proposed detector with a sampling mechanism to detect more intelligent scanners
with guaranteed performance. These include scanners that use a list of pre-acquired IP addresses. We evaluate the perfor-
mance of the proposed scheme through experiment using well-known traffic traces.
� 2008 Elsevier B.V. All rights reserved.

Keywords: Scanner; Slow scanner; Scanner detection; Connection attempt success ratio; Bloom filter; Memory conflict

1. Introduction

Internet attacks such as distributed denial-of-ser-
vice (DDoS) attacks and worm attacks are increas-

ing in severity. According to CERT [1], the number
of reported network attack incidents has grown
exponentially, and it continues to increase. Com-
puter worms and bots are significant threats to large
networks as they can spread very rapidly and are
used for DDoS [2–5]. The first phase of worms
and bots begins by scanning vulnerable hosts. In
this paper, we address the detection of such scanners

1389-1286/$ - see front matter � 2008 Elsevier B.V. All rights reserved.

doi:10.1016/j.comnet.2008.01.008

* Corresponding author. Tel.: +82 53 810 2551; fax: +82 53 810
4742.

E-mail addresses: synam@ynu.ac.kr (S.Y. Nam), papin@
comis.kaist.ac.kr (H.-D. Kim), kim@ece.cmu.edu (H.S. Kim).

Available online at www.sciencedirect.com

Computer Networks 52 (2008) 1545–1566

www.elsevier.com/locate/comnet

Author's personal copy

in order to prevent further attacks and to minimize
the damage.

There are many important issues that need to be
considered for a practical scanning detection system.
First, memory requirements should be considered.
Since inter-packet arrival time can be very short
due to a high link rate, SRAM is usually required
for fast packet processing [6]. Second, low false posi-
tive and false negative probabilities need to be guar-
anteed in order to suppress explosive growth of
worm infection and to minimize interruptions in nor-
mal traffic. Third, the detection algorithm should be
simple so that it can cope with bursts of packets
arriving at a high speed. Fourth, scanners need to
be detected as early as possible so that the damage
can be minimized. Fifth, detection of slow scanners
is also important since slow scanners can easily
bypass most window-based detection schemes. There
have been many approaches to the scanner detection
problem [6–18], but there are few schemes that
address all the above issues collectively. The closest
to our objectives was Weaver et al.’s scheme [6],
which we compare with our proposed system, Sher-
LOCK, in Section 6.

Since it is shown that normal hosts and scanners
exhibit different behavior in terms of connection
attempt success ratio in [7], we use the statistical
characterization of connection attempt success ratio
to detect scanners. The resulting detection scheme
guarantees false positive and false negative proba-
bilities with a small memory requirement. We apply
Bloom filters to reduce the memory size required for
connection state management. We find that 16 MB
SRAM is adequate to handle a large number of
flows in core routers [19].

The contribution of this paper is summarized as
follows:

� Although the threshold random walk (TRW) [7]
and the optimized TRW [8] are the state-of-the-
art techniques in the scanning detection area,
the memory constraint is not considered in these
works. The optimized TRW by Schechter et al.
[8] can detect scanning worms faster than the ori-
ginal TRW [7] especially when a normal host gets
infected, but managing and searching among 64
destination addresses for each local host is chal-
lenging especially in a high-speed environment,
e.g. at least 1 Gbps, due to the limited memory
access time and the limited memory size. SRAM
is usually required to process packets arriving
from high-speed links, but the size of SRAM is

still very limited. In this memory-limited environ-
ment, the TRW scheme [7] and the optimized
TRW [8] may not guarantee the false positive
and false negative probabilities due to memory
conflicts. Weaver et al. [6] propose a modified
version of the TRW scheme considering these
memory issues, but this modified scheme does
not guarantee the false negative probability [6].
We propose SherLOCK that considers these
memory conflict issues and guarantees the false
positive and false negative probabilities with a
limited memory requirement.
� Although there are schemes which can detect

slow or stealthy scanners [16,17], SherLOCK is
the first one to detect slow scanners with guaran-
teed performance under the condition of a lim-
ited memory size. We derive a relation which
shows the minimum detectable scanning rate
for the given traffic load and the memory size.
It is shown that slower scanners can be detected
as the memory size increases in a quantitative
fashion.
� Many of existing scanning detection schemes

[6–8] assume malicious hosts are doing random
scanning without any knowledge of valid IP
addresses. Our extended scheme based on sam-
pling can detect more intelligent scanners. These
intelligent scanners know a limited number of
valid IP addresses in advance and can success-
fully bypass short-history-based detection
schemes.

The rest of the paper is organized as follows. In
Section 2, we discuss related works. In Section 3, we
describe the detection mechanism of SherLOCK
and the structure of the tables that are used to store
connection status information in detail. In Section
4, we first investigate the memory conflict in the
hash table to detect slow scanners for the given
offered load and the memory size. We then analyt-
ically derive the detection threshold and the mem-
ory size which can guarantee false positive and
false negative probabilities under the memory con-
flict in Bloom filters. In Section 5, we extend the
basic version of SherLOCK by incorporating a
sampling technique to detect more intelligent scan-
ners. In Section 6, we evaluate the performance of
the proposed scheme through experiment and
compare the performance of SherLOCK with that
of the simplified version of TRW developed by
Weaver et al. [6]. Finally, conclusions are given in
Section 7.

1546 S.Y. Nam et al. / Computer Networks 52 (2008) 1545–1566

Author's personal copy

2. Related works

We can classify existing schemes into four cate-
gories depending on the metrics used to detect scan-
ners. The metrics are connection attempts [16],
connection attempt rate [9–12], connection attempt
failure rate [11–14], and connection attempt failure
ratio [6–8]. The connection attempt-based schemes
such as Bro [16] can detect slow scanners, but they
usually have high false positive rates. In case of
either connection attempt rate-based scheme or con-
nection failure rate-based scheme, the scanners can
evade detection by lowering the scanning rate. A
low detection threshold may incur many false
alarms, and thus, determining the threshold is a very
difficult problem.

Spice [17] detects scanners, including stealthy
scanners, based on the anomalous behavior. How-
ever, it may not be suitable for fast detection on
high-speed links since it requires a complex computa-
tion that does not scale with the link speed. Further-
more, selection of the threshold for the anomalous
event reporting is quite difficult.

TRW scheme [7] and optimized TRW scheme [8]
use a connection failure ratio-related metric, a like-
lihood ratio, to detect the scanning activity rapidly
with a small number of connection attempts, usually
less than 20, while guaranteeing the performance.
However, neither of them considers memory con-
straint. Weaver et al. [6] uses a simplified version
of TRW that can be implemented with SRAM.
However, it does not guarantee the false negative
probability due to collisions in the connection cache
[6].

There are also other approaches focusing on
network attacks with a reduced memory size [11–
13,15]. Although the memory sizes are reduced sig-
nificantly through refined sampling and memory
management schemes, they usually use the metrics
of either connection attempt rate or connection fail-
ure rate. Thus, they may not detect slow scanners.

Estan et al. propose a family of efficient bitmap
algorithms for counting active flows [15]. Triggered
bitmap may be useful to count the number of con-
nection attempts for each source address with a
moderate error. However, our scheme makes a deci-
sion with a rather small number of connection
attempts and responses, less than 30. Since the num-
ber is usually small, the triggered bitmap is likely to
be reduced to the direct bitmap. The direct bitmap
can be considered as a special case of Bloom filters
[20,21] with only one hash function. In our scheme,

the counting accuracy is very important to guaran-
tee the false positive and false negative probabilities,
and the accuracy can be usually improved with
more than one hash functions under the same mem-
ory size. Thus, we use Bloom filters to count connec-
tion attempts and responses.

3. Scanner detection scheme

We now describe the operation of the proposed
scanner detection scheme in detail. Table 1 summa-
rizes the major parameters and variables.

3.1. Detection rule

The scanner is detected based on the connection
attempt success ratio of the source host. The con-
nection attempt success ratio of a source s, q(s), is
defined as follows:

qðsÞ ¼ RESPONSEðsÞ
ATTEMPT ðsÞ ; ð1Þ

where the ATTEMPT(s) is the number of distinct IP
addresses that a source s attempts to connect to and
the RESPONSE(s) is the number of distinct IP ad-
dresses that responded to the source s. We define
two timers, TIMER1(s) and TIMER2(s). The scan-
ner detection decision is made after observing n con-
nection attempts for each source address. For the
nth connection attempt, our scheme waits until
TIMER1(s) expires. TIMER1(s) is used to allow
sufficient time to count the response to the last at-
tempt. According to [22], the median round-trip
time (rtt) is measured to be lower than 450 ms by
the IPMON system of Sprint even including trans-
continental connections. We set the threshold for
TIMER1(s) to 500 ms. TIMER2(s) is used to

Table 1
Major parameters and variables

n Number of attempts required for detection decision
h1 Maximum connection attempt success ratio of scanners
h2 Minimum success ratio of benign hosts
d1 False negative requirement
d2 False positive requirement
g Detection threshold in terms of connection success ratio
Y1 Number of responses to a scanner monitored until the

number of attempts reaches n

Y2 Number of responses to a benign source monitored until the
number of attempts reaches n

m Bit vector size of a Bloom filter
k Number of hash functions used for Bloom filters
pc Collision probability of a Bloom filter

S.Y. Nam et al. / Computer Networks 52 (2008) 1545–1566 1547

Author's personal copy

measure the idle period, in terms of scanning activ-
ity, of each host. When the ATTEMPT(s) reaches
the pre-selected threshold n and the TIMER1(s) ex-
pires, then we detect the source as a scanner if the
following condition is satisfied:

qðsÞ 6 g; ð2Þ

where g is the detection threshold. Variable param-
eters n and g are determined according to the
required false positive and false negative probabili-
ties and these are discussed in Sections 4 and 5.

3.2. Implementation

We describe the proposed scheme in more detail
including major issues related to implementation.
We first describe the data structure for SherLOCK
and then the connection status update procedure.
We also explain the proposed eviction policy
required to resolve contentions in the memory.

3.2.1. Bloom filters

Since the decision is based on the statistic of con-
nection success ratio, the proposed scheme manages
the connection status of each source address.1 We
use two Bloom filters [20,21] to manage the set of
IP addresses that a given source host attempts to
connect to and the set of IP addresses that responds
to the given source address, respectively, with a
reduced memory size. We store the set of the distinct
destination addresses for a source s in an m-bit
Bloom filter. We define a vector V of m bits to
contain the destination address information. Each
element of the vector is initially set to 0. k indepen-
dent hash functions, h1,h2, . . .,hk, each of which
has a range of {1, . . .,m}, are used to map each des-
tination address d into the vector V.

If a packet from the source s to the destination d is
observed, then the bit vector corresponding to the
source address s is determined by hashing the source
address s. The destination address d is then regis-
tered in the bit vector as follows. The bits at
positions h1(d),h2(d), . . .,hk(d) in V are set to 1. Des-
tination d of the first packet from the source s gets
registered using the Bloom filter and the subsequent
packet with the same (s,d) does not get registered.
The bits at positions h1(d), h2(d), . . .,hk(d) represent
the existence of the prior packets of (s,d). However,

occasionally h1(d), h2(d), . . .,hk(d) bits can be set by
other destinations as the Bloom filter fills up. We
define this blocking in the Bloom filter as a collision.
One of the advantages of Bloom filters is that it is
possible to control the probability of collision by
adjusting the parameters k and m.

If the number of destinations associated with the
source address s is increased, then the number of
bits m should be increased to keep the collision
probability at the same level. SherLOCK classifies
the source s as a scanner if the number of distinct
destinations reaches a pre-determined threshold n.
Thus, the number of destination IP addresses asso-
ciated with one source address does not exceed n

and the bitmap size m can be kept constant. We
analyze the effect of collisions in Bloom filters on
the false positive and false negative probabilities in
Sections 4 and 5.

3.2.2. Data structure

We manage the connection status, especially the
connection attempt status and the response status,
of each source address in the tables called double
connection status table. Fig. 1 shows the detailed
structure of the double connection status table,
which consists of two tables: primary and secondary
connection status tables. The primary and second-
ary tables have exactly the same number of entries
and the entries of the two tables are mapped as fol-
lows. If an IP address occupies an entry at the row r
and column c of the primary table, then the
(4r + c)th entry of the secondary table is also
assigned to that IP address. Thus, for each source
IP address, the corresponding entry in the second-
ary table is determined depending on the entry posi-
tion in the primary table.

The primary table is a hash table that is indexed
by the hash value of the source IP address. If we
let hsa denote this hash function, then a source
address s can occupy an entry at the row of hsa(s).
Occasionally two or more distinct source addresses
may have the same hash value. In order to cope with
this collision, we put four entries for each hash
value2 and we put IP address (source address) field
in each entry to discriminate different source
addresses which have the same hash value. In addi-
tion to the IP address field, the fields for
ATTEMPT(s), RESPONSE(s), and TIMER2(s)
are maintained in the selected entry of the primary

1 Although we consider only horizontal scanning over distinct
IP addresses, our scheme can be readily extended to detect
vertical scanning over the distinct port numbers.

2 This structure can be implemented in software or in a 4-way
associative cache in hardware for high-speed processing.

1548 S.Y. Nam et al. / Computer Networks 52 (2008) 1545–1566

Author's personal copy

table. Two bit vectors V1(s) and V2(s), and
TIMER1(s) are managed in the corresponding entry
of the secondary table. For a source address s, a bit
vector V1(s) manages the set of distinct IP addresses
that the host s attempts to connect to. Another bit
vector V2(s) manages the set of IP addresses which
respond to s. If the first packet from s to d is
observed, then the address d is registered in the bit
vector V1(s). If the response packet from d to s
arrives afterwards, then the address d is recorded
in the bit vector V2(s).

ATTEMPT(s) counts the number of attempts
made by s and is equal to the number of destina-
tions registered in V1(s). RESPONSE(s) counts the
number of responses to s and is equal to the number
of addresses registered in V2(s).

In case of TCP connection request through TCP
SYN packet, no response will be sent back to the
source if the destination IP address is inactive. If
the SYN packet is sent to an inactive port of an
active host, then the host is likely to reply with
TCP RST packet. If scanners usually send packets
to invalid IP addresses, then we do not count TCP
RST packets as a connection attempt failure. How-
ever, in case of vertical scanning, we interpret TCP
RST packets as a connection attempt failure. In
the existing schemes, only unanswered connection
attempts are considered as the connection attempt
failure. Our scheme can be extended so that TCP
RST responses are counted as the connection
attempt failure in case of vertical scanning detection.

Two timers, TIMER1(s) and TIMER2(s), are
associated with the source s. If the ATTEMPT(s)

reaches n, then TIMER1(s) is increased by 1 every
100 ms. This timer can be either synchronized or
non-synchronized among different hosts. If we let
t1 denote the threshold for the TIMER1(s), then
the TIMER1(s) value of t1 means that at least
100 � (t1 � 1) ms has passed since the arrival time
of the last nth attempt. Since we wait at least
500 ms after the arrival of the nth attempt as dis-
cussed earlier, the default value of t1 is set to 6. If
the value of TIMER1(s) reaches t1, then the decision
on the scanning activity of s is made according to the
rule described in the previous subsection. If the
source address s is detected as a scanner, we report
s as a scanner and clear every field corresponding
to s. Otherwise, we delete the entry of s.

TIMER2(s) measures the idle period, in terms of
scanning activity, of each source address. The timer
is reset to 0 whenever the value of ATTEMPT(s) is
increased, i.e. when a new attempt of s arrives.
Otherwise, it is increased by 1 every minute. The
increment period of 1 minute is determined with
the following reasoning. Let Ns denote the maximum
number of source addresses which can be accommo-
dated by the connection status table and let us
assume that Ns = 106. There are four entries for each
address of the hash table. If we assume the hash
function hsa is perfectly random, then a source
address in one entry of the hash table sees the next
different source address which maps to the same
hash table address after about Ns/4 more distinct
source addresses according to the mean of the geo-
metric distribution. Fraleigh et al. [22] report that
the average number of active flows per minute is less

Source IP address s h (s)sa

IP addresss

bit vector V (s)

ATTEMPT(s) RESPONSE(s) TIMER2(s)

32 bits

m bits

5 bits 5 bits 6 bits

bit vector V (s)

m bits

1 2 TIMER1(s)

4 bits

r

c

4r + c

(a) Primary connection status table (b) Secondary connection status table

Fig. 1. The structure of the double connection status table.

S.Y. Nam et al. / Computer Networks 52 (2008) 1545–1566 1549

Author's personal copy

than 300,000 for all measured OC-48 links. The flow
arrival rate is usually at most this rate and the arrival
rate of distinct source addresses is usually lower than
the flow arrival rate. If the distinct-source address
arrival rate is as high as 250,000 per min, then the
interarrival time of different source addresses to the
same hash address is about Ns/4/250,000 = 1 min
for Ns = 106. In order to discriminate the age of dif-
ferent source addresses mapping to the same hash
address, the increment interval of TIMER2(s) needs
to be less than 1 min. Currently we select 1 min, but
this increment interval can be adjusted according to
the detailed value of Ns and the distinct-source arri-
val rate. Six bits are allocated to the TIMER2(s) and
we can count up to 63 min. TIMER2(s) is used to
evict less active, in terms of scanning activity, source
addresses when the connection status table is over-
loaded. But, it has a rather low priority compared
with other eviction condition as shown later. Since
we need to utilize the memory space efficiently, we
clear entries for the source IP addresses which have
been inactive for 30 min. In other words, if the value
of TIMER2(s) increases up to 30 min, then the entry
for s is cleared.

3.2.3. Double connection status table update

procedure

The double connection status table is updated
when a packet arrives. Let us assume that a packet
from s to d arrives at the monitoring node. Then,
the double connection status table is updated as
follows:

Step 1: On the packet arrival, we check whether the
packet is a response to an existing connec-
tion attempt. We check whether the address
s is registered in both V1(d) and V2(d). If s

exists in both V1(d) and V2(d), then the
packet is a duplicate response to d. We
neglect the packet and exit the routine. If
s exists in V1(d), but not in V2(d), then the
packet is a new response for the attempt
from d. We increase RESPONSE(d) by 1
and we register s in V2(d). If s does not exist
in either V1(d) or V2(d), then the packet is
not a response and we go to Step 2.

Step 2: We check whether the arriving packet is a
new connection attempt. If it is true, we
then register d in V1(s). We check whether
the destination d is registered in V1(s). If d

exists in V1(s), then the packet is not a
new connection attempt and we exit the

routine. If d does not exist in V1(s), the
packet is a new attempt of s. Before regis-
tering d in V1(s), we check the value of
ATTEMPT(s). If the threshold, n, is
reached, then we neglect the new attempt
until the decision is made with the current
data set. If the threshold is not reached,
we register d in V1(s), increase the value of
ATTEMPT(s) by 1, and exit the routine.

Let us investigate the number of memory refer-
ences required for an arriving packet. When a packet
going from s to d is observed, at least two memory
reads are required to read the connection status of
d: one memory read for the line hsa(d) in the primary
table ((32 + 5 + 5 + 6) � 4 = 192 bits)3 and one
memory read for the bit vectors and TIMER1 of d

in the secondary table (2 m + 4 bits). If it is not a
response from s to d, two more memory reads are
required to read the connection status of s and the
number of bits is the same as the case for d. Two
memory writes, one write to the primary table
(32 + 5 + 5 + 6 = 48 bits) and another write to the
secondary table (2 m + 4 bits), are required for
either s or d in case of an entry update. No memory
write is required if there is no entry update. Thus,
our scheme requires more memory references than
Weaver et al.’s scheme [6], which requires two mem-
ory reads and two memory writes. One of the rea-
sons for more memory references in our scheme is
as follows. Weaver et al.’s scheme targets to detect
either internal scanners, whose IP addresses belong
to the subnet address range, or external scanners
and manages address cache for either internal or
external addresses, but not for both kinds of
addresses simultaneously. In this case, it is enough
to check the connection status of an internal (exter-
nal) address in case of detecting internal (external)
scanners. In order to detect scanners bidirectionally,
our scheme checks the connection status of both
internal and external addresses one by one. Thus,
memory reads are required for both d and s in our
scheme. Our scheme supports guaranteed false neg-
ative and false positive probabilities at the cost of
an increased size of memory reference compared
with Weaver et al.’s scheme [6]. Although more
memory references are required per packet, we show

3 The 32 bits for the IP address field can be reduced to 16 bits
by using 16-bit tag instead of direct IP address as in [6]. Such
reduction could lead to a collision when two different IP
addresses map to the same tag value concurrently.

1550 S.Y. Nam et al. / Computer Networks 52 (2008) 1545–1566

Author's personal copy

that the processing overhead is moderate for the link
rate of 1 Gbps in Section 6.

3.2.4. Hash table entry eviction policy

In order to resolve conflict in the hash table,
especially when more than four source addresses
are mapped to the same hash address, we need an
eviction policy. We evict the source address with
the highest connection success ratio first so that
we can maintain the entries corresponding to scan-
ners with a low connection success ratio longer in
the hash table. We find that about 70% of normal
hosts are making only a single connection attempt
and many of them are making unsuccessful connec-
tion attempts from many NLANR traffic traces [23].
In order to discriminate these normal hosts with a
low success ratio from malicious scanners with mul-
tiple connection attempts, we consider the number
of connection attempts as another criterion for evic-
tion. The number of connection attempts is impor-
tant when there is no host with a high connection
success ratio over the threshold g. The final eviction
policy is summarized in Fig. 2.

4. Performance analysis considering contentions in

the hash table and Bloom filters

In this section, we show that SherLOCK pro-
vides guaranteed performance in terms of false posi-
tive and false negative probabilities if scanners and
benign hosts exhibit different behavior in terms of
connection success ratio. In addition, we investigate
memory requirement for Bloom filters and the hash

table in order to guarantee the false positive and
false negative probabilities.

Let E1 (E2) denote the event that a given host is a
scanner (normal host). The requirements on the
false positive and false negative probabilities can
be expressed as

– Low false negatives : Prðno detectionjE1Þ < d1;

ð3Þ
– Low false positives : PrðdetectionjE2Þ < d2: ð4Þ

We attempt to satisfy the above performance
requirement with a limited size of memory, e.g.
SRAM, adequate for high-speed operation. We
manage the memory size by controlling the bit
vector size m and the number of rows (R) in the
hash table. The number of columns in the hash table
is fixed to 4.

In order to detect scanners, the scanner-related
entries need to be retained in the hash table until
the detection resolution. The retention of the scan-
ner-related entries is affected by various factors
and we focus on the following three major factors:
aggregate request arrival rate of normal hosts (k),
the number of rows in the hash table (R), and the
scanning rate (k1) of the scanner in attempts per sec-
ond. A request packet represents the first packet
between a given node pair, and none of subsequent
packets between the given node pair is counted as
the request packet. Thus, the request packet arrival
is equivalent to the flow arrival. Since it is reported
that exponential distribution fits flow inter-arrival
time distributions well rather than Gamma and
Weibull distribution [24], we assume that request

 Is there any host
whose success ratio is
 higher than ?

 Is there only a single
host whose success ratio
 is higher than ?

Yes

select the one with the
highest success ratio
and evict the entry

Yes

evict the souce IP with a largest
number of attempts.

If there is a tie, then pick one
randomly

No

pick one with the smallest
number of attempts among
all hosts in the same row.

If there is a tie, pick the oldest
entry according to TIMER2.

If there is a tie again, pick one
randomly

No

η

η

Fig. 2. Eviction policy.

S.Y. Nam et al. / Computer Networks 52 (2008) 1545–1566 1551

Author's personal copy

packets, i.e. the first packet of each flow, arrive at
the monitoring node according to a Poisson process.

We first derive a condition which statistically
guarantees the retention of the scanner-related entry
in terms of k, k1, and R. We show that slower scan-
ners can be detected if we increase the memory size.
Let us consider the case where the first request
packet of a new scanner observes no space in the
corresponding row of the hash table. Then, it is
highly likely that at least two entries are occupied
by the hosts with a high success ratio or by the hosts
with a single connection attempt since about 70% of
normal hosts make only a single connection attempt
according to our investigation of many traces from
NLANR [23]. The new entry for the scanner
replaces one existing entry according to the eviction
policy. If there are many hosts with a high success
ratio in the same row, then the scanner-related entry
is likely to be retained because the entries with a
high success ratio will be evicted earlier than the
scanner-related entry according to the eviction pol-
icy of Fig. 2. Let us consider the case where there is
at least one host with a single connection attempt
just after the appearance of the scanner entry. In
this case, if the next request of the scanner arrives
earlier than other distinct requests to the same
row, then the entry of the scanner is retained
according to the policy ‘pick one with the smallest
number of attempts among all hosts in the same

row’ of Fig. 2. Thus, we obtain the following suffi-
cient condition on the scanning rate k1 that prevents
the eviction of the scanner entry.

Proposition 1. Prðremainð~nÞÞ denotes the probability

that the scanner entry remains in the hash table after
~n requests. Let f and u denote the ratio of the hosts

with only a single connection attempt and the ratio of

the hosts with a success ratio higher than g among the

hosts with multiple connection attempts, respectively.

h0 represents the probability that a scanner makes an

unsuccessful connection attempt. Then, there exists ~n
which satisfies
Prðremainð~nÞÞP 1� e; e ¼ ð1=2Þ10 ð5Þ
under the following condition:

k1 P k=R: ð6Þ
The smallest integer value of ~n; ~n�, which satisfies (5)

is given as

~n� ¼ log e

log 1� 0:5h0ð1� ð1� bÞ4 � 4bð1� bÞ3Þ
n o

2666
3777;

where b = f + (1 � f)u and due denotes the smallest

integer that is larger than or equal to u. If Ne denotes

the number of requests required to assure retention of

the scanner entry in the hash table, then we have

E½Ne� 6 2=ðh0ð1� ð1� bÞ4 � 4bð1� bÞ3ÞÞ: ð7Þ

Proof. The proof is given in Appendix A. h

By Proposition 1, the entry corresponding to the
scanner remains in the hash table with a probability
of at least 99.9% (=1 � (1/2)10) after ~n� requests when
k1 = k/R. As an example, if f = 0.7 as observed from
many NLANR traces, h0 = 0.8 and u = 0.5 as a con-
servative estimate, then b = 0.85 and ~n� ¼ 14. How-
ever, scanner-related entries survive in the hash
table with less than 3 request packets on average by
(7). Let g(f) denote the upper-bound of E[Ne] on the
right-hand side of (7). Fig. 3 compares the number
of requests required to guarantee the scanner-entry
retention probability of 1 � e, ~n�, and the upper-
bound of E[Ne], g(f), over a range of f. When f de-
creases from 1 to 0.4, even though ~n� increases from
14 to 16, g(f) is maintained lower than 3. Thus, the
scanner-related entry usually survives with a much
smaller number of requests than ~n� without delaying
the scanner detection process significantly and the
performance of SherLOCK is not significantly
affected by f. Regarding the detectable scanning rate,
if k is 1000 requests/s and R is 100,000, then k1 can be
as low as 0.01 by (6). In this case, we can detect scan-
ners whose mean request inter-arrival time is 100 s.
From Proposition 1, we find that as the number of
rows (R) increases, slower scanners can be detected.

The following relations are sufficient conditions
for the false positive and false negative probability
requirements (3) and (4):

0

2

4

6

8

 10

 12

 14

 16

 18

 0.4 0.5 0.6 0.7 0.8 0.9 1

nu
m

be
r

of
 r

eq
ue

st
s

ratio of single-connection-attempt hosts ()

n*
upper bound of E[N], g()

ζ

ζ

∼

e

Fig. 3. Comparison of ~n� and the upper-bound of E[Ne], g(f), for
the various values of f(h0 = 0.8, u = 0.5).

1552 S.Y. Nam et al. / Computer Networks 52 (2008) 1545–1566

Author's personal copy

PrðY 1=n> gÞ< d01; d01 ¼ 1� ð1� d1Þ=ð1� eÞ; ð8Þ
PrðY 2=n6 gÞ< d2; ð9Þ

where e = (1/2)10, and they are derived in the fol-
lowing way. We assume that the scanner makes at
least nþ ~n connection attempts. ~n is required to en-
sure the existence of the entry corresponding to the
scanner with a high probability and n attempts are
required to make a decision. The false positive prob-
ability of (4) can be expressed as

PrðdetectionjE2Þ ¼ Prðdetection; remainð~nÞjE2Þ
¼ Prðremainð~nÞjE2Þ

Prðdetectionjremainð~nÞ;E2Þ
6 PrðY 2=n 6 gÞ; ð10Þ

where the last inequality is obtained because
Prðremainð~nÞjE2Þ 6 1. By (10), (9) becomes a suffi-
cient condition for (4). The false negative probabil-
ity of (3) can be expressed as

Prðno detectionjE1Þ ¼ 1� PrðdetectionjE1Þ
¼ 1� Prðremainð~nÞjE1Þ

Prðdetectionjremainð~nÞ;E1Þ
¼ 1� PrðY 1=n 6 gÞ

Prðremainð~nÞjE1Þ ð11Þ

Since Prðremainð~nÞjE1ÞP 1� eðe ¼ ð1=2Þ10Þ by (5)
and Pr(Y1/n 6 g) = 1 � Pr (Y1/n > g), if the inequal-
ity (8) is satisfied, then (3) holds by (11). Thus, (8) is
a sufficient condition for (3).

We now focus on how to minimize the bit vector
size m in order to reduce the memory size. We
also need to keep n as small as possible to quickly
detect scanners with a small number of connection
attempts. Hereafter, we find the set of parameters
(n,g) that minimizes m while satisfying both the false
positive and false negative conditions and keeping
the value of n as small as possible. The minimum
value of m is found as well.

4.1. Collision probabilities of Bloom filters

Let m be the number of bits allocated for the bit
vector of the Bloom filter. Let k be the number of
hash functions used for the Bloom filter. After
inserting n0 destination addresses into a bit vector
of size m, the probability that a particular bit is still
0 is (1 � 1/m)kn0. The collision in Bloom filters
occurs when a new destination address observes 1
in every bit position indicated by k hash functions.

The collision probability of the arriving destination
addresses after the n0th registered address is then

ð1� ð1� 1=mÞkn0 Þk � ð1� e�kn0=mÞk: ð12Þ

The right-hand side of (12) is minimized when
k = ln2 � m/n0. It then becomes

ð1=2Þk ¼ ð0:6185Þm=n0
: ð13Þ

From both (12) and (13), we know that the collision
probability decreases as m/n0 increases. We also find
that if n0 is increased for a given k, then m also
should be increased in order to keep the collision
probability at the same level. Thus, the value of n0

should be kept small to reduce the memory size.

4.2. False positive and false negative probabilities in

the presence of collisions in Bloom filters

We now analyze the effect of collisions in Bloom
filters on the false positive and false negative prob-
abilities. The collision occurs when a packet corre-
sponding to a new source/destination pair (s,d)
arrives and finds that all the bits corresponding
to the hash values of d are set to 1. If collisions
occur in both V1(s) and V2(s), ATTEMPT(s) does
not increase since it is not considered as a new
attempt. Even though a response packet from d

to s is observed, RESPONSE(s) does not increase
because the address d already exists in the bit vec-
tor V2(s). Thus, the source/destination pair (s,d)
that experiences collisions in both V1(s) and V2(s)
affects neither ATTEMPT(s) nor RESPONSE(s).

If a new source/destination pair (s,d) experiences a
collision in V1(s) but not in V2(s), then ATTEMPT(s)
does not increase since it is not considered as a new
attempt of s. But, if there is a response from d to s,
then the RESPONSE(s) increases by 1. Since the
new attempt is not counted and only the response is
counted in this case, these source/destination pairs
tend to increase the success ratio compared to the
case without collision. If s is a benign source, then
the collision only in V1(s) is likely to decrease the false
positive ratio. If s is a scanner, then this kind of col-
lision likely increases the false negative ratio. Thus,
we investigate the false negative probability of a mali-
cious source in more detail when such collisions
occur.

The first address to be registered in the Bloom fil-
ter does not experience collision. As the number of
the addresses registered in the Bloom filter increases,
new destination addresses of s tend to experience

S.Y. Nam et al. / Computer Networks 52 (2008) 1545–1566 1553

Author's personal copy

higher collision probability as shown in (12). After
n � 1 addresses are registered, the collision proba-
bility is highest as (1 � e�k(n�1)/m)k. pc denotes the
highest collision probability,

pc ¼ ð1� e�kðn�1Þ=mÞk: ð14Þ
As a conservative approximation to obtain an upper
bound of the false negative probability, we assume
that every new connection attempt of a given source
s experiences the same collision probability of pc ex-
cept the first attempt which experiences no collision.
We now state the following property of binomial
distribution.

Lemma 1. Let X(n, r) denote a binomial random

variable with n trials and the success probability of r.

Then, for r1, r2, r3, and r4 (0 6 r1 6 r2 < g < r3 6

r4 6 1), we have

PrðX ðn; r1Þ=n > gÞ 6 PrðX ðn; r2Þ=n > gÞ; ð15Þ
PrðX ðn; r4Þ=n 6 gÞ 6 PrðX ðn; r3Þ=n 6 gÞ: ð16Þ

Proof. Since n is a fixed number, we have Pr(X(n, r)/
n > g) = Pr(X(n, r) > ng) and it can be expressed
as

PrðX ðn; rÞ > ngÞ ¼
Xn

j¼bngcþ1

n

j

� �
rjð1� rÞn�j

:

Since n and g are usually fixed in the above equa-
tion, we consider the right hand side term as a func-
tion of r and let f(r) denote the right hand side term
of the above equation. If we differentiate f(r) with
respect to r, then we have

f 0ðrÞ ¼
Xn

j¼bngcþ1

n

j

� �
rj�1ð1� rÞn�j�1ðj� nrÞ: ð17Þ

Let us consider r less than g, i.e.r < g. Since j > ng,
we have j > ng > nr. Thus, f0(r) > 0 for r < g by
(17) and we have f(r1) 6 f(r2) since r1 6 r2 < g. Thus,
(15) is proved. (16) can also be proved in a similar
way. h

Due to the collision in Bloom filters, it is likely
that more than n attempts are required to fill the
Bloom filter designed to accommodate n IP
addresses. Let A denote the total number of connec-
tion attempts of a source address s until the nth con-
nection attempt is counted by the Bloom filter. Y1(j)
and Y2(j) denote the conditional random variables
Y1jA = j and Y2jA = j, respectively. Let Y 01ðnÞ
denote Y1(n) when the scanner has the highest suc-

cess ratio of h1. Let Y 02ðnÞ denote Y2(n) when the
benign source has the lowest success ratio of h2.
Based on the data analysis in [7], we assume that
h1 < h2. We assume that the response of each
attempt is independent and identically distributed
(i.i.d.) for the same source address. Then, we obtain
the following relationship:

Proposition 2. If a set of (n,g) satisfy (18) and (19),
then the sufficient conditions for the false positive and

false negative probability requirements, (8) and (9),

are satisfied.

PrðY 01ðnÞ > ngÞ þ 1� ð1� pcÞ
n�1

< d01; ð18Þ
PrðY 02ðnÞ 6 ngÞ < d2; ð19Þ

where Y 01ðnÞ � Binomialðn; h1Þ, Y 02ðnÞ � Binomial
ðn; h2Þ, and d01 ¼ 1� ð1� d1Þ=ð1� eÞ from (8).

Proof. The proof is given in Appendix B. h

We now solve (18) and (19) simultaneously to find
the values of n and g which guarantee the false
positive and false negative probabilities. In order
to solve the inequality (18) explicitly in terms of n,
we consider the following set of inequalities:

PrðY 01ðnÞ > ngÞ < x; ð20Þ
1� ð1� pcÞ

n�1
6 d01 � x; ð21Þ

where 0 < x < d01. If we find the set of (n,g) that sat-
isfies both (20) and (21) simultaneously, then those
values of (n,g) also satisfy (18).

Thus, if we show that there exist n and g that sat-
isfy (19)–(21) simultaneously, then it proves that
SherLOCK guarantees the false positive and false
negative probabilities even in the presence of colli-
sions in Bloom filters and the contention in the hash
table. It is not trivial to obtain the range of n which
satisfies (19) and (20) in a closed form with the exact
binomial distribution. We first consider a simple
form of upper bound for binomial distribution.
For a binomial random variable X � Binomial(n,p),
the following inequalities are derived using Chernoff
bounds [25, Corollary 3.1.2]:

PrðX � np P nÞ 6 expð�2n2=nÞ;
PrðX � np 6 �nÞ 6 expð�2n2=nÞ:

Applying the above inequalities to Y 01ðnÞ and Y 02ðnÞ,
we obtain

PrðY 01ðnÞ > ngÞ 6 expf�2nðg� h1Þ2g; ð22Þ
PrðY 02ðnÞ 6 ngÞ 6 expf�2nðh2 � gÞ2g: ð23Þ

1554 S.Y. Nam et al. / Computer Networks 52 (2008) 1545–1566

Author's personal copy

If we consider (20) and (22) simultaneously, then n

that satisfies

n >
� ln x

2ðg� h1Þ2
ð24Þ

also satisfies (20). If we consider (19) and (23) simul-
taneously, then n that satisfies

n >
� ln d2

2ðh2 � gÞ2
ð25Þ

also satisfies (19). Let h01ðgÞ and h02ðgÞ denote the
lower bounds on the right hand side of (24) and
(25), respectively. (21) leads to

n 6
lnð1� d01 þ xÞ

lnð1� pcÞ
þ 1: ð26Þ

Let h03ðm=ðn� 1ÞÞ denote the upper bound in (26),
where pc is a function of m/(n � 1) given by (14).
The set of (n,g) that satisfies (24)–(26) simulta-
neously is expressed as a shaded area in Fig. 4.
Let g* and n̂ denote the values of g and n that is
on the intersection of h01ðgÞ and h02ðgÞ, respectively.
From Fig. 4, we find that the minimum value of n

is obtained when g = g*. The values of g* and n̂
are then

g� ¼ h2 þ
ffi
ln d2= ln x

p
h1

1þ
ffi
ln d2= ln x

p ;

n̂ ¼ �0:5 ln d2=ðh2 � g�Þ2:

The minimum value of n is determined as
n� ¼ bn̂c þ 1, where buc denotes the largest integer
that is smaller than or equal to u.

The required size of the bit vector m and the
number of the hash functions k can be determined
by (26). We assume that m/(n � 1) is maintained
by adaptively changing the value of m according
to n. In order to assure that ðg�; bn̂c þ 1Þ exists in
the shaded area of Fig. 4, n ¼ bn̂c þ 1 has to satisfy
(26). We substitute bn̂c þ 1 for n and solve (26) in
terms of pc. We then have

pc 6 1� ð1� d01 þ xÞ1=bn̂c: ð27Þ
Since the minimum value of pc is 0.6185m/(n�1) from
(12)–(14), the range of m/(n � 1) is given by (27) as

m
n� 1

P
lnf1� ð1� d01 þ xÞ1=bn̂cg

ln 0:6185
:

m is minimized when n has the minimum value of
n� ¼ bn̂c þ 1 and the minimum value of m is deter-
mined as

m� ¼ lnf1� ð1� d01 þ xÞ1=bn̂cg
ln 0:6185

& ’
bn̂c: ð28Þ

The corresponding k is determined by k ¼ ln 2�
m�=bn̂c from (13) and (28) when n0 = n � 1 and
n ¼ bn̂c þ 1. We find a set of parameters (n,g,m,k)
for any given constraints, d1 and d2, and we thus
prove that our scheme guarantees the false positive
and false negative probabilities even in the presence
of collisions in Bloom filters and the contention in
the hash table.

4.3. Memory requirement

We now show the required memory size for the
target performance in terms of the false positive
and false negative probabilities. We find the set of
parameters (n,g,m,k) which minimizes the required
memory for given constraints, d1 and d2.

Earlier we showed the parameter selection pro-
cess for an arbitrary value of x ð0 < x < d01Þ in (20)
and (21). In order to find the minimum value of
m, we perform the same parameter selection process
for various values of x in the interval of ð0; d01Þ. We
find the minimum bit vector size m as follows:

– For each x in ð0; d01Þ, we find the set of parame-
ters (n, g, m, k) according to the given selection
process. The selected parameters are the ones
that minimize n and m for the given x.

– In the next step, we select the set (n,g,m,k) that
minimizes m from the list of the set (n,g,m,k)
obtained for various values of x in ð0; d01Þ.

Fig. 5 shows the values of m for various values of
x ð0 < x < d01Þ when h1 = 0.2, h2 = 0.8, and d1 =
d2 = 0.05. The value of x changes from 0.0005 to

0

 10

 20

 30

 40

0 0.2 0.4 0.6 0.8 1

n

η

h ()η1 h ()η2

(*, n)η

h (m/(n-1))3

^

Fig. 4. Solution area for (24)–(26).

S.Y. Nam et al. / Computer Networks 52 (2008) 1545–1566 1555

Author's personal copy

0.0490 (�d01Þ with an increment of 0.0005. Since m

takes discrete values from a very limited set of inte-
gers as shown in Fig. 5, we find the minimum value
of m through an exhaustive search. In Fig. 5, the
minimum value of m (252) is obtained at x =
0.025. Although 252 is the minimum value of m

when the Chernoff bound is used, Chernoff bound
is a rather loose bound. If we use the binomial dis-
tribution for Y 01ðnÞ in (20) and Y 02ðnÞ in (19) in order
to find the minimum n that satisfies (20) and (19)
simultaneously, then we find a smaller n. The opti-
mal value of g cannot be solved explicitly using
the binomial distribution. Thus, we use g obtained
from Chernoff bound to compute the near-optimal
n with binomial distributions assuming that the
optimal g for the binomial distribution is not much
different from the value obtained from Chernoff
bound.

Table 2 shows the set of parameters (n,g,m,k)
that minimize m under the given conditions of
(h1,h2,d1,d2) when Chernoff bound is used. Table
3 shows the result when the binomial distribution
is used. The parameters in Table 3 guarantee the
required false positive and false negative probabili-
ties. Comparing the results in Tables 2 and 3, we
find that n and m obtained from the Chernoff bound

are always upper bound of the results obtained from
binomial distribution. n is kept smaller than 20 for
every case when binomial distribution is directly
used for Y 01ðnÞ and Y 02ðnÞ as shown in Table 3.

Fig. 1 shows that 52 + 2m (=32 + 5 + 5 + 6 +
2m + 4) bits are required for each source address
in the double connection status table: 48 bits in
the primary table and (2m + 4) bits in the secondary
table. When the number of rows of the hash table is
R, (52 + 2m) � 4 � R = (208 + 8m)R-bit memory is
required to implement our scheme.

Let us consider the parameters obtained from
binomial distribution. If R is 2 � 104, then every
scenario in Table 3 can be implemented with 7
MB memory. Even when R is 105, if m is less than
or equal to 134 bits, then those systems can be
implemented with 16 MB SRAM. Table 3 shows
that more strict performance can be provided in
terms of the false positive and false negative proba-
bilities as the memory size increases.

5. Sampling-based extension

In this section, we introduce a sampling technique
to address a short-history-based scanner detection.
If a scanner detection scheme makes decisions based
on a small number of connection attempts, then it is
possible to evade the detection system with only a
small number of known IP addresses.

Up to this point, a scanner is assumed to select tar-
get IP addresses randomly without knowing any
valid IP addresses in advance. More advanced worms
and bots use a list of valid IP addresses to accelerate
the spreading or evade detection based on the hit-list
scanning technique [4,5]. In this section, we extend
SherLOCK with a sampling technique and show that
our sampling-based SherLOCK can detect scanners
that know a limited number of valid IP addresses
while guaranteeing false positive and false negative
probabilities.

 240

 260

 280

 300

 320

 340

 360

 380

 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

bi
t v

ec
to

r
si

ze
 (

m
)

x

Fig. 5. Bit vector size (m) for various values of x.

Table 2
Parameters that minimize m when Chernoff bound is used

h1 h2 d1 d2 g n m k

0.2 0.8 0.05 0.05 0.515 19 252 10
0.2 0.8 0.01 0.01 0.513 28 486 13
0.2 0.8 0.005 0.005 0.514 33 640 14
0.1 0.9 0.05 0.05 0.529 11 120 9
0.1 0.9 0.01 0.01 0.516 16 255 12
0.1 0.9 0.005 0.005 0.515 18 323 14

Table 3
Parameters that minimize m when Binomial distribution is
directly used

h1 h2 d1 d2 g n m k

0.2 0.8 0.05 0.05 0.515 7 78 10
0.2 0.8 0.01 0.01 0.513 13 228 14
0.2 0.8 0.005 0.005 0.514 18 306 13
0.1 0.9 0.05 0.05 0.529 3 20 7
0.1 0.9 0.01 0.01 0.516 5 80 14
0.1 0.9 0.005 0.005 0.515 7 108 13

1556 S.Y. Nam et al. / Computer Networks 52 (2008) 1545–1566

Author's personal copy

We explain the shortcoming of the basic version
of SherLOCK with an example. Knowing the value
of n, the scanner s with n valid IP addresses can
operate without being detected by SherLOCK. Let
us assume that the detection threshold g is 0.5 and
n is fixed to 10. Let d1, . . .,d6 denote the valid IP
addresses that the scanner s already knows. Let
a1,a2, . . . denote the random addresses to be
scanned. If the scanner scans with six known
addresses (d1–d6) and four random addresses from
a1,a2, . . ., then the success ratio would be at least
0.6 every time and the scanner can not be detected
with the detection threshold of g = 0.5. This kind
of problem also has been noted in [8] and can be
common to other short-history-based schemes. We
combine a sampling technique with SherLOCK to
detect such scanners. We randomly sample source/
destination pair with a probability of 0.1 and con-
sider the connection attempts of only those sampled
source/destination pairs. On average, less than 1
destination among d1–d6 would be processed. Thus,
the effect of pre-acquired valid IP addresses on the
connection success ratio can be controlled by the
sampling probability. We use the sampling tech-
nique suggested in [12] to sample source/destination
pairs. We use a uniform random hash function hm to
map (s,d) pairs to [0, 1). If the random number allo-
cated to (s,d) is less than the sampling probability
ps, then the (s,d) pair is sampled and the connection
status is monitored.4

In the performance analysis, we assume that the
number of valid IP addresses known to the scanner
is limited to l. We also assume that the scanner
attempts to scan the known IP addresses as early as
possible for a high connection success ratio and the
scanner continues to scan afterwards. We note that
Proposition 1 is still valid in this case because both k
and k1 are scaled by the same factor of the sampling
probability. ~n counts the sampled requests in this case.

Proposition 3. For x1 and x2 ðx1 > 0; x2 > 0; x1þ
x2 < d01Þ, if a 5-tuple of (n,g,m,k, ps) satisfies the

following relations,

1� ð1� pcÞ
n
6 x1; ð29ÞX

n6i<al

i� 1

n� 1

� �
pn

s ð1� psÞ
i�n
6 x2; ð30Þ

PrðbY 1ðn; alÞ > ngÞ < d01 � x1 � x2; ð31Þ
PrðY 02ðnÞ 6 ngÞ < d2; ð32Þ

then the sufficient conditions for the false positive and

false negative probability requirements, (8) and (9),

are satisfied. Note that d01 ¼ 1� ð1� d1Þ=ð1� eÞ;
e ¼ ð1=2Þ10

, and ps is the source/destination pair sam-

pling probability. a is a real number larger than
(1 � h1)/(h2 � h1) and bY 1ðn; alÞ � Binomialðn; h1þ
ð1� h1Þ=aÞ.

Proof. The proof is given in Appendix C. h

(29), (31), (32) have the same form as (21), (20), and
(19), respectively, although the success probability
increases by (1 � h1)/a in case of Y1 and the power
of 1 � pc increases from n � 1 to n. Thus, the solu-
tion set of (n,g,m,k) for (29), (31), (32) can be ob-
tained in a similar way as the procedure described
in Section 4. The value of a should be larger than
(1 � h1)/(h2 � h1) in order to maintain the increased
success probability of the scanner, (h1 + (1 � h1)/a),
to be smaller than the minimum success probability
of benign hosts, h2. If a > (1 � h1)/(h2 � h1), then
the false positive and false negative probability
requirements are guaranteed. We now study the
characteristics and the effect of a.

We induce the property of a from (30). Let As

denote the number of attempts required to sample
n attempts with no collision in Bloom filter, i.e.
pc = 0. (30) then becomes

PrðAs < alÞ 6 x2: ð33Þ

From (30), the expectation of As is given by
E[As] = n/ps. From the Markov inequality [26], we
obtain

PrðAs < alÞP 1� E½As�=ðalÞ: ð34Þ

Combining (33) and (34) yields E[As] P a l(1 � x2)
� al, since x2 is usually negligibly small. Consider-
ing the collision in Bloom filters, E[A] = n/(ps(1 �
pc)) P E[As] and

E½A�P al: ð35Þ

Combining E[As] = n/ps and E[As] P al, we get

ps 6 n=al: ð36Þ

When a increases, the effective success ratio of the
scanner (h1 + (1 � h1)/a) decreases. a thus decreases
the effect of pre-acquired knowledge on valid IP ad-
dresses. As the difference between the success ratios
of scanners and benign hosts increases, extended
SherLOCK operates faster with a smaller number

4 Since the sampling is based on (s,d) pair and the attempt and
the response are counted at most one time for each (s,d) pair,
duplicate attempts to the same valid IP address can not affect the
connection success ratio of s.

S.Y. Nam et al. / Computer Networks 52 (2008) 1545–1566 1557

Author's personal copy

of connection attempts (n) and a smaller memory
size. However, the sampling may delay the detection
decision. (35) shows that a large value of a tend to
increase data collection time. As a increases, the
memory size decreases, but the data collection time
increases due to the decrease of the sampling prob-
ability in (36). As a increases, (29), (31), (32) are re-
duced to (21), (20), and (19), respectively, although
the power of 1 � pc differs by 1. Thus, the bit vector
size m obtained from (21), (20), (19) becomes a low-
er bound of that obtained from (29), (31), and (32).

The sampling probability ps can be computed
from (30) when n is determined. If we focus only
on the minimization of the bit vector size (m), then
the optimal case is achieved when x2 is negligibly
small. If x2 is very small, then ps should be small
according to (30). The small ps leads to a long data
collection time. In order to avoid too small ps, we
add the constraint that x2 = 0.1x1 to (29)–(31).

Table 4 shows the set of parameters (n,g,m,k,ps)
obtained from (29)–(32) when Chernoff bound is
used to approximate Binomial distributions. Table
5 shows the set of parameters (n,g,m,k,ps) obtained
from (29)–(32) when Binomial distribution is used
without approximation. Tables 4 and 5 show that
the resulting parameters except ps are not changed
even though the number of known addresses l is
changed. Only ps is dependent on l as shown in
(30). We find that the minimum value of m is signif-
icantly overestimated in case of Chernoff bound as
opposed to Binomial distribution. As a increases
from 10 to 20, n/ps (�E[A]) increases, but the mem-
ory size does not decrease in Table 5. Thus, 10 is
better choice for a than 20 in this case. Comparing
the results of Table 5 with those of Table 3, we find
that (n,m,k) are identical especially when d1 = d2 =
0.05. This means the minimum memory size is
achieved at a = 10 since the value of m in Table 3
is the lower bound of m obtained under the
sampling.

If a scanner finishes probing just after scanning
the known l addresses, the success ratio of the scan-
ner would remain near 1.0. This type of scanners
with a high success ratio cannot be detected based
on the attempt success ratio. The extended Sher-
LOCK can detect scanners with a large value of l

only when the real success ratio of the scanner drops
sufficiently lower than h2 by scanning random IP
addresses.

6. Numerical results

In this section, we evaluate the performance of
SherLOCK by experiment and compare SherLOCK
with a simplified version of TRW [6] in terms of the
false negative probability. The simplified version of
TRW by Weaver et al. [6] is the only one that con-
siders memory constraints among all variants of
TRW [6–8]. Two Linux machines with a 2.8 GHz
dual-core Intel Xeon CPU are used for the experi-
ment. One machine generates input traffic according
to the sampled packet traces and sends all the pack-
ets to the other machine that emulates a monitoring
node. We use packet traces taken from NLANR
archive [23] as the base traffic. We also inject packet
traces of 1000 normal hosts with a success ratio of
0.8 (h2) and 1000 malicious hosts with a success
ratio of 0.2 (h1). We model a successful attempt with
a single pair of bidirectional packets. The response
time of the response packet is distributed uniformly
in the interval of (0, 450) ms. The interval between
successive attempts is modeled with an exponential
distribution.

The base traces from NLANR are described in
Table 6. All the traces are sampled from the links
with a link rate of 1 Gbps. Instantaneous traffic rate
is especially high for trace 3, but there was no
packet loss due to our algorithm complexity.

We limited the number of rows of the hash table,
R, to 20,000 in order to test the scenario where the

Table 4
Parameters that minimize m when sampling technique and
Chernoff bound are used (h1 = 0.2, h2 = 0.8)

d1 (=d2) a l g n m k ps

0.05 10 10 0.551 25 360 11 0.138838
1000 0.551 25 360 11 0.001295

20 10 0.539 22 294 10 0.057465
1000 0.539 22 294 10 0.000557

0.005 10 10 0.550 43 882 15 0.263642
1000 0.550 43 882 15 0.002342

20 10 0.530 37 756 15 0.100002
1000 0.530 37 756 15 0.000950

Table 5
Parameters that minimize m when sampling technique and
Binomial distribution are used (h1 = 0.2, h2 = 0.8)

d1 (=d2) a l g n m k ps

0.05 10 10 0.551 7 78 10 0.016726
1000 0.551 7 78 10 0.000162

20 10 0.539 7 78 10 0.008226
1000 0.539 7 78 10 0.000081

0.005 10 10 0.550 18 323 14 0.072460
1000 0.550 18 323 14 0.000680

20 10 0.530 18 323 14 0.034827
1000 0.530 18 323 14 0.000340

1558 S.Y. Nam et al. / Computer Networks 52 (2008) 1545–1566

Author's personal copy

hash table is overloaded. The total number of
entries in the hash table is 80,000. The double
connection status table is overloaded with over
80,000 distinct sources of traces 1 and 3. MD5 is
used for hash functions. Table 7 shows the experi-
ment results for several scenarios. For the scanner
without any pre-acquired IP addresses, i.e. l = 0,
we use the parameters given in Table 3. For the
scanner with 10 pre-acquired IP addresses, i.e.
l = 10, the sampling-based extended SherLOCK is
applied with the parameters corresponding to
a = 10 in Table 5.

In traces 1–3, the arrival rates of distinct flows
(or requests) between distinct source and destina-
tion (s–d) pairs are up to 4000 flows/s for the first
1 s. As the observation interval increases, the arrival
rate of the new flows decreases due to the increase of
the recurrent IP addresses. The long-term arrival
rate of distinct flows is less than 100 flows/sec for
traces 1 and 2. From Proposition 1, when k = 100
and R = 20,000 the scanner-related entry remains
in the hash table with a probability of 99.9% if
k1 P 0.005, that is, if the average inter-arrival time
of distinct requests from the scanner is less than
200 s. The mean inter-arrival time of distinct
requests of the scanners (1/k1) is set to 100 s for
traces 1 and 2.

In case of trace 3, the arrival rate of request pack-
ets (k) is 1080 requests/s and the mean inter-arrival

time (1/k1) of distinct requests from each scanner is
set to 20 s. According to Proposition 1, if the num-
ber of the rows of the hash table R is at least 21,600,
then the existence of scanner-related entries is guar-
anteed with the probability of at least 99.9%. The
lower bound of (5) in Proposition 1 is not a tight
bound. We find that scanner-related entries are
retained with the probability of 99.9% with a smal-
ler value of R, especially for R = 20,000. Thus, the
false positive and false negative probabilities are
guaranteed for trace 3 as shown in Table 7. If sam-
pling is not used, each scanner is sending ðnþ ~n�Þ
packets in each scenario.

Table 7 shows that the double connection status
table is heavily loaded in scenarios 1–6 through the
number of evictions. Both the false positive and
false negative probabilities are guaranteed in those
scenarios even though the scanning rate k1 is as
low as 0.01. The number of evictions can be larger
than the number of distinct source IP addresses as
one source address can be evicted multiple times if
that host is making connections to many other hosts
over a long time period. In scenarios 5 and 6, even
when the instantaneous traffic rate goes up to near
1 Gbps, there is no packet loss due to the overhead
of our algorithm and both of the false positive and
false negative probabilities are guaranteed. When
we compute the false positives, we include benign
hosts in NLANR traces as well as the injected nor-
mal hosts. Since most of the IP addresses in the real
trace do not make many connection attempts to dis-
tinct hosts, they are not usually detected and are
counted as normal hosts.

In scenarios 7–12 with scanners using 10 pre-
acquired IP addresses, we use the sampling-based
SherLOCK described in Section 5. The environ-
ment is similar to that of scenarios 1 � 6, but each

Table 6
Description of NLANR traces

Trace Duration
(s)

No.
packets

No. distinct
sources

No. distinct
flows

1 21,600 23,418,634 81,096 192,129
2 10,904 22,599,344 69,262 199,071
3 900 8,967,650 368,698 971,864

Table 7
Experiment results for the proposed scheme (h1 = 0.2, h2 = 0.8)

Scenario Known addresses (l) Trace d1/d2 False positives False negatives No. evictions

1 0 1 0.05/0.05 7.80e�4 0.001 98,200
2 0 1 0.005/0.005 6.09e�5 0.003 91,404
3 0 2 0.05/0.05 9.68e�4 0.001 58,898
4 0 2 0.005/0.005 5.69e�5 0 55,255
5 0 3 0.05/0.05 2.41e�4 0 367,388
6 0 3 0.005/0.005 1.08e�5 0.003 367,969
7 10 1 0.05/0.05 9.74e�4 0.001 466
8 10 1 0.005/0.005 4.87e�5 0.002 3,233
9 10 2 0.05/0.05 1.32e�3 0.001 435

10 10 2 0.005/0.005 1.28e�4 0.003 2,690
11 10 3 0.05/0.05 2.73e�4 0 1,072
12 10 3 0.005/0.005 1.35e�5 0.001 12,899

S.Y. Nam et al. / Computer Networks 52 (2008) 1545–1566 1559

Author's personal copy

scanner sends more, ðnþ ~n�Þ=ps, packets to fill
Bloom filters under the sampling. We observe that
both the false positive and false negative probabili-
ties are guaranteed in these scenarios. Since sam-
pling reduces the load to the memory, the number
of evictions is decreased from the non-sampling
case. The number of evictions of scenarios 8 and
10 are higher than those of scenarios 7 and 9. The
reason is that the sampling probability is higher
for 8 and 10 than for 7 and 9 in Table 5.

We now compare SherLOCK with the simplified
version of TRW [6] in terms of the false negative
probability. We use the default values used in [6]
for the parameters of the simplified TRW. The num-
ber of entries in the connection cache is fixed to 1
million. Since the address cache also has 1 million
entries, 5 MB of memory is required to implement
this simplified TRW (1 MB for the connection
cache, and 4 MB for the address cache). We use
trace 3 to compare both schemes in an environment
where the memory is heavily loaded. Especially in
scenario 5 of Table 7, the bit-vector size m for Sher-
LOCK is 78 bits according to Table 3 and requires
2.1 MB of memory. The false positive probability
is well guaranteed by both schemes.

Fig. 6 compares the performance of SherLOCK
and the simplified TRW in terms of the false negative
probability for scenario 5. The simplified TRW is
evaluated for various values of the detection thresh-
old T between 5 and 10, which were used in [6].
While SherLOCK satisfies the false negative require-
ment of 0.05, the simplified TRW does not guarantee
the false negative probability. In the simplified
TRW, each entry of the connection cache is allowed
to be shared by multiple connections. If 50% of the

connection cache is occupied by existing connec-
tions, then a new attempt of a scanner may not be
counted by a probability of up to 50% since the cor-
responding entry might have been used by another
connection. Occasionally some packets belonging
to other connections may increase the response ratio
of scanners due to the entry merging. In trace 3, the
number of flows is very large near the total number
of entries (1 million) in the connection cache. These
two effects can increase the response ratio of scan-
ners leading to violation of the false negative require-
ment. As the detection threshold T increases, less
number of scanners would be detected. Thus, the
false negative probability increases with respect to
the detection threshold T in case of the simplified
TRW.

In contrast to the simplified version of TRW, if
the three parameters k, k1, and R, satisfy the condi-
tion (6) of Proposition 1, then the false positive and
false negative probabilities of SherLOCK are guar-
anteed based on Proposition 1.

7. Conclusions

Time-window-based scanning detection schemes
have two major drawbacks. First, slow scanners
can easily evade those systems. Second, it is very dif-
ficult to find an optimal threshold since a low thresh-
old can increase false positives and a high threshold
allows slow scanners to go undetected. We propose
SherLOCK, a scanner detector based on the connec-
tion attempt success ratio. A few schemes have been
proposed based on the connection attempt success
ratio, but there is no scheme that can guarantee the
false positive and false negative probabilities in a
high-speed link with a limited high-speed memory.
SherLOCK can detect scanners with guaranteed
false positive and false negative probabilities using
a limited-size memory. We analyze two types of
memory conflict in the proposed scheme: the conten-
tion in the hash table and the contention in the
Bloom filter used to manage the connection status
of each source address. SherLOCK can detect slow
scanners for the given traffic load and the memory
size. We present a simple way to compute the various
parameters in SherLOCK to meet the target perfor-
mance. Through experiment, we demonstrate that
SherLOCK can detect very slow scanners with only
16 MB memory while guaranteeing the false positive
and false negative probabilities. We expect that
much slower scanners can be detected by SherLOCK
if the memory constraint can be relaxed. The sam-

0

0.2

0.4

0.6

0.8

1

5 6 7 8 9 10

F
al

se
 n

eg
at

iv
e

pr
ob

ab
ili

ty

detection threshold (T) for TRW

simplified TRW
SherLOCK

false negative requirement (0.05)

Fig. 6. Comparison of SherLOCK and the simplified version of
TRW in terms of the false negative probability.

1560 S.Y. Nam et al. / Computer Networks 52 (2008) 1545–1566

Author's personal copy

pling-based extended SherLOCK overcomes the
shortcomings of short-history-based detection
schemes and detects more intelligent scanners that
use pre-acquired valid IP addresses while guarantee-
ing false positive and false negative probabilities.

Acknowledgements

This work was supported in part by US Army
Research Office (DAAD19-02-1-0389), by the Kor-
ea Research Foundation Grant funded by Korea
Government (KRF-2004-214-D00377), and by the
MIC (Ministry of Information and Communica-
tion), Korea, under the ITRC support program by
the IITA (IITA-2006-(C1090-0603-0002)).

Appendix A

Proof of Proposition 1

If the following three conditions are satisfied,
then the scanner entry is retained in the memory
by the eviction policy of Fig. 2:

– E_con1: When the first request of the scanner
arrives at the hash table, at least two entries are
occupied by the hosts which achieve a high success
ratio or make only a single connection attempt.

– E_con2: The first request of the scanner is
unsuccessful.

– E_con3: The second request of the scanner
arrives earlier than the other distinct requests to
the same row.

Thus, we can obtain the following lower bound
for the probability that the scanner-related entry is
retained in the memory.

Prðnon-eviction of the scanner entryÞ
P PrðE con1ÞPrðE con2ÞPrðE con3Þ; ðA1Þ

where we assume that the events E_con1, E_con2

and E_con3 are independent. If we let b denote
the probability that a specific entry in a row is occu-
pied by a host which has a success ratio higher than
g or by a host which makes only a single connec-
tion attempt, then b = f + (1 � f)u. Pr(E_con1) is
expressed in terms of b as

PrðE con1Þ ¼ 1� 4
0

� �
b0ð1� bÞ4

� 4
1

� �
b1ð1� bÞ3

¼ 1� ð1� bÞ4 � 4bð1� bÞ3: ðA2Þ

From the definition of h0, we have

PrðE con2Þ ¼ h0: ðA3Þ

Let X1 and X2 denote the inter-arrival time of dis-
tinct requests of the given scanner and the inter-ar-
rival time of other requests arriving at the same row,
respectively. Then, we have X1 � exp(k1). When the
aggregate request arrival process for the whole hash
table is a Poisson process with a parameter k, the ar-
rival process to a particular row becomes a Poisson
process with the parameter k/R by Theorem 4 of
[27, p. 74]. Then, we have

X 1 � expðk1Þ; X 2 � expðk=RÞ;

and Pr(E_con3) is expressed as

PrðE con3Þ ¼ PrðX 1 6 X 2Þ: ðA4Þ

Since both X1 and X2 have exponential distribu-
tions, we have

PrðX 1 6 X 2Þ ¼
k1

k1 þ k=R
: ðA5Þ

From (A1)–(A5), we obtain an upper bound of the
eviction probability as

Prð1 time evictionÞ 6 1� PrðE con1ÞPrðE con2Þ
PrðE con3Þ

¼ 1� k1

k1 þ k=R
h0ð1� ð1� bÞ4

� 4bð1� bÞ3Þ: ðA6Þ

We assume that an eviction of the entry of a specific
source address is independent of other evictions of
the same address. Then, the probability Prðremain
ð~nÞÞ that the scanner entry remains in the hash table
after ~n requests is bounded as

Prðremainð~nÞÞP 1� 1� k1

k1 þ k=R
h0ð1� ð1� bÞ4

�
� 4bð1� bÞ3Þ

�~n

:

S.Y. Nam et al. / Computer Networks 52 (2008) 1545–1566 1561

Author's personal copy

If k1 P k/R, then k1/ (k1 + k/R) P 1/2 and we have

Prðremainð~nÞÞP 1� 1� 0:5h0ð1� ð1� bÞ4
�

� 4bð1� bÞ3Þ
�~n
: ðA7Þ

If ~n satisfies the following relation:

1� ð1� 0:5h0ð1� ð1� bÞ4 � 4bð1� bÞ3ÞÞ~n P 1� e;

then those ~n’s also satisfy (5) by Eq. (A7). The
smallest integer value of ~n; ~n�, can be calculated by
solving the above inequality and the value is ob-
tained as

~n� ¼ log e

log 1� 0:5h0ð1� ð1� bÞ4 � 4bð1� bÞ3Þ
n o

2666
3777:

Let pe and Ne denote the probability that an entry in-
duced by a request of a given scanner is not retained
and the number of request packets from the scanner
required to assure retention of the scanner entry in
the hash table, respectively. Then, from the expecta-
tion of the geometric distribution, we have

E½Ne� ¼ 1=ð1� peÞ: ðA8Þ

Since pe is equal to Pr(1 time eviction) of (A6), from
(A6) and (A8) we have

E½Ne� 6
1þ ðk=k1RÞ

h0ð1� ð1� bÞ4 � 4bð1� bÞ3Þ
:

When k1 P k/R, we have E[Ne] 6 2/(h0(1 � (1 �
b)4 � 4b(1 � b)3)).

Appendix B

Proof of Proposition 2

A is the total number of connection attempts of a
source address s until the nth connection attempt is
counted by the Bloom filter. Since the packet arriv-
ing at an empty Bloom filter does not experience
collision, the distribution of A is given as

PrðA ¼ nþ iÞ ¼
nþ i� 2

n� 2

� �
ð1� pcÞ

n�1pi
c; ðB1Þ

where i = 0,1,2, Let us investigate the distribu-
tion of Y1(j), i.e. Y1jA = j. In real case, the value
of RESPONSE may not reach j due to collisions
in V2. But, we assume that there is no collision in
V2 and the value of RESPONSE can reach up to j
as a conservative approximation in terms of false

negative probability. This assumption is conserva-
tive because a large value of RESPONSE implies
high false negatives for scanners. Let Z1(i) be a ran-
dom variable that represents the result of the ith
connection attempt of a malicious source. Z1(i) is
1 if the ith attempt is a success, and 0 if the attempt
is a failure. Then, Y1(j) can be expresses in terms of
Z1(i) as

Y 1ðjÞ ¼
Xj

i¼1

Z1ðiÞ; j P n:

Since we assume that the random variables Z1(i)’s
(i = 1,2, . . .) are independent and identically distrib-
uted (i.i.d.), Y1(j) has a binomial distribution.

In order to discriminate the hosts with the suc-
cess ratio of h1 from the hosts with the success ratio
of h2, we need to put the detection threshold g
between them. Thus, we assume h1 < g < h2. The
false negative probability of a scanner s1 under the
condition that the scanner-related entry is not
evicted can be expressed as

PrðY 1=n > gÞ ¼
X1
j¼n

PrðY 1=n > gjA ¼ jÞPrðA ¼ jÞ

6 PrðY 1=n > gjA ¼ nÞPrðA ¼ nÞ
þ 1� PrðA ¼ nÞ: ðB2Þ

By the definition of Y1(n), we have Pr(Y1/n > g
jA = n) = Pr(Y1(n)/n > g). Since Pr (A = n) = (1 �
pc)

n�1 by (B1) and (B2) can be changed into

PrðY 1=n > gÞ 6 PrðY 1ðnÞ=n > gÞð1� pcÞ
n�1

þ 1� ð1� pcÞ
n�1
:

Since we can obtain PrðY 01ðnÞ > ngÞP PrðY 1ðnÞ >
ngÞ from Lemma 1 and (1 � pc)

n�1
6 1 on the right

hand side of the above inequality, we have

PrðY 1=n > gÞ 6 PrðY 01ðnÞ > ngÞ þ 1� ð1� pcÞ
n�1
:

ðB3Þ

Thus, if we find the set of (n,g) which satisfies (18),
then those set of (n,g) also satisfies the sufficient
condition for the false negative probability (8) by
(B3).

Y2 is the number of connection successes of a
benign host observed until n attempts are counted
by the Bloom filter. Then, we have

Pr
Y 2

n
6 g

� �
¼
X1
j¼n

Pr
Y 2

n
6 g

����A ¼ j
� �

PrðA ¼ jÞ:

ðB4Þ

1562 S.Y. Nam et al. / Computer Networks 52 (2008) 1545–1566

Author's personal copy

In this case, we do not assume that there is no colli-
sion in V2 since this assumption leads to decrease of
the above false positive probability optimistically.
Let R denote the maximum number the RESPONSE
value can reach in this case. We consider only the at-
tempts which can contribute to the RESPONSE va-
lue without collision in the Bloom filter V2 in Y2.
Then, we have

Pr
Y 2

n
6 g

����A ¼ j
� �

¼
Xj

i¼n

Pr
Y 2

n
6 g

����R ¼ i;A ¼ j
� �

PrðR ¼ ijA ¼ jÞ: ðB5Þ

Since we assumed that the outcomes of the attempts
of a benign host are i.i.d., we have

PrðY 2 6 ngjR ¼ i;A ¼ jÞ ¼ PrðeY 2ðiÞ 6 ngÞ; ðB6Þ

where eY 2ðiÞ denotes Y2jR = i, A = j and eY 2ðiÞ �
Binomialði; p2Þ, where p2 is the success probability
of the benign source. We can easily show that
PrðeY 2ðiÞ 6 ngÞ is a non-increasing function with re-
spect to i when i P n and p2 P h2 > g, that is,

PrðeY 2ðnÞ 6 ngÞP PrðeY 2ðiÞ 6 ngÞ; i P n; ðB7Þ

Then, from (B4)–(B7), we can obtain the following
bound:

Pr
Y 2

n
6 g

� �
6 Pr eY 2ðnÞ 6 ng

� �
: ðB8Þ

When A = n, there is no collision in the Bloom filter
and R is also equal to n. Thus, we have PrðeY 2ðnÞ 6
ngÞ ¼ PrðY 2ðnÞ 6 ngÞ from (B5), where Y2(n) de-
notes Y2jA = n, and (B8) can be changed into

Pr
Y 2

n
6 g

� �
6 PrðY 2ðnÞ 6 ngÞ: ðB9Þ

Since PrðY 02ðnÞ 6 ngÞP PrðY 2ðnÞ 6 ngÞ by Lemma
1, from (B9) we have

PrðY 2=n 6 gÞ 6 PrðY 02ðnÞ 6 ngÞ: ðB10Þ

By (B10), the sufficient condition for the false posi-
tive probability (9) is satisfied when (19) holds.

Appendix C

Proof of Proposition 3

As the scanner probes more known IP addresses
before the sampling is over, the monitored success
probability is likely to increase. Thus, the connec-
tion success ratio can be maximized when the scan-
ner probes as many known IP addresses as possible

before the sampling is over. The false negative prob-
ability is also maximized when the scanner accesses
as many valid IP addresses as possible. If we can
guarantee the false negative probability in this worst
case, the false negative probability should be guar-
anteed in other cases, i.e. when the scanner probes
less number of known IP addresses, too. Thus, we
assume that scanners attempt to scan known IP
addresses as early as possible for a high connection
success ratio.

Let A denote the number of connection attempts
made until the ATTEMPT value of a given source
address reaches n. Let B denote the number of
attempts sampled until the ATTEMPT value of
the source address reaches n.

As a conservative approximation we assume that
every sampled attempt or (s,d) pair experience the
collision probability of pc given by (14) in Bloom fil-
ters. An attempt can be registered into a Bloom fil-
ter if it is sampled and does not experience collision
in Bloom filters. Thus, the distribution of A is given
by

PrðA ¼ iÞ ¼
i� 1

n� 1

� �
ðpsð1� pcÞÞ

n

ð1� psð1� pcÞÞ
i�n
; ðC1Þ

where i = n, n + 1, By conditioning on A, we
can obtain the following relation regarding the false
negative probability:

Pr
Y 1

n
> g

� �
¼
X1
i¼n

Y 1

n
> g

����A ¼ i
� �

PrðA ¼ iÞ

6 PrðA < alÞ

þ
X
iPal

Pr
Y 1

n
> g

����A ¼ i
� �

PrðA ¼ iÞ:

ðC2Þ

By conditioning on B, we can obtain

Pr
Y 1

n
> g

����A ¼ i
� �

¼
Xi

j¼n

Pr
Y 1

n
> g

����B ¼ j;A ¼ i
� �

PrðB ¼ jjA ¼ iÞ: ðC3Þ

In order to obtain an upper bound of the false neg-
ative probability, if we assume that the responses of
the sampled attempts does not experience collisions
in V2 of the corresponding source address as a con-
servative approximation, then the RESPONSE va-
lue can reach up to j when B = j. Let us consider
the case of i > l since i P al in (C2) and a > 1 by
the assumption. Since we assumed that the scanner

S.Y. Nam et al. / Computer Networks 52 (2008) 1545–1566 1563

Author's personal copy

attempts to scan l known IP addresses first, those at-
tempts to l known IP addresses are included in the
total number of attempts i. If the sampling probabil-
ity is fixed to ps, then whether a specific attempt
among i attempts is sampled or not is independent
of sampling of other attempts by our sampling
scheme. Then, the probability that a sampled at-
tempt is from the list of known IP addresses of a
scanner is l/i. Before evaluating (C3), let us investi-
gate the distribution of Y1jB = n, A = i. Let C de-
note the number of attempts to known addresses
among B sampled attempts. Then, the distribution
of Y1jB = n, A = i can be expressed as

PrðY 1 ¼ zjB ¼ n;A ¼ iÞ ¼
Xn

k¼0

PrðY 1 ¼ zjC

¼ k;B ¼ n;A ¼ iÞPrðC
¼ kjB ¼ n;A ¼ iÞ: ðC4Þ

Although Pr(C = kjB = n, A = i) is given as a

hypergeometric distribution of
l
k

� �
i� l
n� k

� �
l
k

� �
, if i (Pal) is much larger than n, then it can

be approximated by the binomial distribution [28]
as

PrðC ¼ kjB ¼ n;A ¼ iÞ �
n

k

� �
l
i

� �k

1� l
i

� �n�k

:

ðC5Þ

If we assume that the attempt to any known ad-
dresses is always successful, then we have

PrðY 1 ¼ zjC ¼ k;B ¼ n;A ¼ iÞ

¼
n� k
z� k

� �
pz�k

1 ð1� p1Þ
n�z
; for z P k;

0; for z < k;

8<:
ðC6Þ

where p1 is the attempt success probability of a scan-
ner for random IP addresses and p1 6 h1. Combin-
ing (C4)–(C6) yields

PrðY 1 ¼ zjB ¼ n;A ¼ iÞ ¼
n

z

� �
p̂1ðiÞð Þz 1� p̂1ðiÞð Þn�z

;

ðC7Þ

where p̂1ðiÞ ¼ p1 þ ð1� p1Þl=i. Let Y �1ðn; iÞ denote
Y1jB = n, A = i, then Y �1ðn; iÞ � Binomialðn; p̂1ðiÞÞ
by (C7).

In order to evaluate (C3), we now calculate
Pr(B = njA = i). Since Pr(B = njA = i) = Pr(B = n,
A = i)/Pr(A = i) and Pr(A = i) is given by (C1), we

need to evaluate Pr(B = n, A = i). Since B and A

are reflecting sampled attempts and total attempts,
respectively, until n distinct attempts are registered
in the Bloom filter V1, the event of B = n and
A = i means all of the n sampled attempts are regis-
tered in V1 without collision and all other i � n

attempts are not sampled. In addition, the final
attempt is always sampled and registered without
collision by the definition of B and A. Thus,
Pr(B = n, A = i) can be evaluated as

PrðB ¼ n;A ¼ iÞ ¼
i� 1

n� 1

� �
ðpsð1� pcÞÞ

nð1� psÞ
i�n
:

ðC8Þ

From (C1), (C8), and the definition of conditional
probability, we have

PrðB ¼ njA ¼ iÞ ¼ 1� ps

1� psð1� pcÞ

� �i�n

: ðC9Þ

From (C3) and (C9), we can obtain

Pr
Y 1

n
> g

����A ¼ i
� �

6 Pr
Y 1

n
> g

����B ¼ n;A ¼ i
� �

þ 1� 1� ps

1� psð1� pcÞ

� �i�n

:

ðC10Þ

We need to select a larger than (1 � h1)/(h2 � h1) so
that the increased success probability of the scanner
p̂1ðiÞ ð¼ p1 þ ð1� p1Þl=iÞ cannot be larger than the
minimum success probability of a normal host h2.
Since Y �1ðn; iÞ � Binomialðn; p̂1ðiÞÞ and p̂1ðiÞ de-
creases as i increases, by Lemma 1 we can obtain

Pr
Y 1

n
> g

����B ¼ n;A ¼ i
� �
P Pr

Y 1

n
> g

����B ¼ n;A ¼ k
� �

for k P i: ðC11Þ

From (C2), (C10) and (C11), the following relation
can be derived

Pr
Y 1

n
> g

� �
6 1� ð1� pcÞ

n

þ
Xal�1

i¼n

i� 1
n� 1

� �
pn

s ð1� psÞ
i�n

þ Pr
Y 1

n
> g

����B ¼ n;A ¼ al
� �

:

ðC12Þ

1564 S.Y. Nam et al. / Computer Networks 52 (2008) 1545–1566

Author's personal copy

We assumed that a is selected such that al is an inte-
ger. In the above relation, Y 1jB¼n;A¼al ¼ Y �1ðn; alÞ �
Binomialðn; p1 þ ð1� p1Þ=aÞ. If bY 1ðn; alÞ denote
Y �1ðn; alÞ especially when p1 has the maximum value
of h1, then h1 + (1 � h1)/ a P p1 + (1 � p1)/a and by
Lemma 1, we have

PrðbY 1ðn; alÞ > ngÞP PrðY �1ðn; alÞ > ngÞ: ðC13Þ
Combining (C12) and (C13) yields

Pr
Y 1

n
> g

� �
6 1� ð1� pcÞ

n

þ
Xal�1

i¼n

i� 1

n� 1

� �
pn

s ð1� psÞ
i�n

þ PrðbY 1ðn; alÞ > ngÞ: ðC14Þ

From (8) and (C14), we can know that if (29)–(31)
are satisfied, then the sufficient condition for the
false negative probability requirement (8) is
satisfied.

The false positive probability is not affected by
the known IP addresses of scanners since it is deter-
mined by the behavior of benign hosts. We can
show the following relation is valid in the same
way as that used for Y2 in Appendix B although
we need to condition one more time about the sam-
pled attempts B between A and R:

Pr
Y 2

n
6 g

� �
6 PrðY 02ðnÞ 6 ngÞ: ðC15Þ

Thus, if (32) is satisfied, then the sufficient condition
for the false positive probability requirement (9) is
satisfied by (C15).

References

[1] CERT Coordination Center, <http://www.cert.org/stats/
cert_stats.html>.

[2] T. Holz, A short visit to the bot zoo, IEEE Security and
Privacy 3 (3) (2005) 76–79.

[3] D. Moore et al., Inside the Slammer worm, IEEE Security
and Privacy 1 (2003) 33–39.

[4] S. Staniford, V. Paxson, N. Weaver, How to own the
Internet in your spare time, in: Proceedings of the 11th
USENIX Security Symposium, USENIX, August 2002.

[5] J. Wu, S. Vangala, L. Gao, K. Kwiat, An effective
architecture and algorithm for detecting worms with various
scan techniques, in: Proceedings of the Network and
Distributed System Security Symposium, 2004.

[6] N. Weaver, S. Staniford, V. Paxson, Very fast containment
of scanning worms, in: Proceedings of the 13th Usenix
Security Conference, 2004.

[7] J. Jung, V. Paxson, A.W. Berger, H. Balakrishnan, Fast
portscan detection using sequential hypothesis testing, in:
Proceedings of the IEEE Symposium on Security and
Privacy, May 2004.

[8] S.E. Schechter, J. Jung, A.W. Berger, Fast detection of
scanning worm infections, in: Proceedings of the Interna-
tional Symposium on Recent Advances in Intrusion Detec-
tion (RAID), September 2004.

[9] L.T. Heberlein, G.V. Dias, K.N. Levitt, B. Mukherjee, J.
Wood, D. Wolber, A network security monitor, in: Pro-
ceedings of the IEEE Symposium on Research in Security
and Privacy, 1990, pp. 296–304.

[10] M. Roesch, Snort: lightweight intrusion detection for
networks, in: Proceedings of the 13th Conference on Systems
Administration (LISA-99), November 7–12, 1999, USENIX
Association, pp. 229–238.

[11] Q. Zhao, A. Kumar, J. Xu, Joint data streaming and
sampling techniques for detection of super sources and
destinations, in: Proceedings of the ACM SIGCOMM
Internet Measurement Conference (IMC), October 2005.

[12] S. Venkataraman, D. Song, P.B. Gibbons, A. Blum, New
streaming algorithms for fast detection of superspreaders, in:
Proceedings of the Network and Distributed Systems Secu-
rity Symposium, February 2005.

[13] R.R. Kompella, S. Singh, G. Varghese, On scalable attack
detection in the network, in: Proceedings of the ACM
SIGCOMM Internet Measurement Conference (IMC),
October 2004.

[14] S. Robertson, E.V. Siegel, M. Miller, S.J. Stolfo, Surveillance
detectioninhighbandwidthenvironments, in:Proceedingsofthe
2003 DARPA DISCEX III Conference, 22–24 April, 2003,
IEEE Press, Washington, DC, 2003, pp. 130–139.

[15] C. Estan, G. Varghese, M. Fisk, Bitmap algorithms for
counting active flows on high speed links, in: Proceedings of
the ACM SIGCOMM Internet Measurement Conference
(IMC), October 2003.

[16] V. Paxson, Bro: a system for detecting network intruders in
real-time, Computer Networks 31 (23–24) (1999) 2435–
2463.

[17] S. Staniford, J. Hoagland, J. McAlerney, Practical auto-
mated detection of stealthy portscans, Journal of Computer
Security 10 (1) (2002) 105–136.

[18] S. Staniford-Chen et al., GrIDS – a graph-based intrusion
detection system for large networks, in: Proceedings of the
19th National Information Systems Security Conference,
vol. 1, October 1996, pp. 361–370.

[19] W. Fang, L. Peterson, Inter-AS traffic patterns and their
implications, in: Proceedings of the IEEE GLOBECOM,
December 1999.

[20] A. Broder, M. Mitzenmacher, Network applications of
bloom filters: a survey, Internet Mathematics 1 (4) (2003)
485–509.

[21] L. Fan, P. Cao, J. Almeida, A.Z. Broder, Summary cache: a
scalable wide-area web cache sharing protocol, Technical
Report 1361, Computer Sciences Department, Univ. of
Wisconsin-Madison, February 1998.

[22] C. Fraleigh et al., Packet-level traffic measurements from the
Sprint IP backbone, IEEE Network 17 (13) (2003) 6–16.

[23] NLANR, National laboratory for applied network research,
2003, <http://pma.nlanr.net/Traces/>.

[24] E. Daskalova, M. Ilvesmaki, R. Kantola, Analysis of flow
inter-arrival time distributions, in: Proceedings of the

S.Y. Nam et al. / Computer Networks 52 (2008) 1545–1566 1565

Author's personal copy

IASTED Conference on Internet and Multimedia Systems
and Applications, February 2005.

[25] S.M. Ross, Probability Models for Computer Science,
Harcourt/Academic Press, 2002.

[26] A. Papoulis, Probability, Random Variables, and Stochastic
Processes, third ed., McGraw-Hill, New York, 1991.

[27] R.W. Wolff, Stochastic Modeling and the Theory of Queues,
Prentice Hall, 1989.

[28] E.R. Dougherty, Probability and Statistics for the Engineer-
ing, Computing and Physical Sciences, Prentice-Hall, 1990.

Seung Yeob Nam received the B.S., M.S.,
and Ph.D., degrees in electrical engi-
neering from the Korea Advanced
Institute of Science and Technology
(KAIST), Daejon, Korea, in 1997, 1999,
and 2004, respectively. From 2004 to
July 2006, he was a Postdoctoral
research fellow at CyLab in Carnegie
Mellon University, supported by both
CyLab and the Postdoctoral Fellowship
Program of the Korea Science & Engi-

neering Foundation (KOSEF). Between August 2006 and Feb-
ruary 2007, he was a Postdoctoral researcher in the Dept. of
EECS, KAIST. In March 2007, he joined the Department of
Information & Communication Engineering, Yeungnam Uni-
versity, Gyeongsan, Korea, as a faculty member. His research
interests include network monitoring, traffic engineering, network
security, high-speed switching systems, wireless networks, etc. He
received the Best Paper Award from the APCC 2000 Conference
and Bronze prize from 2004 Samsung Humantech paper contest.

Hyu-Dae Kim received his B.S., MS., and
Ph.D., degrees from the school of Elec-
trical Engineering and Computer Sci-
ence, Korea Advanced Institute of
Science and Technology (KAIST), in
1999, 2001, and 2008, respectively. From
2001 to 2004, he was with IPOne Inc. as
a research engineer. In 2008, he joined
the KAIST Institute for Information
Technology Convergence (KIITC), as a
senior research engineer. His research

interests include energy efficient protocols and cross layer design
in 4G wireless communication systems and sensor networks.

Hyong S. Kim received the B.Eng.
(Hons) degree in electrical engineering
from McGill University, Montreal,
Canada, in 1984, and the M.A.Sc. and
Ph.D., degrees in electrical engineering
from the University of Toronto, Tor-
onto, Canada, in 1987 and 1990,
respectively. Since 1990, he has been with
Carnegie Mellon University, Pittsburgh,
PA, where he is currently the Drew D.
Perkins Chaired Professor of Electrical

and Computer Engineering. His primary research areas are
advanced switching architectures, fault-tolerant, reliable, and
secure network architectures, and optical networks. His pio-
neering work on switch architectures has influenced many
switching system designs in telecom industry. His Tera ATM
switch architecture developed at CMU has been licensed for
commercialization. He worked in Northern Telecom in 1992 as a
research consultant addressing issues in high-speed network
architectures. In 1995, he founded Scalable Networks, a Gigabit-
Ethernet switching startup. Scalable Networks was later acquired
by FORE Systems in 1996. He was at FORE Systems working on
the company’s technology roadmap until 1998. In 2000, he
founded AcceLight Networks, an optical switching startup, and
was CEO of AcceLight Networks until 2002. He is an author of
over 80 published papers and holds over 80 patents in networking
technologies. He was an editor for IEEE/ACM TRANSAC-
TIONS ON NETWORKING from 1995 to 2000.

1566 S.Y. Nam et al. / Computer Networks 52 (2008) 1545–1566

