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a b s t r a c t 

To enable massive-scale connectivity with low latency and efficient resource usage for massive machine 

type communications, the grant free access scheme has been proposed, which allows users to commu- 

nicate with low signaling overhead and without the need for any prior resource allocation procedure. 

Due to the sporadic nature of packet transmission and non-orthogonal multiplexing, access points need 

to perform active user detection (AUD) to identify which users have sent the packets based on the re- 

ceived data. In this paper, we propose an enhanced AUD algorithm, which exploits each user’s activity 

pattern for detecting active users. We assume that each user randomly sends its own packet with dif- 

ferent probability distributions parameterized by the user activity probability (UAP). In our work, such 

UAPs are inferred from the trajectory of the measurements collected over a certain period of time. Then, 

the estimated UAPs are incorporated into the compressed sensing-based algorithm for the joint AUD and 

channel estimation. Using the expectation-maximization algorithm, our method can efficiently find the 

maximum likelihood estimate of the UAPs for all users. We also present an on-line algorithm that se- 

quentially updates the UAP estimates for each measurement. Our numerical evaluation demonstrates the 

benefit of the UAP estimation for compressed sensing-based AUD methods. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

The present era demands wireless communications in vari- 

us disciplines including public communications, high-speed data 

ransfer, industrial automation, health monitoring, and transporta- 

ion. In addition to the traditional human-central communications, 

ext-generation wireless technologies are expected to support au- 

omated machine-type communications where hundreds of devices 

re connected to the internet, and information is exchanged to pro- 

ide new services. To support machine-centric communications, in- 

ernational telecommunication union (ITU) has defined such new 

se-cases of communications as massive machine-type communi- 

ation (MMTC) [1] . MMTC is distinct from conventional commu- 
� This research was supported in part by Basic Science Research Program through 
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ication paradigms in that it pursues the multi-dimensional goal 

f massive connectivity, longer off-grid unmanned operations, and 

ow latency and low power communications. 

In order to support massive devices in the limited resource 

nvironments, grant-free access (GFA) has been proposed as a 

romising technique for implementing MMTC [2] . The users com- 

unicating in a GFA network can transmit packets to the access 

oint (AP) at any time without user scheduling. This results in a 

ignificant reduction in the resources and latency required for in- 

eractive access protocols in conventional wireless systems. Owing 

o the potentially large number of users and limited coherence re- 

ources, non-orthogonal user identification codes are widely used 

or user multiplexing. However, this approach will induce a large 

mount of multi-user interference, limiting system performance. 

ortunately, because of the sporadic nature of the packet transmis- 

ions in typical MMTC applications, only a fraction of users com- 

unicate in a particular time slot. To decode the data of these 

ctive users without a scheduling procedure, the AP needs to au- 

onomously identify the users transmitting packets solely based on 

he received packets. This process is often called active user detec- 

ion (AUD). 

https://doi.org/10.1016/j.sigpro.2022.108884
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Fig. 1. Illustration of dynamic user activity samples for the given UAP θ. 
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Thus far, various AUD techniques have been proposed in the 

ontext of MMTC. Exploiting the sparse nature of user activity, 

ompressed sensing (CS) techniques [3,4] have been widely used 

o detect active users. In [5–8,10–14] , well-known CS recovery al- 

orithms including basis pursuit denoising (BPDN) [18] , orthogonal 

atching pursuit (OMP) [19] , compressive sampling matching pur- 

uit (CoSaMp) [20] , subspace pursuit (SP) [21] , and approximate 

essage passing (AMP) [22] have been used to identify the sup- 

ort of the vector associated with the users’ data symbols to be 

ransmitted. In [5–9] , user activity and data detection were jointly 

erformed under the CS framework with the knowledge of chan- 

el information. In [10–13,15] , by processing the pilot symbols con- 

ained in the data packet, joint AUD and channel estimation were 

erformed. In [16,17] , data-aided AUD algorithms, which exploit the 

nformation provided by both pilot and data symbols, were pro- 

osed. Recently, a considerable amount of effort has been made 

o enhance AUD performance using a particular structure of the 

nderlying user sparsity. Under the assumption that the support 

f the user vectors is common over several packet transmissions, 

UD methods recovering such joint sparsity were proposed in [23–

6,32] . In [32] , deep-neural network based architecture is proposed 

o exploit the block-sparse structure to perform joint AUD and 

hannel estimation. In [27,28] , a similar structure of the AUD al- 

orithm recovering the joint sparsity was derived for multi-input 

ulti-output (MIMO) setup, which recovered the common support 

ver the measurements acquired from multiple antennas. In prac- 

ical scenarios, user activity tends to vary slowly over consecu- 

ive packet transmissions; thus, partially common support models 

ere adopted to develop the AUD algorithms [29,30] . Notable ap- 

roaches handling the temporally correlated support include DCS- 

ased MUD [29] and PIA-ASP [30] . 

In practical MMTC scenarios, various type of users exhibit dif- 

erent packet transmission behaviors and patterns. For example, 

ome devices in the GFA network tend to transmit packets more 

requently than others. If packet transmissions from a particular 

ser can be viewed as a random event, each user will have a 

ifferent probability of transmitting a packet at a particular in- 

tant. (see Fig. 1 for illustration.) From a Bayesian perspective, such 

rior user information can be used to enhance the performance 

f the AUD algorithm. There exist several works that have con- 

idered the use of such prior information in designing AUD algo- 

ithms [12,30,31,33,34] . In [12,33] , the joint AUD and channel es- 
2 
imation was proposed, which used probabilistic information re- 

arding user activity. In [31] , the joint AUD, channel estimation and 

ignal detection are performed using the prior information. In [30] , 

rior user activity was obtained from previously estimated user ac- 

ivity using the temporal correlations of active user support sets. 

n [34] , although not presented for AUD applications, two practi- 

al CS-recovery methods exploiting prior information on the spar- 

ity pattern were proposed. It provides the theoretical foundation 

emonstrating the performance gain of prior information. More- 

ver, it is demonstrated that the performance gains are improved if 

he prior is sufficiently non-uniform as compared to uniform prior. 

hile these approach might be applied to the AUD purpose, since 

he algorithm is developed under the assumption that prior user 

ctivity information is perfectly known, it cannot be directly used 

n practical scenarios. Methods to acquire such prior user activity 

nformation from the actual packet data have not yet been studied 

n depth. 

In this work, we study the problem of analyzing user activ- 

ty based on the sequence of measurements acquired during a 

ertain period of time. Because the sequence of packet data re- 

ects each users’ footprints in packet transmission activity, we 

an learn the probability of the packet transmission from the se- 

uential packet data. Such user activity probabilities (UAPs) are 

sed as prior information in detecting active users in the AUD al- 

orithm. Therefore, the proposed algorithm utilizes these packets 

or 1) UAPs estimation 2) joint active user detection (AUD) and 

he channel estimation. Specifically, we assume that the event of 

acket transmission for each user is the realization of a Bernoulli 

andom variable with the parameter specified by the UAP. We aim 

o find the maximum likelihood (ML) estimate of the UAPs based 

n the sequence of measurements. In solving the problem, we 

se expectation-maximization algorithm to find the ML estimate 

f UAPs and use importance sampling to efficiently compute the 

og-likelihood function over a non-Gaussian distribution in a com- 

utationally efficient manner. We also present an online algorithm 

hat sequentially updates the UAP estimates for a new measure- 

ent. Such online implementation enables our method to not store 

ll measurements used for the UAP estimation. Finally, we present 

wo CS-based AUD algorithms, called UAP-aware OMP and UAP- 

ware BPDN that exploit the prior user activity information for 

oint identification of active users and corresponding channel es- 

imates. Our extensive simulations demonstrate that by using the 
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AP estimate, the proposed scheme can achieve significant perfor- 

ance gains over conventional AUD methods. The main contribu- 

ions of our paper are summarized as follows; 

• We propose the algorithm that analyses the history of user ac- 

tivity over the sequence of received packets and infers the prior 

probability of packet transmission for each user. To our best 

knowledge, methods to infer user activity from the sequence 

of packet data in MMTC systems have not yet been proposed in 

the literature. 
• Since the trajectory of user activity cannot be directly observed, 

it is not straightforward to derive the statistically optimal es- 

timate of the UAP. With an aid of EM algorithm and impor- 

tance sampling method, our algorithm can efficiently compute 

the UAP in an iterative fashion given the sequence of measure- 

ments. 
• We present two CS-based AUD algorithms that can exploit the 

UAP information obtained by our method to jointly identify the 

active users and performs the channel estimation for the active 

users respectively. Our experiments confirm significant perfor- 

mance gains of the proposed AUD methods over the baseline 

methods. 

The current work is applicable to massive antenna regime for 

he independently identically distributed (IID) user’s activity pat- 

ern without any loss of generality. However, as a future research 

irection, it would be interesting to exploit the common support 

mong the multiple antennas for UAP estimation. 

The rest of the paper is organized as follows. In Section 2 , 

e briefly introduce the system model where the proposed AUD 

ethod is derived. In Section 3 , we derive the EM algorithm for 

stimating UAPs based on the sequence of received packets. In 

ection 4 , we present two CS-based AUD algorithms that exploit 

he UAP estimates as prior information. In Section 5 , we present 

he simulation results and in Section 6 , we conclude the paper. 

. System model 

We consider a grant-free multiple access scenario for the MMTC 

plink transmission, where a total of N users have a single an- 

enna for establishing communication with the AP, which is also 

quipped with a single antenna. This communication setup can 

e easily extended to multiple antennas without any loss of 

enerality. In the tth time slot, the k th user transmits its own 

acket containing the pilot symbol p t,k ∈ C by spreading over 

he length- M pseudo-random unique user identification code φk = 

 φk, 1 , . . . , φk,M 

] T . We assume that among a total of N users, only

(≤ N) active users transmit the data to the AP in one time slot, 

nd the rest of the users remain silent during the whole trans- 

ission frame. The activity of the k th user at the tth time slot is

epresented by the binary random variable s t,k , where s t,k = 1 im- 

lies that the k th user is active and s t,k = 0 implies that the k th

ser is inactive. The probability that s t,k equals one is specified by 

he parameter θk , called UAP. The higher value of θk indicates a 

igher likelihood that the k th user transmits the packet. The vector 

= [ θ1 , θ2 , . . . , θN ] 
T shows the distribution of the UAPs of N users. 

he probabilistic density function of s t,k is given by the Bernoulli 

istribution 

p(s t,k ; θk ) = (θk ) 
s t,k (1 − θk ) 

1 −s t,k . (1) 

hen, the measurement vector y t received by the AP in the tth 

ime slot can be expressed as 

 t = 

N ∑ 

k =1 

φk p t,k s t,k h t,k + w t (2) 

= ��(s t ) h t + w t , (3) 
3 
here 

= 

[
φ1 . . . φN 

]
(4) 

(s t ) = diag 
(
[ s t, 1 , . . . , s t,N ] 

T 
)

(5) 

 t = [ p t, 1 h t, 1 , . . . , p t,N h t,N ] 
T 

(6) 

here s t = [ s t, 1 , . . . , s t,N ] 
T , h t is the vector of the complex Gaussian

hannel gains following CN (0 , σ 2 
h 

I ) and w t is the additive complex 

aussian noise vector CN (0 , σ 2 
w 

I ) . Without loss of generality, we 

an assume that the pilot symbol is set to p t,k = 1 . We also assume

hat the matrix � has a full row rank with M < N. Because only a

mall number of users transmit a packet for the given time slot, 

e assume that the structure of the vector s t is sparse. 

In summary, the AUD problem can be formulated as the joint 

stimation of the user activity s t and channel h t from the mea- 

urement vector y t . Such a joint estimation problem can be solved 

nder the Bayesian framework for the given UAP θ. The key issue 

ere is that such prior information given by the UAP is unknown 

n practice. In the next section, we discuss how to learn the UAP 

rom the history of user activities observed in the received packets. 

. Proposed user activity prior estimation 

In this section, we present the details of the proposed UAP es- 

imation method. 

.1. Problem formulation 

Since the history of the packet transmission activities for N

sers is captured in the sequence of l measurements, we aim to 

stimate the deterministic parameter θ based on the l measure- 

ents y 1: l = { y 1 , y 2 , . . . , y l } . The ML estimate of θ for the given y 1: l 

s given by 

ˆ 
ML = arg max 

θ

p(y 1: l ; θ) . (7) 

he sequence of binary user activity vectors s 1: l = { s 1 , s 2 , . . . , s l }
ontains the latent variables that cannot be directly observed. 

hus, we can show that 

ˆ 
ML = arg max 

θ

∫ 
h 1: l 

∑ 

s 1: l 

p(y 1: l , h 1: l , s 1: l ; θ) dh 1: l , (8) 

= arg max 
θ

∫ 
h 1: l 

∑ 

s 1: l 

p(y 1: l | h 1: l , s 1: l ) p(h 1: l ) p(s 1: l | θ) dh 1: l , (9) 

here 

p(y 1: l | h 1: l , s 1: l ) = 

l ∏ 

t=1 

CN( ��(s t ) h t , σ
2 
w 

I ) (10) 

p(h 1: l ) = 

l ∏ 

t=1 

CN(0 , σ 2 
h I ) (11) 

p(s 1: l | θ) = 

l ∏ 

t=1 

N ∏ 

k =1 

(θk ) 
s t,k (1 − θk ) 

1 −s t,k . (12) 

e assumed that the channel gains h 1: l and user activity vectors 

 1: l are temporally uncorrelated. Unfortunately, it is difficult to de- 

ermine a tractable solution to (9) since the marginalization over 

he discrete-valued variable s 1: l requires 2 N configurations in total. 
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.2. EM-based UAP estimation 

The EM algorithm [35] seeks to determine the ML estimate of θ
n an iterative fashion by alternating the expectation step (E-step) 

nd the maximization step (M-step) until convergence. The E-step 

reates a Q function for the expectation of the log-likelihood eval- 

ated using the current estimate for the parameters, and the M- 

tep computes parameters maximizing the expected log-likelihood 

ound in the E-step. 

.2.1. E-Step 

For the given measurements y 1: l and the estimate θ
(i −1) 

ob- 

ained in the previous iteration, the E-step computes the function 

 ( θ; θ(i −1) 
) which is the log likelihood function of the complete 

ata { y 1: l , h 1: l , s 1: l } , i.e., 

( θ; θ(i −1) 
) = E 

[ 
ln p(y 1: l , h 1: l , s 1: l ; θ) | y 1: l ; θ(i −1) 

] 
, (13) 

= 

N ∑ 

k =1 

l ∑ 

t=1 

E 

[ 
s t,k | y 1: l ; θ(i −1) 

] 
ln θk 

+ 

N ∑ 

k =1 

( 

l −
l ∑ 

t=1 

E 

[ 
s t,k | y 1: l ; θ(i −1) 

] ) 

ln (1 − θk ) + C, 

(14) 

here C is the term independent of θ. The derivation of 

14) is presented in Appendix B . The conditional expectation 

 

[ 
s t,k | y 1: l ; θ(i −1) 

] 
is expressed as 

 

[ 
s t,k | y 1: l ; θ(i −1) 

] 
= 1 · p 

(
s t,k = 1 | y 1: l ; θ(i −1) 

)
+ 0 · p 

(
s t,k = 0 | y 1: l ; θ(i −1) 

)
(15) 

= p 

(
s t,k = 1 | y 1: l ; θ(i −1) 

)
(16) 

= 

∑ 

{ s t : s t,k =1 } 
p 

(
s t | y 1: l ; θ(i −1) 

)
(17) 

= 

∑ 

{ s t : s t,k =1 } 
p 

(
s t | y t ; θ(i −1) 

)
. (18) 

he expression of the distribution p 
(
s t | y t ; θ

)
is provided in 

ppendix A . In typical MMTC scenarios, the number of potential 

sers N is large so that the size of summation 2 N−1 in (18) in- 

urs infeasible computational complexity. In order to calculate 

 

[ 
s t,k | y 1: l ; θ(i −1) 

] 
at low complexity, we use the importance sam- 

ling method [36] , which calculates the conditional expectation us- 

ng the samples generated by the proposal distribution, which is 

ifferent from the posteriori distribution p 

(
s t | y 1: l ; θ(i −1) 

)
. 

Suppose we have N s sample vectors s (1) 
t , . . . , s (Q ) 

t drawn from 

he proposal distribution q 

(
s t | y 1: l ; θ(i −1) 

)
. Then, E 

[ 
s t,k | y 1: l ; θ(i −1) 

] 
an be approximated by 

[ s t,k | y 1: l ; θ(i −1) 
] ≈

N s ∑ 

j=1 

w 

( j) 
t s ( j) 

t,k 
, (19) 
4

here s 
( j) 
t,k 

is the k th element of the jth sample s 
( j) 
t and the impor-

ance weight w 

( j) 
t is given by 

 

( j) 
t = 

p 

(
s ( j) 

t | y 1: l ; θ(i −1) 
)

q 

(
s ( j) 

t | y 1: l ; θ(i −1) 
) . (20) 

he approximation error approaches zero as the number of sam- 

les N s increases. It is difficult to generate the samples for the N el- 

ments of s t from the joint posteriori distribution p 

(
s t | y 1: l ; θ(i −1) 

)
n (18) . On the contrary, according to the prior distribution 

p 

(
s t ; θ(i −1) 

)
, the elements of s t are independent and identically 

istributed. Thus, it is convenient to use the prior distribution as 

he proposal distribution, i.e., 

 

(
s t | y 1: l , θ

(i −1) 
)

= p 

(
s t ; θ(i −1) 

)
(21) 

= 

N ∏ 

k =1 

(
θ (i −1) 

k 

)s t,k (
1 − θ (i −1) 

k 

)1 −s t,k 
. (22) 

wing to the statistical independence between the elements, we 

an easily generate samples according to p 

(
s t ; θ(i −1) 

)
. The impor- 

ance weight ˜ w 

( j) 
t without normalization can obtained from 

˜ 
 

( j) 
t = 

p 

(
s ( j) 

t | y t ; θ(i −1) 
)

p 

(
s ( j) 

t ; θ(i −1) 
) (23) 

= 

p 

(
y t | s ( j) 

t ; θ(i −1) 
)

p 

(
y t ; θ(i −1) 

) (24) 

 

| σ 2 
w 

�−1 
j 

| 
(πσ 2 

w 

) 
M 

(πσ 2 
h 
) 

N 
exp 

×
(

− 1 

σ 2 
w 

(‖ y t ‖ 

2 − y H t ��(s ( j) 
t )�−1 

j 
�(s ( j) 

t ) H �H 
y t 

))
(25) 

 | �−1 
j 

| exp 

(
1 

σ 2 
w 

y H t ��(s ( j) 
t )�−1 

j 
�(s ( j) 

t ) H �H 
y t 

)
, (26) 

here � j = �(s 
( j) 
t ) H �H ��(s 

( j) 
t ) + 

(
σ 2 

w 

/ σ 2 
h 

)
I . The derivation of 

25) is presented in Appendix C . The scaled weight ˜ w 

( j) 
t in (26) is 

ormalized to obtain the importance weight w 

( j) 
t 

 

( j) 
t = 

( 

N s ∑ 

i =1 

˜ w 

(i ) 
t 

) −1 

˜ w 

( j) 
t . (27) 

.2.2. M-Step 

In M-Step, we find θ that maximizes Q ( θ; θ(i −1) 
) . From (14) , the

pdated estimate θ
(i ) 

for the i th iteration is given by 

(i ) = arg max 
θ

Q( θ; θ(i −1) 
) , (28) 

= 

1 

l 

l ∑ 

t=1 

E 

[ 
s t | y 1: l ; θ(i −1) 

] 
(29) 

≈ 1 

l 

l ∑ 

t=1 

N s ∑ 

j=1 

w 

( j) 
t s ( j) 

t (30) 
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.2.3. Algorithm summary 

The procedure of the proposed UAP estimation algorithm is 

ummarized in Algorithm 1 . 

lgorithm 1 Proposed UAP estimation algorithm. 

nput : θ0 , { y 1 , y 2 . . . , y l } 
utput : ˆ θML 

Initialize θ
(0) = θ0 . 

for i = 1 to Iter do 

for t = 1 : l do 

Generate the samples s (1) 
t , . . . , s (N s ) 

t according to p(s ; θ(i −1) 
) 

in (22). 

Calculate the importance weights ˜ w 

(1) 
t , . . . , ˜ w 

(N s ) 
t according 

to (26). 

Normalize the importance weights : w 

( j) 
t = [ ∑ N s 

i =1 
˜ w 

(i ) 
t 

] −1 

˜ w 

( j) 
t for i = 1 , · · · , N s . 

Calculate E 

[ 
s t | y 1: l , θ

(i −1) 
] 

= 

∑ N s 
j=1 

w 

( j) 
t s 

( j) 
t . 

end for 

Update θ
(i ) = 

1 
l 

∑ l 
t=1 E 

[ 
s t | y 1: l ; θ(i −1) 

] 
. 

end for 

Obtain 

ˆ θML = θ
(Iter) 

.3. Practical implementation 

In this subsection, we discuss the implementation of the UAP 

stimation algorithm in the practical MMTC scenarios. 

.3.1. Batch algorithm 

One strategy to implement the proposed method is to calcu- 

ate the estimate of UAP based on a block of L measurements col- 

ected periodically (called a measurement block). In the beginning, 

ach element of the UAP θ is initialized with a fixed value, e.g. 

 / 4 . During the period of collecting the measurements, the AUD is 

erformed using ˆ θ obtained from the previous measurement block. 

nce L measurements are collected, we update the UAP estimate 

y applying our UAP estimation algorithm described in the previ- 

us subsections. In EM iteration, θ is initialized with the UAP es- 

imate obtained from the previous measurement block. One disad- 

antage of this approach is that the entire sequence of measure- 

ents needs to be stored in the buffer because EM iterations need 

o be performed over the entire measurement block. Additionally, 

he size of the measurement block should be sufficiently large to 

nalyze the user activity, resulting in considerable memory usage 

nd the UAP estimate cannot be updated until the entire measure- 

ent block is received. 

.3.2. Online algorithm 

In order to overcome the shortcomings of the batch algorithm, 

e devise the online algorithm. When processing large data sets, 

he online variants of the EM have been proposed to estimate the 

arameters of a latent data model without storing the data [37] . 

he online EM algorithm comprises two steps: a stochastic ap- 

roximation version of the E-step incorporating the information 

rought by the newly available observation and the M-step max- 

mizing the Q function as the M-step of the traditional EM al- 

orithm. Consequently, our approach sequentially updates θ only 

nce for each new measurement. Denote θt and Q t as the param- 

ter estimate and Q function updated at time step t , respectively. 

hen, the online EM algorithm can be described by 
5 
tochastic E-STEP 

 t = Q t−1 + γt 

(
E 
[
ln p(y t , h t , s t ; θ) | y t ; θt−1 

]
− Q t−1 

)
, (31) 

= (1 − γt ) Q t−1 + γt E 
[
ln p(y t , h t , s t ; θ) | y t ; θt−1 

]
, (32) 

= (1 − γt ) Q t−1 + γt 

( 

N ∑ 

k =1 

E 
[
s t,k | y t ; θt−1 

]
ln θt−1 ,k 

+ 

N ∑ 

k =1 

(
1 − E 

[
s t,k | y t ; θt−1 

])
ln (1 − θt−1 ,k ) 

) 

+ C. (33) 

-STEP 

t = arg max 
θ

Q t (34) 

= (1 − γt ) θt−1 + γt E 
[
s t | y t ; θt−1 

]
, (35) 

≈ (1 − γt ) θt−1 + γt 

( 

N s ∑ 

j=1 

w 

( j) 
t s ( j) 

t 

) 

. (36) 

ote that γt is the step size that scales the contribution of the 

resent input in comparison with the past information. A higher 

leads to faster convergence of the parameter estimate at the ex- 

ense of a more noisy estimate. Under some mild regularity con- 

itions, the convergence of the online-EM algorithm is guaranteed 

37] . 

. UAP-aware active user detection 

In this section, we propose an AUD algorithm that can adopt 

he UAPs as prior information for enhancing the massive machine 

ype communications. The UAPs estimated by our algorithm are 

ncorporated into two well-known CS-based AUD methods OMP 

nd BPDN, yielding UAP-aware OMP and UAP-aware BPDN for joint 

UD and channel estimation. 

.1. UAP-aware OMP 

OMP is a greedy algorithm that identifies the strongest ele- 

ents of the support set one at a time in an iterative fashion. In 

ach iteration, OMP calculates the absolute inner product of the 

esidual signal r t with the columns of �. It selects the column 

rom � with the largest absolute inner product and adds it to 

he set 	 containing the selected columns. Then, the residual sig- 

al is calculated by projecting the measurement vector y t on the 

rthogonal complement of the subspace spanned by the selected 

olumns. We can show that the metric of absolute inner product 

sed in the standard OMP algorithm can be derived from the pos- 

eriori probability of s t 

n p(s t | y t ) = ln p(y t | s t ) + ln p(s t ) (37) 

= ln 

| σ 2 
w 

�−1 | 
(πσ 2 

w 

) 
M 

(πσ 2 
h 
) 

N 
− 1 

σ 2 
w 

(‖ y t ‖ 

2 − y H t ��(s t )�
−1 �(s t ) 

H �H 
y t 

)

+ 

N ∑ 

k =1 

s t,k ln (θk ) + (1 − s t,k ) ln (1 − θk ) , (38) 

here � = �(s t ) 
H �H ��(s t ) + 

(
σ 2 

w 

/ σ 2 
h 

)
I . We observe that the ab- 

olute inner product metric can be obtained by plugging the 

candidate vectors, c 1 = [1 , 0 , . . . , 0] , c 2 = [0 , 1 , . . . , 0] , . . . , c N =
0 , 0 , . . . , 1] in place of s t in (38) . Assuming that all columns of �
ave the magnitude one, i.e., ‖ φk ‖ 2 = 1 and with equal UAPs for 
2 
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Table 1 

UAPs assigned for each user group. 

Group Number of Users Distribution 

1 25 U(0 . 02 , 0 . 05) 

2 8 U(0 . 05 , 0 . 1) 

3 4 U(0 . 1 , 0 . 4) 

4 3 U(0 . 4 , 0 . 7) 
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s
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a
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t
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5

e

a

o

u

p

m

w

t

m

g

ll uers, we can show that ln p(s t = c j | y t ) ∝ 

∣∣y H t ��(c j ) 
∣∣2 

, which

quals the absolute inner product used in the standard OMP. In 

ubsequent iterations, the absolute inner product metric ψ( j) is 

btained by replacing y t with the residual signal r t 

( j) = 

∣∣r H t ��(c j ) 
∣∣2 

, (39) 

here j ∈ [1 , . . . , N] ∪ 	c . 

Similarly, when the UAP θ is available, the new metric ψ 

′ ( j) for 

he proposed AUD method can be obtained by plugging c 1 , . . . , c N 
n place of s t in (38) 

 

′ ( j) = 

1 

σ 2 
w 

∣∣r H t ��(c j ) 
∣∣2 + ln (θ j ) . (40) 

xcept for the different metrics ψ( j) and ψ 

′ ( j) being used, the 

est of the procedure is the same for the standard OMP and the 

roposed UAP-aware OMP. 

In the proposed UAP-aware OMP, the sparsity level K can be 

etermined by applying the stopping rule during the iterations. We 

an choose one of the well-known stopping rules including energy- 

ased thresholding [16] , cross-validation method [38] and rank es- 

imation method [39] . Our method terminates the iteration if the 

ollowing criterion is met: 

 

r u ‖ 2 < 

√ 

Mσ 2 
w 

. (41) 

he summary of the proposed UAP-aware OMP algorithm is pre- 

ented in Algorithm 2 . 

lgorithm 2 UAP-aware OMP algorithm. 

nput : ˆ boldsymbolθ and y t 
utput : ˆ h t and ˆ s t 

1: Initialize 	 = ∅ and r t = y t . 

2: while do 

3: γ = arg max 
j∈ [1 , ... ,N] ∪ 	c 

ψ 

′ ( j) . 

4: 	 = 	 ∪ γ . 

5: Update the residual signal using r t = y t −
( boldsymbol��) 

† 
y t . 

6: Exit the loop if the stopping criterion is satisfied. 

7: end while 

.2. UAP-Aware BPDN 

Let u t = �(s t ) h t , then u t is also a sparse vector, and thus we

an find the estimate of u t using the standard BPDN 

ˆ 
 t = arg min 

u t 

‖ 

y t − �u t ‖ 

2 
2 + λ‖ u t ‖ 1 , (42) 

here ‖ u t ‖ 1 is the 
 1 -norm regularization term promoting the 

parsity of the solution and λ is the regularization parameter. In 

36], it was shown that the UAP θ can be incorporated into the 

PDN as a prior information as 

ˆ 
 t = arg min 

u t 

‖ 

y t − �u t ‖ 

2 
2 + λ

N ∑ 

k =1 

(− ln θk ) | u t,k | , (43) 

here u t = [ u t, 1 , . . . , u t,N ] 
T . The solution to (43) can be found using

he convex optimization tool [40] . 

. Simulations 

In this section, we evaluate the performance of the proposed 

UD method under the IoT MMTC scenarios. 
6 
.1. Simulation setup 

We consider the MMTC scenario where there exist N = 40 users 

n total and the length of a user identification code is set to 

 = 20 . The user identification codes are generated using Gaussian 

andom number generator. We assume block fading channels 

here the channel gain is be fixed within each packet frame but 

andomly changes across the frames. Each packet consists of single 

ilot symbol and ten data symbols. The data symbols are modu- 

ated using quadrature phase shift keying (QPSK). The number of 

amples generated for the importance sampling is set to 500. The 

M-iteration terminates when the power of the UAP difference is 

ess than 10 -4 between the two successive iterations or 10 iter- 

tions are performed in total. The UAP estimate is initialized to 
(0) 
k 

= 0 . 5 for all users in the EM-iteration. For online algorithm, 

he step size γt = t −0 . 9 is used, as suggested in [37] . We suppose 

hat N = 40 users are divided into four groups that exhibit differ- 

nt packet transmission behaviors. The first group of 25 users send 

ackets very occasionally so that they have relatively low UAPs 

niformly distributed between 0.02 and 0.05. The next group of 

ight users has the slightly higher UAPs between 0.05 and 0.1 and 

nother group of four users have even higher UAPs between 0.1 

nd 0.4. The final group of three users transmit packets very fre- 

uently with the UAPs between 0.4 and 0.7. The UAPs assigned for 

ll four groups are summarized in Table 1 . 

We evaluate the accuracy of the UAP estimation using the nor- 

alized mean square error (NMSE) metric defined by 

MSE ( θ) = 10 log 10 

(
E[ || θ − ˆ θ|| 2 ] 

E[ || θ|| 2 ] 
)

. (44) 

he performance of the AUD algorithms can be measured using the 

ctive user recovery rate and the net symbol error rate (NSER). The 

ctive user recovery rate implies the ratio of the number of pack- 

ts over which the algorithm correctly detects all active users to 

he total number of packets transmitted. The NSER is measured by 

ounting the errors occurring in decoding the data symbols for all 

sers detected by the AUD algorithm. Since the channel estimate 

s also obtained as a byproduct, we also evaluate the channel esti- 

ation NMSE. The signal to noise ratio (SNR) is defined by 

NR = 10 log 10 

(
σ 2 

h 

σ 2 
w 

)
. (45) 

.2. Simulation results 

In this section, we provide the simulation results. As a refer- 

nce, we compare the proposed AUD methods with two baseline 

lgorithms, the OMP and BPDN. In addition, we compare our meth- 

ds with the ideal UAP-aware OMP and the ideal UAP-aware BPDN 

sing the true UAP values. Note that these algorithms provide the 

erformance bound that can be achieved by the proposed AUD 

ethods, the UAP-aware OMP and the UAP-aware BPDN. Moreover, 

e have evaluated the existing algorithms [12,27] while utilizing 

he estimated UAP to reflect the utility of the proposed UAP esti- 

ation algorithm. 

Fig. 2 provides a look at the performance of the online al- 

orithm as compared to the batch algorithm. The SNR is set to 
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Fig. 2. Plot of comparison between online and batch variants of UAP estimation 

algorithms. 
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Fig. 4. Plot of active user recovery rate versus SNR for several AUD algorithms. 
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5 dB. It can be observed that the online version performs close 

o the batch version when large number of packets L are avail- 

ble for a fixed N s = 500 . However, if N s is increased, it can be

bserved that the online version surpasses the batch version for 

 fairly reduced number of received packets L . Specifically, it can 

e observed that same performance can be observed for online 

ersions when L = 150 , L = 250 , and L = 550 for N s = 20 0 0 , N s =
0 0 0 , and N s = 50 0 respectively. It is also observed that for batch

lgorithm an estimate θ is obtained after L measurements, how- 

ver for the online scenario, an estimate for θ is obtained immedi- 

tely after each measurement is made available. 

The computational complexity evaluation provides further in- 

ight about the performance comparison of the proposed UAP esti- 

ation algorithms. The computational complexity of the batch and 

nline UAP estimation algorithms is of the order of O (Iter LN s MN) 

nd O(LN s MN) respectively for inferring an estimate of the UAP θ
fter L measurements. 

Fig. 3 a provides insight into computational complexity for a 

xed number of samples N s while the measurement block size L 

s varied. As the batch UAP estimation algorithm takes multiple it- 

rations before converging, the number of flop count required to 

nfer θ increases much faster as compared to the online UAP ap- 

roach. Fig. 3 b analyze the computational complexity as the num- 

er of samples N s are varied while the measurement block size is 

et to L = 100 . It can be observed that even at significantly higher

 s = 20 0 0 , the flop count for the online UAP is much less as com-

ared to the batch algorithm. In conclusion, the online UAP es- 

imation algorithm provides compare able estimation accuracy at 
ig. 3. Plot of computation complexity comparison of the proposed batch and online UAP

 for N s = 500 , (b) Flops versus the number of samples N s when L = 100 . 

7 
 fairly less computational complexity as compared to its counter 

art even if sufficiently large number of samples N s or packets L 

re utilized for estimating the UAP. 

Fig. 4 provides the plot of the active user recovery rate as a 

unction of SNR. The batch algorithm is used for the proposed 

ethods. We set the number of the packets used for UAP estima- 

ion to L = 100 . We observe from Fig. 4 that the proposed UAP-

ware AUD methods outperform the baselines by a significant mar- 

in. At the 15 dB SNR, the improvement of the active user recovery 

ate achieved by the proposed method over the baselines is over 

0%. We also observe that the proposed AUD methods achieve the 

erformance close to the ideal algorithms using the true UAP val- 

es. This shows that the proposed UAP estimator provides accurate 

AP estimates so that the effect of the UAP information is kept 

arge for the MMTC scenario considered. As the SNR increases, the 

uality of measurement improves and the role of prior informa- 

ion diminishes, reducing the performance gain over the baseline 

lgorithms. Note that the largest performance gap is achieved at 

round 10dB SNR. 

Fig. 5 shows the channel estimation NMSE for the active users 

etected by the proposed AUD methods. Similarly, the proposed 

ethods achieve large performance gain over the baselines and the 

erformance of our schemes is close to the performance bound 

chieved with the perfect knowledge of the UAP. Specifically, the 

roposed UAP-aware OMP and UAP-aware BPDN offer around 2dB 

ain over the baseline OMP and BPDN, respectively. 

Next, we evaluate the NSER achieved by the active users as a 

unction of SNR. We use the channel estimate obtained by our AUD 
 estimation algorithms in terms of flops per iteration: (a) Flops versus block length 
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Fig. 5. Plot of channel NMSE versus SNR for several AUD algorithms. 

Fig. 6. Plot of NSER versus SNR for several AUD algorithms. 
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Fig. 7. Behavior of the proposed UAP-estimation algorithm : (a) UAP NMSE versus block

versus the number of particles N s for approxiating the desired density. 

8 
lgorithm to demodulate the data symbols. Fig. 6 shows that the 

erformance gain of the proposed methods is maintained in terms 

f the data detection performance. We observe that the proposed 

lgorithms also achieve more than 2 dB gain over the baseline al- 

orithms. 

Next, we investigate how the performance of the proposed al- 

orithm behaves as a function of the block length L , the number of 

he EM iterations Iter, and the number of samples N s drawn for im- 

ortance sampling. For all the cases, the SNR is set to 15 dB. Fig. 7 a

hows that the UAP estimation NMSE decreases with L . This is be- 

ause when a long period of user activities are observed, better 

tatistics can be obtained for UAP and the effect of noise averaging 

ould be larger. Fig. 7 b shows the convergence behaviour of EM it- 

ration with L = 100 . We observe that the EM algorithm converges 

aster in higher SNR range. We observe that for most cases, the 

M algorithm used in our method converges within 10 iterations. 

ig. 7 c show the performance behavior as a function of the number 

f particles. We observe that the approximation error caused by 

he importance sampling decreases with the number of the parti- 

les but performance improvement diminishes over N s = 500 . Note 

hat N s = 500 was used for our simulations. 

. Conclusions 

In this paper, we proposed the enhanced AUD algorithm for 

MTC systems, which exploits the prior user activity informa- 

ion in identifying the active users. Based on the observation that 

ach user can exhibit different packet transmission patterns, we 

esigned the algorithm which can infer each user’s probability of 

acket transmission based on the sequence of the data packets re- 

eived over certain period of time. The proposed method efficiently 

alculated the estimate of UAP using the EM algorithm and its on- 

ine variant was also presented for the efficient use of memory. 

e used the estimated UAP for two conventional AUD detectors 

MP and BPDN as prior information and produced the new AUD 
 length L , (b) UAP NMSE versus the number of EM iterations Iter (c) UAP NMSE 
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lgorithms: UAP-aware OMP and UAP-ware BPDN. Our simulation 

esults showed that the use of the UAP information can offer the 

ignificant performance gain over the baseline AUD detectors. 
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ppendix A. Expression of posterior distribution in (18) 

The posteriori distribution in (18) is expressed as 

p 
(
s t | y t ; θ

)
= 

p ( y t | s t ) p 
(
s t ; θ

)
∑ 

s t 
p ( y t | s t ) p 

(
s t ; θ

) , (A.1) 

here 

p ( y t | s t ) = 

| σ 2 
w 

�−1 | 
(πσ 2 

w 

) 
M 

(πσ 2 
h 
) N 

exp 

×
(

− 1 

σ 2 
w 

(‖ y t ‖ 

2 − y H t ��(s t )�
−1 �(s t ) 

H �H 
y t 

))
, 

(A.2) 

p 
(
s t ; θ

)
= 

N ∏ 

k =1 

( θk ) 
s t,k ( 1 − θk ) 

1 −s t,k . (A.3) 

ppendix B. Derivation of (14) 

We can show that 

 ( θ; θ(i −1) 
) = E 

[ 
ln p(y 1: l , h 1: l , s 1: l ; θ) 

∣∣y 1: l ; θ(i −1) 
] 
, (B.1) 

= E 

[ 
ln p(y 1: l 

∣∣h 1: l , s 1: l ) p(h 1: l ) p(s 1: l ; θ) 
∣∣y 1: l ; θ(i −1) 

] 
, 

(B.2) 

= E 

[ 
ln p(s 1: l ; θ) + C 

∣∣y 1: l ; θ(i −1) 
] 
, (B.3) 

here C is the term independent of θ. Then, 

 ( θ; θ(i −1) 
) = E 

[ 

ln 

l ∏ 

t=1 

p(s t ; θ) 
∣∣y 1: l ; θ(i −1) 

] 

+ C ′ , (B.4) 

= E 

[ 

ln 

l ∏ 

t=1 

N ∏ 

k =1 

θ
s t,k 
k 

(1 − θk ) 
1 −s t,k 

∣∣y 1: l ; θ(i −1) 

] 

+ C ′ , (B.5) 

= E 

[ 

N ∑ 

k =1 

l ∑ 

t=1 

s t,k ln θk + 

N ∑ 

k =1 

[ 

l −
l ∑ 

t=1 

s t,k 

] 

ln (1 − θk ) 
∣∣y 1: l ; θ(i −1) 

] 

+ C ′ ,

(B.6) 
9 
= 

N ∑ 

k =1 

l ∑ 

t=1 

E 

[ 
s t,k 

∣∣y 1: l ; θ(i −1) 
] 

ln θk 

+ 

N ∑ 

k =1 

( 

L −
l ∑ 

t=1 

E 

[ 
s t,k | y 1: l ; θ(i −1) 

] ) 

ln (1 − θk ) + C ′ . (B.7) 

ppendix C. Derivation of (25) 

The distribution p(y t | s t ) can be obtained from 

p(y t | s t ) = 

∫ 
h t 

p( y t | h t , s t ) p(h t ) dh t , (C.1) 

here p( y t | h t , s t ) ∼ CN ( �S t h t , σ 2 
w 

I ) and p(h t ) ∼ CN (0 , σ 2 
h 

I ) .

hen, we can easily show that ∫ 
h t 

p(y t | h t , s t ) p(h t ) dh t 

= 

∫ 
h t 

1 

(πσ 2 
w 

) M 

exp 

(
− 1 

σ 2 
w 

‖ y t − ��(s t ) h t ‖ 

2 

)
1 

(πσ 2 
h 
) N 

exp 

×
(

− 1 

σ 2 
h 

‖ h t ‖ 

2 

)
dh t , (C.2) 

= 

1 

(πσ 2 
w 

) 
M 

(πσ 2 
h 
) N 

∫ 
h t 

exp 

×
(

− 1 

σ 2 
w 

(
h t − �−1 �(s t ) 

H �H 
y t 

)H 
�

(
h t − �−1 �(s t ) 

H �H 
y t 

))

exp 

(
− 1 

σ 2 
w 

(‖ y t ‖ 

2 − y H t ��(s t )�
−1 �(s t ) 

H �H 
y t 

))
dh t , (C.3) 

= 

| σ 2 
w 

�−1 | 
(πσ 2 

w 

) 
M 

(πσ 2 
h 
) N 

exp 

×
(

− 1 

σ 2 
w 

(‖ y t ‖ 

2 − y H t ��(s t )�
−1 �(s t ) 

H �H 
y t 

))
, (C.4) 

here � = �(s t ) 
H �H ��(s t ) + 

(
σ 2 

w 

σ 2 
h 

)
I . 
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