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Abstract: This paper presents LUVS-Net, which is a lightweight convolutional network for retinal
vessel segmentation in fundus images that is designed for resource-constrained devices that are
typically unable to meet the computational requirements of large neural networks. The computational
challenges arise due to low-quality retinal images, wide variance in image acquisition conditions
and disparities in intensity. Consequently, the training of existing segmentation methods requires a
multitude of trainable parameters for the training of networks, resulting in computational complexity.
The proposed Lightweight U-Net for Vessel Segmentation Network (LUVS-Net) can achieve high
segmentation performance with only a few trainable parameters. This network uses an encoder–
decoder framework in which edge data are transposed from the first layers of the encoder to the last
layer of the decoder, massively improving the convergence latency. Additionally, LUVS-Net’s design
allows for a dual-stream information flow both inside as well as outside of the encoder–decoder
pair. The network width is enhanced using group convolutions, which allow the network to learn a
larger number of low- and intermediate-level features. Spatial information loss is minimized using
skip connections, and class imbalances are mitigated using dice loss for pixel-wise classification. The
performance of the proposed network is evaluated on the publicly available retinal blood vessel
datasets DRIVE, CHASE_DB1 and STARE. LUVS-Net proves to be quite competitive, outperforming
alternative state-of-the-art segmentation methods and achieving comparable accuracy using trainable
parameters that are reduced by two to three orders of magnitude compared with those of comparative
state-of-the-art methods.

Keywords: convolutional neural network; CHASE; DRIVE; deep learning; image segmentation;
medical images; STARE; U-Net vessel segmentation

1. Introduction

Eyes are the principle visual sensory organs for humans. Their vulnerability to a
number of pathologies and ailments with aging is a serious concern around the world. This
concern stems from the fact that, according to the World Health Organization (WHO), close
to 2 billion people are facing some form of visual impairment globally [1]. Some of the
leading diseases include trachoma, glaucoma, diabetic retinopathy (DR), hypersensitivity
retinopathy (HR), cataract and age-related macular degeneration (AMD).

Since many of these ailments cause irreversible damage that may even lead to blind-
ness, a large body of research is dedicated to development of techniques and technologies
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for the early diagnosis of eye diseases. To this end, visual computing and machine learning
have played central roles in driving a significant volume of the current research pertaining
to eye health [2–4].

The automatic detection of eye disease has many benefits, including being fast and
having low costs and a low probability of misdiagnosis. This facilitates accurate diagnosis
at an early stage. Consequently, there is a significant incentive to design a non-invasive
automated diagnostic system to solve the difficulties that ophthalmologists encounter
during routine patient examinations [5–7]. The retinal blood vessels in the fundus are
extremely delicate and, hence, are more prone to eye diseases. There is a strong correlation
between deterioration in the fundus vasculature and occurrence of the aforementioned
diseases. DR can be discovered by detecting abnormalities in the shape and composition of
the retinal vessels that are caused by diabetes [5].

Glaucoma causes particular type of changes in the retinal vascular structure that
can be detected using computerized methods to diagnose the disease [6]. HR is a retinal
disease driven by high blood pressure, where patients may have increased vessel stenosis
or arterial blood pressure as a result of the curvature of the vessels [7]. AMD causes the
deterioration of the central region of the retina (the macula) resulting in blurry vision and
difficulty focusing. If not detected early on, these diseases can advance to more serious
stages that may even lead to complete loss of eyesight. By studying changes in the retinal
vascular structures in the retina, these diseases can be diagnosed, and their progression can
be monitored [8].

Traditionally, eye specialists diagnose eye diseases by studying retinal fundus images
without any automatic diagnostic aid. However, more recently, computer-vision techniques
are playing an increasingly significant role in the field of medical imaging due to advance-
ments in the areas of machine learning and digital image processing [9–11]. Features in the
retinal blood vessels visible in fundus images were identified as markers indicative of a
variety of eye diseases as well as other ailments (diabetes, cardio-vascular, etc.) [12].

It is essential for any visual computing platform to effectively extract the images
of blood vessels (extraction/segmentation) from retinal fundus images for the accurate
detection of pathological symptoms. Consequently, a large volume of current research
is devoted to improving the precision and accuracy of existing techniques for the retinal
vascular segmentation procedure [12,13]. Other research involves the development of a
pipeline of operations targeted at the improved detection of eye diseases [13], and more is
being done to improve noise-removal methods [14–16].

Deep-learning-based techniques have shown very promising results when it comes
to detecting complex patterns in a wide variety of medical images generally including
those in retinal fundus images [17–19]. Numerous procedures to segment retinal blood
vessels automatically from digital fundus images have been presented in the literature [20].
The segmentation of an image is the procedure of dividing a digital image into a number of
segments of interest. Recent approaches leverage segmentation as a classifier. Segmentation
can be used as classifier for any number of things in images of a wide variety.

For instance, Tsai et al. [21] demonstrated the efficacy of using a segmentation network
to segment out the shape of a hand in an image at a state-of-the-art efficiency. Similarly,
Wang et al. [22] proposed an advanced multi-scale segmentation technique to detect defects
in a subway tunnel. This research used segmentation to distinguish whether individual
pixels in a fundus image are a component of a vessel or not. Using segmentation to classify
artifacts as being either vessels or not improves the precision of vascular analysis compared
to other classification techniques. Consequently, a large volume of recent research is
concerned with the optimization of retinal vascular segmentation algorithms [23].

While deep-learning-based techniques produce highly accurate results, they are con-
strained by their heavy computational requirements. There is potential in the literature to
expand the capacity of medical image analyses to platforms with relatively low computa-
tional capabilities (mobile phones and embedded systems). Significant work is being done
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to develop “lightweight” neural networks that are able to perform on limited hardware
comparable to high-end computing platforms.

This work presents the Lightweight U-Net Vessel Segmentor (LUVS-NET) for retinal
vasculature detection in fundus images. The main contribution of this work lies in remov-
ing redundant layers/operations, which add to the computational cost without notably
contributing to the overall performance. To this end, we suggest an optimized framework
that can extract deep features required to segment retinal vessels. For fair analysis, we
compare the proposed LUVS-Net with the versions of U-Net while also stating the struc-
tural differences with the latter. LUVS-Net is trained and tested with the STARE, DRIVE
and CHASE_DB1 datasets. The efficacy of LUVS-Net is demonstrated by benchmarking it
relative to contemporary networks.

2. Related Works

Convolutional neural network (CNN)-based approaches are by far the most popular
learning techniques that are used for medical image analysis and semantic segmentation
today [23–25]. In visual computing, semantic segmentation is considered to be a fundamen-
tal technique where artifacts in an image are classified based on a pixel-wise discrimination
process The segmentation algorithm is able to differentiate between any object of interest
and the background of an image on a pixel level.

This means that bone fractures, implants, deformities, carcinogenic growth and other
things of interest that may be present in any form of medical image can automatically be
identified. The technology today is able to detect and identify minute regions of interest in
an image. This makes semantic segmentation ideally suitable to detect a vasculature network
inside a retinal fundus image by teaching the network to analyze the vascular structure.

When it comes to image segmentation, the seminal U-Net developed by Ronneberger
et al. [26] and ResNet presented by He et al. [27] form the backbone of most new devel-
opments in the area of segmentation today, specifically those of medical images. Several
recent works augmented and expanded the capabilities of U-Net and ResNet. For instance,
Zhuang et al. [28] used residual blocks to stack a pair of U-Nets that resulted in an increase
in the number of information flow channels (LadderNet). Alom et al. [29] used an optimal
combination of U-Net, RCNN and ResNet to develop a highly efficient network (R2U-Net)
for the segmentation of medical images.

A great deal of recent work has focused on modifying and upgrading these “industry
standard” networks to produce lightweight variants. Laibacher et al. [30] presented a
modified light U-Net that has components of MobileNetV2 encoder that performs real-time
inference on ARM-based embedded platforms. Khan et al. showed that computational
requirements can be reduced by minimizing the pooling layers, reducing the number of
feature channels and skipping connections between the encoder and decoder to produce
pathology classification comparable to a traditional deep network [31].

Li et al. [32] augmented a U-Net with an attention module that aids in image ac-
quisition and feature fusion for light enhancement called IterNet. It was presented as a
lightweight network for image segmentation that is able to find obscure artifacts from
a segmented image instead of the heavy raw image. Jiang et al. [33] modified a U-Net
by down-scaling it to three layers with only five dense convolutional blocks, reduced
feature channels and the introduction of dropout layers to effectively detect laser scars
left after ophthalmic treatment. Kamran et al. [34] presented a lightweight generative
adversarial network (GAN) for retinal vessel segmentation that uses two generators with
two auto-encoding discriminators for improved performance.

A great deal of recent development in terms of segmentation networks has been
towards producing lightweight networks presenting lower than normal computational
requirements. Galdran et al. [35] demonstrated that, if a U-Net is trained with precision and
tested rigorously, its performance does not deteriorate even if the parameters are reduced
by many orders of magnitude. More recently, ref. [36] presented several retinal vessel
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segmentation models that were minimized and modified to produce good and comparable
results to their heavier counterparts.

Moreover, ref. [37] was able to improve performance while decreasing the number of
parameters by using prompt blocks to extract useful features. Khan et al. presented a novel
protocol to use image complexity as a factor to determine how various macro-level design
aspects can be modified to achieve optimal reduction in computational requirements [38].
Lastly, an attention block was employed in [39] to improve the segmentation of the encoder–
decoder design, coupled with the use of adversarial learning.

3. Proposed Methodology

Most of the popular deep-learning-based methods used for retinal vessel segmentation
are not robust enough for minor vessels [40]. The identification of tiny vessels is critical
for accurate and precise disease analysis from medical images. In terms of traditional
segmentation algorithms, this translates into deep networks with many convolution and
pooling layers. This leads to vanishing gradient issues. The overall performance of pixel-
wise classification suffers as a result of the lack of spatial information.

This work presents the Lightweight U-Net Vessel Segmentor (LUVS-Net) architec-
ture, a retinal vessel segmentation technique based on U-Net. It introduces an elegant
architecture that uses group convolutions to extend the network width enabling it to learn
a larger volume of low- and intermediate-level features. Group convolution allows the
reduction of inter-layer convolutional filters to further minimize the network complexity.
Furthermore, it integrates aspects of both supervised and unsupervised learning to create a
hybrid learning system. These augmentations allow for a lightweight network compared
to a fully convolutional network. Lastly, this work demonstrates its efficacy in training very
high-resolution images and producing segmentation with efficiency that is competitive
compared to other existing methods.

3.1. LUVS-Net Architecture

The proposed LUVS-Net is illustrated in in Figure 1 where the core components of the
network are summarized. The LUVS-Net can be divided into two parts:

1. The encoder, also known as a contracting encoder, is located on the left side of the
proposed network and is used for feature extraction.

2. The decoder, also known as the expanding decoder, is towards the right of the pro-
posed network and restores the features extracted at the encoder side.

Both the encoder and the decoder stages of LUVS-Net have the same number of
convolutional layers as proposed in the base U-Net architecture; however, in this case,
group-convolution is performed. Padding is used to keep the output image’s scale consis-
tent with the input image. The use of padding ensures that the output image is the same
size as the input image. A 1 × 1 convolutional layer is applied to convert the final output
channel number into the number of divided categories.
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Figure 1. Lightweight U-Net Vessel Segmentor (LUVS-Net) architecture.

3.1.1. Encoder

LUVS Net is a fully connected CNN with six dense stages: three stages for each the
encoder and decoder. In simple terms, encoding is the conversion of one type of data to
another type of data for the ease of transmission, communication and storage. The LUVS-
Net encoder also acts as a contracting encoder. The contracting encoder in the proposed
network has three stages, each with two convolutional layers of 3 × 3 kernel size followed by
a ReLU (rectified linear unit) activation function and a max-pooling layer of 2 × 2 pool size.

In the first step, the input image (dimensions: 640 × 640) is passed through a series of
two convolutional layers proceeded by a pair of ReLU activation function layers. The sec-
ond and third stages take in the feature maps generated in the preceding step as input
and pass them through the max-pooling layer to minimize the size of the feature maps.
The bottleneck used in each stage reduces the number of channels after concatenation to
minimize issues related to memory and space.

The overall number of convolutional filters is reduced in consecutive layers. Fur-
thermore, grouped convolutions are employed to reduce the complexity of the network
even further. During the encoding phase, while convoluting for image segmentation, there
is some spatial loss where useful information is lost. This loss can be covered by deep-
feature concatenation. The final feature map is 80 × 80 for a 640 × 640 input image. Each
dense stage in the LUVS-Net encoder structure provides feature empowerment, while the
bottleneck layer reduces the feature map depth.

3.1.2. Bridge

The LUVS-Net Bridge takes the convoluted image from the encoder as input and passes
it to the decoder to reconstruct the image with the original dimensions with minimum
information loss. In the bridge phase, the layers used are a dropout layer, max-pooling
layer, convolutional layer, ReLU layer, convolutional layer, ReLU layer, dropout layer,
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up-convolutional layer and up-ReLU layer. The function of the dropout layer is to reduce
the risk of over-fitting by dropping the node connections in the dense layers randomly
during the back-propagation phase.

The max-pooling layer minimizes the feature map further by only considering the
largest value pixels in the patch to pass a sparse feature map, thereby reducing the com-
putational costs. The connecting convolutional layers use the ReLU activation function
to generate feature maps. The up-convolutional layers are used along with the up-ReLU
activation functions to revive the original feature map dimensions with the help of padding
around the feature map before convoluting with the kernels.

3.1.3. Decoder

The output from the bridge is passed into the LUVS-Net decoder for reconstruction of
the image, where the dimensions progressively increase until they reach the original size.
The LUVS-Net decoder as shown in Figure 1, performs the inverse operation of the encoder
by reviving the original dimensions of the feature map reduced by the corresponding
encoder. The decoder has three stages, each stage starting with an un-pooling layer followed
by a series of up-convolution layers with up-ReLU activation function. The output at the
third stage is the reconstructed and segmented image result.

The depth-wise concatenation layers of each decoder stage are driven by three inputs.
These comprise the first and second convolution in addition to direct information from
the outer dense connection of the corresponding encoder block. The concatenation of
feature maps helps to give localization information. This approach improves the latency by
leveraging only the edge data from the encoder to decoder. The edge data are provided by
the outer dense paths. The decoder receives an 80 × 80 pixel input from the encoder. This
input is then used to build the (final) feature map, the size of which is equal to the input
image provided at the beginning of the encoder phase.

The last bottleneck layer is configured with two channels that serve to reduce the
feature map depth. The bottleneck layer doubles up as a class mask layer with the two
classes; “Retinitis-pigmentosa” and “Background”, corresponding to the two channels.
The third and concluding layer of the decoder before the image output uses the Softmax
activation function for predicting the classes.

Table 1 and Figure 1 depict the proposed network in detail. Blood vessels are the key
components of fundus retinal images. The vessels are automatically distinguished from
the digital color images of the fundus. The main goal of this study is to classify individual
pixels in the image as either belonging to a vessel or not. The two classes of pixels, vessel
and non-vessel pixels, are considered in this segmentation process, and each function vector
belongs to one of these two classes. The purposed model focuses on the following aspects:

• The use of a shallow network with one or two layers in each stage, respectively.
• The optimization in the number of filters throughout the network.

The shallow network enables the use of a minimum number of filters that preserve
the high-frequency pixels. Usually, four to five filters or max-pooling layers need to be
utilized for a basic U-Net architecture. Since this research deals with a one-class problem,
using more filters increases the overlaps, which, in turn, decreases the performance. Hence,
utilizing more filters complicates the learning process.
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Table 1. Proposed LUVS-Net filter details.

Layer Type Filter Size Filter Activation Output Size Stride

Encoder-Stage1-Con2D-1 Convolutional 3 × 3 24 ReLU-1 640 × 640 1
Encoder-Stage1-Con2D-2 Convolutional 3 × 3 24 ReLU-2 640 × 640 1

Encoder-Stage1-Max pooling Max pooling 2 × 2 - - 320 × 320 2
Encoder-Stage2-Con2D-1 Convolutional 3 × 3 48 ReLU-1 320 × 320 1
Encoder-Stage2-Con2D-2 Convolutional 3 × 3 48 ReLU-2 320 × 320 1

Encoder-Stage2-Max pooling Max pooling 2 × 2 - - 160 × 160 2
Encoder-Stage3-Con2D-1 Convolutional 3 × 3 96 ReLU-1 160 × 160 1
Encoder-Stage3-Con2D-2 Convolutional 3 × 3 96 ReLU-2 160 × 160 1
Encoder-Stage3-Dropout 50% Dropout - - - 160 × 160 -

Encoder-Stage3-Max pooling Max pooling 2 × 2 - - 80 × 80 2
Bridge-Con2D-1 Convolutional 3 × 3 96 ReLU-1 80 × 80 1
Bridge-Con2D-2 Convolutional 3 × 3 96 ReLU-2 80 × 80 1
Bridge-Dropout 50% Dropout - - - 80 × 80 -

Decoder-Stage1-Upconv-1 Transpose Convolutional 2 × 2 96 Up-ReLU 160 × 160 2
Decoder-Stage1-Depth Concatenation Depth Concatenation of 2 Inputs - - - 160 × 160 -

Decoder-Stage1-Conv-1 Convolutional 3 × 3 96 ReLU-1 160 × 160 1
Decoder-Stage1-Conv-2 Convolutional 3 × 3 96 ReLU-2 160 × 160 1

Decoder-Stage2-UpConv-1 Transpose Convolutional 2 × 2 96 ReLU-1 320 × 320 2
Decoder-Stage2-Depth Concatenation Depth Concatenation of 2 Inputs - - - 320 × 320 -

Decoder-Stage2-Conv-1 Convolutional 3 × 3 48 ReLU-1 320 × 320 1
Decoder-Stage2-Conv-2 Convolutional 3 × 3 48 ReLU-2 320 × 320 1

Decoder-Stage3-UpConv Transposed Convolutional 2 × 2 48 ReLU 640 × 640 2
Decoder-Stage3-Depth Concatenation Depth Concatenation of 2 Inputs - - - 640 × 640 -

Decoder-Stage3-Conv-1 Convolutional 3 × 3 24 ReLU-1 640 × 640 1
Decoder-Stage3-Conv-2 Convolutional 3 × 3 24 ReLU-2 640 × 640 1

Final Convolutional Layer Convolutional 1 × 1 2 - 640 × 640 1
Softmax Layer Softmax - 2 Softmax 640 × 640 -

Segmentation Layer Pixel Classification - - Cross Entropy loss - -

3.2. Architectural Differences with U-Net

The proposed LUVS-Net significantly reduces the computational cost by removing
redundant layers/ operations without compromising the performance of the network. Each
stage in LUVS-Net consists of an input layer, three contracting encoder layers, a bridge
layer, three expanding decoder layers and an output layer. The activation layer is the ReLU
activation function. The layers in LUVS-Net are summarized and compared to the classical
U-Net in Table 2. The number of convolutional layers in LUVS-Net is significantly less than
in U-Net.

Table 2. Layers in LUVS-Net.

Layer LUVS-Net U-Net [26]

Convolutional Layers 14 23
Pooling Layers 3 4

Upsampling Layer 4 4

The number of filters in LUVS-Net starts from 24 for every convolutional layer at
every level and doubles as they are downsampled, going up to a maximum of 96 (per
convolutional layer) as shown in Table 1. In U-Net, for comparison, the number of filters
starts from 64 (per convolutional layer) in the first level, doubling with each instance of
downsampling to a total of 1024 filters per convolution. LUVS-Net is further showcased in
terms of the number of parameters and model size in comparison with both U-Net and
Segnet in Table 3. LUVS-Net represents close to a 98% decrease in the number of parameters
and close to a 99.5% decrease in the model size compared to U-Net.

LUVS-Net is, arguably, computationally much lighter when compared to the classical
U-Net. This conclusion can be drawn by considering the relatively lower number of convo-
lutional layers, lower number of filters and drastically lower number of total parameters
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compounded by the much smaller relative model size in LUVS-Net compared to U-Net.
This leads to the implicit conclusion that LUVS-Net has massively reduced computational
requirements relative to U-Net. These lowered requirements come without any degradation
in the relative performance (as demonstrated in the following sections), lending merit to
LUV-Net’s credentials as a lightweight alternative to U-Net that is well suited for mobile
and embedded computational platforms.

Table 3. A comparison of the number of parameters and model size.

Architecture Parameters in Millions Model Size in MB

LUVS-Net 0.55 2
U-Net 31 386
Segnet 28.4 117

4. Experimental Results

This section presents a comparative analysis of the proposed LUVS-Net using state-
of-the-art methods. The following three fundus retinal image datasets, all of which are
available in the public domain, were used for the performance analysis:

1. STARE (Structured Analysis of the Retina): A collection of twenty fundus images
gathered in the United States [41].

2. CHASE DB1 ( Child Heart and Health Study in England): A collection of retinal
fundus images based on fourteen pediatric subjects [42].

3. DRIVE (Digital Retinal Images for Vessel Extraction): A set of 40 fundus images of
patients with diabetic retinopathy based in the Netherlands [43].

Among these three datasets, only the DRIVE dataset is available with a binary mask
that reveals the field of view (FOV). Blood vessels were segmented from the retinal images
in DRIVE manually. In the case of STARE and CHASE_DB1, binary masks were manually
generated using standard procedures [44]. While DRIVE and CHASE_DB1 are available
with their training and testing sub-sets already bifurcated, the STARE dataset was divided
into training and testing subsets using the “leave-one-out” strategy [44].

In this strategy, training starts with n − 1 samples, that are tested on m − (n − 1)
samples, where m are the remaining samples. This process is repeated for n iterations in a
manner that ensures that each individual sample in the dataset is left out at least once
throughout the entire run of iterations. Table 4 summarizes the distribution of the training
and testing subsets for each of the three selected datasets in the benchmarking performed
in this research.

Table 4. Sample size and distribution of the experimental dataset.

Dataset Name STARE CHASE_DB1 DRIVE

Training Set 10 20 20
Test Set 10 8 20

Dataset Size 20 28 40
Dimension (Pixels) 700 × 605 999 × 960 565 × 584

4.1. Performance Parameters

We used adaptive moment estimation (Adam) with a fixed learning rate of 1 × 10−3 as
the optimization solver. A weighted cross-entropy loss was used throughout as an objective
function for training as we observed that, for each retinal image’s vessel segmentation
instance, the non-vessel pixels outweighed the pixels of the vessels by a significant differ-
ence. We used median frequency balancing to determine the class association weights [45].
The network batch size was 8.

With a 10 + 10 split between training and testing images, the “leave-one-out” strategy
was used. Furthermore, the number of images was increased to a sufficient number
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for training by employing data augmentation. Augmentation was achieved through
both contrast enhancement and one-degree rotations. Additionally, image brightness and
contrast were manipulated using randomized factors. Lastly, the network was trained and
tested on a platform with an Nvidia GeForce GTX2080TI GPU, Intel(R) Xeon(R) W-2133
3.6 GHz CPU and 96 GB RAM.

4.2. Evaluation Criteria

Most neural network models that are used to segment vessels from retinal images are
essential two-class classifiers (vessels and background). These segmentation classifiers were
evaluated using ground truth photos for their effectiveness. These images were examined
and graded by ophthalmologists.

For the performance evaluation of the proposed system, we used the three metrics
described in Equations (1)–(3) based on the following four parameters.

1. True Negative (TN): Correctly classified as a background pixel.
2. False Positive (FP): Incorrectly classified as a vessel pixel.
3. True Positive (TP): Correctly classified as a vessel pixel.
4. False Negative (FN): Incorrectly classified as a background pixel.

Specificity =
TN

TN + FP
(1)

Sensitivity =
TP

TP + FN
(2)

Accuracy =
TP + TN

TP + FN + TN + FP
(3)

The sensitivity, specificity and accuracy are, henceforth, referred to as Se, Sp and Acc,
respectively. Additionally, the ROC-AUC (receiver operating characteristic area under the
curve) was used to assess the quality of classification in case of a dataset with distribution
imbalance. The PR-AUC (precision–recall area under the curve) was used to measure the
efficiency of classification.

4.3. Comparison with the State-of-the-Art

Figures 2–4 depict the perceptible outcomes of the simulation on the three datasets.
Each row in the figures shows a tested image, its corresponding ground truth and the
segmented outcome of the proposed network from left to right.

The data are presented and summarized in tabular form to evaluate and compare
them to state-of-the-art models. In Table 5, the results obtained from simulations of the
proposed LUVS-Net and other models on CHASE_DB1 are compared. The Se, Sp and Acc
of the proposed LUVS-Net are 0.8269, 0.9846 and 0.9738, respectively.

The results of the proposed LUVS-Net model compared to the state-of-the-art models
using the DRIVE dataset can be seen in Table 6 where best performance metrics in each
column are highlighted in bold. Clearly, Se, Sp and Acc of the proposed LUVS-Net are
0.8258, 0.983 and 0.9692, respectively. Similarly, Table 7 compares the outcomes achieved by
all models, including the proposed LUVS-Net using the STARE dataset. The Se, Sp and Acc
of the proposed LUVS-Net are 0.8133, 0.9861 and 0.9733, respectively.
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Figure 2. Sample images, their corresponding ground truth and the outcome of the proposed network
while testing the CHASE_DB1 dataset (left to right).
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Figure 3. Sample images, their corresponding ground truth and the outcome of the proposed network
while testing the DRIVE dataset (left to right).
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Figure 4. Sample images, their corresponding ground truth and the outcome of the proposed network
while testing the STARE dataset (left to right).

On the basis of analyses using industry-standard metrics, LUVS-net can clearly be
seen to outperform existing cutting-edge models.

The summary shown in Figure 5 shows the consistency of LUV-Net’s performance
across all three datasets that were used for training and validation.
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Table 5. LUVS-Net compared to existing models as tested (dataset: CHASE_DB1).

Method Year Se Sp Acc AUC

Khawaja et al. [46] 2019 0.7974 0.9697 0.9528 NA
Zhang et al. [47] 2016 0.7626 0.9661 0.9452 0.9606
Arsalan et al. [48] VessNet 2019 0.8206 0.9800 0.9726 0.9800
Jin et al. [49] 2019 0.7595 0.9878 0.9641 0.9832
Yin et al. [50] 2020 0.7993 0.9868 0.9783 0.9869
Wang et al. [51] 2020 0.8186 0.9844 0.9673 0.9881
Segnet-basic [27] 2020 0.8190 0.9735 0.9638 0.9780
LUVS-Net 2022 0.8269 0.9846 0.9738 0.8127

Table 6. LUVS-Net compared to existing models as tested (dataset: DRIVE).

Method Year Se Sp Acc AUC

Ma et al. [52] 2019 0.7916 0.9811 0.9570 0.9810
Guo et al. [53] 2019 0.7891 0.9804 0.9561 0.9806
Wu et al. [54] 2019 0.8038 0.9802 0.9578 0.9821
Wang et al. [55] 2019 0.7940 0.9816 0.9567 0.9772
Arsalan et al. [48] VessNet 2019 0.8022 0.9810 0.9655 0.9820
Gu et al. [56] CE-Net 2019 0.8309 - 0.9545 0.9779
Yin et al. [50] 2020 0.8038 0.9837 0.9578 0.9846
Wang et al. [51] 2020 0.7991 0.9813 0.9581 0.9823
Segnet-Basic [27] 2020 0.7949 0.9738 0.9579 0.9720
Gargari et al. [57] U-Net++ 2022 0.9410 0.9880 0.9890 -
Ronneberger et al. [26] U-Net 2015 0.7849 0.9802 0.9554 0.9761
LUVS-Net 2023 0.8258 0.983 0.9692 0.8244

Table 7. LUVS-Net compared to existing models as tested (dataset: STARE).

Method Year Se Sp Acc AUC

Jin et al. [49] 2019 0.8155 0.9752 0.9610 0.9804
Chen et al. [58] Deeplab v3++ 2018 0.8320 0.9760 0.9650 0.9735
Wang et al. [51] 2019 0.8074 0.9821 0.9661 0.9812
Guo et al. [53] 2019 0.7888 0.9801 0.9627 0.9840
Arsalan et al. [48] VessNet 2019 0.8526 0.9791 0.9697 0.9883
Wu et al. [54] 2019 0.8132 0.9814 0.9661 0.9860
Wang et al. [51] 2020 0.8239 0.9813 0.9670 0.9871
SegNet-Basic [27] 2020 0.8118 0.9738 0.9543 0.9728
Ronneberger et al. [26] U-Net 2015 0.764 0.9867 0.9637 0.9789
LUVS-Net 2023 0.8133 0.9861 0.9733 0.8187

Figure 5. Lightweight U-Net Vessel Segmentor (LUVS-Net) architecture performance.
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5. Conclusions

One of the most prevalent ophthalmic ailments afflicting people with diabetes is DR,
which has the potential to lead to complete blindness. While screening and detecting
diabetic retinopathy, an ophthalmologist can greatly benefit from the precise segmentation
of blood vessels in the retina. This work presented LUVS-Net for the segmentation of blood
vessels in the retina, which can greatly aid in the diagnosis of this disease. As a result of
the rich feature set in the dense block, LUVS-Net is able to attain and transfer the spatial
information of the image. The transfer from the encoder to the decoder of data from the
edges allows for fast convergence of the network.

LUVS-Net has three main design attributes: First, feature concatenation improves the
feature quality, whereas the bottleneck layers in dense blocks control the memory require-
ments. Secondly, the number of convolution layers in each of the network’s six blocks is
reduced to minimize spatial information loss, and group convolution is used to enhance
the network width. Finally, LUVS-Net leverages dense paths for feature empowerment
that aids in extracting very fine information from images.

Three publicly available datasets were used to demonstrate LUVS-Net’s ability to
surpass the accuracy and computational efficiency of existing state-of-the-art methods for
each of the three datasets it was tested on, thus proving its efficacy.

In conclusion, LUVS-Net can be used as a lightweight segmentor network to supple-
ment the analysis and eventual diagnosis of diabetic retinopathy from fundus images with,
arguably, state-of-the-art performance. With the potential for inference using hand-held
smart platforms, this network has the potential to be employed in an app for the automated
diagnosis of diabetic retinopathy. Such a system could be used as a platform to provide
alternative opinions to assist medical doctors and ophthalmologists in the diagnosis of
DR. Future work will focus on increases in the accuracy of blood-vessel segmentation
considering the fact that this can aid in the diagnosis of a variety of retinal diseases in
addition to DR.
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