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A B S T R A C T

The major cause of the increasing world mortality rate is cardiovascular disease (CVD),
killing 17.9 million people annually. Current techniques are costly, challenging to operate
on, and an expert is needed to confirm the diagnosis results. Phonocardiogram (PCG) signals
are heart sound recordings of heart rhythms and have many advantages over traditional
auscultation methods. This work targets CVD detection through PCG signal analysis using
different artificial neural networks (ANN) and fusion of spectral features. PCG signal is acquired
through the subject’s heart by a self-designed PCG acquisition setup. It is then pre-processed
and extracted five spectral features with the highest pair-wise differences. Five different types
of ANN named narrow, wide, tri-layered, bi-layered, and medium are simulated with 99.99%
accuracy. This proposed architecture is non-invasive, moderate, and reliable compared to
current approaches and also offers great guidance in offering new low-cost alternatives for CVD
diagnosis techniques.

. Introduction

Cardiovascular disease is the world’s leading cause of death which claims the lives of 17.9 million people globally each year.
hat is why the development of electronic instruments that can help the early detection of these diseases is a hot topic. It is common
o use the electrocardiogram (ECG) technique, but some of the diseases can be detected by heart sound auscultation. As our heart is
umping continuously, the signals produced by the heart are traveling at a faster rate and are very complex in nature. A heart may
roduce four sounds during a single cycle named S1 (lub sound) and S2 (dub sound), while S3 and S4 are quite rare. S1 is caused
y the atrioventricular valve closure and S2 by the closure of semilunar valves. S3 and S4 are less common heart sound that cannot
e heard but can be seen on a visual recording, such as a phonocardiogram. The cardiac cycle is the time it takes from the start of
ne heartbeat to the beginning of the next. The time cycle of S1 and S2 is used to identify abnormal sounds, while their amplitudes
rovide information about cardiac wall contraction and expansion. Heartbeats at an incredibly steady rate of 60 to 100 beats per
inute, or 100 thousand times a day. When the heart beats irregularly or abnormally, doctors refer to it as abnormal pulse and
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cardiac arrhythmia. It causes abrupt pulse murmurs that are either too slow or too fast. Strokes occur when the heart slows or stops
blood flow to the brain. As a result, the nutrients that your brain requires are unavailable, and thus brain cells start dying. Human
body cannot function normally if its blood cannot enter the exact output portion or body part. A blocked artery or unexpected
bursts cause a stroke. It needs to be treated as soon as possible to avoid any brain injury and other risks. Coronary artery disease
(CAD) occurs when the veins that supply essential components and resources to the heart stiffen. This hardening is also known as
arterial sclerosis. Blood clots in major arteries, usually in the legs, are caused by deep vein deformation and infarction. Electrical
activation occurs first in the cardiac cycle, followed by mechanical activity in the form of atrial and ventricular movements. As a
result, blood flows between the heart chambers and throughout the body, opening and closing the heart valves. The mechanical
activity of the heart, as well as the sudden starting or termination of blood flow, causes the whole cardiac structure to vibrate. These
tremors are heard on the thoracic wall and can indicate the health of the heart. The recording of these rhythms is known as PCG.
The PCG signals detect significant information related to heart health and are a crucial technique for distinguishing various heart
diseases. The frequency of normal heart sound is low compared to the heart murmurs which have a high frequency. Heart murmurs
(HMs) are usually created due to the narrowing and blockage of heart walls. It may also be due to the faster blood pumping than
the normal rate. HMs can be present in newborns or present in older people due to aging. It can be classified into normal and
abnormal. An abnormal murmur (AM) causes severe heart diseases, but the normal one is not causing any risk or harm. In adults,
AM is most commonly caused heart valve issues such as valve thickness, Endocarditis, or Rheumatic fever. It is caused by structural
cardiac abnormalities named congenital heart defects in children, which include holes in the heart, cardiac shunts, and heart valve
issues present from birth. There are no significant symptoms of a normal murmur, but an abnormal murmur causes blue lips and
fingertips, cough, chest pain, and liver enlargement.

Heart auscultation is a technique used by clinicians to examine cardiovascular functioning and diagnose abnormalities, but
heir analysis takes a long time. As a result, deep learning techniques may play a critical part in understanding these signals so
hat physicians can make corrective decisions for the detected disorder. As a result, modern technologies are necessary to improve
ifestyle and health care. More specifically, extensive research undertaken in partnership with researchers, health care providers,
nd patients is essential for establishing accurate and tailored treatment choices for a wide range of illnesses. Electronic stethoscopes
tilize filtering and amplification to increase the clarity of body sounds. If a deep learning-based diagnosis of the heart can improve
recision and productivity, we can save expenditure on healthcare while also improving quality.

.1. Problem statement

PCG technique is one of the most emerging and used techniques for cardio diseases in recent ages. Almost all previous studies
ocused only on developing cardiac abnormality detection algorithms. Still, very few dealt with developing a low-cost, portable,
asy to operate PCG acquisition system (PAS) that could be installed in a healthcare environment. PCG signals are digital cardiac
ounds that give vital insights for remote patient monitoring and intelligent diagnosis in a non-invasive manner using multiple signal
rocessing and artificial intelligence techniques. As a result, a thorough assessment is required to design a PCG acquisition system
ith a robust algorithm for detecting CVDs from most conventional heart sounds.

This research aims to build a standalone sensor to detect low-frequency PCG signals using this self-designed system formation
f a database containing PCG signals from different heart pathologies and healthy subjects. In the first phase, we designed the PAS,
ested it various times, and gave it a portable shape after satisfying good results. The second phase included the collection of heart
ounds. The third phase was to get them annotated by medical experts. The fourth phase was the development of an algorithm for
mmediate pathological detection and classification in real-time.

Following are the primary contributions of this research study:

i. Developed a low-cost PCG acquisition system (PAS) named DS-101 designed to record different heart sounds from local
subjects/patients.

ii. Collection of normal and abnormal PCG signals from consented patients and subjects.
iii. Annotation of the dataset by competent clinical experts/cardiologists using standard auscultation.
iv. Data training on five different types of artificial neural networks with best spectral features having maximum class wise

difference.
v. Deployment of less extensive computational algorithm with robust detection and classification of CVD’s.

vi. Comprehensive experimental results with excellent classification metrics confirmed the superiority of the proposed algorithm
over the state-of-the-art methods.

The remainder of the article is arranged in the following manner: Section 2 state of art-related work. Section 3 provides an
overview of the architecture of self-designed digital stethoscopes. Section 4 explains the methodology. Section 5 provides detailed
results and discussion. Finally, Section 6 concludes the paper with future work.

2. Related work

Digital subtraction phonocardiography (DSP) is used to separate heart murmurs from normal PCG signals. The recordings were
obtained from 60 infants. DSP can be a dependable and cost-effective breakthrough diagnostic method for testing for structural heart
disease. Still, it has to be tested on a large number of patients with well-defined pathophysiology to establish its clinical potential [1].
2

Sundaram et al. applied the multiscale entropy (MSE) technique and Mann–Whitney test to discriminate between normal PCG and
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Fig. 1. Block diagram of self-designed PCG Acquisition System (PAS).

artifact sound signals. The MSE of normal and artifact signals was substantially different when a value of P < 0.01 was used.
However, to validate this approach, a significant amount of data set must be available with balanced class samples [2]. Systolic
and pathological murmurs were distinguished using color spectrographic phonocardiography by Sarbandi et al. The source of the
continuous low-frequency energy observed in several recordings is unknown due to poor skin contact of the chest piece. To make
this technique more effective, investigations on many individuals with homogeneous cardiac abnormalities are also required [3].
Classification of heart sound signals is done using Wavelet decomposition, autoregressive (AR) model, and normalized Shannon
energy with an accuracy of 93%. Misclassification is caused by several significant interferences such as speaking, wailing, or other
noises. The abrupt removal of the stethoscope from the patient’s chest for a brief period during data collection also resulted in
an inaccurate diagnosis. Better recording techniques can improve the misclassification, recordings and protocols [4]. Huiying et al.
generated frequency envelopes of the PCG signal using Discrete wavelet analysis. Large intensity murmurs overlapping with Sl or S2
were difficult to separate but can be differentiated by critically evaluating spectrogram generation or monitoring the PCG signal. [5].

It is worth mentioning that the thresholds for heart sound classification change strongly with different data types, but He et al.
strengthened this by adding new methods for S2 feature extraction as he applied automatic heart sound segmentation with 74%
accuracy. [6]. Gill et al. proposed heart sound detection using homomorphic filtering (HF) and computed tomography (CT) to extract
a smooth envelogram. The addition of supervised learning can further improve this algorithm, and time–frequency characteristics for
the identification of additional heart sound such as S3, S4, murmurs, and valve abnormalities [7]. Misha et al. proposed an efficient
algorithm for classifying normal and extrahls PCG signals. They used empirical mode decomposition (EMD) for noise reduction,
soft thresholding for signal segmentation, impulsive domain features, and multiple ensemble-based classifiers. It achieved 98.8%
accuracy, but its dataset is only 400 samples, with each signal duration only up to 10 s. As the signal duration used by them is
small, they must increase the number of samples so that it can be generalized [8]. Choi et al. used AR spectral analysis and multi
support vector machine (SVM) to characterize cardiac sound murmurs efficiently. If the SVM module is constructed with a specified
threshold value (THV), then only this technique can show good classification performance [9]. Multi-class heart sound detection and
classification are done using 2D-convolutional neural networks (CNN). The suggested model has an overall test accuracy of 83%,
which is relatively low compared to others in literature [10]. Babaei et al. cleaned PCG data with the daubechies wavelet, retrieved
statistical features for three cardiac valve problems, and trained ANN with a 94.42% accuracy [11]. Ahmed et al. collected datasets
with a Littman 3200 electronic stethoscope and extracted normalized average Shannon energy and 50 mel-frequency cepstrum
coefficients (MFCCs). By training extracted features on medium gaussian SVM, a classification accuracy of 92.6% was attained [12].

The goal of all of the above methods is to categorize cardiac disease. But it contains the following limitations, (i) limited dataset,
(ii) threshold calculated for one dataset does not work well for other datasets containing different diseases, (iii) the stethoscopes
used for recording has poor skin contact, which results in PCG signals with missing vital information (iv) recorded sounds have
large intensity and overlapping characteristics (v) High priced digital stethoscopes cannot be afforded by everyone and (vi) the
available online datasets have a significant amount of class imbalance. This is why the deployment of accurate algorithms capable of
diagnosing a wide range of cardiac problems based on good quality PCG signals has become crucial. The key challenges in developing
appropriate algorithms are the large diversity of heart sounds and the non-stationary nature of PCG signals. With these challenges,
the question of how to increase the distinctiveness of audible heart sounds and improve the effectiveness of such algorithms while
reducing computational costs without sacrificing reliability must be considered. Therefore, in this work, we used a low-cost self-
developed PAS with an efficient algorithm for classifying CVDs with high accuracy, sensitivity, and specificity. The collected dataset
contains 2310 Normal and 2300 abnormal PCG signals with almost no class imbalance between them. All recorded sounds are of
high quality, which can later be used for training medical students. A time-domain signal is converted into a frequency-domain signal
using spectral features. It uncovers signal qualities that are not time-local but are stretched over the periods. It unhides all the crucial
information that was previously concealed and gives fine-grained information with low-frequency resolution. Neural networks are
considered the most effective technique for predicting heart and brain disease. Therefore, the proposed system use classifier with
spectral features having a significant class difference. The achieved results indicate an improved degree of effectiveness compared
to previously employed techniques in the literature.

Table 1 summarizes the literature review and compares the types of datasets used, focused diseases, extracted features, classifiers,
3

and achieved results with classification parameters named accuracy (ACC), sensitivity (SN), and specificity (SP).
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Table 1
Comparison of previous studies.

Research Recording’s/Dataset Diseases/Types of PCG signals Features and methods Results

[1] 60 infants and adults Heart murmur Digital subtraction
Phonocardiography (DSP)

Murmurgram

Separation of cardiac
murmurs

[2] Peter bentley heart sounds
database

10 samples of normal and
artifact signal

Cardiac valve disorders Multiscale entropy technique

Mann–Whitney test

Discrimination of normal
and artifact PCG signal

[3] Self-collected dataset

Normal cases: 5
Patients: 45

Cardiac abnormalities Not provided (NP)

Color spectrographic analysis

Identification of cardiac
conditions

[4] Self-collected dataset

Pathological murmurs: 14

Physiological murmur: 23

Heart sounds Normalized average Shannon
energy

Automatic segmentation
algorithm

Decision of durations of S1
and S2

[5] Self-collected dataset

77 recordings

Normal and abnormal heart
sounds

Normalized average Shannon
energy

Identification of S1 and S2

93% correct segmentation
ratio

[6] Not provided Classification of heart sound
signals

Wavelet decomposition (coif5)

Normalized average Shannon
energy

Aortic valve closure (A2) as a
feature of S2

SP: 61%

SN: 87%

ACC: 74%

[7] 44 phonocardiograms Heart sound Homomorphic envelogram

Baum–Welch algorithm
Hidden Markov model

S1:98.61% specificity

S2: 98.3% specificity

[8] Self-collected dataset

Normal: 200 samples

Extrahls: 200 samples

Normal and Extrahls PCG signals Impulsive domain features

K-Nearest Neighbors (KNN)

ACC: 98.8%

[10] PASCAL dataset Multi-class heart sounds
classification

MFCC
2D-CNN

ACC: 83%

[11] Not provided Heart valve disorders Daubechies wavelet filter
Statistical classifier
ANN

ACC: 94.42%

[12] 283 sound samples Classification of cardiovascular
disorder

MFCC
SVM
KNN

ACC: 92.6%

3. PCG acquistion system

3.1. Existing databases

The University of Michigan Health System supplied the michigan heart sound and murmur database (MHSDB) [13]. It contains
3 cardiac sound recordings with a total length of 1496.8 s, while the PASCAL [14] database contains 656 recordings for heart
ound classification and 176 recordings for heart sound segmentation. The recording quantity, duration, and signal frequency range
f these databases is constrained. The duration period is from 1 to 30 s The frequency range is below 195 Hz due to the low pass
ilter, which eliminates many essential heart sound characteristics for medical assessment. Furthermore, two of these databases
re designed for the education of medical students. Consequently, they include high-quality records of strong murmurs that are
ypically not found in real-world recordings. Another factor is that the sensors or stethoscopes used by these datasets are expensive.
ables 2(a) and 2(b) show the comparison of collected datasets with other Online datasets. It gives detailed insight if the kind of
ataset is available online the number of subjects, from which particular side the recordings were taken, what was the duration of
4
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Table 2(a)
Comparison of collected dataset with other online datasets.

Database Subject

Type Number Age Gender

Physionet [13] Normal
Abnormal

Not provided Not provided Male
Female

MHSD [13] Normal (N)
Pathological (P)

Not provided Not provided Not provided

PASCAL [14] Normal
Murmur
Extra heart sound artifact
Extrasystole

Not provided Not provided Not provided

Self-collected Normal
Abnormal murmurs

231
230

3–66
8–80

Male
Female

Table 2(b)
Comparison of collected dataset with other online datasets.

Database Recording Sensor

Position/Area State Length (s) Amount Sampling
frequency

Name Frequency
bandwidth

Physionet [13] 9 different
positions

Rest 5–120 3126 4 kHz Meditron
electronic
stethoscope

20–20 kHz

MHSD [13] Apex aortic
Pulmonic

Supine Total: 1496.8 s 23 44.1 kHz Stethoscope Not provided

PASCAL [14] Not provided Not provided 1–30 176 (segmentation)

656 (classification)

4kHz iStethoscope
Pro iPhone app

DigiScope

20 Hz to 20 kHz

20–1000 Hz

Self collected Multi-
position at
chest

Rest
Sitting
Supine
Sleeping

60 s N: 2310
AM: 2300
Total: 4610

8 kHz Self-designed
DS-101

0–20 kHz

Fig. 2. (a) Self-designed PCG acquisition system (b) Acquisition areas.

.2. Self-collected database

We designed a real-time and low-cost PCG acquisition system to acquire PCG signals whose block diagram is shown in Fig. 1.
stethoscope chest piece (SCP) embedded with a microphone is placed above the chest near the heart region [8,14]. Fig. 2(a)

hows the PCG acquisition setup, where an SCP is used to amplify and transmit the heart signal to a microphone, and Fig. 2(b)
hows the areas from where the signals were acquired. The sounds in the heart are collected on the PC using a soundcard. The
amples were labeled by an experienced cardiologist who tested each participant using medical methods. The sampling frequency is
kHz, and the signal is 10–60 s long for each PCG signal. This PCG data is obtained from several local and nearby hospitals, clinics,

nd nonclinical settings, such as in-home visits throughout 5 to 6 months during the daytime and evening. Major areas for data
ollection were Wah Cantt, Taxila, Rawalpindi, Hattar, Hassan abdal, Islamabad, and Lahore. Dataset was collected from normal
nd pathological children and adults (male and female). PCG signals were collected from aortic, pulmonic area, and tricuspid chest
ocations. The recordings include clear and pure heart sounds, but some recordings have overlapping respiration sounds and gastral
5
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Fig. 3. (a) Raw signal in time domain (b) Raw signal in frequency domain.

Fig. 4. Block diagram of proposed methodology.

Table 3
Dataset statistics.

Normal PCG

Gender Statistics

Subjects Samples Age

Male 115 1150 3–35
Female 116 1160 8–40
Total 231 2310 3–40

Abnormal murmur PCG

Gender Statistics

Subjects Samples Age

Male 111 1110 8–66
Female 119 1190 25–80
Total 230 2300 8–80

movements. This adds credibility to the collected dataset because if this dataset is used for real-time detection and classification of
CVDs, any unseen PCG recording having lung, muscle, or gastral sound will still be correctly classified by the trained algorithm.

Fig. 3(a) shows the raw signal in time domain and Fig. 3(b) depicts the raw signal in frequency domain. Table 3 shows that
a total of 4690 recordings were collected from 80 persons, among which 2300 recordings were positively identified as CVDs by
medical experts. These CVD patients had the following heart-related problems,

i. Adult, toddlers and children: Heart valve problems, valve calcification, and endocarditis.
ii. Infants: Congenital heart defects and structural problems of the heart.

3.3. Anonymization

The process of anonymization is to protect the identity of patients so that it cannot be linked to any such system that could
identify the patient. During data collection, we ensured to provide the anonymized data for further processing.
6
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Fig. 5. (a) Pre-processed time domain signal (b) Pre-processed frequency domain signal.

4. Methodology

The methodology of the proposed system for the classification and detection of CVDs is shown in Fig. 4. The first step is to
obtain the PCG signal through the heart of the subject/person/patient with the designed PAS. This raw PCG signal is then pre-
processed by linear scaling, frame-based segmentation, and filtered by a low pass filter to remove high frequency components.
The extracted spectral domain features are passed through a feature selection algorithm named minimum redundancy maximum
relevance (MRMR). If the predictor importance score is greater than 0.05, only the feature is selected for model training. Eventually,
five different types of ANN classifiers were successfully trained with high accuracy, sensitivity, and specificity to differentiate normal
and abnormal heart murmurs.

4.1. Raw signal

The raw signal obtained from the PAS shows amplitude variation in the time domain as shown in Fig. 5(a). Raw normal PCG
(RNP) signal range in amplitude varies from [1–0.5] while that of raw murmur PCG (RMP) signal is from [0.5–1]. RNP’s frequency
spectrum is from 0–2 kHz while RMP varies from 0–1.5 kHz as shown in Fig. 5(b). The color bar shows the energy content, meaning
which frequency has what energy level, −40 dB/Hz is the highest energy content, while below −140 dB/Hz is the lowest. RNP
contains heart sound, gastral, and muscle sounds, while RMP contains heart, respiration, and gastral sounds.

4.2. Pre-processing

The acquired PCG signal can have some noise created either due to wire resistance, inhale and exhale sounds during respiration,
or sometimes it can also contain gastral reflex sounds. These components may lead to excluding valuable information that can
help us differentiate CVDs. If this happens, then it complicates the classification method. To separate the rasping, whooshing, or
blowing sounds created by the heart in PCG signals from respiration, lungs, gastral/bowel sounds, pre-processing, segmentation,
and filtration are much-needed steps.

(1) Linear scaling
Mathematically Eq. (1)

𝐿𝑖𝑛𝑠𝑐𝑃𝐶𝐺𝑠 =
𝑃𝐶𝐺𝑟 −𝑀𝑖𝑛𝑃𝐶𝐺𝑟

𝑀𝑎𝑥𝑃𝐶𝐺𝑟 −𝑀𝑖𝑛𝑃𝐶𝐺𝑟
(1)

where 𝑃𝐶𝐺𝑟 is the raw signal obtained from sensor, Min(PCGr) is the minimum value present in PGS data and Max(PCGr) is
the maximum value. As shown in Fig. 4, the amplitude range of both pre-processed PCG signals is [-1 1] in the time domain. The
frequency plot shows that now both signals contain energy that is bundled. If we see Fig. 3(b) its energy was scattered, but Fig. 5(b)
shows that now the energy content over frequency is more prominent, which helps us in analysis and experimentation.
7
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Fig. 6. Block diagram of Amplitude based segmentation.

Fig. 7. (a) Time domain segmented signal (b) Frequency domain segmented signal.

4.3. Segmentation

Segmentation is done by framing, which partitions the PCG signal into smaller sections or slices. These signals are sectioned into
500 ms frames, with an overlap of 100 ms to remove the non-beating, high frequency, and any silent parts, if present. If a particular
part of these smaller segments has an amplitude of less than 0.01, they will be removed, and all greater than it will be passed. This
threshold value was selected after extensive visual analysis. The PCG signal contains the sound of closing and opening of cardiac
valves, which is strongly audible, leading them to have higher and more prominent amplitudes while overlapping lung respiration
and gastral reflexes (very few times) audible as background sounds with lower amplitudes. The block diagram of amplitude-based
segmentation is shown in Fig. 6. Fig. 7(a) shows all the segments of normal and abnormal PCG signal in time domain while Fig. 7(b)
shows the frequency representation. The segmented signal only contains that frequency content whose amplitude was greater than
the 0.01 threshold. The segmented signal of Normal PCG contains prominent energy content from 0–2 kHz, while abnormal PCG
signals contain 0–1.6 kHz.

4.4. Removal of high frequency components

A low-pass filter (LPF) only passes frequencies within a given spectrum and suppresses frequencies outside that range. Here,
LPF is designed with a cut-off frequency of 250 Hz for a 3 dB point below the bandpass value. Because the range of heart sound
only contains very low-frequency components, lub sound ranges from 40 to 200 Hz while dub sound from 50 to 250 Hz [15]. The
frequency range of lung/respiration sounds ranges from 250- to 2k Hz [16] and bowel/gastral sounds up to 1500 Hz [17]. For a
PCG signal, these sounds are high frequency components that add noise because any sound that is not produced by the heart in a
PCG signal will be a noise element. Fig. 8 (a) is showing the filtered signal in time domain and Fig. 8(b) gives us the insight that
both normal and abnormal signals contain frequency components that are lower than 250 Hz, which is the region of interest here.
Normal PCG signals contain significantly lower frequency with prominent energy in 0–250 Hz, while abnormal murmur contains
0–100 Hz. Thus, we can now say that all raw PCG signals are filtered without any muscle, gastral, and respiration sounds.
8
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Fig. 8. (a) Time domain filtered signal (b) Frequency domain filtered signal.

Fig. 9. Importance scores of extracted features obtained by MRMR algorithm.

4.5. Feature extraction and selection

Feature extraction is a method for extracting knowledge regarding signal functionality. It is also known as a function or features
variable [18,19]. The spectral features mentioned below were extracted from filtered PCG signals. These feature vectors provide
critical knowledge that aids identification using machine/deep learning methods. Thus, before model training, we tried to determine
whether they would work or not by using the feature selection algorithm known as the minimum redundancy maximum relevance
(MRMR) algorithm. The primary concept is that minimum redundancy must complement a maximum relevance condition for
features that contribute to any particular class variable. We can say the global importance of the variables for the class is measured
here [20]. Fig. 9 shows the MRMR of the extracted spectral features. The importance rank of variables for classification is given
below.

Spectral Slope (SSL) > Spectral Skewness (SS) > Spectral Kurtosis (SK) > Spectral Rolloff Point (SR) > Spectral Spread (SSP)
As the importance scores of all the features are greater than 0.005, they will be able to perform excellent classification Fig. 9.
9
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(1) Spectral kurtosis

SK can detect a series of transients as well as their frequency domain placements, and it can completely delete non-stationary
data.

𝑆𝐾 =

∑𝐵𝐸2
𝐾=𝐵𝐸1

(

𝑓𝑘 − 𝑆𝑐1
)

𝑆𝑘

𝑆𝑐2
𝐵𝐸2
∑

𝐾=𝐵𝐸1

𝑆𝑘

(2)

where BE represents band edges, 𝒇𝒌 frequency bins, 𝑺𝒌 Spectral values and Sc Spectral centroids.

For spectral kurtosis calculation, convert and validate input filtered signal from the time domain to the spectral domain. Calculate
centroids by taking the sum of frequency vectors and dividing them by filtered signal. Calculate band edges one (𝑩𝑬𝟏) and two
(𝑩𝑬𝟐) respectively, and then spectral spread by taking the square root of the centroids sum and dividing the sum by filtered signal
(see Algorithm 1).

(2) Spectral skewness

Spectral Skewness represents the sum of variation in the spectrum shape between the occurrences above the normal frequency
but under the center of mass.

𝑆𝑆 =

∑𝐵𝐸2
𝐾=𝐵𝐸1

(

𝑓𝑘 − 𝑆𝑐1
)3 𝑆𝑘

𝑆𝑆 2
∑𝐵𝐸2

𝐾=𝐵𝐸1
𝑆𝑘

(3)

where BE represents band edges, 𝒇𝒌 frequency bins, 𝑺𝒌 spectral values, SS spectral spread and Sc spectral centroids.

To calculate SS ID- filtered heart PCG is converted from a time domain to spectral domain signal. Its centroids are calculated
by taking the sum of frequency vectors and dividing them by filtered PCG. Calculate band edges and finally get the value of SS by
taking the square root of the sum of centroids and dividing by the sum of an input signal (see Algorithm 2).

(3) Spectral roll-off point

SR is a frequency domain parameter that gives information about a frequency below which a particular amount of spectral energy
is dissipated. [21].
10



Computers and Electrical Engineering 101 (2022) 108094M.U. Khan et al.
SR = i
∑𝑖

𝐾=𝐵𝐸1
𝑆𝐾=𝑇𝐸

∑𝐵𝐸2
𝐾=𝐵𝐸1

𝑆𝑘 (4)

where BE represents band edges, 𝒇𝒌 frequency bins, 𝑺𝒌 spectral values and Sc spectral centroids.

Find a specified threshold for input filtered signal, convert this time series data to the power spectrum and then calculate the
cumulative sum of the signal and multiply it with a threshold. Find the ids greater than the chosen threshold, save them in a
frequency vector and reshape them according to input channels (see Algorithm 3).

(4) Spectral slope

SSL is a linear regression-based estimate of the audio signal’s rapid transition to higher frequencies. Many normal audio signals
have a spectral pitch that is lower in frequency and higher in frequency. The quality of the acoustic signals is responsible for this
slope. SSL generates a single numerical value representing the direction of the best match line based on spectral performance.

𝑆𝑆𝐿 =
∑𝐵𝐸2

𝐾=𝐵𝐸1
(𝑓𝐾 −𝑀𝐹 )

(𝑓𝐾 −𝑀𝐹 )(𝑓𝐾 −𝑀𝑆)𝑆𝐾
∑𝐵𝐸2

𝐾=𝐵𝐸1
(𝑓𝐾 −𝑀𝐹 )2

(5)

where BE represents band edges, 𝒇𝒌 frequency bins, 𝑺𝒌 spectral bin values, MF is mean frequency and MS is mean value of spectra.

Convert filtered signal from a time domain to spectral domain, subtract total frequency from the sum of frequencies of channel
one and divide them by the filtered signal. Apply element-wise minus binary operation to filtered signal and sum of amplitude of
channel one while enabling the implicit expansion and reshaping the returned value according to input channels (see Algorithm
4).

(5) Spectral spread

It is also associated with the signal bandwidth and is the mean rate map variation around the center. Noise-like signals are
generally of high spectral distribution, although isolated tones tend to be low spectral distribution.

𝑆𝑆𝑃 =

√

√

√

√

√

∑𝐵𝐸2
𝐾=𝐵𝐸1

(𝑓𝐾 − 𝑆𝑐1)𝑆𝐾
∑𝐵𝐸2

𝐾=𝐵𝐸1
𝑆𝐾

(6)

where Sc spectral centroids, 𝒇 frequency bins, 𝑺 spectral bin values and BE represents band edges.
11
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Fig. 10. 2D plots of (a) Spectral kurtosis (b) Spectral rolloffpoint (c) Spectral skewness (d) Spectral spread (e) Spectral slope.

Convert filtered signal from a time domain to spectral domain and calculate centroids by applying element-wise time over
signal and frequency vectors. Find spectral spread by applying element-wise binary operation over frequency vectors and calculated
centroids. Reshape the acquired values according to the number of input channels (see Algorithm 5). The 2-D plots of all the
extracted spectral features are shown in Fig. 10(a)–(e).

4.6. Classification

Classification is described as a machine learning and statistics-based supervised learning approach. In it, a computer program
learns from data and generates new observations or classifications. This is the complete process of classifying a collection of raw or
pre-processed data.

A neural network is a collection of neurons grouped to form a cutting-edge perspective. A neural arrangement is a natural
neural structure composed of discrete neurons or a man-made neural architecture designed to deal with man-made brainpower
12
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Fig. 11. Architecture of artificial neural network (a) Narrow (b) Medium (c) Wide (d) Bi-layered (e) Tri-layered.

Table 4
Parameters of different types of neural networks.

Neural network type Number of fully connected layers Layer size Activation Iteration limit Standardize data

Narrow 1 First: 10 ReLU 1000 Yes
Medium 1 First: 25 ReLU 1000 Yes
Wide 1 First: 100 ReLU 1000 Yes

Bilayered 2 First: 10
Second:10

ReLU 1000 Yes

Trilayered 3 First: 10
Second:10
Third:10

ReLU 1000 Yes
13
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difficulties [22]. They mirror the conduct of the human cerebrum, permitting computers to perceive designs and take care of
normal issues in the fields of computer-based intelligence, AI, and profound learning. Neural networks, also known as artificial
neural networks are a field of artificial intelligence (AI) that is the heart of deep learning algorithms. The human cerebrum inspired
their name and design, which is modeled on how organic neurons interact with one another.

Neural Networks are multi-input, multi-output systems made up of artificial neurons. Every neuron impacts one another, as they
re associated. The main objective of a neural network is to translate input into a distinct value. The organization can recognize and
otice each part of the current dataset and how the various pieces of information might identify one another. This is how neural
etworks are equipped to discover amazingly complex examples in immense volumes of information.

Here we used 5 different types of artificial neural network classifiers named narrow neural network (NNN), medium neural
etwork (MNN), wide neural network (WNN), bilayered neural network (BNN), trilayered neural network (TNN) to train extracted
eatures. An ANN contains 3 layers, as shown in Fig. 11(a)–(e) and Table 4 shows the detailed architecture and inside information.

4.6.1. Input layer
Flatten is the operation that transforms the pooled features maps into a single column sent to the fully linked layer. Here, we

are transforming the input data into a 1-dimensional array. The extracted spectral features from PCG signals are flattened to form
a single long feature vector, then fed into hidden neural network layers for further processing. Mathematically,

𝐵𝑒𝑓𝑜𝑟𝑒 𝑓𝑙𝑎𝑡𝑡𝑒𝑛𝑖𝑛𝑔 =
⎡

⎢

⎢

⎣

1 ⋯ 0.7
5.66 ⋯ 8.9
9.99 ⋯ 3.3

⎤

⎥

⎥

⎦

(7)

𝐴𝑓𝑡𝑒𝑟 𝑓𝑙𝑎𝑡𝑡𝑒𝑛𝑖𝑛𝑔 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
⋯
0.7
5.66
⋯
8.9
9.99
⋯
3.3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(8)

4.6.2. Hidden layers
The hidden layer is positioned between the algorithm’s input and output, in which the function applies weights to the inputs

and guides them through an activation function as the output. Mathematically,

𝑂𝑛 = 𝜑(
∑

𝑖
𝑤𝑐𝑐𝑛𝑖 + 𝑏𝑛) (9)

where 𝑛𝑖 represents each neuron’s set of inputs, 𝑂𝑛 is each neuron’s set of outputs, and 𝑏𝑛 is each neuron’s bias set. A weight
coefficient, 𝑤𝑐𝑐 , is applied to each input, and the activation function is represented by 𝜑.

4.6.3. Activation Function (AF)
Here rectified linear activation unit (ReLU) has been used as an AF. This function increases the sensitivity of the activation

sum input while preventing saturation. It is a piecewise linear function that will output the input directly if it is positive and zero
otherwise. It was chosen because it solves the problem of vanishing gradients, enabling NN to train quicker and function effectively.
Mathematically,

𝑓 (𝑥) = 𝑚𝑎𝑥 (0, 𝑥) (10)

4.6.4. Output layer
The output layer of an ANN is the final layer of neurons that generates the program’s outputs. For binary classification of PCG

signal, we modified the last layer to 2 as we have only two classes, normal and abnormal murmur PCG.

𝑁𝑒𝑢𝑟𝑜𝑛𝑜𝑢𝑡 = 𝐹
(

𝑤1𝑥1 +𝑤2𝑥2 + 𝑏
)

(11)

The above network takes numerical inputs 𝑥1, 𝑥2 which has weights 𝑤1 and 𝑤2, a bias b and activation function F.

5. Results and discussions

CVDs can be classified by using analysis, different signal processing algorithms, and an automatic screening process. This
proposed methodology used pre-processing, segmentation, feature extraction, and classification processes to minimize the prediction
time used during the overall procedure. It achieved a cumulative accuracy of 99.9 percent for normal and abnormal cardiac PCG
signals. The proposed algorithm yields an efficient and fast PCG classification with better discriminating results. The primary goal
14
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Table 5
Features analysis.

Features Normal PCG

Min Max Standard deviation Mean

SK 1.3715𝑒3 65 664 1.6729𝑒3 2.5582𝑒3
SS 22.0050 76.6800 2.7803 28.2121
SR 69.6970 140.9700 7.8661 110.3320
SSL −2.0635𝑒−5 −1.8164𝑒−7 3.6739𝑒−6 −1.0417𝑒−5
SSP 86.7450 150.6000 6.6215 125.7255

Features Abnormal murmur PCG

Min Max Standard deviation Mean

SK 1.2035𝑒3 95 206 4.9701𝑒3 2.9924𝑒3
SS 21.5110 133.5400 6.8164 29.0891
SR 59.6860 125.5100 7.6880 108.6853
SSL −2.5385𝑒−5 −1.2752𝑒−6 3.9799𝑒−6 −1.0452𝑒−5
SSP 72.6110 147.6500 9.0658 124.6915

5.1. Clinical relevance

Clinically, the proposed study ensures that cardiac PCG diseases based on PCG signals are appropriately classified. Unlike the
raditional stethoscope, which is used to diagnose diseases manually, PCG acquisition system combined with a neural network-based
rediction model reduces manual disease detection errors. This can positively help clinicians with clinical decisions resulting in early
etection. Furthermore, while manual diagnosis and chest x-rays may result in a correct diagnosis, it is still highly recommended
o build an automatic system that identifies abnormalities in patients with non-invasive and non-radiative technologies. These
ntelligent, on-invasive systems will significantly improve diagnostics and function as supportive decision-makers in real-time clinical
ituations.

.2. Feature analysis

Here we performed feature analysis through descriptive statistics, which contain min, max, standard deviation, and mean as
hown in Table 5.

1. Standard Deviation (SD) is a representation of how the data is distributed about the average. The standard deviation of SS,
SR, SSP are slightly higher, showing that these data points are slightly above the average. SSL has a low standard deviation
(LSD) which suggests that the data is grouped around the mean and SK has the highest standard deviation (HSD), meaning
that data is dispersed.

2. The minimum and maximum numbers determine the total range of our data. SSL contains the lowest min among all
features, while SK has the highest max.

3. The mean value is significant because it indicates where the dataset’s center value is based. It also includes information
from each sample in a dataset, but it can be false if the data source is skewed or contains outliers. This is the value with the
smallest margin of error. SK has the highest mean, while SSL has the lowest mean value.

.3. Performance analysis

Detailed performance analysis of each classifier is done by using accuracy (AC), sensitivity (SN), specificity (SP), precision (PR),
1-score (FS), and Matthew’s correlation coefficient (MCC) [21,22].

1. Narrow Neural Network
The lowest accuracy (90%) is achieved by training NNN on spectral skewness, training NNN achieves the lowest sensitivity
(90.87%) on spectral roll-offpoint, spectral skewness, achieves the lowest specificity of (87.14%), lowest precision and MCC
of (86.09%) and (80.24%) is also achieved by spectral skewness. The best accuracy, sensitivity, specificity, precision, f1-score,
and MCC score of (99.99%) is achieved by training NNN on spectral spread and when all combined (SK+SS+SR+SSL+SSP)
features are used.

2. Medium Neural Network
The lowest accuracy (90.65%), specificity (88.21%), precision (87.39%), f1-score (90.32%), and MCC (81.47%) is achieved
by Spectral skewness while spectral roll-offpoint achieves the lowest sensitivity (91.72%). The best accuracy, sensitivity,
specificity, precision, f1-score, and MCC score of 99.99% is achieved by training MNN on spectral slope, spectral spread, and
15
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Fig. 12. Performance comparison of ANN with different feature combinations (a) NNN (b) MNN (c) WNN (d) BNN (e) TNN.

3. Wide Neural Network
The lowest accuracy (90.72%), specificity (86.84%), precision (85.39%), f1-score (90.17%), and MCC (81.89%) is achieved by
spectral skewness while spectral kurtosis achieves the lowest sensitivity (95.1%). The best accuracy, sensitivity, specificity,
precision, f1-score, and MCC score of 99.99% is achieved by training MNN on spectral slope, spectral spread, and when
combined, (SK+SS+SR+SSL+SSP) features are used.

4. Bi-layered Neural Network
The lowest accuracy (90.89%), specificity (88.6%), precision (87.87%), f1-score (90.59%), and MCC (81.92%) is achieved
by spectral skewness while spectral roll-offpoint achieves the lowest sensitivity (92.63%). The best accuracy, sensitivity,
specificity, precision, f1-score, and MCC score of 99.99% is achieved by training BNN on spectral slope, spectral spread,
and all combined (SK+SS+SR+SSL+SSP) features are used. spectral roll-offpoint-BNN also achieves 99.99% specificity and
precision.
16
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Fig. 13. Timing Analysis (a) Training Time (b) Prediction Speed (Testing phase).

5. Tri-layered Neural Network
The lowest accuracy (92.36%), sensitivity (94.68%), specificity (90.29%), precision (89.74%), f1-score (92.14%) and MCC
(84.84%) is achieved by spectral skewness. The best accuracy, sensitivity, specificity, precision, F1-score, and MCC score of
99.99% is achieved by training TNN on spectral spread and when all combined (SK+SS+SR+SSL+SSP) features are used.

Thus, it can be said that to achieve the best results, all combined features or spectral spread must be used to train the neural
networks as it will help us classify the CVD’s with high sensitivity and specificity.

By using above parameters, we also performed an extensive performance analysis of whole algorithm on multiple conditions.
Fig. 12(a)–(e) shows a detailed comparison of accuracy, sensitivity, specificity, precision, f1-score and matthew’s correlation
coefficient. Mathematically,

𝐴𝐶 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
(12)

𝑆𝑁 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(13)

𝑆𝑃 = 𝑇𝑁
𝑇𝑁 + 𝐹𝑃

(14)

𝐹𝑆 = 2 ∗ 𝑇𝑃
(2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁)

(15)

𝑀𝐶𝐶 = 𝑇𝑃 ∗ 𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁
√

((𝑇𝑃 + 𝐹𝑃 ) ∗ (𝑇𝑃 + 𝐹𝑁) ∗ (𝑇𝑁 + 𝐹𝑃 ) ∗ (𝑇𝑁 + 𝐹𝑁))
(16)

The individual features spectral spread, and spectral slope achieved the highest accuracy (99.9%), precision (99.9%), f1-score
(99.9%) on medium, wide, narrow, bi-layered, and tri-layered NN.

5.4. Timing and speed analysis

NNN-SS combination took only 1.0844 s to train the whole dataset, MNN-SS took 0.83335 s, WNN-SS took 0.70847 s, BNN-SS
took 0.53932 s, and TNN-SS took 0.5514 s Spectral skewness combination with NNN during the testing phase was predicted at
the rate of 5200 observations per second. With MNN, it predicted 4700 observations per second. With WNN, it predicted 4600
observations per second. With BNN, it predicted 5500 observations per second. With MNN, it predicted 4900 observations per
second. Thus, Spectral skewness timing performance is best among all other extracted features.Fig. 13(a) gives the insight of training
time taken by all the models and Fig. 13(b) tells us the time it took each classifier to predict on the unseen test dataset.

5.5. Comparative analysis

The proposed approach performs better than the existing approaches because spectral features uncover that information that
would remain hidden in time, statistical and impulsive domains. The amount of collected datasets is also substantial for binary
classification. Also, pre-processing steps excellently purified the PCG signal such that only low-frequency heart components are
present. As neural network techniques perform 31% better than machine learning methods for classification purposes, the use of
five different types of ANN helped us achieve the best accuracy, sensitivity, specificity, and f1 scores. Table 6 gives us a detailed
comparison of the proposed methodology with the state-of-the-art methods.
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Table 6
Comparison of proposed methodology with the state-of-the-art methods.

Reference Signal
used/Classes

Pre-processing Feature
extraction

Classifier Classification
merit

Limitations

[6] PCG

Normal vs.
Abnormal

Downsampling

Filter and
segmentation:
Wavelet analysis

Normalized
average Shannon
energy

AR
model

SN: 87%

SP: 61%

FS: 74%

Classification
accuracy is not high.

The parameters
threshold setting
is selected by
experiment experience.

[7] PCG

S1 vs. S2

Decomposition into
AM-FM signal

Linear low-pass
filter

Shannon energy Hidden Markov
model (HMM)

SN of S1: 98.6%

SN of S2: 98.3%

Due to the
homomorphic filtering,
there are deviations
between the
envelogram peak and
the maximum absolute
value of the original
peak.

[8] PCG

Normal vs.
Extrahls

Empirical mode
decomposition
Soft thresholding
based signal
segmentation

Impulsive
domain features

Ensemble
classifier

AC: 98.8%,

SP: 97.56%

SN: 99.99%

Amount of collected
dataset is small.

Proposed
methodology

PCG

Normal vs.
Abnormal
murmur

Normalization
segmentation

Low pass filter

Spectral features Five different
types of artificial
neural network

AC: 99.9%

SN: 99.9%

SP: 99.9%

PR: 99.9%

FS: 99.9%

MCC: 99.9%

6. Conclusion

Pre-processing and classification of cardiac sounds are difficult because of environmental and overlapping muscle sounds. To
ddress the mortality caused by CVDs, an effective method for the detection and classification of normal and abnormal heart
urmurs with the help of PCG signals is discussed here. Dataset is acquired from a local hospital with the help of a self-designed

ensor. A total of 4610 samples are collected with a sampling frequency of 44.1 kHz. Raw PCG signals are pre-processed and
egmented by linear scaling (LS), framing, and low pass filter. LS removes variation, segmentation removes noise/silence parts, while
low-pass filter removes high-frequency components (>250 Hz). Extracted spectral features exhibit good discriminatory properties

or classification when trained on neural networks. 5 different types of ANN were trained and tested on the dataset. The spectral
pread feature achieved an accuracy of 99.99% and with a combination of all features combined, all ANN’s achieved 99% accuracy.
he PCG acquisition system designed is non-invasive and cheap but one of the shortcomings of this methodology is that here we
re only doing binary classification of normal and abnormal murmurs, which does not give detailed insight. There must be a system
hat performs multi-class classification and tells the exact type of murmur like systolic, diastolic, and continuous murmur. Our work
s also restricted in that it only examines a few neural network and feature extraction techniques. It might be feasible to improve the
roposed model by experimenting with various ways; however, it is impossible to predict which would be useful without substantial
esting and analysis. As the presented framework is independent of the morphological characteristics of raw PCG signals, that is
hy in the near future, we aim to apply feature fusion and feature reduction techniques for better accuracy performance.
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