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Introduction
The vision of the Internet of Everything (IoE) in the sixth genera-
tion (6G), which is to connect billions of humans and machines 
to the Internet, shifts the paradigm from rate-centric services 
such as further enhanced mobile broadband (FeMBB) toward 
enhanced ultra-reliable low-latency communication (eURLLC) 
and ultra massive machine type communication (umMTC) [1]. 
5G cellular communication was expected to be the key enabler 
for IoE with 1000 increase in data rate and network capacity. 
The development of 5G by the 3rd Generation Partnership Pro-
lect (3GPP) has led to the standardization of New Radio (NR) 
in Release 15, which operates exclusively over millimeter-wave 
(mmWave) frequencies — a true IoE carrier yet to be achieved. 
However, most of the 5G versions around the globe still use 
sub-GHz frequencies. Although 5G readily supports eURLLC 
services, the aim to have a self-sustaining and self-organized 
network (SSN/SON) has thus far remained a mirage, and these 
objectives have been moved upward to the B5G networks [2]. 

The International Telecommunication Union (ITU) classified 
the services of eURLLC ranging from telemedicine to autono-
mous flying cars, all of which require reliability as high as 10–9 
packet error rate and latency as low as 10–100 ms over the 
radio interface [3]. However, FeMBB services include high-res-
olution videos and extended reality (augmented, mixed, virtual) 
with large data packets that require high data rate of 1 Tb/s. 
The umMTC services encompass a massive deployment of 
Internet of Things (IoT) devices that require augmented net-
work capacity to support 107 devices/km2 [3]. The coexistence 
of these applications in network transmission disrupts the 5G 
goal of supporting short-packet eURLLC services. To success-
fully enable IoE, 5G and B5G networks should be capable of 
simultaneously delivering data traffic of heterogeneous (Het) 
devices with high reliability, low latency, and high data rate 
across uplink and downlink communication. The two challenges 
of SSN/SON and the coexistence of Het devices for emerging 
IoEs are therefore still open for research. To meet the stringent 

latency and reliability requirements in Het data traffic, 3GPP has 
introduced the concept of mini-slots from Release 15 onward 
by shortening the transmission time interval (TTI) with varying 
numbers of orthogonal frequency-division multiplexing (OFDM) 
symbols [1]. Furthermore, NR offers scalable sub-carrier spacing 
(SCS). Increasing the SCS reduces the TTI and consequently 
enhances the network capacity by accommodating a greater 
number of users. The amalgamation of mini-slots with scalable 
SCS offers a solution to optimize network performance and 
satisfy stringent network requirements [4].

Motivation: Recent advancements in hardware computation 
have allowed researchers to benefit from machine learning 
(ML) in wireless communications, especially for 5G networks. 
ML mimics the human brain to enhance its capability for com-
puter vision, image processing, parallel and distributed pro-
cessing, analytics, and prediction [5]. Resource allocation for 
network optimization based on ML techniques in real time 
can be implemented with less complexity. In this study, we 
present a reinforcement learning (RL)-enabled transmission rate 
adaptation scheme for the 5G NR network. RL is a type of ML 
method based on the Markov decision process (MDP) [6]. RL 
algorithms are less computationally complex than other super-
vised and unsupervised techniques because they learn from 
real-time experience instead of training on preexisting datasets. 
The selection of an RL algorithm is determined by the problem 
statement, and the selection is made based on the understand-
ing of the problem. Every RL problem can be designed by iden-
tifying states, actions, and subsequent rewards.

Contribution: A massive amount of Het data is generated 
across massive devices. An RL-enabled next generation nodeB 
(gNB) can learn the traffic patterns and the required TTI with 
scalable SCS and number of OFDM symbols to reduce phys-
ical/medium access control (PHY/MAC) layer latency and 
increase reliability. This article discusses the applications of the 
B5G network and a few emerging PHY/MAC layer issues. This 
article also provides the stringent network service requirements 
and presents how RL-enabled flexible TTI scheduling at the slot 
level plays a role in satisfying these service requirements. The 
article concludes by highlighting some limitations and open 
research issues.

5G and B5G Driving Applications
This section provides a brief overview of three application cat-
egories defined by ITU in 5G and B5G: FeMBB, umMTC, and 
eURLLC. This section also highlights a few emerging PHY/MAC 
layer issues. Figure 1 illustrates the three application categories.

FeMBB
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The service applications of FeMBB include high-resolution video 
streaming and extended (augmented, virtual, mixed) reality with 
large packet sizes (approximately four times those of the other 
two application types), which in turn require high bandwidths 
[7]. The major challenge faced by previous generations of com-
munication technology was related to the improvement of sys-
tem throughput and data rate with a 100–1000-fold increase in 
capacity. The current PHY/MAC technologies enable effi  cient 
multiplexing, high-order encoding and modulation, cell densifi -
cation, and multiple-input multiple-output (MIMO) transmission. 
However, to achieve a 1000 higher data rate, more aggres-
sive approaches are needed, which remain unexplored for SON 
and SSN networks. Some viable solutions include terahertz 
(THz) communication, millimeter-wave (mmWave) communica-
tion, full dimension MIMO, and ML-enabled networks [8].

uMMtc
The service applications of umMTC include massive deploy-
ment of machine-type devices, such as tagging, localization, 
sensing, metering, and monitoring, which require effi  cient spec-
trum access and energy conservation mechanisms [8]. The 
B5G network should support network density of 107 devices/
km2. 3GPP introduced narrowband IoT, which is a low- power 
wide area network (LPWAN) radio technology, in 5G capable 
of operating over a licensed band for umMTC devices with a 
life expectancy of more than 10 years and coverage area of 
1–10 km. LPWAN technologies off er low power consumption, 
improved coverage, and low operational cost. However, when 
the number of devices signifi cantly exceeds capacity related to 
available resources, an aggressive spectrum access mechanism 
is required to accommodate additional users [8].

eurllc
The eURLLC service applications include services that are laten-
cy-sensitive and require high reliability such as autonomous driv-
ing, Tactile Internet, telemedicine, and industrial automation. 
The end-to-end latency of packet transmission in mission-critical 
applications should be 10–100 ms. To reduce the latency, a 
fundamental change in both backhaul and wireless networks 
is needed. Software-defi ned networking (SDN) can be used to 
improve the backhaul network by exploiting virtual network slic-
ing. In a wireless network, overhead increases the latency due 
to control signals, which takes almost 0.3–0.4 ms per schedul-
ing [8]. Therefore, utilizing low latency for packet transmission 

is not considered effi  cient, because 60 percent 
of the resources are wasted on control over-
heads. Thus, a complete redesign of the PHY/
MAC layer is required.

servIce reQuIreMents
With the objective of providing viable solutions 
for 5G and B5G networks, it is vital to under-
stand the critical requirements. This section pro-
vides a brief overview of the requirements of 
and challenges faced by B5G Het traffi  c. 

Latency Requirement: The PHY layer latency 
includes transmission, propagation, retransmis-
sion, and processing latency. The MAC layer 
latency encompasses scheduling delay, queu-
ing delay, processing, multiple hybrid automatic 
repeat requests (HARQs), and decoding delay 
[2]. The queuing and processing delays result 
from the statistical multiplexing of data destined 
for multiple Het users. As the data traffi  c increases 
with the number of Het users, the queuing eff ect 
would worsen to maximize the spectral effi  ciency 
[2]. As per 3GPP, the eURLLC applications have 
a stringent average latency over the radio that 
should be less than 1 ms. Therefore, a new frame 

structure is required to reduce transmission delay. 
The key performance indicator (KPI) to determine latency is time, 
which is denoted by L and measured in seconds.

Ultra-High Reliability: The eURLLC services have the strict-
est reliability requirements. The reliability required for eURLLC 
services should be at least 99.99999 percent packet delivery 
ratio (PDR) within 10–100 ms of the latency period. Mission-crit-
ical applications such as robotic surgery require reliability as 
high as 1  10–9 packet error rate [8]. To achieve ultra-reliabil-
ity, effi  cient channel coding and retransmission of HARQs are 
the essential ingredients. Advanced channel coding with an 
efficient channel estimation technique for short packet trans-
mission can be exploited. For short slot lengths, retransmission 
schemes using time-domain resources could be a viable option 
[8]. The KPI to measure the reliability is the PDR. In this study, 
we use R to denote PDR. 

Coexistence of Het Traffi  c: According to the recommenda-
tion of 3GPP, whenever there is an eURLLC service either in 
scheduling or during FeMBB or umMTC transmission, the base 
station (BS) should give priority to eURLLC. To support eURLLC, 
the ongoing FeMBB and umMTC services should be stopped 
immediately without any notifi cation [7]. Since the interruption 
is not notified to mobile users, the quality of service (QoS) of 
FeMBB and umMTC degrade severely. This problem, associated 
with heterogeneous applications in 5G and B5G networks, is 
referred to as coexistence by 3GPP. Therefore, an effi  cient mech-
anism to protect all ongoing services should be introduced. The 
KPI to measure the fair balance of the coexistence of Het traffi  c 
is fairness. One of the popular indices used to determine fairness 
is Jain’s fairness index (JFI), denoted by F [5]. In this study, fair-
ness is determined using the method described in [9].

proBleM ForMulatIon
In this section, we discuss the queuing model of the B5G archi-
tecture and highlight the relationship between the MAC queue 
model and the service requirements of the 5G network. The 
concepts and frame structure of 5G NR are illustrated to defi ne 
the objective. The main objective of our approach is to reduce 
the overall MAC layer latency and augment reliability by opti-
mizing the queuing delay and fulfi lling the service requirements.

QueueInG Model
This section describes the queuing model, which shows the 
behavior of the PHY/MAC layer when a gNB schedules Het 
traffi  c at the downlink. The data packets of Het users are buff -

Figure 1. Application scenario of 5G and B5G networks.
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ered at the gNB in the fi rst transmission queue and awaits for 
the scheduler to schedule the first HARQ transmission [2]. 
Upon failure of the fi rst HARQ transmission, the packet is avail-
able for retransmission after a round-trip time (RTT). Whenever 
the packet in the buffer at the gNB misses its deadline, it is 
dropped, resulting in a loss of reliability. Moreover, when a 
packet cannot be decoded at the receiver after N HARQ trans-
missions, it is declared as a failure resulting in a loss of reliability 
[2]. The fi nite size of the buff er in a queuing model refers to the 
fact that the packets are dropped at the transmitter side if the 
queuing delay exceeds the latency requirement. At each time 
instant, the scheduler at the gNB allocates time and frequency 
resources for transmissions and retransmissions to fulfi ll the ser-
vice requirements of every user [2].

3GPP in Release 15 introduced mini-slots to reduce the 
latency by shortening the TTI from 1 ms to only a few OFDM 
symbols while maintaining the overall channel structure [3]. 
Reducing the TTI enhances the network capacity and allows for 
a larger number of retransmissions within latency constraints. 
Moreover, it allows precise rate control. In addition, 3GPP 
agrees with scalable SCS for NR scaled by a power of 2, that 
is, 2n  15 kHz, where n = {0, 1, 2, 3, …, n} [3]. Until now, n = 
4 has been standardized in NR. Moreover, 3GPP standardized 
the mechanism of puncturing in NR for the eURLLC traffi  c to 
meet stringent latency and reliability requirements, categorically 
halting the ongoing FeMBB traffic to transmit eURLLC traffic 
mini-slots without notifying FeMBB user equipment (UE), as 
shown in Fig. 2. The data traffi  c of FeMBB users is continuous, 
and for eURLLC users the data packets follow a Poisson point 
process (PPP) with arrival rate (packets/s). The priority weight 
of each FeMBB and eURLLC user is defi ned as ratio of product 
of queue weight, arrival rate, packet size in bits per packet, and 
channel state information (CSI) of each user. The queue weight 
is the ratio of number of packets of a particular user and sum 
of all the queues (FeMBB and eURLLC). Normalized load (NL) 
is defined as the objective of the problem. NL is the ratio of 
product of arrival rate with size of packet and the product of 
number of symbols allocated with length of slot in seconds. 
Therefore, the problem is defi ned as to select the optimal SCS 
and number of symbols for mini-slots to transmit eURLLC traffi  c 
of a priority user using a puncturing mechanism to minimize the 
NL so that the QoS requirements for both FeMBB and eURLLC 
can be met. If the priority of the FeMBB user is high, very small 
mini-slot or no mini-slot should be given to the eURLLC user. 
To better understand how shortening the TTI and scalable SCS 
can meet the service requirement, we now look into the frame 

structure of 5G NR.

nr FraMe structure
The frame length of NR in the time domain is 
10 ms, which is composed of 10 subframes of 
1 ms, as shown in Fig. 3. The subframe is sub-di-
vided into 2n numbers of radio slots. The radio 
slot is defi ned as the smallest time unit that fi ts 
into one TTI [10]. Each slot encompasses 14 
OFDM symbols with a normal cyclic prefi x (CP) 
[1]. The number of radio slots varies depend-
ing on the SCS. Each slot comprises control 
signaling at the start and/or end of the OFDM 
symbols. In NR, the mini-slot concept has been 
adopted, which allows more flexible TTI size 
with a variable number of OFDM symbols. 
A mini-slot can start from any OFDM symbol 
with a variable symbol length of two, four, or 
seven symbols. The length of the time slot is 
1 ms/2n. When n = 1, the time slot becomes 
0.5 ms at 30 kHz, as depicted in Fig. 3. The 
mini-slot provides the opportunity to transmit 
fast for eURLLC traffi  c. The mini-slots are inde-
pendently scheduled with control signals, allow-

ing lower scheduling latency. This means that the mini-slot is the 
smallest time domain unit for the MAC scheduler in NR, and 
enables dynamic scheduling with variable TTI. 

nuMeroloGIes oF nr
NR has a scalable numerology with SCS of 2n  15 kHz, 
where n = {0, 1, 2, 3, …, n}. At higher SCS, the time duration 
of symbols decreases, resulting in a reduction in the length of 
radio slots, which is beneficial for lower latency. Moreover, 
NR supports mixing of numerologies on the same carrier. The 
subframe of 1 ms at 15-kHz SCS is 125 ms at 120-kHz SCS, as 
depicted in Fig. 3. However, higher SCS is more vulnerable to 
the Doppler effect and inter-carrier interference (ICI), as CP 
is also scaled down by scaling up the SCS. Application of the 
windowing prevents changes between OFDM symbols to con-
fi ne them in the frequency domain, which promotes the use of 
mixed numerology with short guard bands.

In addition, increasing the SCS increases the available band-
width, as depicted in Fig. 3. The maximum bandwidth available 
becomes 400 MHz at 120 kHz SCS from 50 MHz at 15 kHz 
SCS [5]. In NR, the number of sub-carriers (SCs) in a physical 
resource block (PRB) is fi xed, that is 12. The number of SCs are 
defined by SCS, therefore, the total number of PRBs are also 
defi ned by SCS. The bandwidth of a PRB also varies with SCS, 
which is 180 kHz at n = 0 and 2.88 MHz at n = 4, as shown 
in Fig. 3. The NR offers both time-division duplex (TDD) and 
frequency division duplex (FDD) for Het traffi  c. For FDD, all the 
slots are for downlink or uplink transmission. For all the slots in 
TDD, NR supports bidirectional (uplink and downlink) transmis-
sion. Het users can be scheduled dynamically with a variable 
size of mini-slots and scalable SCSs to reduce latency. The MAC 
scheduler can freely schedule Het users independently with 
diff erent SCS numerologies with diff erent TTI sizes [4]. At each 
time instance, the scheduling allocation is announced to the UE 
by a PHY downlink control channel, which can be multiplexed 
easily with other downlink PHY channels and can be mapped 
contiguously or non-contiguously in the frequency domain. This 
highly adaptive design can reduce the downlink control channel 
overhead to a sub-one-percent value [4]. One of the solutions 
proposed for eURLLC application is the principle of punctured 
scheduling, where when a eURLLC data packet arrives at gNB, 
the MAC scheduler overwrites the ongoing transmission using 
mini-slots [2]. However, punctured scheduling comes with a 
price of interrupting ongoing transmission, which degrades 
the system’s performance. Therefore, the size of the mini-slot 
and SCS should be chosen carefully with an efficient MAC 

Figure 2. Queuing model describing the PHY/MAC layer behavior with the 
puncturing mechanism at gNB for B5G applications.
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scheduling mechanism. In this study, we model the problem of 
selecting the TTI and SCS at gNB for downlink transmission as 
a multi-arm bandit (MAB) problem, which is an MDP. To satisfy 
the service requirements (L, R, F), we provide the RL-based NR 
MAC scheduler framework.

rl-enaBled nr: Mac scheduler
To formulate the RL problem, we model the environment as an 
MDP. An MDP comprises four basic elements, in other words, 
(S, A, P, R). In a finite MDP, S refers to the number of finite 
states s  S, the action A to the set of actions a  A taken by 
an agent, P to the transitional probability from one state to the 
other by taking an action, and R is the reward function for eval-
uating the action. One of the essential sub-elements is policy , 
which is a set of rules (e.g., algorithms) that are followed by an 
agent during decision making. The MDP problem represents 
the mathematical expression to assist in making decisions for 
the RL process. Figure 4 presents the agent–environment inter-
action and its elements.

In this study, S is defi ned as a set of all possible combinations 
of TTI and SCS, as depicted in Fig. 4. We named a state s  S as 
the rate adaption scheme. The agent is defi ned as an intelligent 
MAC scheduler at gNB equipped with RL capabilities. Action a
is the selection of the optimal rate adaption scheme S at time 
instant t to minimize the queuing delay and satisfy the service 
requirements. P is the transitional probability. For instance, at 
time instance t, the probability of selecting an s(t+1), given that 
the action a taken at st can be expressed as P(st+1|st, a). The 
reward R is the quantitative measure of how well the action is 
taken by the agent. In this study, a positive reward r+ is given to 
the scheduler when the data packet is delivered without com-
promising the reliability and satisfi es the service requirements 
(L, R, F); otherwise, the reward is negative r–. The value function
is the element of RL that is the quantitative accumulation of 
reward over time of a state s. The value function of a state iden-
tifies the long-term intrinsic desirability of a state. A state can 
have a low immediate reward but still have a high-value func-
tion because it is regularly followed by r+ [6]. The initial state 
can be randomly selected by the scheduler, and the reward 
is computed. The state transition probability is considered and 
executes the next action to select the state or remain in the 
same state based on the value function. The objective is for a 
given scheduling policy to select the best sequence of actions 
to maximize the cumulative reward.

Mac scheduler WIth rl
RL algorithms such as Q-learning and SARSA provide an end-

to-end solution to deployment problems. 
These algorithms can be implemented easily 
and converge quickly; however, to explore the 
environment for a better reward, the -greedy 
approach is adopted. In this approach, the 
agent randomly explores the selection of an 
action with probability  or chooses an action 
at with the largest value function with a prob-
ability of (1 – ). However, there is a dilemma 
as exploration and exploitation, which refers to 
trade-off to balance the probability of explo-
ration and exploitation to find the optimal 
solution. We therefore formulate the problem 
as a MAB, and solve it using an upper confi-
dence bound (UCB1). A MAB problem involves 
the use of RL techniques in which an agent 
(player) repeatedly decides to choose a state 
k (machine) from K states (machines), that is, 
K   {1, 2, …, K}, at a discrete time t = {0, 1, 
2, …, t} based on their corresponding reward 
[22]. Notably, the agent (player) is interested 
in choosing the state (machine) that provides 
the maximum reward. The associated rewards 

with the states (machines) are independent and 
identically distributed (i.i.d) and accompany an unknown and 
fi xed distribution law dK. The reward distributions {d1, d2, …, dK} 
vary from one state to the other, and the player has no prior 
knowledge about the distribution. The UCB1 algorithms balance 
the exploration and exploitation autonomously by working in 
an iterative manner on a basic principle by selecting and cal-
culating the numerical UCB index of each state in the environ-
ment sequentially at each time step, which refl ects how well the 
state has performed [11]. The agent selects the state with the 
maximum UCB index, which is the summation of the average 
reward (value function) and upper confi dence bias [12].

Algorithm 1 describes the intelligent rate-adaptive scheduler 
based on RL. Step 1 is to determine priority weight and NL of 
each user. Then in step 2, the number of states, exploration 
coefficient, and (L, R, F) are first initialized. The input of the 
model is the action-value function of each state, NL, and priority 
matrix of users. For all Het users in the queue to be scheduled 
for downlink transmission at gNB, the RL-enabled intelligent 
rate adaption model iteratively selects each state of the envi-
ronment and determines the UCB index. The model checks 
whether there is any rate adaptation scheme that has not yet 
been explored. Then the validity of the action to select the 
rate adaptation scheme (state s) is determined by calculating 
the reward at each time schedule. If all the states are explored, 
the model selects the rate adaptation scheme with a maximum 
UCB index, and determines whether the scheme is still valid 
or not. The model balances exploration and exploitation by 
updating the value function and upper confi dence bias. As the 
number of times a specifi c selected state increases, the upper 
confi dence bias decreases. Therefore, the model moves toward 
the state with the highest upper confidence bias to explore. 
The upper confi dence bias refers to the uncertainty of the state 
that is not explored. However, the UCB index is the summation 
of the value function (average reward) and upper confi dence 
bias. The value function ensures that the state with the highest 
upper confi dence bias also has the highest accumulated reward 
in the past, which makes the exploration more benefi cial. The 
model at each time step continuously explores and acts greed-
ily simultaneously to select the state with the highest accumu-
lated reward and highest upper confi dence bias. The output of 
the intelligent rate adaptation model at each time step is the 
state with a maximum UCB index. The agent (gNB scheduler) 
learns the traffic pattern of Het users and also learns the rate 
adaptation scheme to satisfy the Het traffi  c in the queue. 

open research Issues

Figure 3. Frame structure for NR DL/UP transmission.
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The success of an ML-defi ned network relies on the satisfaction 
of the service requirements discussed above by solving numer-
ous open research challenges. Some critical issues related to 
the MAC layer are listed below.

resource allocatIon
For the coexistence of FeMBB, umMTC, and eURLLC services, 
users are required to share radio resources. Static or semi-static 
multiplexing wastes constitute 49.1 percent of the system’s 
resources [2]. Deep RL (DRL)-defined dynamic multiplexing 
in frequency as well as time domain, offers efficient resource 
sharing over the entire system bandwidth by preventing punc-
turing phenomena to augment spectral efficiency and system 
throughput [13]. 

MultIple access
Uplink transmission has more limitations than downlink trans-
mission. The user has to follow the handshaking procedure, 
which refers to a grant-based method to request resources 
from the gNB. The gNB grants resources to users by performing 
dynamic scheduling to maximize system capacity. The initial 
handshake procedure should be critically reliable to detect the 
presence of uplink data, which increases the overhead of the 

uplink control channel. One viable solution is the grant-free 
approach, which utilizes semi-statistical allocation. However, 
in the grant-free approach, users are not aware of CSI, which 
increases the block error code [1]. Exponential increase in con-
nected devices and umMTC deployment further enhance the 
spectral scarcity. Device-to-device (D2D) communication stan-
dardized by 3GPP is gaining much attention to improve the 
spectral effi  ciency and cater massive access problem. RL-based 
D2D communication has proven to be a viable solution [9].

sYnchronIZatIon
The position of the signal synchronization block (SSB) in the 
time and frequency domains directly depends on the numer-
ology N of the SCS. The SSB is mapped to four continuous 
OFDM symbols in the time domain and 240 SCs in the fre-
quency domain. The SSB carries primary SS (PSS), secondary SS 
(SSS), physical broadcast control channel, and a demodulation 
reference signal. The PSS and SSS constitute cell and sector 
identifi cation, which are critical for initial cell search. The length 
of the PSS is increased to 127, which is double that of LTE. The 
scalable numerology and increased PSS length complicate the 
detection of initial cell search, which degrades the reliability and 
latency [14]. 

Inter-nuMeroloGY InterFerence
Although shortening the TTI using high numerology of SCS 
is accepted as a potential solution for service requirements 
by 3GPP, it comes at the cost of inter-numerology interfer-
ence (INI). The length of the CP scales according to the SCS; in 
other words, increasing the SCS reduces the CP. SCs with the 
same SCS are orthogonal to each other; however, SCs of dif-
ferent SCSs and CPs may interfere with each other. One of the 
potential solutions is to place fi xed guard bands between sub-
bands, which reduces spectral effi  ciency. The INI-power-aware 
resource allocation based on ML provides a solution to improve 
reliability and reduce interference [15]. 

conclusIon
In this study, we investigate the adaptive rate scheduling frame-
work for 5G NR. The objective is to satisfy the service require-
ments from the perspective of latency, reliability, and coexistence 
of Het traffi  c in the 5G network. The rate adaption on the sched-
uler at the gNB is formulated as a MAB problem, which is also 
an MDP, and we propose to solve it using the UCB1 algorithm. 

Algorithm 1. Intelligent rate adaption model.

1. Step 1: 
2. Determine Normalized Load (NL) and priority weight of each user 
3. Step 2: 
4. Objective: To minimize NL and meet service requirements 
5. Initialize parameters: States , exploration coefficient, ( ), priority matrix 
6. Input: Action reward value for all states ( , )  
7. Output:  with maximum  index 
8. for all users in priority matrix 
9.  If ≤  then 
10.   Select the next state as current rate adaption and determine it’s  index 
11.   If service requirements ( , , ) are satisfied and ( + 1) − ( ) < 0 then 
12.    reward +  
13.   else  
14.    reward − 
15.  else   
16.   select the state with maximum  index  
17.   If service requirements ( , , ) are satisfied and ( + 1) − ( ) < 0  then 
18.    reward +  
19.   else  
20.    reward − 
21.  Update reward  of state  
22.  Update value function and upper confidence bias of state   
23  Update  index of state  
24.  Return = max(  ) 

25. end loop  
 

Figure 4. Agent–environment interaction in RL-enabled 5G and B5G NR networks.
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The proposed intelligent rate adaption model learns the pattern 
of the Het traffic and determines the optimal rate deployment 
scheme at the gNB scheduler such that all the data of Het users 
in queue can be satisfied, and the latency and reliability require-
ments of the network can be improved. In the future, we will 
consider validating our framework in a real-time 5G network and 
further extend it for collaborative multi-agent RL at the gNB as 
well as the user equipment for both uplink and downlink trans-
missions to optimize the 5G NR network.

References
[1] M. M. Saad et al., “Advancements in Vehicular Communication Technologies: 

C-v2x and nr-v2x Comparison,” IEEE Commun. Mag., vol. 59, no. 8, Aug. 
2021, pp. 107–13. 

[2] C. Li et al., “5G-Based Systems Design for Tactile Internet,” Proc. IEEE, vol. 107, 
no. 2, 2019, pp. 307–24. 

[3] J. Sachs et al., “Adaptive 5G Low-Latency Communication for Tactile Internet 
Services,” Proc. IEEE, vol. 107, no. 2, 2019, pp. 325–49. 

[4] K. Pedersen et al., “Agile 5G Scheduler for Improved e2e Performance and 
Flexibility for Different Network Implementations,” IEEE Commun. Mag., vol. 
56, no. 3, Mar. 2018, pp. 210–17. 

[5] A. Nauman et al., “Reinforcement Learning-Enabled Intelligent Device-to-
Device (id2d) Communication in Narrowband Internet of Things (NB-IoT),” 
Computer Commun., vol. 176, 2021, pp. 13–22. 

[6] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, 2nd ed., 
MIT Press, 2018. 

[7] W. Chen, X. Fan, and L. Chen, “A CNN-Based Packet Classification of EMBB, 
MMTC and URLLC Applications for 5G,” 2019 Int’l. Conf. Intelligent Comput-
ing and Its Emerging Applications, 2019, pp. 140–45. 

[8] H. Ji et al., “Ultra-Reliable and Low-Latency Communications in 5G Downlink: 
Physical layer Aspects,” IEEE Wireless Commun., vol. 25, no. 3, June 2018, pp. 
124–30. 

[9] A. Nauman et al., “Reliability optimization in Narrowband Device-to-Device 
Communication for 5G and Beyond-5G Networks,” IEEE Access, vol. 9, 2021, 
pp. 157,584–96. 

[10] J. Sachs et al., “5G Radio Network Design for Ultra-Reliable Low-Latency 
Communication,” IEEE Network, vol. 32, no. 2, Mar./Apr. 2018, pp. 24–31. 

[11] L. Melián-Gutiérrez et al., “Upper Confidence Bound Learning Approach for 
Real HF Measurements,” 2015 IEEE ICC  Wksp., June 2015, pp. 381–86. 

[12] W. Jouini et al., “Upper Confidence Bound Based Decision Making Strategies 
and Dynamic Spectrum Access,” 2010 IEEE ICC, 2010. 

[13] Y. Huang et al., “A Deep-Reinforcement-Learning-Based Approach to Dynam-
ic EMBB/URLLC Multiplexing in 5G NR,” IEEE IoT J., vol. 7, no. 7, 2020, pp. 
6439–56. 

[14] F. Chen et al., “Design and Implementation of Initial Cell Search in 5G NR 
Systems,” China Commun., vol. 17, no. 5, 2020, pp. 38–49. 

[15] A. Yazar and H. Arslan, “Reliability Enhancement in Multi-Numerology-Based 
5G New Radio Using INI-Aware Scheduling,” EURASIP J. Wireless Commun. 
and Net., vol. 2019, no. 1, 2019.

Biographies
Ali Nauman (anauman@ynu.ac.kr) received his M.Sc. degree in wireless com-
munications from the Institute of Space Technology, Islamabad, Pakistan, in 
2016 and his Ph.D. degree in information and communication engineering from 
Yeungnam University, Republic of Korea, in 2022. Currently, he is working as 
an assistant professor with the Department of Information and Communication 
(ICE), Yeungnam University. The main domain of his research is in the field of 
artificial-intelligence-enabled wireless networks for tactile healthcare, multimedia, 
and Industry 5.0.

Tu N. Nguyen (tu.nguyen@kennesaw.edu) is an assistant professor and director 
of the Intelligent Systems Laboratory (ISL) in the Department of Computer Sci-
ence at Kennesaw State University, Georgia. His research and teaching hinge on 
developing fundamental mathematical tools and principles to design and develop 
smart, secure, and self-organizing systems, with applications to network systems, 
cyber-physical systems, and cyber security.

Yazdan A. Qadri (yazdan@ynu.ac.kr) received his Bachelor’s and Master’s 
degrees in electronics and communication engineering from LP University, India, 
in 2016. He is currently pursuing a Ph.D. degree at the Wireless Information 
Networking Lab (WINLab), Department of Information and Communication Engi-
neering, Yeungnam University. His research is focused on enabling technologies 
for Medicine 4.0 that include wireless body area networks and complementing 
technologies such as enhanced ultra-reliable low-latency communication in 5G, 
Tactile Internet, and artificial intelligence.

Zulqar Nain (zulqarnain@ynu.ac.kr) received his M.S. degree from COMSATS 
University Islamabad in 2018 and his Ph.D. degree in information and communi-
cation engineering from Yeungnam University in 2022. Currently, he is working 
as an assistant professor with ICE, Yeungnam University. His research interests 
include routing in NoC, fault-tolerant routing in NoC, IoT, machine learning, and 
wireless NoCs. 

Korhan Cengiz (korhancengiz@uof.ac.ae) received his B.S. degree in electronics 
and communication engineering from Kocaeli University, Turkey, in 2008, his M.S. 
degree in electronics and communication engineering from Namik Kemal Uni-
versity, Tekirdag, Turkey, in 2011, and his Ph.D. degree in electronics engineering 
from Kadir Has University, Istanbul, Turkey, in 2016. Curently, he is working as 
an assistant professor with the College of Information Technology, University of 
Fujairah, UAE.

Sung Won Kim (swon@yu.ac.kr) received his B.S. and M.S. degrees from the 
Department of Control and Instrumentation Engineering, Seoul National Universi-
ty, Korea, in 1990 and 1992, respectively, and his Ph.D. degree from the School 
of Electrical Engineering and Computer Sciences, Seoul National University in 
August 2002. In March 2005, he joined the Department of Information and Com-
munication Engineering, Yeungnam University, Gyeongsangbuk-do, where he is 
currently a professor. His research interests include resource management, wire-
less networks, mobile computing, performance evaluation, and machine learning.

Authorized licensed use limited to: YEUNGNAM UNIVERSITY. Downloaded on May 12,2022 at 03:32:26 UTC from IEEE Xplore.  Restrictions apply. 
View publication statsView publication stats

https://www.researchgate.net/publication/360531771



