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Received: 23 January 2022

Accepted: 18 March 2022

Published: 20 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

An Efficient Algorithm for Mapping Deep Learning
Applications on the NoC Architecture
Zeeshan Ali Khan 1, Ubaid Abbasi 2 and Sung Won Kim 3,*

1 Department of Computer Science, National University of Computer and Emerging Sciences,
Lahore 54770, Pakistan; zeeshanali.khan@nu.edu.pk

2 Department of Computer Science, GPRC, Grand Priaire, AB T8V 4C4, Canada; uabbasi@gprc.ab.ca
3 Department of Information and Communication Engineering, Yeungnam University,

Gyeongsan 38541, Korea
* Correspondence: swon@yu.ac.kr

Abstract: Network-on-chip (NoC) is replacing the existing on-chip communication mechanism in
the latest, very-large-scale integration (VLSI) systems because of their fault tolerant design. However,
in addition to the design challenges, NoC systems require a mechanism for proper application
mapping in order to produce maximum benefits in terms of application-level latency, platform
energy consumption, and system throughput. Similarly, the neural-network (NN)-based artificial
intelligence (AI) techniques for deep learning are gaining particular interest. These applications can
be executed on a cloud-based system, but some of these applications have to be executed on private
cloud to integrate the data privacy. Furthermore, the public cloud systems can also be made from
these NoC platforms to have better application performance. Therefore, there is a need to optimally
map these applications on existing NoC-based architectures. If the application is not properly
mapped, then it can create a performance hazard that may lead to delay in calculations, increase
in energy consumption, and decrease in the platform lifetime. Hence, the real-time applications
requiring AI services can implement these algorithms in NoC-based architectures with better real-time
performance. In this article, we propose a multilevel mapping of deep learning AI applications on the
NoC architectures and show its results for the energy consumption, task distribution profile, latency,
and throughput. The simulation is conducted using the OCTAVE, and the simulation results show that
the performance of the proposed mapping technique is better than the direct mapping techniques.

Keywords: network-on-chip; artificial intelligence; neural networks; application mapping

1. Introduction

System-on-chip (SoC) has multiple communication links to meet the data transmission
requirement of the platform [1]. The sub-micron design has a number of design challenges
for these on-chip communication wires, hence the need for globally asynchronous, locally
synchronous (GALS) systems arise. In this design strategy, the application tasks are di-
vided into concurrent synchronous areas in a platform. This domain is only synchronous
internally, and it would communicate with other locally synchronous areas in an asyn-
chronous fashion [2]. The network-on-chip (NoC) provides an intra-chip communication
paradigm for a particular topology design. Therefore, based on the GALS-based system,
the communication can take place in a seamless manner. This also leads to a scalable and
efficient design. Moreover, in many-core heterogeneous processors, the NoC is a scalable
solution that can meet the application communication requirements [3].

A GALS-based SoC architecture needs to map various tasks of a target application
onto different cores, which would help in obtaining better performance from this system.
This is the foundation of the application mapping problem in the NoC architecture, and the
solution can lead to a number of solutions. Therefore, it is pertinent to select an optimal
solution for better NoC performance [4].
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AI is the future of computing that can meet the data processing requirements for
innovative applications. One such evolving artificial intelligence (AI) application is neural
networks (NNs), which require a high level of parallelism to achieve the application
processing deadline [5]. Different neurons of NNs can be mapped to different zones of the
NoC architecture to exploit this parallelism.

Many researchers in the past have worked on various application techniques in multi-
ple scenarios. In [6], the authors discuss the technique for mapping multiple applications
on the NoC architecture. However, this does not consider artificial intelligence (AI) algo-
rithm mapping on an NoC architecture. A multi-objective algorithm is proposed in [7] by
considering the varying time constraints for the targeted applications. However, due to the
reconfiguration overhead, the proposed approach did not produce promising results.

In [8], the authors propose a technique to locate optimal region for a particular applica-
tion. Because of sequential nature, this did not result in significant outcomes. Another arti-
cle [9] targeted a fault tolerant algorithm for application mapping by considering non-faulty
cores for better core placements. Ref. [10] discusses an NoC application mapping to balance
packet latency with other performance factors, while [11] discusses a mapping algorithm on
heterogeneous multi-core processors having different features. In [12], a rectangle-analysis-
based approach is proposed, which selects NoC regions for multi-application mapping
using genetic algorithms. This design space exploration (DSE) mechanism tries to locate
the best region for application execution based on latency and power consumption.

In this paper, we describe a method for mapping AI applications on an NoC platform
in a dynamic run-time manner using a multilevel approach. We also give a comparison of
the proposed multilevel technique with the direct mapping technique, which is the baseline
for state of the art mapping methods. Moreoever, the abbreviations are listed in Table 1.

The article is structured as follows. In Section 2 we discuss related work about
machine-learning-based algorithms, NoC platforms, and application mapping that would
be used in this research. Thereafter, our proposed mechanism in explained in Section 3,
and details about the simulation analysis are given in Section 4. Finally, we conclude the
article in Section 5.

Table 1. List of abbreviations.

AI Artificial intelligence
BB Branch and bound
BEMAP BB-based exact mapping
Bta.tb Bandwidth between

two routers ta and tb
CC Communication cost of the NoC
DNN Deep neural network
DSE Design space exploration
DVFS Dynamic voltage and frequency scaling
ELink Link energy consumption
Latavg Average latency
Ltb Latency of packet b
MET Maximal empty triangle
n Number of neurons
N Number of processing cores
Nm Manhattan distance from source to destination tile

NN Neural network
NoC Network-on-chip
Nx Packets received by the core x
PSO Particle swarm optimization
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Table 1. Cont.

RL Reinforcement learning
SNN Spiking neural network
SoC System-on-chip
SotAs State-of-the-art
Tsim Simulation time
VLSI Very-large-scale integration

2. Related Work

There are a lot of machine learning applications that are used to process large datasets,
and they require a lot of processing capabilities. In a modern computer system, NoC
can provide an important communication infrastructure to implement these machine
learning algorithms. In this section, a basic introduction about neural networks, NoC,
and application mapping is given below.

2.1. Machine Learning, Deep Learning, and Neural Networks

Machine learning is an AI-based technique to analyze and generate a mathematical
model from the input dataset [13]. Broadly speaking, the machine learning is used to process
different datasets and it is normally classified into four categories, which include supervised,
unsupervised, semi-supervised, and reinforcement learning. Supervised learning [14] is
provided with the labeled data as an input to the training algorithm in order to develop a
mathematical model, whereas an unsupervised learning algorithm [15] is not provisioned
with the labeled data and it has to make a decision about the boundaries. If we have
partial information about the labeled data, then, in that case, semi-supervised learning
techniques [16] are useful. Finally, reinforcement learning (RL) [17,18] deploys an iterative
mechanism to make a decision using an agent, which interacts with the external world.

Out of these techniques, an important approach is supervised learning and it deploys a
neural network [19,20] to mimic the functionality of a brain by using multilayers to perform
linear and nonlinear functions on the input dataset. This results in a better mathematical
model, as it uses a layered architecture having input layer, inner layer(s), and output layer.
An example of a neural network task graph is given in Figure 1. It can use a feedback path
from output to the input layer for effectively generating the results; however, it requires
a lot of computational power and it needs to be effectively deployed on a processing
infrastructure to obtain the results in real time.

Figure 1. AI task graph as an input.
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The neural network can be used to implement a number of applications using deep
learning methods [21,22]. Deep learning comprises linear-regression-based classifiers and
activation function, which is based on traditional linear regression technique. Deep learning
has a neural network consisting of multiple neurons, whereas the linear regression has only
one node. Furthermore, the deep learning approaches have multiple layers which process
the input and forward it to the output [23]. Each layer can have multiple neural units for
data processing. There is an input layer, an output layer, and multiple hidden layers for
data processing. For classical machine learning classifiers, the hypothesis function has
to be written by the user. On the other hand, the deep learning network generates this
function itself.

There is another type of learning technique, which is called the shallow learning. The
main difference between shallow and deep learning is that shallow learning can have a
maximum of two layers [24].

Another type of multilayer neural network is convolution neural network, which
has two dimensional planes, and each plane has neurons independently processing the
data having sparse connections. This structure depends on the shared weight for data
processing [25].

In the next section, we discuss network-on-chip (NoC) architecture, which can deploy
these AI applications.

2.2. Network-on-Chip (NoC)

The network-on-chip describes a communication-centric processor architecture design.
In an NoC architecture [26], there are multiple processing elements that are connected to
the neighboring processing elements. The data generated by the processing elements are
converted into fixed-length flow-control digits (flits), which are routed to the neighboring
router using a routing algorithm. The flits have tail, head, and body bits which are routed
towards the destination using the intermediate routers. The NoC architecture has many
wires and routers, which are used for interconnection of various processing elements.
The NoC router has input/output ports towards the north, east, south, west, and local
processing elements. These ports help in interconnection with other ports of a nearby
router using physical wires. Similar to an OSI layer router, this NoC router will forward the
incoming packets towards the appropriate destination port using the routing mechanism
defined for the platform. Therefore, there is an input buffer associated with each incoming
port to store excessive traffic, and a crossbar switch to move a packet from an input port
towards an output port.

The functionalities of an NoC can be categorized into multiple layers, including
application, transport, network, data link, and physical layers. The application layer
normally divides the target application into tasks that can be executed onto multiple
processing cores. This step helps in energy optimization, latency reduction, and throughput
improvement. This leads to the placement problem for the processing cores, and mapping
problem for the application. The placement problem deals with the physical placement of
heterogeneous processing cores on various geographical locations of the platform, whereas
the mapping problem places various tasks of an application onto different cores for optimal
performance [27].

The transport layer of the NoC deals with the issues of congestion control, flow control,
and buffer overflow by devising end-to-end, as well as local, techniques. This layer helps
in decreasing the congested areas within the platform, as these areas can form energy
hot-spots. Uneven energy consumption can lead to reduction in processor lifetime and
increase in application latency; therefore, it is an important design consideration. For this
layer, NoC topology plays an important role. The placement of cores help in achieving the
design goals of the NoC architecture. Based on the type of application, the placement of
cores can be set in a way to reduce the congestion in the network [28].

The purpose of the network layer is to define the routing schemes of the packets. It
is heavily dependent on the type of architecture, and it would help in achieving the main
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objectives of the NoC architecture. If the packet routing strategy is not carefully selected,
then the energy consumption, latency, and throughput of the application would drastically
reduce. There are various routing algorithms which can be used for the NoC design, which
include XY, IX/Y, and XYX routing algorithms [29].

The data link layer is used to increase the reliability of the individual link. The
error may arise in the packet transmission due to cross-talk, electromagnetic interference,
and signal radiation. This layer would introduce mechanisms to reduce this error [30].

Finally, the physical layer is related to the actual transmission of the data on physical
wires, and it is related to the microelectronic design of the platform. This deals with the
capacity and design of the individual link, using the state-of-the-art technology [31].

In this article, the XY routing algorithm [32] is used for evaluation purposes. This
algorithm forwards the packet in the x-direction until the packet’s x-coordinates and those
of the destination are same. Then, the packet is forwarded in the y-direction using the
same algorithm, which will eventually arrive at the destination. In a router, there are five
input and output ports. Out of these five ports, four are in the east, west, north, and south
directions. The fifth port is in the direction of the local processing element. This router is
responsible for forwarding the packet using the XY routing algorithm mentioned above.
An example of such an architecture (16 × 16 NoC) is given in Figure 2.

Figure 2. A 16 × 16 NoC architecture.

2.3. Application Mapping on the Network-on-Chip (NoC)

In this section, we discuss the mapping algorithms that exist for the NoC architectures.
Mapping is a necessary part of the NoC design process, as various tasks of the application
are assigned to different cores of the processor for execution. There can be various objectives
that are selected based on the type of application. They include application latency, energy
consumption, real-time deadlines, and throughput. Various optimization techniques have
been used to implement these algorithms [33].

Ref. [34] explains a real-time application mapping on the NoC using the branch-and-
bound (BB)-based exact mapping (BEMAP) algorithm. For a particular NoC bandwidth,
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the approach reduces the energy consumption and latency; however, it increases the
throughput. Thus, the solution is related to the multi-objective optimization for NoC
application mapping. The algorithm claims to have up to 19.93% reduction in energy
consumption and 61.10% depletion in network latency for mesh and torus typologies.
However, the article does not give an implementation for the AI-based applications.

Ref. [12] explains a way to map multiple applications on the NoC, which starts by
performing an analysis on various NoC regions. Using a genetic algorithm, application
tasks are mapped onto the potential regions and their performance is analyzed. In the
second step, a B*tree-based simulated annealing algorithm is used to deduce updated
mapping of the tasks. Using experimental results, the authors claim to have 23.45%
reduction in power consumption and 24.42% reduction in the latency for the selected
applications. However, the algorithm does not consider an AI as an input.

Ref. [11] proposes a precompute step for partially mapping the application, and final
mapping at the run time for hard real-time applications. Thus, the applications have the
possibility to adapt their mapping based on the processor resources. The authors claim to
have 13% reduction in the energy consumption compared to the state-of-the-art approaches.
However, the proposed approach can be extended for the AI-based input applications.

Ref. [10] describes multi-application mapping on the NoC under the latency con-
straints. The problem is solved using a heuristic-based algorithm, which is able to reduce
the maximum average packet latency by 10.42%, with better overall performance. However,
the AI-based applications are not mapped onto this platform using the proposed approach,
which is an open area of research.

Ref. [9] is a fault-tolerant mapping approach for NoC platform. It has two steps;
the first step maps the application core graphs to those processing cores that are fault-free,
and in the second step, the algorithm utilizes the free cores identified in the first step. This
helps in increasing the fault tolerance; however, it may increase the run-time overhead.
Moreover, this technique may be utilized for an AI-based application core graph.

Ref. [8] is another multi-application mapping technique, which deploys two steps. In
the first step, the technique first finds a region for a particular application. The second
step maps the tasks of a particular application onto the cores available in that region. The
maximal empty rectangle (MER) technique is used to find an optimal region for each
application, and a tree-model-based algorithm is utilized for the second step of the task
mapping. The authors claim to have an 18% reduction in latency and energy consumption.
However, we think that this idea can be enhanced for recently emerging AI applications.

Ref. [7] is a multi-application mapping technique using an evolutionary approach,
and the target is to optimize latency and energy consumption. The technique is compared
with the branch-and-bound and genetic algorithms to test its usability. However, this
technique can be enhanced for the neural-network-based AI applications.

Ref. [6] presents an application mapping approach for each individual use-case by ex-
ploiting the dynamic voltage and frequency scaling (DVFS). This results in power saving;
however, other performance factors needs to be explored as well. This work can be extended
for the AI applications using the DVFS technique for obtaining power optimization.

Ref. [35] describes a comparison of NoC application mapping for optimizing commu-
nication, energy consumption, and delay for VOPD and MPEG4 applications. The main
focus is about exploring the application mapping for new design technologies, but it does
not focus on the AI-based applications.

An interesting approach is discussed in [36], where the authors discuss a mapping
algorithm for decreasing latency and energy consumption in the hardware architecture.
The application considered is spiking neuron networks (SNN), which have to be mapped
on many-core neuromorphic hardware. However, this technique needs to be improved
and it is an example of direct application mapping. For the sake of comparison, we have
considered this type of direct technique in this article.

Another recent article, ZigZag [37] focuses on exploring the design space for the deep
neural networks (DNNs) by focusing on the memory hierarchy design space. They claim to
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have a 64% better performance than state-of-the-art solutions, but this work can be further
improved by focusing on the communication aspect.

Ref. [38] proposes a two step technique that is based on the genetic algorithm for
mapping applications onto the NoC architecture. The proposed approach has a better result
than the traditional genetic algorithm in terms of delay and power consumption; however,
it does not consider AI-based applications.

A comparison of the articles mentioned in the literature review is given in Table 2. Out
of all these techniques, we found only a few articles that talk about mapping deep neural
networks on the processing cores that are connected by the NoC. Therefore, our main focus
in this article is to present a mapping strategy for the deep neural networks and explore
this research domain.

Table 2. Comparison of the recent work.

Article Mapping Technique Performance Improvement AI Application
Mapping

[6] DVFS-based application
mapping Large power savings 7

[8] Multi-application 18% reduction in 7
mapping latency and energy consumption

[9] Fault-tolerant 9.5% communication energy
reductions 7

mapping and 7.94% performance
improvement

[10] Heuristic-based Reduction in the maximum 7
algorithm average packet latency by 10.42%

[11] Run-time mapping for 13% reduction 7
hard real-time applications in the energy consumption

[12] B*tree-based simulated 23.45% reduction 7
annealing algorithm in power consumption
/ genetic algorithm and 24.42% reduction

in the latency

[34] Branch-bound (BB)-based 19.93% reduction in 7
exact mapping (BEMAP)

algorithm energy consumption and

61.10% depletion in network
latency

[35] Comparison of most of the Conclusion is provided for NoC 7
reported application mapping application mapping-based

techniques for NoC on algorithm run-time

[36] Particle swarm optimization Reduction in average latency by
63% 3

(PSO) algorithm and average energy
and TABU search consumption by 69%

[37] Combining uneven Up to 64% more energy-efficient 3
and search mapping strategies in comparison with SotAs

[38] Multilevel genetic algorithm Reduction in power
consumption and 7

based technique delay in comparison with
traditional

genetic algorithm

3. Multilevel Task Mapping for NN Applications

In this section, the main objective is about exploring the AI-based application mapping
on various NoC platforms by considering latency and energy consumption. The technique
used in this article is depicted in Algorithm 1. There are multiple phases of this algorithm.
In the first phase (region analysis), we select particular region(s) where the various tasks of
an application can be deployed based on core availability. In the next phase, the neurons
of that task are mapped onto the processor cores of the region selected in phase one, and
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hence the complete application is mapped onto the processor architecture. To the best of
our knowledge, the task mapping of AI applications on NoC architecture is rarely studied
and we shall consider a mesh-based NoC for application mapping to evaluate this solution.
However, the prospective research will focus on exploring NoC architectures other than
mesh-based structures.

Algorithm 1: AI application mapping on mesh-based NoC.

1 Input: AI application task graph, a mesh-based NoC architecture
2 Output: Application mapping on targeted architecture
3 Analyze which cores are free at the moment
4 Locate the potential region based on core availability
5 Level 1 Mapping: Layers of neural network are mapped on particular regions
6 Level 2 Mapping: Each neuron of a layer are mapped onto a particular

processing core

The algorithm first partitions the application into tasks, which are respective layers
of the neural network, and selects a particular region for its mapping. It also looks into
the processor cores which are available at the moment. In the second step, the neurons
are mapped onto the particular cores to enhance the performance in terms of latency and
energy consumption. In the following sub-sections, we discuss the two steps which are
required for realizing these objectives.

3.1. Level 1 Mapping: Region Mapping

First of all, we divide the mesh-based NoC into multiple regions, and this will help in
identifying the available regions. The regions are selected based on the number of neural
network layers to be mapped on the processor architecture. The number of regions are
obtained as follows:

nr =
nc

nNN
(1)

where nr is the number of regions, nc is the number of cores, and nNN is the number of
neural network layers.

We select closely located cores for one region based on the region count obtained by the
abovementioned formula. If any or multiple cores are available after this process, then they
are merged into a nearby region. In the next step, we identify the regions which are available
at the moment by considering a predefined occupancy threshold. This is to select regions
that are not occupied at the moment. This makes sure that only those regions should be
selected that are not highly busy; rather, we focus on regions having lesser occupancy. This
would have a positive impact on energy consumption profile of the processor. Algorithm 2
explains the details of this technique. The proposed algorithm is inspired from [39], which
tries to optimize the global objectives based on a game theoretic approach. This process
is explained in Figure 3. This figure shows that we are selecting a particular region for
mapping various closely related tasks of the considered NN application. The tasks are
the neurons of a particular neural network layer, and these tasks have to be mapped on
a particular region. This technique will make sure that the tasks of a particular layer
are processed first, followed by the next one. The technique will try to ensure that the
communication latency is minimized at this level of mapping.
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Figure 3. AI sub-task mapping on various NoC regions.

Algorithm 2: Neural-network-level mapping on the NoC region.
1: Input: Tasks of a Neural Network level and NoC regions
2: Output: Mapping of input on a particular NoC region
3: Analyze occupancy level of a region
4: Create a list of NoC regions in ascending order of their occupancy
5: List_of_Allowed_Regions = Least occupied NoC region
6: Current_Neural_Network_Layer = First Layer of the input Neural Network
7: Current_Neural_Network_Mapping = Nil
8: while All the regions not processed do
9: Map the Current_Neural_Network_Layer on least occupied region available in

List_of_Allowed_Regions
10: Remove the selected region from the List_of_Allowed_Regions
11: Current_Neural_Network_Layer = Next Layer of the Neural Network
12: List_of_Allowed_Regions = All NoC regions that lie in the neighborhood of the

selected NoC region for the last Neural Network Layer
13: end while

3.2. Level 2 Mapping: Neurons Mapping on the Cores

In the second step, we map the neurons to a particular processor core based on the
assigned NoC region in level-1 mapping. Our goal in this step is to select a particular core to
minimize the energy consumption and communication latency of that region. This process
is explained in Algorithm 3. The idea of the proposed algorithm is obtained from [39],
which tries to optimize the global objectives based on a game theoretic approach. This
will have a positive impact as the hot-spots in the NoC are minimized, leading to a better
solution, which is explained in Figure 4. In this figure, we show that the neurons of a
task are assigned to a particular processing element to reduce the communication energy
consumption, which is a major source of energy depletion in the NoC. Furthermore, we
also have to evenly distribute the neurons on all the available cores to have an even energy
consumption profile. If the neurons are assigned to a single processor, then it would reduce
the communication energy but it would create the energy hot-spots. On the other hand,
if the neurons are evenly distributed, then it would increase the communication energy but
it would minimize the hot-spots in the energy consumption. This will eventually increase
the lifetime of the processor.
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Figure 4. AI task mapping on processor cores.

Algorithm 3: Neural mapping on the NoC core.
1: Input: Neurons of a Neural Network layer, and selected NoC region
2: Output: Mapping of neurons on a particular NoC core
3: Analyze the current occupancy of the NoC cores
4: Create a list of processor cores in ascending order of their occupancy
5: List_of_Allowed_Cores = Least occupied NoC core
6: Current_Neuron = First Neuron of the Neural Network layer
7: Current_Neuron_Mapping = Nil
8: while All the neurons not processed do
9: Map the Current_Neuron on least occupied core available in List_of_

Allowed_Cores and update the occupancy level of each core
10: Current_Neuron = Next Neuron of the Neural Network layer
11: List_of_Allowed_Cores = Selected NoC core and all NoC cores that lie in the

neighborhood of the selected core for the last Neuron
12: end while

3.3. Discussion about the Proposed Technique

The proposed technique aims to reduce the communication energy consumption
and latency in the NoC architecture, as they are a major source of battery depletion. The
proposed solution is based on game-theory (inspired from [39])-based mechanism and it
tries to choose the best core for the neuron execution that would lead to energy consumption
reduction. The proposed technique is compared with direct mapping techniques which are
used in most of the related research work described in the introduction. These techniques
are not aimed at deploying the neural network applications, which have an inherent
parallelism. Furthermore, in these techniques, the multilevel approach is not used for a
single application, as each application does not have an inherent parallelism. Therefore,
our multilevel technique should perform better than direct mapping techniques for NN
applications. This is also illustrated in the simulation analysis that is presented in the
next section.
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4. Evaluation

In this section, the results obtained from simulation analysis are discussed. The
main task is to develop an in-house simulation that can measure performance evaluation
of the algorithms. The considered NoC has a varying size, and the AI application is
shown in Figure 1. In this section, first we explain the analytical model followed by the
simulation results.

4.1. Analytical Model

Inspired from [34], in the following section, the energy and latency model is described.
As per the bit energy model, the total communication energy consumption CC is given by
the following formula:

CC =
n

∑
a,b
[Bta.tb × (Nm × ESwitch + Nm−1 × ELink)] (2)

In this equation, the Bta.tb parameter indicates the bandwidth between two routers ta
and tb, ESwitch is the switch energy consumption, and ELink is the energy consumption by
the link of the NoC element. n gives us the count of neurons or nodes in the considered AI
application which need to be mapped, and Nm represents the Manhattan distance between
source tile (xa, ya) and the destination tile (xb, yb).

Its formula is as follows:

Nm = |xa − ya|+ |xb − yb| (3)

In order to compute the communication cost per bit, we divide CC by total number of
bits communicated during the simulation.

To obtain an efficient solution, CC has to be optimized using the techniques proposed
in this article. The average value of latency can be calculated from the following equation:

Latavg =
1
N

N

∑
x=1

1
Nx

N

∑
y=1

Ltb (4)

Here, latency of packet b is given by Ltb, Nx gives the packets received by the core x,
and number of processor cores in the platform are given by N. Furthermore, the average
throughput of the network is given by

Throughputavg =
1

N × Tsim

N

∑
x=1

Nx (5)

where Tsim is the simulation time. Finally, the average hop distance is defined as follows:

HopDistanceavg =
n f lits

nlinks
(6)

where n f lits indicates the number of flits flowing in the NoC architecture, and nlinks is the
total number of NoC links.

The simulation parameters for this analysis are given in Table 3. The simulation is
conducted using OCTAVE [40], which is a freely available scientific programming language.
Using the equations mentioned above, we have generated the results for a 2D mesh with
varying sizes, from 4 till 16 cores. The considered application is a neural network graph with
four layers, comprising input, output, and two hidden layers. For the sake of comparison,
we have used the direct mapping that is the state-of-the-art mapping technique for most of
the articles mentioned in the related work.
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Table 3. List of parameters.

Parameter Value

NoC type 2D Mesh
NoC sizes 2 × 2, 3 × 3, 4 × 4
Embedded applications Artificial intelligence (neural network)
Packet length 128 bits (1 flit)
Mapping algorithm Multilevel and direct mapping
Simulation time 1000 s
Clock frequency 2000 MHz

4.2. Simulation Results

In this section, the simulation results are described using the techniques mentioned
in the previous section. We simulated the proposed approaches for three different types
of NoC architectures having simulation parameters depicted in Table 3. In the following
sections, we discuss the result for three types of NoC configurations.

4.2.1. Visual Analysis of Application Mapping

The result of direct mapping on a four-cores architecture is shown in Figure 5, while
our proposed technique has two steps results, which are shown in Figures 6 and 7. Here,
you can observe that our proposed approach has mapped the AI neurons based on their
task activity and this helps in optimizing the overall energy consumption of the network as
well. On the other hand, the direct mapping technique is relatively more homogeneous,
and it does not allocate neurons according to the task load of a particular level. Hence,
we observe a higher energy consumption profile for such a network. Nevertheless, visual
analysis reveals that the performance of both the techniques would result in similar output.
However, as we move towards a higher NoC configuration, our proposed technique would
homogeneously map all the tasks of our application onto the processor.

Figure 5. Direct mapping for four-cores architecture.
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Figure 6. Level-1 mapping for four-cores architecture using multilevel mapping technique.

Figure 7. Level-2 mapping for four-cores architecture using multilevel mapping technique.

For a processor comprising nine cores, we observe that after level-1 mapping of
application on the cores, the multiple levels are homogeneously mapped on the cores (see
Figure 8). However, after the level-2 mapping (see Figure 9), the neurons are mapped
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in a much better way and the communication energy consumption will be reduced in
this case in comparison with the direct mapping, as shown in Figure 10. Visual analysis
reveals that both the techniques may have similar results. However, our technique tries to
optimize the communication energy of such an NoC architecture by closely mapping the
tasks of a certain stage. This would be explained in the energy consumption analysis for
both these techniques.

Figure 8. Level-1 mapping for nine-cores architecture using multilevel mapping technique.

Figure 9. Level-2 mapping for nine-cores architecture using multilevel mapping technique.
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Figure 10. Direct mapping for nine-cores architecture.

Finally, direct AI application mapping on a 16-cores architecture depicts that some
cores are vacant and they did not receive any neurons for processing (see Figure 11). On
the other hand, after the two levels of application mapping, our proposed approach is able
to distribute the neurons on all the processor cores, which would help to reduce the energy
hot-spots (see Figures 12 and 13). Now, for this case, the visual analysis tells us that most of
the processor cores are utilized. This may increase the communication energy consumption,
but it would give us a better energy consumption profile by evenly distributing the energy.
We would discuss this point in the context of overall system-level energy consumption.

Figure 11. Direct mapping for 16-cores architecture.
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Figure 12. Level-1 mapping for 16-cores architecture using multilevel mapping technique.

Figure 13. Level-2 mapping for 16-cores architecture using multilevel mapping technique.
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4.2.2. Energy Consumption, Communication Latency, and Throughput Analysis

In order to compare the two techniques, we used the analytical model described
previously. For the forthcoming results, we mention the size of the NoC in the x-axis. The
number indicates a particular type of NoC, as per the following list:

• 1 indicates four-cores architecture.
• 2 indicates nine-cores architecture.
• 3 indicates 16-cores architecture.

Hence, configuration 1 corresponds to 2*2-sized NoC, configuration 2 is a 3*3-sized
NoC, and configuration 3 is a 4*4-sized NoC. Figure 14 describes the comparison of com-
munication cost between different configurations. For configuration 1, the direct mapping
results in lesser communication cost; however, for other configurations the communication
cost is decreased for our proposed multilevel mapping. This is because the proposed
multilevel mapping approach tries to decrease the communication overhead and it results
in less communication cost if the number of cores are greater. Therefore, it helps in better
exploiting the parallelism that is available in the processing architecture. On the other hand,
Figure 15 shows per-bit communication cost and it is almost the same for any technique, as
it depends on the underlying hardware architecture and bandwidth, which is the same for
all the cases.

As per the visual analysis described previously, our technique gives a better energy
consumption profile by evenly distributing the neurons when the number of cores are in-
creasing. We observe the same result for the communication energy of the NoC architecture.
As the NoC size is increasing, the proposed technique is giving better results. Therefore,
the proposed technique is good for platforms having large number of cores in terms of
communication energy consumption and even task placement.
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Figure 14. Communication cost.
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Then, Figure 16 describes the average communication latency for both the schemes.
This shows that the communication latency starts to decrease for larger number of process-
ing cores using the proposed multilevel mapping, as this technique tries to minimize the
communication overhead by exploiting the parallelism. As it first selects the similar level of
AI application to a particular region, and then it assigns the respective tasks to a processing
core, this helps in minimizing the communication latency, and the overall performance of
the system is also improved.

Figure 17 discusses the average throughput of the proposed techniques and it shows
that for higher number of processing cores, the system throughput is better for multilevel
mapping. This also implies that the performance of multilevel technique is better for higher
number of cores as it tries to exploit the parallelism in the system. If there are fewer cores,
then there are not a lot of processing elements available and, as a result, the multilevel
technique does not perform very well. However, the performance in comparison with the
direct technique is not very promising. In our opinion, it is because of the fact that the
multilevel technique tries to evenly distribute the neurons on the entire platform and it
increases the communication costs. This would help us achieve both the objectives at the
same time.

Figure 18 gives an idea about the number of hops traversed by neurons in the NoC
during the simulation. If this value is decreasing, then it has a positive impact on the
communication energy consumption. The results indicate that the communication in the
NoC is increasing as a result of increasing the number of processing cores. Furthermore,
for a smaller number of cores in the NoC, the multilevel mapping is not producing better
results. However, if the NoC size is increased, then its performance improves.

Finally, Figure 19 shows the average hop distance that is traversed by data that are
flowing from one neuron to the next one. If this value is decreasing, then it indicates that
we have less communication per communication link, and the communication energy
consumption is decreasing. One observation is that for a larger number of NoC cores, the
average value of hop distance is decreasing. This is because the number of communication
links in the architecture are increasing. However, for fewer processing cores, the direct
mapping is giving good results in terms of the average hop distance, but for a larger
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NoC architecture, this value is decreasing. Hence, the multilevel solution is better from
this prospective.

We can conclude that the proposed multilevel technique is better than direct mapping
techniques for neural-networks-based AI applications if the number of cores is a large
number. We may stick to the direct technique for a platform with smaller number of
processing cores.
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Figure 16. Average latency.
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Figure 17. Average throughput.
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Figure 18. Number of hops traversed by neurons.
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Figure 19. Average hop distance.

4.3. Discussion about the Results and Prospective Work

In this section, we discuss the results of the experiment. As described earlier, we
compared the proposed multilevel approach with the direct approach. The direct approach
is relatively straightforward but, on the other hand, the complexity of the multilevel
approach is around twice that of the direct one. This is because the multilevel approach has
two stages, which are similar to two direct approaches, but the increase in complexity gives
us better selection of the cores to reduce the overall energy consumption of the platform.
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However, it enhances the complexity of the algorithm. In addition to that, this technique is
better in terms of online performance. If the neural network is to be executed alongside
other applications, then it would be better to use an online technique that takes into account
the number of cores that are currently available. Furthermore, the multilevel approach
has a better average latency in comparison with the direct mapping as it first analyzes
the availability of cores, and then it would select any particular region to map a layer of
neural network. On the other hand, the direct approach does not take into consideration
the number of available cores, and this is reflected in the results for the average latency.
Finally, the multilevel approach tries to reduce the communication energy consumption
and it results in less communication overhead. This leads to a lower average throughput
value for the proposed technique.

The results are improving when the size of the NoC architecture is increasing. In
a number of recent similar processor architectures, it is observed that the number of
processing cores is very large. Hence, we can conclude that the performance of the proposed
technique would be better in a real-world scenario.

Furthermore, the proposed technique is tested using an analytical model that is
inspired by [34]. Moreover, in order to perform the initial evaluation, we only used the
XY routing. However, we propose that in the prospective works, the approach can be
simulated using a network-on-chip simulation such as [41]. Using this simulator, we
can realize a better level of abstraction by including multiple routing protocols, different
flow control algorithms, and changing buffer depths. For the current task, we wanted to
obtain preliminary results for a higher level of abstraction; that is why an OCTAVE-based
simulation is used for obtaining the results. Furthermore, a four-layer neural network
is considered for the evaluation purpose in this article. In the future work, we may
enhance the complexity by adding more layers in the neural network. This will increase
the confidence of a reader in the findings of the research.

5. Conclusions

There are a lot of emerging AI applications that can process huge amounts of training
data for numerous applications. In the current scientific era, neural networks are emerging
as a deep learning application that can solve a number of problems in various domains.
These can be solved using a cloud computing service, but sometimes we need to perform
these calculations on a single platform due to the data privacy requirements. Here, we
need to have an NoC platform that can efficiently help us in solving the problem. However,
its performance depends on the underlying architecture. Hence, it is required to optimize
the performance of the system by optimally mapping the application tasks to the NoC
processing elements. Therefore, for the case of NoC architecture, we have to optimally map
the AI application on various processing cores such that the communication performance
and energy consumption profile of the platform can be improved.

In this article, we proposed a multilevel application mapping technique for AI appli-
cations. The proposed technique is compared with the state-of-the-art and simulated using
an OCTAVE program. The simulation results show that it helps in optimizing the system
parameter values such as throughput, latency, and energy consumption. The proposed
technique can better optimize the NoC-based system parameters. For prospective work,
we propose to consider NoC architectures other than mesh-based technology for neural
network applications. Furthermore, this work can be evaluated on a real platform in the
future works.
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