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ABSTRACT The 5G and beyond-5G (B5G) is expected to be a key enabler for Internet-of-Everything (IoE).
The narrowband Internet of Things (NB-IoT) is a low-power wide-area enabling technology introduced
by the 3rd Generation Partnership in 5G. The objective of the NB-IoT is to enhance the mobile coverage
area by increasing the number of repetitions of control and data packets between user equipment (UE)
and the base station/evolved NodeB (BS/eNB). While these repetitions improve data delivery for delay-
sensitive applications, they degrade the efficiency of the already resource-constrained IoT system by
increasing the system overhead and energy consumption. Moreover, NB-IoT devices in the edge region
of the cellular coverage area require more repetitions, which augment energy consumption. In this study,
we investigate device-to-device (D2D) communication for NB-IoT delay-sensitive applications, such as
healthcare-IoT services, to use two-hop communication instead of using a direct uplink. An optimization
problem is formulated to achieve an optimal end-to-end delivery ratio (EDR). In addition, this study
incorporates Q-Learning-based reinforcement learning (RL) for the selection of an optimal cellular relay,
which assists NB-IoT UE in uploading sensitive data to BS/eNB. The proposed RL-intelligent-D2D (RL-
ID2D) communication methodology selects the optimum relay with a maximum EDR, which ultimately
augments energy efficiency.

INDEX TERMS Device-to-device (D2D) communication, machine learning (ML), narrowband Internet-of-
Things (NB-IoT), reinforcement learning (RL).

I. INTRODUCTION
Internet of Things (IoT) is a key enabler of the smart city
concept and is playing a major role in revolutionizing the
future wireless communications and applications, such as
Industry 5.0, connected autonomous healthcare, and smart
transportation. IoT is an integration of physical and cyber
world, where a collections of smart objects capable of
sensing, and actuation are able to self-configure, process data,
and are inter-operable to form a network [1]. As defined
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by the 3rd generation partnership project (3GPP), the IoT
falls into the category of massive machine-type communica-
tion (mMTC) in beyond-5G (B5G) networks [2]. The basic
network operation of IoT device is to transmit data in either
uplink, downlink, or in both directions. Usually, IoT devices
upload the sensed data to the sink node for processing,
based on which instructions for actuation are transmitted
in downlink direction. Critical IoT applications such as
healthcare, industrial automation, and autonomous cars
require periodic checking and timely delivery of information
in uplink direction. Such sensitive services require higher data
rates and the need to maintain a reliable uplink transmission
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is of prime importance [3]. Currently, 23 billion devices are
connected to the Internet, and this number is expected to
increase to about 75 billion by 2025 [1]. Therefore, due to
massive connectivity and ultra reliability requirement, there is
a dire need of enabling technology for IoT devices integrated
within the core cellular network with extended coverage
and improved spectral efficiency. A common approach for
realizing this reliability is the repetitive transmission of
control and data packets. The narrowband-Internet of Things
(NB-IoT), which is a standard of the 3GPP introduced in
Release 13, has improved spectral efficiency and extended
coverage [4]. NB-IoT is a low-power wide area (LPWA)
networking technology that supports mMTC. NB-IoT can
be deployed in long-term evolution advanced (LTE-A),
or global system for mobile (GSM) communication networks
to share the spectrum and reuse the same hardware to
reduce the deployment costs. The NB-IoT operates on a
single physical resource block (PRB) that has a 180-kHz
bandwidth for both uplink and downlink within the cellular
spectrum [5]. The extended reliability and coverage offered
by the NB-IoT is due to the repetitive retransmissions, i.e.,
128 re-transmissions for uplink and 2048 re-transmissions for
downlink [6]. However, the repeated transmission degrades
the spectral efficiency [7]; narrow-band re-transmissions and
massive transmission time interval (TTI) bundling results
in an increased time and energy resource consumption [8].
In addition, for environments with obstructive barriers, there
is an additional penetration loss of 20 dB. Therefore, an effi-
cient uplink transmission methodology with a high end-to-
end delivery ratio (EDR) is required for IoT applications.
Device-to-device (D2D) communication provides a promis-
ing solution to enhance network performance and enables
devices to communicate directly without the intervention
of a cellular network [9]. The 3GPP standardized D2D
communication for the first timewithin Long-TermEvolution
Advanced (LTE-A) in Release 12 [10] and further discussions
are still in process in Release 17 [11], where it is also
termed as Proximity-based Service (ProSe) [12]. In order to
increase reliability, D2D communication provides an efficient
mechanism to aid the NB-IoT user equipment (UE) to upload
the data to base station/evolved NodeB (BS/eNB) [13].

A. MOTIVATION
5G and B5G are expected to be the enabling technologies
for IoT. LTE-A is standardized to support B5G as non-
standalone architecture. In the context of data delivery for
IoT devices, quality-of-service (QoS) is of prime importance.
Integration of D2D communication and artificial intelligence
is considered an important piece of B5G and 6G jigsaw
puzzle [9].

B. CONTRIBUTION
This work introduces a reinforcement-learning (RL) based
intelligent approach RL-intelligent-D2D (RL-ID2D) relay
selection methodology for D2D communication to ensure a
high EDR for NB-IoT devices.

RL-ID2D reduces the additional overheads by working
as a distributed system at the NB-IoT UE, which models
the relay selection problem in a two-step Q-Learning (QL)
framework [14]. The QL algorithm is an effective RL based
machine learning (ML) method for dynamic scenarios, and
it converges quickly in dynamic, independent, and randomly
distributed traffic [14]. QL uses a matrix of evaluation scores
based on the rewards of each successful action. The proposed
scheme selects the best relay node for D2D communication to
enhance the energy efficiency by maximizing the EDR. The
contributions of this study are summarized as follows:
• Narrowband D2D: This article adapts the D2D commu-
nication as a routing extension for relaying NB-IoT UE
data to the BS/eNB in order to maximize the EDR.

• OptPRS: This article formulates the D2D relay selection
problem as an optimization problem to maximize the
EDR. In order to solve this problem,we propose a simple
yet effective solution called the optimum potential relay
set (optPRS). The proposed optPRS forms a set of
potential relays by comparing the essential parameters
with very low complexity.

• Intelligent-D2D: Furthermore, to ensure the maximiza-
tion of the EDR in dynamic environment, this article
models the relay selection as an MDP problem and
utilizes RL based ML to solve the problem. The
proposed ‘‘RL-ID2D’’ mechanism selects the relay
efficiently from the PRS to maximize the EDR and
ultimately improves energy efficiency.

• Performance Evaluation:To validate the performance of
the proposed intelligent scheme, simulation results are
presented. A comparison of RL-ID2D with the oppor-
tunistic model [15] and the deterministic model [16] is
presented, which shows that the RL-ID2D improves the
EDR.

1) PAPER ORGANIZATION
The remainder of this paper is organized as follows: Section II
presents detail of the related research work. Section III
explains the system model and defines the essential param-
eters, and Section IV formulates the problem. Section V
provides the optPRS solution and shows how RL-ID2D can
enable NB-IoT UE to select relay nodes intelligently in
detail. Section VI discusses the performance evaluation and
simulation results, and Section VII provides application areas
and future research directions. Section VIII concludes this
article.

II. RELATED WORK
Reliability is a desirable requirement in 5G-enabled net-
works, and it corresponds to an increased data delivery
ratio, especially for healthcare applications. Currently, a large
number of studies have been conducted to improve the per-
formance of D2D communication [17]. However, few studies
have investigated ways of improving the reliability of D2D
communication in NB-IoT-based networks. Militano et al.
proposed coalition-based multi-hop D2D communication in
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TABLE 1. Symbols used throughout the paper.

5G networks [18]. In the proposed mechanism, a coalition
is formed by a centralized eNodeB unit. The devices in its
close proximity form a cooperative chain to upload the data
to eNodeB.

The authors formulated an optimization problem to maxi-
mize the throughput and coalition time. The authors in [19]
investigated a secure and trustworthy relay node selection
for D2D communication in an NB-IoT network. This work
is an extension of the work proposed in [18]. The authors
proposed that the eNodeB should form an information matrix
in order to maintain the record of the users and reliable relay
nodes. Moreover, the nodes in the cooperative chain refer
to the trustworthy connecting relay link to be stored in the
information matrix. However, the focus of this study is to
identify malicious relay devices and improve the data rate.

The reliability of a wireless network can be improved
by using broadcasting-based opportunistic routing proto-
cols. Opportunistic routing protocols broadcast messages to
potential relays, which select the forwarder by co-ordination
amongst themselves [15]. In [15], a UE transmits a packet
to relaying nodes in an active duty cycle period if it finds
an opportunity. However, if it fails in that attempt, it re-
transmits in the next available opportunity to another node
from the relaying group. The re-transmissions expire after a
threshold time interval if the UE fails to successfully transmit
the data. However, it is evident that the associated overhead
is significant with this approach, and it leads to increased
delay and energy consumption. This approach is not suitable
for delay-sensitive applications such as healthcare, defense,
and industrial automation. In [16], the authors proposed a
deterministic approach instead of an opportunistic model
for relay selection. The proposed approach selects the relay
for D2D communication at the BS, which eliminates the
additional delay present in the opportunistic model to wait for
cellular UE (CUE) to operate as a relay. However, to select
the relay in a deterministic manner, the NB-IoT UE must
transmit a pilot signal every time it has data to upload to the
eNB/BS. The CUEs that qualify and are available for D2D
communication transmit the pilot signal to the eNB/BS to
select the best relay. The eNB/BS selects the best candidate
for relaying the data after ranking the relays in decreasing

order on the basis of channel gain and residual power.
This incorporates additional processing and delay, thereby
increasing energy consumption.

To the best of the authors’ knowledge, this article is the first
to investigate the selection of a relay for D2D communication
by modelling it as a MDP problem and solving it using RL.

III. SYSTEM MODEL
A. SYSTEM MODEL AND DEFINITIONS
In this study a two-tier network model is considered,
which includes CUEs and NB-IoT UEs. The network model
considers the scenario of a smart city, where the NB-IoT
UEs have critical data to transmit. Timely and reliable data
transmission is of utmost importance. The R UEs (including
CUEs and NB-IoT UEs) are distributed randomly, and can
directly communicate with the BS/eNB, which is placed at
the center of the cell. However, it is expected that the NB-
IoT UE should transmit the uplink data to the BS/eNB in
a two-hop manner by exploiting the CUE as a relay in a
D2D communication. The uplink bandwidth is subdivided
into C sub-channels. Each NB-IoT UE and CUE shares
the same uplink resources to communicate with BS/eNB.
Any CUE, under conditions that qualify for it to act as a
relay (explained in the next subsection), can assist a NB-
IoT UE with uploading the data to BS/eNB, exploiting D2D
communication. Table 1 presents the list of symbols used
throughout the paper.

1) CHANNEL MODEL
The channel propagation model between the transmitter and
receiver considered in this study is the Rayleigh channel, and
the channel gain is normally distributed. Rayleigh channel
correspond to urban environment, where transmitted signal
experiences multipath fading.

2) MOBILITY MODEL
The mobility model used in the system model is random
waypoint model (RWP). The BS/eNB is assumed to be at the
center of the cell and the UEs are assumed to be distributed
randomly around the BS/eNB. The UEs are identical and
independently distributed and each UE is moving with
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TABLE 2. Simulation parameters.

random velocity. The pause time which show how long the
UE is static at one point is also random. The direction in
which the UE is moving is also random. The NB-IoT UE is
considered to be static, while CUEs are mobile. The lower
and upper bound for the random values is shown in Table 2.

3) SIGNAL-TO-INTERFERENCE-NOISE-RATIO (SINR)
The communication links, that is, the D2D and cellular link
uses the same network resources, therefore,

cross-tier interference among all the communication links
is avoided assuming that a unique sub-carrier is allocated
to each UE. Furthermore, the interference is minimized as
the transmitting power for D2D link is lower than that of
CUE direct links assuming the distance between the D2D pair
is small. As per the 3GPP specifications, the SINR for the
LTE-A link is calculated by the UE internally and reported
to eNB during uplink transmission to determine the link
quality of eachUE. The SINR is calculated from the reference
signal received quality (RSRQ), which is determined by the
reference signal received power (RSRP) [20]:

RSRQ = NPRB ×
RSRP
RSSI

(1)

where RSSI is the received signal strength indicator (RSSI)
and NPRB is the number of physical resource blocks. The
SINR is then measured as

SINR =
12.RSRQ

x
where x =

RE
RB

(2)

where RE indicates the resource element and RB indicates
the resource block. The RE is composed of one sub-carrier,
whereas RB is contains 12 sub-carriers. The 12 in eq.( 2)
indicates the 12 sub-carriers of RB over which the RSSI
is measured. Whereas, the RSRP is measured over a single
RE. In LTE-A, the channel quality indicator (CQI) based on
SINR is calculated by UE and exchanged with eNB every
2–10 ms [20].

B. DEFINITIONS
1) PACKET DELIVERY RATIO
The PDR is a key performance metric for evaluating the
reliability. The PDR is defined as the ratio of the number of

packets that are transmitted at the transmitter to the number
of packets received at the receiver end [21]. The following
expression defines the PDR as

PDR =

∑E
e=0(Ee)∑L
l=1(Ll)

(3)

where L is the total number of packets transmitted and E is
the total number of packets received.

2) POTENTIAL RELAY SET
The potential relay set (PRS) for NB-IoT UE is the N
number of CUEs that are within the range of NB-IoT UE
for D2D communication and assist NB-IoT UE to forward
the packet to the eNB. The PRS is also denoted by the state-
space K = {k1, k2, kn, . . . , kN } of the environment, where
n ∈ {1, 2, . . . ,N }.

3) END-TO-END DELIVERY RATIO
The EDR is a performance metric in multi-hop transmissions.
It is the product of PDR from NB-IoT UE to CUE relay and
from relay CUE to BS/eNB. To achieve 100% EDR, both
ratios should be 1. The EDR is calculated using the following
expression:

EDR =
N∏
n=1

(PDR(kn)UE→CUEkn
.PDR(kn)CUEkn→BS/eNB) (4)

IV. PROBLEM FORMULATION
We formulate an EDR maximization optimization problem
for the uplink of NB-IoT systems and provide an effective
and simple solution to solve the problem.Mathematically, the
problem is formulated as follows:

maximize EDRl(kn)UE→CUEkn→BS/eNB

subject to C1 : PNB−IoTt(UE→kn)
≤ ζ

C2 : δkn ∈ {0, 1}

kn ∈ {k1, k2, · · · , kN }, l ∈ {1, 2, · · · ,L}

δkn =

{
1, SINR(kn)kn→BS/eNB ≥ β

0, otherwise

PNB−IoTt(UE→kn)(min)
≤ ζ ≤ PNB−IoTt(UE→kn)(max)

(5)

In the optimization problem (5), the objective function
is related to the total uplink EDR over kN relays for L
packets over time t . The constraint C1 shows the required
transmission power for the NB-IoT UE needed to transmit
the data to the CUE relay. It also indicates that the CUE relay
is bounded to be present in the feasible transmission power
range ζ of the NB-IoT UE. The constraintC2 reflects a binary
allocating indicator δkn , that is, δkn is 1 if the CQI of the CUE
relay kn with BS/eNB is above the threshold β within the
context of the SINR. When δkn = 1, CUEkn can be included
in PRS. It also prevents the use of a relay with a poor CQI to
minimize the delay in the uplink transmission.
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FIGURE 1. The agent–environment interaction in a Markov decision process using Q-Learning, and state-transition diagram in RL-ID2D with kN
states.

In order to solve the problem (5), several techniques are
presented in the literature to solve for searching optimal
combinations such as branch-and-bound and exhaustive
searches. However, these techniques require all possible
combinations to be searched to determine the optimal
solution because these problems are usually NP-complete or
even NP-hard [22]. To solve the problem for the optimal
solution, we propose a two-step intelligent algorithm based
on RL. Moreover, in practice, only the CQI and transmit
power of the NB-IoT UE are unable to ensure a substantial
EDR. Therefore, to ensure maximumEDR, we propose a RL-
based algorithm that selects the relay based on its reward that
reflects the history of practical performance.

V. REINFORCEMENT LEARNING ENABLED RELAY
SELECTION PROPOSED SCHEME
This section presents the proposed two-step solution to find
an optimal CUE relay. The first step refers to ‘‘optPRS’’
(Algorithm 1) and provides insight into our proposed solution
to solve the problem (5). When the NB-IoT UE has critical
data to upload, it broadcasts a pilot signal to R CUEs. The
CUEs analyze the received pilot signal by determining their
SINR threshold β and channel gain g with BS/eNB. The
CUEs also compare the transmission power of the NB-IoT
UE threshold ζ by analyzing the received power of the pilot

signal. If the CUE satisfies the threshold values, it qualifies
as a relay; otherwise, it withdraws itself. The NB-IoT UE
forms a PRS by receiving the response from CUEs that are
available for relaying the data. The PRS forms the state-
space for RL-ID2D. Although the parameters considered in
Algorithm 1 are sufficiently technical to ensure a good EDR,
in dynamic environments, it is difficult to guarantee a good
EDR. To consider the practical performance in a dynamic
scenario, we propose a solution based on QL in Algorithm 2.
Before considering the proposed RL-ID2D, it is critical to
understand the formulation of MDP, and the relation between
Bellman’s equation and QL optimality.

A. MARKOV DECISION PROCESS
The MDP forms the basis of RL, as RL is the learning
methodology for sequential process [23]. Such problems can
bemodelled asMDP represented by the tuple (K,A,P,R) as
shown in the Fig. 1. WhereK represents finite state-space K ,
A is a finite action space of agent (a set of possible actions),
P is the transitional probability matrix which determines the
probability of transition from current state kn(t) to next state
kn(t + 1), and the R represents the reward function which
determines the reward for the agent while moving from one
state to another (r : K x A x K ← R). If the dynamics
of the environment are fully known, dynamic programming
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Algorithm 1 Optimal Selection of PRS (optPRS)

1: INPUT: ( β, ζ , PNB−IoTt(UE→kn)
, SINR)

2: for (r = 1, . . . ,R) do
3: if SINR > β then
4: if PNB−IoTt(UE→kn)

≤ ζ then
5: Push r(t) UE in a new array PRS
6: else
7: withdraw from selection process
8: end if
9: else
10: withdraw from selection process
11: end if
12: end for
13: OUTPUT: (PRS K = {k1, k2, . . . , kN })

provides the optimal solution. However, in the wireless
environment, the transitional probabilities are unknown [24].
The policy π is an sub-element of RL, which is to set the
rules for an agent to select an action against the state of the
environment. An RL agent at each time step t observes the
state kn(t), takes an action at , receives the reward r(kn(t), at ),
and observes the new state kn(t + 1). The goal of RL agent is
to develop a optimal policy π (at |kn(t)) to know the dynamics
of the environment to take best action on a state for optimal
solution [14], [25].

The main objective of policy π is to maximize the
accumulative expected reward in the long run (return). The
return can be expressed as:

Gt = E
[ ∞∑
m=0

γmr(k(t + m), at+m)|k1 = k(t)
]

(6)

The γ is the discount factor to keep the reward bounded,
where 0 ≤ γ ≤ 1. The discount factor determines the present
value of future rewards. When the value of γ is set to 0, the
agent is more concerned about the immediate reward, that
is, rk (t). As the value of γ approaches 1, the agent takes the
future reward into consideration, which is the reward over the
long run.

An agent determines the quality of a state kn(t) as good or
bad using a function known as value function V (k). The value
function is measured using following expression:

V (kn) = E[G(t)|kn(t) = kn] (7)

Similarly, to determine the best action at at a specific state
kn(t), an action-value function Q is used, which is measured
as:

Q(kn(t), at ) = E[G(t)|kn(t) = kn, at = a] (8)

The state-valueV (k) can be evaluated ifQ andπ are known
using:

V (kn) =
∑
a∈A

π (a|kn)Q(kn, a) (9)

The V and Q can be related as:

V (kn) = Ea∼π(a|kn) [Q(kn, a)] (10)

Our main objective is to determine optimal policy π∗,
which can easily be derived from optimal Q∗. The value
function Q(kn(t), at ) quantifies state-action pair, i.e., it deter-
mines how good is it to take a specific action at at a
specific state kn(t) following the optimal policy. The action-
valueQ(kn(t), at ) can be rewritten using Bellman expectation
function as [14], [25]:

Q(kn(t), at ) = r(kn(t), at )+ γ
∑
k ′∈K

Pkk ′ (a)V (k ′) (11)

where k ′ represents state kn at time (t + 1). Therefore, the
Bellman optimality equation for action-valueQ∗ is expressed
as [14], [25]:

Q∗(kn(t), at ) = r(kn(t), at )+ γ
∑
k ′∈K

Pkk ′ (a) max
a′

Q∗(k ′, a′)

(12)

where, a′ represents action taken by agent at time (t+1). The
optimal policy can easily be deduced from optimal action-
value function Q∗ by selecting the maximum action-value at
each state. This methodology is known as action-value based
learning, as the optimal policy is derived from the action-
value function [14]:

π∗(kn) = argmax
a∈A

Q∗(kn, a), ∀kn ∈ K (13)

However, the dynamics (transitional probabilities) in
reality environment are unknown. One of the effective RL
algorithms to solve Bellman optimality equation is QL [25].
QL is the off-policy temporal difference RL methodol-
ogy [14]. In QL, the agent interacts with the unknown
environment in order to learn and optimize the performance
of the system. Off-policy refers to the behavior of the agent,
which directly optimizes the action-value Q independently
from the policy [26]. This approach streamlines the algorithm
and enables quick convergence. The policy determines and
updates the action-value of the state-action pairs that are
conducted in each iteration as a lookup table using Bellman
Equation:

Q(kn(t), at ) ← Q(kn(t), at )+ α[4Q(kn(t), at )] (14)

4Q(kn(t), at ) = [rk (t)+ γ max
a
Q(kn(t + 1), at )

−Q(kn(t), at )] (15)

where α is the step size, which is also known as the learning
rate and the value of α ∈ (0, 1]. It can be seen from (14)
that if α is set to 0, then the agent will not learn, and when α
has a high value such as 0.9, then the agent will learn quickly.
4Q(kn(t), at ) is the 1-step error estimation with respect to the
optimal functionQ∗. It improves the action-valueQt one step
closer to the desired optimal action-value Q∗ by minimizing
expected value of error estimation [27].

1) CONVERGENCE OF QL
The convergence of the QL is guaranteed which means the
policy will become arbitrarily close to the optimal policy
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over the period of time. The convergence depends upon the
following two limits [14]:
• The learning rates must approach zero, but not too
quickly. Formally, this requires that the sum of the
learning rates must diverge, but the sum of their squares
must converge.

• Each state-action pair must be visited infinitely often.
This has a precise mathematical definition: each action
must have a non-zero probability of being selected by
the policy in every state, i.e., π (a|kn) > 0 for all state-
action pair. In practice, using an ε-greedy policy (where
ε > 0) ensures that this condition is satisfied.

2) ε-GREEDY POLICY
In order to maximize the reward, the agent should prefer
the learned actions in the past, which provide effective
rewards; this is known as exploitation. When the agent
explores different actions randomly in search for better
action selection, it is known as exploration. One of the best
ways to balance exploration and exploitation is by using
ε-greedy. The agent will explore with ε probability and
exploit with 1 − ε. The ε-greedy prevents system from
premature convergence.Moreover, it raises the probability for
the selection of unexplored actions. During exploitation, the
agent selects the action greedily using eq. (14) according to
the following expression:

agreedy = argmax
a
Q(kn(t), at ) (16)

B. REINFORCEMENT LEARNING ENABLED RELAY
SELECTION
This work proposes a dynamic relay selection method based
on RL. The proposed approach learns the behavior of the
CUE relay from the perspective of availability and the EDR
associated with it. After the learning period, the proposed
RL mechanism intelligently selects the best CUE relay that
provides the maximum EDR. The qualitative metric for the
selection of the relay is the maximum EDR, which varies
with location and SINR. Thus, it is critical to select the
optimum CUE relay to achieve the best EDR for reliability
and minimum energy consumption. This section presents the
modeling of the learning process as a QL policy for the best
CUE relay selection.

1) Q-LEARNING FRAMEWORK
The QL comprises an agent (NB-IoT UE) that learns the
behavior of the states (the CUE relays) in the environment,
a policy (parameters that define the optimal CUE relay,
that is, the one with maximum EDR), a reward, and the
action-value function Q (accumulated reward). The policy
determines the behavior and learning of an agent (NB-IoT
UE) at a given time step. Fig. 1 shows the proposed QL-based
D2D (RL-ID2D) communication model for NB-IoT with the
elements. In this study, the following parameters of QL are
considered:

a: POLICY
The main objective of policy π in QL is to maximize the
accumulative reward, which is an action-value function of the
Q-value using eq. (14). TheQ-value reflects the effectiveness
of the state (CUE relay) of an environment in terms of the
EDR, and it is critical for the NB-IoT UE to select the CUE
relay that maximizes the EDR.

b: STATE-SPACE
The environment in this problem is the N number of states
(CUE relays), that is, kn ∈ {k1, k2, k3, . . . , kN }, at discrete
time step t ∈ {0, 1, 2, 3, . . . , }. At each time step t , the NB-
IoT UE (agent) observes the state kn, that is, kn ∈ K , and
takes an action at such that at ∈ A according to the policy π .
Mathematically a state kn(t) is expressed as follows:

kn(t) = (PNB−IoTt(UE→kn)
≤ ζ, δkn = 1) ∈ K ∀kn ∈ PRS (17)

c: ACTION AND REWARD
The action at in RL-ID2D is defined as the selection of
relay UE kn(t) from PRS. The reward is the quantitative
performancemetric of action at (k) on a particular state. In this
study, the reward rk (t) is the reward for choosing the CUE
relay kn at time step t , which uploads the data of NB-IoT
UE to the BS/eNB in a two-hop manner by exploiting D2D
communication. Two values for reward are considered: 1 or
0. The reward is 1 when the selected CUE relay successfully
uploads the data of NB-IoT UE to the BS/eNB, and an
acknowledgment is received. Otherwise, the reward is 0.
The at and rk (t) are related as expressed in the action-value
function (Q-value eq. (14)). Mathematically at and rk (t) is
expressed as follows:

at = (kn(t) ∈ K ) (18)

rk (t) =

{
r+ = 1,

∑L

l=1
EDRl(kn) = 1

r− = 0, otherwise
(19)

d: TRANSITIONAL PROBABILITY
The transitional probability matrix Pkk‘ is expressed as
follows:

Pkk‘ =

P11 · · · P1t
...

. . .
...

PN1 · · · PNt


The rows represent states KN , where N = {1, 2, · · · ,N }

and columns represents action a taken at time step t . In reality,
the dynamics (transitional matrix) is unknown, as explained
above. In QL, the transitional matrix is replaced byQ−value
function, which is shown in the Fig. 1.

e: Q-VALUE FUNCTION
The action at each time step is categorized as good or
poor according to the reward it gains from the environment.
However, the productivity of action in the given state over the
long run is determined by the action-value function, which
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is the Q-value. The Q-value of a state-action pair specifies
the accumulated reward that an agent achieves at a particular
state over the long run. It is possible that a state has a low
immediate reward, but has a high accumulated reward. The
Q-value in QL is calculated and updated using eq. (14).

f: INCENTIVE FOR CUE RELAY
It is necessary to determine why CUEs will allow the
personal resources and device privacy to be shared with NB-
IoT UE, as practically CUEs are selfish and unwilling to
share communication resources. The answer is defined in the
Smart Media Pricing (SMP) framework in [28]. The SMP
proposes that the CUEswill price their resources used in relay
transmission in terms of incentives from service providers,
as shown in Fig. 1. The price for these incentives is paid by the
NB-IoT UE or the service provider depending on whether the
relaying transmission is an uplink or downlink, respectively.

2) RL-ID2D

Algorithm 2 Intelligent Device-to-Device Communication
(RL-ID2D)
1: INPUT ( PRS, α, γ , Q(kn, a), σ )
2: Initialize: (Q(kn, a), α =step size, σ , γ )
3: Select the first kn(t) randomly from PRS
4: for (l = 1, . . . ,L) do
5: ε = random ([0→ 1])
6: if ε ≤ σ then
7: choose kn(t) randomly from the PRS for exploration

8: if transmission successful then
9: rk (t) = 1
10: else
11: rk (t) = 0
12: end if
13: else
14: choose kn(t) with highest Q-value using eq. (16)
15: if transmission successful then
16: rk (t) = 1
17: else
18: rk (t) = 0
19: end if
20: end if
21: update Q(kn(t), at ) using eq. (14)
22: update kn← kn(t + 1)
23: end for

Algorithm 2 provides detailed insight into the proposed
RL-ID2D. In the RL-ID2D, the NB-IoT UE inputs the
information of PRS into the QL-based relay selection
mechanism, which is explained as follows:

• The step size α such that α ∈ (0, 1], discount factor
0 ≤ γ ≤ 1, and ε > 0 are set.

• Initializes Q(kn(t), at ) for all states kn ∈ K and
action a ∈ A except for a terminal state, which is
Q(terminal) = 0.

• Select the initial relay UE randomly as an initial state.

• For each time step t , ε is randomly generated between
{0→ 1}. If the value of ε ≤ σ , the NB-IoT UE explores
to find the best relay UE by selecting the relay UE
randomly from PRS. Otherwise, it exploits by selecting
the relay UE that has the maximum Q-value from the
Q-matrix using (16).

• The reward at each time step is observed, whether it
is exploration or exploitation, and the reward matrix
is updated. It should be noted that the reward is 1 for
successful transmission of NB-IoT UE data to BS/eNB
with good PDR; otherwise, the reward is 0.

• After the reward is recorded, RL-ID2D updates the
Q(kn(t), at ) using (14).

• After the learning period ends, the RL-ID2D eventually
selects the best relay that maximizes the EDR with
minimum overhead.

3) COMPLEXITY ANALYSIS OF RL-ID2D
The complexity of the algorithm can be determined by
analyzing the steps of optPRS and RL-ID2D. The optPRS
will work until R CUEs in the network and all the other
steps are single-step operations. Therefore, the complexity
of optPRS is O(R). The steps in RL-ID2D are single-step
operations with the exception of step 14, in which RL-ID2D
has to search for the maximum Q(kn(t), at ). The state-action
space in our environment is a single-dimension array as the
only action a is defined in this article. Therefore, we can
simply write that the complexity of RL-ID2D in the worst-
case scenario is O(K ). The total complexity of the two-step
solution is O(R)+O(K ), which means that in the worst-case
scenario, the complexity directly scales with the number of
CUEs in the network.

VI. PERFORMANCE EVALUATION
To validate the performance and efficiency of our proposed
scheme, we performed simulations and compared the results
with the state-of-the-art opportunistic [15] and determin-
istic [16] schemes. Moreover, a comparison with random
relay selection is also presented. The simulation results
show that our proposed intelligent methodology successfully
maximizes the EDR in the uplink of NB-IoT systems.

A. SIMULATION SETUP
The simulation setup consists of R users that are independent,
and randomly distributed in a single cell. Channel conditions
are dynamics based on SINR value and CUEs are not static.
First, we segregate the R users into NB-IoT and CUE relays,
and then select one of the NB-IoT users that tries to upload
its data packets to the eNB/BS using the selected CUE relay.
The PRS is updated based on CQI and availability of CUE
using optPRS. The NB-IoT is deployed in in-band mode,
in which a PRB of 180 kHz is allocated for NB-IoT UE
data within cellular band. In this study, it is assumed that
upon selection of CUE relay the PRB is randomly assigned
to NB-IoT UE within CUE’s frame. The maximum transmit
power of the NB-IoT UE is set to 14-18 dBm, which is
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standardized by 3GPP for NB-IoT to limit the interference
with cellular UEs. The SINR threshold β is assumed to be
13 dB. The agent in RL model learns by interacting with
the state-space of environment at discrete time steps, there-
fore, simulation results are presented over time steps (No.
of iterations). The QL parameters (α, γ, σ ) are considered
to be variable, and simulations are carried out with different
parameters. Table 2 shows different simulation parameters
along with Q-learning parameters considered for simulation
study.

B. SIMULATION RESULTS
Fig. 2(a) illustrates the impact of considering QL for the
selection of the best relay in the context of EDR. Fig. 2(a)
depicts the results with different values of (α, γ, σ ). The
increasing value of σ shows that the agent (NB-IoT UE) will
explore the environment more in search of a better CUE relay.
The curve shown in purple indicates that the agent learning
at the rate α = 0.1 with γ = 0.3, σ = 0.7 converges
most quickly between 80 and 100 iterations. The downward
spikes in the graph show the penalty received when the
selected CUE relay fails to deliver the packet. The failure is
caused due to the selection of CUE relay while exploration
or exploitation, where the selected CUE UE either has the
poor SINR or unavailable at the time of uplink transmission
due to dynamic conditions. It is evident from the graph that
as the exploration σ , the learning rate α, and discount factor
γ increases, i.e., value approaches 1, the agent explores and
learns more with interest in long term reward for better CUE
relay selection. Therefore, the cumulative Q-value increases
and the downward spike due to loss in EDR also decreases.
The convergence of the graph also shows the convergence
of policy toward optimal selection, that is, the CUE relay is
available and provides a good EDR.

Fig. 2(b) shows a comparison of achieved EDR using
RL-ID2D for different parameters of QL. The difference
in the achieved EDR is explained by the exploration and
exploitation dilemma as explained in section VA. Increasing
the exploration by increasing the value of σ and increasing
learning rate α, and discount factor γ allows the agent (NB-
IoT UE) to learn more and to search for a better CUE relay,
which is essential in a dynamic environment and yields a
better-accumulated reward in the long-run. Increasing the
exploitation allows the agent to take the action based on
past experiences, which in this case is the Q-value. The
exploitation focuses on maximizing the immediate reward
and allows the agent to act greedily. The uncertainty in
exploration is that the action which produces a better reward
is unknown. However, it is better to explore non-greedy
actions if there are many time steps ahead in which they may
be subsequently exploited, which is reflected in the result, that
is, increasing the exploration increases the EDR. Moreover,
the result depicts that how changing QL parameter affects in
achieving the near optimal EDR.

Fig. 2(c) depicts the adaptive nature of RL-ID2D in
dynamic environment. The EDR achieved in dynamic

channel on every iteration and adaptiveness of RL-ID2D is
shown. The result is simulated on fixed 18 dB transmission
power of Nb-IoT UE with σ = 0.1, α = 0.8, γ = 0.9.
The EDR at every iteration is shown by blue squared dot.
In case of the transmission failure, the EDR drops to zero %,
which can be seen as a gap circled at iteration number
190 in Fig. 2(c). The failure occurs when agent (NB-IoT)
selects a state (CUE relay) while exploration or exploitation,
which either has the poor SINR or is unavailable at the
time due to dynamic conditions. A zoomed-in version is
included within the Fig. 2(c) for better visual of iteration
number 190. RL-ID2D quickly adapts and maintain the EDR
closer to 98% in the very next iteration. Similar behavior
can be seen in the later iterations. The quick adaptiveness
is due to the Algorithm 1 which makes sure to update the
PRS with available and eligible CUE relays. It can be seen
that as the model converges at 100th iteration, the proposed
methodology also converges to select best cellular relay with
optimal EDR. The EDR becomes stable more or less at 98%
after system converges at 100th iteration.

Fig. 2(d) provides a comparison of our proposed RL-ID2D
with a randomly selected CUE relay for D2D communication
in terms of the EDR achieved. The graph clearly shows
a significant difference in the EDR achieved using both
methods. Moreover, it also depicts that increasing R increases
the EDR. This can be explained by the fact that increasing
R increases the probability of availability of potential CUE
to be used as a D2D relay, which in turn augments EDR.
In addition, the rising behavior of the curves can be
understood by the fact that increasing the transmission power
of the NB-IoT UE strengthens the link between the NB-IoT
UE and the CUE relay, which augments the PDRUE→CUEk .
The results show that our proposed RL-ID2D converges to
achieve an EDR of approximately 98%.

The coverage area is one of the most important parameters
in communication, and directly affects the data delivery.
Fig. 2(e) shows the results of EDR with varying coverage
areas and transmit power of NB-IoT UE Pt = PNB−IoTt(UE→k)
values. It also presents a comparison of random selection and
RL-ID2D for a fixed number of users, R = 50. The result
demonstrates that increasing the transmission range degrades
the performance significantly when selecting the CUE relay
randomly without considering the SINR and transmission
power of the NB-IoT UE. While increasing the coverage
area, RL-ID2D enables the NB-IoT UE to upload the data
to BS/eNB with 96% EDR transmitting at 18 dBm and 90%
EDR, even with a 5-dBm transmission power. This behavior
is explained by the fact that the two-step RL-D2D ensures
that even when PNB−IoTt(UE→k)

is low, it selects the CUE relay with
optimal CQI, and QL further enhances the performance by
exploration and exploitation. The opportunistic model claims
that the EDR of their proposed solution approaches 98% at
8 dB transmission power. However, the D2D communication
range considered in their performance evaluation is only
40 meters. On the other hand, it is evident from the Fig. 2(e),
our proposed RL-ID2D outperforms by achieving 98% EDR
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FIGURE 2. (a) Convergence of learning estimate (cumulative Q-value) for varying QL parameters; (b) impact of considering QL for the
selection of the best relay in the context of EDR; (c) adaptive behavior of RL-ID2D; (d) comparison of EDR versus the varying transmit
powers of NB-IoT users for different fixed values of R; (e) comparison of EDR versus the coverage area in Km for different transmit
power levels of the NB-IoT users over a fixed value of R = 50 users; (f) comparison of EDR with the varying transmit power values of
NB-IoT users.

at 70 meters of D2D communication range even with 5 dB
transmission power.

Fig. 2(f) provides a comparison of RL-ID2D with state-
of-the-art opportunistic [15] and deterministic [16] schemes.

The D2D communication range considered in the given result
is 130 meters. It can be seen that RL-ID2D outperforms
other techniques, and it performs better than the opportunistic
model because the opportunistic model offers the NB-IoT
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FIGURE 3. Use cases of D2D communication in B5G network.

UE a CUE relay in an opportunistic manner. The NB-IoT
UE has to seize the opportunity to upload the data in a two-
hop manner; if it fails, then NB-IoT UE has to wait for the
next duty cycle. It also promotes dropping the packet after
a certain threshold time. However, the deterministic model
ensures the availability of the CUE relay by selecting the relay
in a deterministic manner using BS/eNB. BS/eNB selects
the relay after receiving the request from the NB-IoT UE to
provide a CUE relay, and informs NB-IoT UE. This approach
guarantees that the NB-IoT UE gets a CUE relay. However,
the deterministic model augments the system overhead by
increasing control signals. On the other hand, RL-ID2D
improves the relay selection process by incorporating QL,
which intelligently selects the optimal relay in dynamic
environment. Moreover, step 1 ’optPRS’ guarantees the
availability of the CUE relay by updating PRS periodically
with CQI, as prescribed in the LTE-A standard [20].

VII. APPLICATION AREA AND FUTURE
RESEARCH DIRECTION
D2D communication offers vast deployment scenarios and
applications not only limited to 5G, but in B5G and 6G
as well. Standalone and non-standalone development mode
for B5G are standardized in Release 15-17. Non standalone
development mode is based on LTE-A core network and

offers back compatible with LTE-A. The standardizing
working group is active to improve D2D communication
in latest Releases 16 and 17, where it is termed as ProSe.
The 3GPP has also introduced a new LPWA in Release
12-17 for mMTC termed as LTE for MTC (LTE-M), which
has integrated features of LTE and an improved version of
NB-IoT [29]. Therefore, this study is not only limited to
NB-IoT and LTE-A, but can be modified for other enabling
technologies as well. The application area of D2D in real-
life is not only limited to relaying the data, but it includes
data processing, data forwarding, cooperative learning, data
caching, and enhancing spectrum efficiency as shown in the
Fig. 3. Usually, D2D communication involves two tier net-
work communication in all these scenario mentioned above.
Zhang et al. in [9], presents a detailed vision of application
area in B5G network, and explains how D2D communication
can assist in data processing among edge devices. Moreover,
the article presents the enabling technologies other than 5G
along with specifications for D2D communication. The D2D
standardization efforts by 3GPP till date in every release
are very well presented in [12]. Cooperative communication
and cooperative learning is considered to have prime role to
support fully autonomous B5G and 6G network, which are
well described in [30]. Therefore, investigating multi-agent
RL (MARL) environment, where multiple devices interact
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with each-other and share the already learned parameter using
federated learning is an open issue, and future research should
study MARL scenarios.

VIII. CONCLUSION
To increase the coverage area and reliability of the IoT
system, the NB-IoT introduces an increased number of
retransmissions for data and control packets, which degrades
the overall energy efficiency and throughput of the system.
This paper presents a two-step RL-based intelligent-D2D
(RL-ID2D) communication mechanism for uploading the
data of the NB-IoT UE to the BS/eNB in a two-hop manner.
The first step ensures the optimal channel conditions and
availability, whereas the second step of RL-ID2D ensures
the selection of the relay with optimal practical performance.
Simulation results show that RL-ID2D selects the cellular
relay with the highest probability of availability with a good
EDR.
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