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ABSTRACT Cognition is of paramount importance in modern communication systems for this brings
the potential for adaptiveness and self-fine-tuning for dynamic reconfigurability. To achieve this feat, two
primary tasks are to identify the influential configurable parameters and availability of comprehensive
datasets representative of the real-world scenarios rather than simulated ones. For this article, an extensive
dataset covering diverse settings of wireless sensor networks (WSNs) driven internet of things (IoT) is
collected. It covers broad variations of 10 pre-configured communication parameters as well as some
runtime information. In addition to legacy parameters (e.g., transmission power, and packet size, etc.),
we also used two different medium access control protocols (i.e., carrier sense multiple access (CSMA) and
time-slotted channel hopping (TSCH)), and routing metrics (i.e., objective function 0 (OF0), minimum rank
with hysteresis (MRH), MRHwith expected transmission count (ETX2)). Important quality of service (QoS)
metrics like packet delivery ratio, throughput, and energy consumption against all combinations of the
communication parameters are measured and recorded. A statistical analysis is carried out to identify the
correlations among the communication parameters and QoS metrics. The results lay the foundation for
the design of a data-driven framework for predictive QoS control in the IoT.

INDEX TERMS Data-driven design, quality of service, Internet of Things, wireless sensor networks, dataset.

I. INTRODUCTION
Sensing coupled with communication gave birth to the wire-
less sensor networks (WSNs). WSNs are one of the major
enablers for the realization of the internet of things (IoT),
and thus central to realizing a futuristic smart world [1].
Internet Protocol version 6 (IPv6) as an identifier for the IoT
devices can facilitate as much as 340 undecillion addresses,
thus offering a humongous margin for massive extension
in connectivity [2]. The number of devices connected to
IoT is 8 billion, and growth is expected to reach 21 bil-
lion by 2025 [3]. The potential proliferation of connectivity
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diversifies the design challenges to meet the required
demands of the expanding IoT landscape. Scale, deployment
scenarios, and application demands are some of the most
significant factors defining the communication requirements
and challenges for WSN driven IoT design [4].

Quality of service (QoS) has been a persistent challenge in
the communication paradigms, and WSNs are no different.
Error-prone links, limited bandwidths, constrained devices,
content-rich applications, and incommensurate scaling render
meeting QoS requirements more strenuous [5]. On the other
hand, optimizing QoS metrics brings-forth the intractable
problems that are NP-hard. The task outgrows further as
applications require multiple, often conflicting metrics to be
addressed simultaneously [6]. Thus, the legacy approaches
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do not suffice to meet QoS requirements adequately in the
prevailing evolution of WSNs and IoT at scale. Of late, arti-
ficial intelligence and machine learning (ML) have brought
a data-driven approach to the research frontier. The solutions
based on a data-driven approach have been proving to be very
effective in different domains [7]. In addition to the potential
for sufficient accuracy, the solutions based on data-driven
techniques and ML are self-learning and adaptive [8] that
are amongst the most important traits in the modern sys-
tem design. These prospects motivate us to investigate the
data-driven methods for a challenging problem like QoS in
WSNs and IoT.

Before delving into the prospects of data-driven models for
QoS facilitation in WSNs and IoT, it is important to under-
stand the legacy research cycle in the context. The prevalent
methods to address a challenge or solve a problem in the
communication and networking domain are not inherently
designed to benefit from data-driven methods. Primarily,
the research focuses on the development of new protocols
and approaches which are empirically and/or mathematically
evaluated. Once comparison with existing proposals and/or
formal modeling yields improvement, a new entry in the list
of candidate solutions to that particular problem is made.
A sufficient evaluation of any potential proposal is subject
to extensive analysis and gauging that follows an exhausting
and costly standardization cycle. Only after completing these
long and hefty stages, a proposal can be put to production.
This limits the potential for realizing tangible improvements
in rational time and cost. Concepts like software-defined net-
working (SDN) and network function virtualization (NFV)
have made it possible to dynamically configure many of the
network properties and characteristics that were not possible
before [9]. SDN separates the control plane from the data
plane to achieve this feat. This opportunity demands the
avenues of improvements by playing with the configurable
properties available within the system. Therefore, banking
merely on legacy research to identify, invent, and implement
new proposals to cope with the problems must be comple-
mented with the opening and latitude on offer in the form of
SDN and NFV. Hence, we undertake to identify the potential
on offer in the form of a data-driven approach for dynamic
and seamless integration of possible run-time configurations
and fine-tunings in the system for performance gains.

The data-driven approach paves the potential for mak-
ing the best of whatever is available within a deployed
and in-operation communication system. The separation of
control and data planes provided by SDN enables dynamic
configuration of various communication parameters (e.g.,
transmission power, packet size) and protocols (e.g., medium
access control (MAC), routing, and modulation) [9]. Choos-
ing a suitable configuration depends on the physical charac-
teristics of the deployment and respective QoS demands. For
example, different application-specific QoS requirements in
unique physical settings can be met with particular configu-
rations of parameters like MAC and routing protocols, mod-
ulation techniques, transmission power, traffic rates, packet

sizes, etc. Therefore, identifying the relationships of these
parameters with QoS metrics can provide the basis for a sys-
tem that can configure suitable values for these parameters,
thus meeting the QoS goals.

To realize the data-driven solution to QoS in WSNs and
IoT, performance data is a primary requirement. The legacy
approach for experimental research in the domain of com-
munication has used simulators as the main tool. The simu-
lations based approach had been credibly accepted because
of the limitations in availability and control on the required
communication infrastructure. However, in the past decade,
the focus shifted towards building custom testbeds and using
real infrastructure for experimentation to have more realistic
results [10]. For this work, we have collected a large-scale
dataset against a wide range of configurations of different
parameters and protocols. The experiments were performed
using w-iLab.t [11], federated under FED4FIRE+ [12],
a Horizon2020 project. The measurements include packet
delivery ratio, throughput, and energy consumption against a
wide variety of parameter configurations. Analysis is carried
out to establish the relationship of parameter configurations
with the QoS metrics. The results encourage the adoption of
data-driven techniques for QoS in WSNs and IoT.

To summarize, the motivations and contributions of this
work are the following:
• discuss the research approaches and methods used in
wireless communication and networking, highlight the
limitations and constraints, and identify the potential on
offer in the form of a data-driven approach.

• highlights the need for comprehensive performance
datasets to benefit from data-driven methods.

• collects a dataset against a wide range of values of
different configurable parameters and protocols.

• analyze the relationship of communication parameters
and protocols with QoS metrics.

• identify and exemplify a window of opportunity for
further research based on a data-driven approach.

The rest of the paper is organized as follows. Section II
highlights the research context in the form of a discussion
on the legacy research cycle, its limitations, motivation to
adopt data-driven methods. Section II concludes with an
elaboration of the need for datasets for putting data-driven
methods into use. Section III explains the experiments con-
ducted. These details include the description of the testbed
used, topologies considered, protocols variations tried, and
parameters studied. A comprehensive analysis of the dataset
collected is presented in Section IV. The exploration includes
descriptive statistics of the QoS metrics observed, statisti-
cal correlations of the parameters with the metrics, pictorial
representation of single as well as multiple parameters on
the metrics. Section V concludes the article, brings out the
lessons learned, and future direction of research.

II. RESEARCH CONTEXT AND LITERATURE
In the following, we draw an account of the legacy research
model and define the data-driven paradigm along with the
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potential contribution in the QoS improvements inWSNs and
IoT.

A. LEGACY RESEARCH PARADIGM
For the sake of this work, the research efforts targeting QoS
are classified by twomethod-keys. One is the types of propos-
als, and the second is the types of evaluation. In the following
text-section, we elaborate on both aspects by highlighting
some standard examples, analyzing the strengths and weak-
nesses, and theorizing the motivation for this study.

1) TYPES OF PROPOSALS
Like the Internet, the design of the communication system for
WSNs and IoT follows a layered modular structure. The role
of each layer is specified according to the type of a communi-
cation system, and appropriate protocols are standardized in
order to facilitate the communication needs [13]. However,
as the systems evolved, and requirements diversified, the
need for complex optimizations became inevitable. This led
to the frequent adoption of rich mathematical techniques for
specialized tasks (such as modulation) as well as at the base
of various protocols (such as routing) [14]. Therefore, in the
following, we categorize the types of proposals in the form of
various protocols and mathematical approaches.

• Protocols: The intuition behind proposing new protocols
that focus any QoS aspects makes sense because the
communication stack has been designed in the form of
layers in which each layer has a designated role offered
through well-defined and standardized protocols. The
concept ofmodular design and end-to-end arguments are
still the main drive-forces behind this design philosophy
of the communication stack [15]. Therefore, it is very
common to find literature that proposes new solutions
to facilitate QoS in the form of new protocols. The
proposed protocols are found at different layers of the
communication stack. However, application and MAC
layers are the most common, closely followed by the
routing layer [10].
Some prominent examples of standardized protocols for
IETF IoT stack include constrained application pro-
tocol (CoAP) at the application layer, user datagram
protocol (UDP) at the transport layer, IPv6, and rout-
ing protocol for low power and lossy networks (RPL)
at the network layer, IPv6 over wireless personal area
networks (6LoWPAN) at adaptation layer, and IEEE
802.15.4 as MAC and physical layers standard. The
advent of SDN and NFV makes it possible to dynam-
ically configure not just communication parameters but
also protocols [16]. For example, at the MAC layer,
in addition to legacy CSMA based variant, time division
multiple access (TDMA) based variations (e.g., TSCH)
are available. The research, aiming the improvements in
various aspects as well as tailoring the solutions to serve
certain scenarios continues.
Besides, cross-layer approaches (involving more than
one layer) are also frequently found [14]. Although the

cross-layer approaches violate the modular design, how-
ever, various challenges paved the way for this innova-
tion. In summary, there is a lot of literature addressing
QoS in terms of protocols at the routing layer as well as
at MAC and application layers [17].

• Analytical: The modular structure-based primary design
principles for communication systems seem to assert
that everything is facilitated in the form of well-defined
and standardized protocols. Here the role of some of the
protocols is to facilitate a negotiation between the com-
municating nodes (e.g., CoAP), while others required
strong formal analysis for optimized operation (e.g.,
optimization conflicting QoS metrics [6], and modula-
tion techniques, etc.). Initially, the formal modeling of
any mathematical optimization was coupled with the
protocol it was designed for. However, as the networks
evolved, the need for separate analytical solutions (based
in mathematics and statistics) became inevitable. These
analytical solutions are being used to serve the needs
of various protocols. Some of the examples requiring
analytical solutions include area coverage [18] and fair
rate allocation [19]. Various aspects of QoS, for exam-
ple, reliability, latency, throughput, energy consumption,
and lifetime maximization have been researched with
the objective to optimize these metrics [20], [21].

• Combination of Protocols and Analytical Approaches:
It is evident through literature that communication pro-
tocols (new as well as existing) are often supported by
some sort of mathematical optimization in the back-
ground. Among others, energy conservation [18], [22],
and network latency [22], [23] are some of the examples
where the mathematical foundation is intrinsically used
to design protocol.

2) TYPES OF EVALUATION
For the sake of evaluation of any proposed research, three
possible routes are common, namely: mathematical, simula-
tions, and experimental evaluation on real devices [10]. The
findings from a survey on performance evaluation methods
in ad-hoc and WSNs reveal that there is a growing trend of
experimental evaluation compared to simulations [10]. It also
highlights that using custom testbeds keeps the reproducibil-
ity concern alive. This requires the development and usage of
standard deployments of resources with availability ensured.
In the following, we describe all three performance evaluation
approaches, highlight some important literature, and present
the pros and cons:

• Mathematical: Formal modeling is considered an impor-
tant step towards evaluating any new proposal to solve
problems (including QoS) in the domain of communi-
cation. Methods based on mathematics and statistics are
frequently applied for this purpose. According to [10],
94% of the literature used mathematical techniques
for performance evaluation. As an example, the most
famous distributed coordination function in CSMA is
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evaluated using Markov chain modeling [24]. Similarly,
discrete-time Markov chains are used to evaluate the
performance of the TSCH [25], which is an emerging
MAC variant for WSNs and IoT. The use of analytical,
probabilistic, optimization, evolutionary, as well as arti-
ficial intelligence-based techniques is frequent for QoS
considerations in WSNs [6], [26]. The chief advantage
of mathematical evaluation is that it is theoretically cor-
rect and consistent within its assumptions. However, the
applicability in real situations needs separate evaluation.
The major drawback comes forward in cases where
problems are complex and mathematical approaches
do not scale [6], [10], [26]. Multi-objective optimiza-
tion (MOO) is an example of such situations [6].

• Simulations: Simulations have been arguably the most
used medium for evaluation in research studies for QoS
inWSNs. According to the literature surveyed in a recent
article [6], well over 90% of publications used simula-
tions for evaluation of the proposed solutions. As the
WSNs got conceived and went through initial devel-
opment and evolution, simulations were the primary
option to demonstrate the proof-of-concept because real
resources were scarce. Some of the popular simulators
that have been instrumental in this regard include ns-2,
ns-3, OMNeT++, Cooja, and others [10]. As simu-
lations have been the most popular medium for eval-
uation because of the limitations associated with the
availability and manageability of real infrastructure, the
research community has made consolidated efforts to
design credible and open-source simulators like ns-3.
Alongside others, these have served the needs for evalu-
ations of various solutions proposed to solve networking
problems over past decades. Besides, the use of custom
software tools for the evaluation of specific wireless
scenarios has remained a common alternative. However,
the generalization of the results from a simulations study
is not considered parallel to experimental evaluation.
Therefore, as the availability of resources grew, the ten-
dency to use real infrastructure has increased [10].

• Experimental Evaluations: The trend of using real
infrastructure (open or custom) for evaluation and val-
idation of research proposals has grown significantly
overtime [10]. There is also a growing trend of research
funds to build open testbeds that encourages experi-
mental evaluations. FED4FIRE+ [12] is a considerable
example of a federation of such resources. It federates a
large number of testbeds for experimentations in virtu-
ally all aspects of communication and networking. Not
just these resources are openly available to the research
community but their use is encouraged through com-
petitive funding for innovative experiments [27]. These
open calls [27] have been a cause for the use of state-of-
the-art real infrastructure for experimental evaluation of
scientific innovation in networking research. Also, there
is a wide range of open and custom testbeds that includes
MoteLab, TWIST, FIT IoT-LAB, SmartSantander,

w-iLabt.t, Emulab, and ORBIT [10], [12]. Although the
experimental evaluations are not parallel with the real-
deployment performance, however, are still considered
more realistic. This is because the evaluations are carried
out using real infrastructure and more often in relatively
realistic environments. The federated resource (as in the
case of FED4FIRE+) facilitates reproducibility, which
is considered one of the most important aspects of the
credibility of results.

B. DATA-DRIVEN PARADIGM
In a data-driven research paradigm, interactive domain data
is used to drive the decision making by facilitating adap-
tation as the system evolves [28]. The data-driven research
paradigm has been popular of late and has been applied to
problems like video bitrate, and relay selection in internet
telephony [29]. Data-driven techniques have been used to
solve various performance and security-related problems in
WSNs and IoT [30], [31]. Recent research efforts highlight
the potential of data-driven paradigm in the realization of
smart cities [8], and future cellular technologies like 5G [32].
The proposed solutions and improvements are based on the
performance data collected mostly from the real deployments
in an interactive manner. The system works in a loop where
data collection and learning go side-by-side. The idea is to
achieve an adaptive self-learning design that makes the best
of available resources [33]. Based on the findings in existing
literature [8], [29], [32], [33], it is understandable that in any
data-driven system, data is of paramount importance.

Fig. 1 shows the difference between the legacy research
cycle and the data-driven research cycle, and also highlights
the complementing that the later offers for the former. In the
legacy paradigm, an idea begins with some theoretical con-
ception, undergoes mathematical modeling, followed by sim-
ulation and/or emulation based evaluation. If the proposal
meets certain requirements, it qualifies for further analysis
in the form of experimental evaluation using testbeds and
ultimately on real deployments. Such a representation has
also been found in other literature [26]. It is well understood
that an extremely small fraction of the published research
literature makes it to the final stages of experimental evalua-
tion. There is a window of opportunity to identify and utilize
the potential of any improvements within the system that has
already been standardized. A data-driven paradigm is con-
ceived to recognize thesemargins and enable fine-tunings in a
working system interactively. Fig. 1 reveals the possible cycle
for the proposed data-driven paradigm. It begins with the
data collected from aWSN deployment, carries out statistical
analysis to identify the relationships among the configurable
parameters and QoS metrics. Having identified the suitable
features, various ML models can be applied to train the data,
and hence a suitable model can be chosen for configuring the
parameters interactively and adaptively.

In summary, as against the legacy paradigm, the
data-driven paradigm uses the existing deployments and
manipulates the configurable parameters to meet the QoS
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FIGURE 1. The steps in legacy research cycle vs data-driven research cycle.

goals. To achieve this feat, an experimental evaluation of the
idea is carried out using any existing or custom infrastructure
without the need for designing new protocols from scratch.
Therefore, the idea of data-driven research can follow a
short and more productive research cycle making the best
of available deployments by manipulating the configurable
parameters of the communication stack.

C. NEED FOR DATASETS
To design any data-driven, intelligent, and adaptive system,
the need for bootstrap data is vital. Once the system starts,
it can make use of interactive data for adaptations. There is a
great lacking when it comes to performance-related datasets
in WSNs and IoT. Most of the available datasets are related
to sensing and security [34]. Some of the prominent datasets
related to sensing and security, frequently cited in research
include [36], [37]. However, performance-related datasets
that utilize various communication parameters to understand
the variations in QoS metrics, are scarce. To the best of our
knowledge [38] is the only publicly available dataset that
captures the QoS information against vast variations of a wide
set of communication parameters. However, the topology
is limited to two nodes only, directly communicating with
each other. WSNs are often deployed in situations where a
large number of nodes are required, and routing is needed
for nodes to relay their data to the sink. Moreover, modern
implementations of operating systems tend to provide MAC
protocols like TSCH, in addition to the legacy CSMA proto-
col to provide more synchronized and secure communication.
Similarly, there are multiple options for routing and other
network operations. Therefore, it is of prime importance
that performance data be available for diverse settings that
include complex multi-node and multi-hop scenarios, against

multiple MAC protocols and routing metrics in addition to
other configurable parameters like transmission power, traffic
rate, and packet size.

Considering the limitations in existing data resources and
the growing need for a data-driven solution, we have carried
out experiments to collect a dataset covering a wide range
of parameters and settings. In the next sections, we explain
the details of the experiment, dataset collected, and statistical
findings.

III. EXPERIMENT DETAILS
In the following, we describe the experiment details,
including the testbed, experiment topologies, and parameter
configurations.

A. TESTBED
The experiments were carried out using w-iLab.1 [11],
located in iGent building, and is maintained by the IDLab
University of Gent, Belgium. The testbed is part of the
facilities federated by the FED4FIRE+ project [12] and is
infrastructured for reproducibility. w-iLab.1 has a rich set of
resources available for diverse experiments in the domain of
wireless technologies. The testbed resources are located on
the ground floor (also called data center (DC) floor), floor 9
(F9), floor 10, and floor 11 of the iGent building. We used
sensor nodes (Zolertia Re-Motes) from DC and F9 floors.
DC floor is almost interference-free, whereas F9 is located
in an office space and generally has a lot more interference
from various sources, WiFi in particular.

B. TOPOLOGY
The two topologies of the experiment are shown in Fig. 2
and Fig. 3, respectively. The sending nodes in both figures
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FIGURE 2. Experiment topology used on data center floor.

FIGURE 3. Experiment topology used on floor 9.

are indicated using squares (black, green, and purple), and
receivers (sinks) are indicated using red circles. The average
node-to-node distance in topology 1 (Fig. 2) is a little over 2
meters, whereas the receiver/sink is placed in the center of
the network. On the other hand, in topology 2 (Fig. 3) sink is
placed towards the left far-end, and the average node-to-node
distance is a little over 4 meters. Thus, two topologies offer
variation in average node-to-node distance and placement
of the sink. Besides, the layout of topology 1 (Fig. 2) is
more like a star network, whereas the layout for topology 2
(Fig. 3) is more like a bus. The numbers of sending nodes
are varied between 8 (black), 16 (black+green), and 24
(black+green+purple).

It is evident from the description that the topology 2 (Fig. 3)
is muchmore challenging compared to the topology 1 (Fig. 2)
in terms of node-to-node distance, placement of the sink (and
hence the layout), and interference patterns.

C. EXPERIMENT PARAMETERS
The idea of this experiment was to carry out foundation work
to stem data-driven research aiming to facilitate and improve
adaptive QoS control in WSNs driven IoT. In our previous

endeavors [39]–[41] we have used the single-hop perfor-
mance data [38] for statistical analysis and predictions. How-
ever, considering the limitations, we extended the idea to a
broader perspective of performance by includingmore impor-
tant metrics: i.e., throughput (THP), and detailed energy con-
sumption (EC) in addition to packet delivery ratio (PDR).
To understand the behavior of these QoS metrics, we also
included diverse parameters including packet inter-arrival
time (IAT), packet size (PS), maximum transmissions (MT),
number of active nodes (NAN), network density (Topology),
MAC protocol (MACP), RPL objective function (RPL-OF),
transmission power (TP), and distance (DT). These param-
eters are detailed in Table 1. As the nodes are fixed, actual
measurements of DT were used in the analysis.

The approximate runtime of the experiment is based on
the number of combinations of parameter values. Based
on the detail of distinct values for each parameter in
Table 1, we present the detail of combinations (TComb) as
follows:

TComb = TP× NAN × Topology×MACP

×MT × RPL − OF × PS × IAT
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TABLE 1. Detail of parameters used in the experiments.

= 5× 3× 2× 2× 3× 3× 3× 4

≈ 6500 (1)

This means that the experiment ran against these
almost 6500 combinations of the parameter configurations.
We ran the experiment against each configuration for 600
seconds (Time), intending to be able to observe a consis-
tent behavior. Therefore, the total time (TotTime) required
for running the experiment and overheads due to schedule,
technical difficulties, erroneous runs, is as follows:

TotTime = TComb× Time+ Overhead

= 6500× 10min+ 12000min

= 65000min+ 12000min

= 77000min ≈ 1280hours

≈ 53days (2)

D. PARAMETERS AND METRICS OBSERVED
In addition to the pre-configured parameters, we noted node
id (NID) for each node because each node is distinctly located
to the sink as well as it’s respective neighbors. We also cal-
culated the maximum number of transmittable packets (MP)
according to the current configuration and the actual number
of packets transmitted (PT) in each experiment run as:

MP = IAT × Time (3)

Packets received (PR) were measured, and the packet send
ratio (PSR), PDR, and THP were calculated as follows:

PSR =
PT
MP

(4)

PDR =
PR
PT

(5)

THP = PR× PS (6)

Moreover, the Contiki Energest module [42] was used to
measure CPU as well as radio utilization. CPU usage is mea-
sured distinctly for three different supported modes as regular

CPU (RCPU), low power mode (LPM), and deep low power
mode (DLPM). Radio usage is measured for listen (LSTN),
transmit (Tx), and off (Off) states. All these measurements
are in seconds.

IV. RESULTS AND ANALYSIS
A. DESCRIPTIVE STATISTICS
In this section, we describe the data with the relationships
among parameters and metrics. The descriptive statistics of
the metrics are shown in Table 2. PDR is a ratio and ranges
between 0 and 1. The mean is nearly 0.5, whereas, median
(0.6) is slightly higher. The standard deviation (0.46) indi-
cates that the values are relatively spread over the range.
Throughput, in addition to PDR, caters to the variations in
PS as well. The values of THP range between 0 and 48741
with a high standard deviation (5026). The median is 810 and
the mean is 3014. This indicates a sparse cluster of bigger
values that increases the value of the mean.

The energy consumption is separately measured for CPU
and radio usage using the Energest module. CPU usage
ranges between 1 and 460 seconds with a median and stan-
dard deviation of 28 each, and a mean of 34. LPM is common
for both CSMA and TSCH protocols and ranges between 0
and 635with amean andmedian of 346 and 529, respectively.
This indicates a larger cluster of smaller values that keeps the
mean low compared to the median. DLPM is supported by
TSCH only and ranges between 0 and 594. The mean is 225
and the mode is 0. This is because in the case of CSMA the
value for DLPM remains 0.

The usage of radio is separately observed for LSTN, Tx,
and Off periods. The values for the LSTN period range
between 6 and 642 second with mean and median 363 and
599, respectively. A higher value for the median indicates the
varying behavior of MAC protocols because TSCH utilizes
LSTN periods smartly compared to CSMA. Values for Off
periods range between 0 and 615 with a mean of 240 and a
median of 0. Again, the reason for such difference in mean
and median is because of MAC protocols. CSMA does not
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TABLE 2. Descriptive statistics of QoS metrics.

turn off the radio and is always in listening mode, whereas,
TSCH turns off the radio frequently. The values for transmit
periods are less significant because the time is measured at
the granularity of seconds, whereas, transmit times can better
be measured at finer scales like nanoseconds.

B. CORRELATIONS
The statistical correlations of the parameters with QoS met-
rics are revealed in Fig. 4. The vertical axis list the parameters
and the horizontal axis reveals the metrics. Although almost
all the parameters seem to show relationships (of varying
degrees) with different metrics, however, some prominent
correlations can be pointed out. For example, the effect of
MAC protocol on all metrics, particularly on EC (LPM,
DLPM, LSTN, and Off), is visible. Other parameters that
affect EC appear to be MT, MP, and DT. In the case of
PSR, PT (a direct indicator of the total number of packets
transmitted) comes off as the most influential parameter.
Other parameters influencing PSR include DT, NID (like DT,
also an indicator of placement of node), NT (representing
the layout of the network), and MAC. PDR seems to have
a relationship pattern similar to PSR, although, intuitively,
the correlation values are comparatively lesser than those for
PSR in most cases. In addition to PT, DT, NID, NT, and
MAC, PS seems to have a strong correlation with PDR. This
indicates that PS plays a less significant role in deciding the
opportunity to transmit. However, the effect of transmission
success is more significant. Fig. 4 shows the effect of indi-
vidual parameters and not combinations that may present
more interesting cases. In the case of THP, many parameters
have correlation statistics resembling those with PDR. The
noticeable differences appear in the form of MP and a much
stronger relationship with PT because both these parame-
ters deal with the number of packets. Also, understandably
IAT impacts throughput more as against PS in the case of
PDR.

To better understand the effect of multiple parame-
ters (simultaneously) with QoS metrics, we use pictorial
2-dimensional (box-plots) and 3-dimensional (bar-charts).

C. 2-DIMENSIONAL RELATIONS
In the section, we show the 2-dimensional relationships
among parameters and QoS metrics using boxplots. A box-
plot describes the data in the form of box and whiskers where

FIGURE 4. Correlation among parameters and QoS metrics.

data within a box represents 25th (bottom of the box), 50th
(middle of the box), and 75th (top of the box) percentiles of
data, and whiskers depict the spread on both extremes.

Fig. 5(a, b, c, d, e, f, g, h, i, and j) shows the effect of
different parameters with QoS metrics. The relation of the
combinations of topologies and MAC protocols on PDR is
revealed in Fig. 5a. CSMA yields much better PDR than
TSCH and topology 1 (SC: Short average node-to-node dis-
tance and sink located in Center) appears to provide higher
PDR compared to topology 2 (LD: Large average node-
to-node distance and sink located at Distance from center)
because of potential suitability due to short distances, place-
ment of receiver/sink node, and interference pattern. Fig. 5b
shows the effect of combinations of topologies and PS on
PDR. It is again intuitive to exhibit that smaller PS and
topology 1 (SC) result in higher PDR compared to larger
PS and topology 2 (LD). The drop in PDR becomes more
pertinent in the case of LD with an increase in PS. Fig. 5c
reveals the relation of topologies and MT with PDR. It con-
firms the already understood intuition that SC and larger
MT values produce higher PDR. Fig. 5d shows the effect
of MAC and MT on PDR. This also maintains the trend
of the higher tendency of PDR with CSMA and larger MT
values as against TSCH and small values for MT. The effect
of MAC and RPL-OF variations on PDR is unraveled in
Fig. 5e. In the case of CSMA, OF0 performs slightly better
than MRH, whereas, ETX achieves lesser PDR compared
to both others. In the case of TSCH, the trend seems to
have reversed. The advantage of MRH over OF0 is marginal.
However, ETX achieves significantly PDR compared to both
others. To further understand the behavior of RPL-OF, Fig. 5f
shows its relationship with PDR in combination with topol-
ogy variations. In the case of topology 1 (SC), the simpler the
better tendency prevails. PDR falls monotonically from OF0
toMRH and ETX. In the case of topology 2 (LD), having long
distances, the performance of OFs reverses, as ETX performs
much better than both MRH and OF0. The effect of TP on
PDR in both topologies is revealed in Fig. 5g. More the TP,
the better the PDR in both topologies. However, in the case
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FIGURE 5. Relationship between communication parameters, and packet delivery ratio, and throughput.

of LD, TP of 7 dBm (which is the maximum), seems to cause
a little performance decline. This phenomenon can occur in
wireless communication systems when TP is too high.

Fig. 5h illustrates the relation of topologies and TP com-
binations on THP. As expected, the THP increases as TP
is increased with better yielding in the case of SC com-
pared to LD. Similarly, Fig. 5(i and j) show the effect of
NAN in combinations with topologies and MAC protocols
on THP, respectively. Again, as anticipated, THP increases
in an inverse proportion to NAN. A positive hike in THP is
witnessed when CSMA is used as MAC and SC as topology
as against TSCH and LD, respectively.

D. 3-DIMENSIONAL RELATIONS
In the following, we extend the 2-dimensional relationships
exhibited previously by using 3-dimensions. Scatterplots are
used for this purpose which shows all the values in the form of
markers (circles in this case). These relationships are depicted
in Fig. 6(a, b, c, d, e, f, and g).

In Fig. 6a, the combined effect of PS and DT from the
receiver/sink on PDR is revealed. PDR keeps falling as both
PS and DT increase. This is consistent with the common
understanding of the increasing probability of transmission
success with smaller transmission units being communicated
at shorter distances. An increase in DT induces two problems
in this case. One, the signal fade as DT increase. Second,
it becomes more likely that a packet has to travel more
number of hops, thus hampering the chances of successful
transmission. Fig. 6b depicts the relationship of DT and TP on
PDR. The finding remains consistent with the trends already
revealed as PDR drops with smaller values of TP and larger
DT. Fig. 6c zooms in on the effect that NAN casts on PDR
alongside DT. PDR keeps falling as NAN and DT increase.

The combined effect of PS and DT on THP is revealed in
Fig. 6d. Where THP decreases with increasing DT, it exhibits
a relatively scattered rise with increasing PS. Although we
previously witnessed that PDR falls with increasing PS,

however, PDR just counts the fraction of the number of pack-
ets as a ratio of total numbers of Packets Transmitted (PT)
and does not take into account the magnitude of data. THP
highlights this effect as a reverse relation with PS. This factor
presents a reason to consider PDR and THP as separate
metrics. Fig. 6e shows the effect of NAN and DT on THP.
The resultant figure appears to resemble Fig. 6d. The trend
with DT does not change, however, for smaller NAN, THP
is higher. It is important to focus that the overall traffic in
the network remains the same as the number of nodes varies.
Therefore, the rise in THP with less NAN asserts that it better
suits THP compared to accommodating more NAN even
without changing the overall traffic volume. Fig. 6f describes
the relationship of IAT andNIDwith THP. THP is higher with
smaller IAT. As reasoned formerly while explaining Fig. 6d,
smaller IAT does not simply mean more traffic. It means that
less NAN is being used as transmitters instead of using more
NAN to generate the same amount of traffic with higher IAT
per node. NID on the other hand is not very evenly distributed.
However, the variations do occur in THPwith differing nodes.

Finally, to further stem the difference between PDR and
THP, both these metrics are plotted against PS in Fig. 6g.
THP rises with increasing PS, whereas PDR falls. This con-
firms the importance of both these metrics to be considered
separately.

E. MULTI-FACETED ANALYSIS OF METRICS
Building further on the analysis carried out previously,
we focus on the PDR, THP, and EC in fine-grained detail in
Fig. 7(a, b, c, d, e, f, g, and h). We use clustered bar charts
for a clear and comprehensive comparison. As highlighted
already, PDR just conveys the number of packets delivered
as a ratio of the total transmitted packets. In addition to PDR,
we focus the PSR and THP to carry out an in-depth analysis of
the influence of various parameters. Fig. 7a unravels the effect
of MAC and RPL-OF in both topologies (i.e., SC and LD) on
PDR, PSR, and THP. The values represented on the bar are
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FIGURE 6. Relationship of multiple communication parameters with packet delivery ratio and throughput.

the mean of all values against the respective configurations of
parameters. In the case of topology 1 (SC), PSR falls as OF
changes from OF0 to MRH, and then to ETX when CSMA
is used as MAC. However, in the same pattern, the PSR rises
when TSCH is used as MAC. However, the pattern of THP
is not the same in the case of CSMA, whereas, in the case of
TSCH, THP does not show any significant variation. In the
case of topology 2 (LD), ETX yields a higher value for PSR,
followed by OF0 and MRH for CSMA. The same sequence
exists for PDR and THP. ETX is expected to do better by
selecting more reliable links. This notion holds in the case
of topology with more distant nodes. On the other hand, for
TSCH, the values for PSR increase for OF0, MRH, and ETX.
The same holds for PDR and THP. This discourse suffices to
narrate that the combination of MAC, RPL-OF, and topology
variations affect communication reliability in varying ways.
The exact reasons for variations in PSR and PDR require
deeper analysis of MAC and routing logs, which are not in
the scope of this study.

Fig. 7b describes the packet delivery performance in rela-
tion to topology, NAN, and IAT variation. It is persistent that
the overall traffic in the network remains the same as the
NAN changes (as described in Table 1). For example, when
NAN is 8 and IAT is 1, it generates the same amount of
packets when NAN is 16 and IAT is 2 or NAN is 24 and IAT
is 3. It is recurrent for the packet delivery performance on
topology 1 (SC) is better than that of topology 2 (LD). Apart
from that, the lower the traffic (IAT) and the number of active
nodes (NAN), both PSR and PDR improve. THP presents an
interesting case. For topology 1 (SC), the THP almost halves
as theNANkeeps increasingwith the same cumulative traffic.
In the case of topology 2 (LD), THP suffers even more. This

analysis visible from Fig. 7b reveals the opposite trends in
PDR and THP. PDR increases with less IAT, whereas, THP
decreases.

Fig. 7c depicts the effect of MAC and RPL-OF for both
topologies (SC and LD) on detailed radio behavior. The aver-
age time (sec) spent in listening, transmitting, and keeping
the radio off is shown separately. The average total time for
which the radio statistics are displayed is about 605 seconds.
In the case of CSMA, the off periods are 0 because the radio
is always listening, whereas, in the case of TSCH, the radio is
kept off more than 70% of the time on average. The transmit
periods for CSMA are smaller on SC topology compared to
the LD topology. However, the trend reverses in the case of
TSCH. Also, In the case of CSMA, the listen periods are
slightly higher for ETX OF. Although, the same can be said
about TSCH, however, the statistical difference is not very
significant. The listen periods for TSCH are within 7% of the
total time for topology 1 (SC). However, these times risemore
than 4 times in the case of topology 2 (LD). In the case of
CSMA, all the time other than transmit periods is used for
listening.

The characterization of CPU usage is revealed in Fig. 7d.
The details are presented at 3 levels (with descending use of
power), namely, CPU, low power mode (LPM), and Deep
LPM (DLPM). The parameters against which these observa-
tions are presented are topology, NAN, and IAT. The values
of per-node CPU usage decrease with an increasing NAN and
decreasing the traffic rate (IAT). Likely, the values for LPM
and DLPM carry an opposite trend compared to CPU usage.
As CPU usage decrease, both LPM and DLPM increase. The
trend across topologies is that per-node CPU usage falls as
the focus moves to topology 2 (LD) from topology 1 (SD),
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FIGURE 7. Multi-faceted analysis of QoS metrics in relation to communication parameters.
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and the values of LPM and DLPM increase accordingly.
This indicates that increasing NAN, as well as switching
to topologies with bigger distance, tends to lessen the node
activity in some sense.

In the following, we continue the analysis of the relation-
ship between parameters and metrics. Fig. 7e highlights the
packet delivery performance against MAC and TP alongside
the topologies. For MAC protocols and topologies, the mini-
mum and maximum TP levels are chosen. The trend of better
performance for SC is preserved. Besides, all PSR, PDR, and
THP improve with an increase in TP. The effect of PS and
MT is depicted in Fig. 7f. The rise in PDR is observed with
smaller PS and greater MT. The trend of PSR remains high,
in general. The real difference is in THP where PDR falls
with an increase in PS, THP increases. This is because fewer
packets of bigger size can yield more THP compared to more
packets of small size delivered. Based on the observations
from Fig. 7e and Fig. 7f, it can be concluded that PDR
increases when CSMA is used as MAC, and the values of TP
and MT are raised. However, when TSCH is used as a MAC,
and the values of PS increase, PDR falls. This fact remains
consistent across topology variations.

In Fig. 7g, the effect of MAC and TP is shown on radio
behavior. As per the design, there is no off period for CSMA
and the nodes are almost always in listen state. Transmit time
does not vary much for topology 1 (SC). However, in the case
of topology 2 (LD), transmit time tends to increase with a rise
in TP. In the case of topology 1 (SC), the listen and off periods
for TSCH remain about 40 and 560 seconds, respectively. For
topology 2 (LD) the listen periods are higher and so are the
off periods. However, as TP increases from 1 dBm to 7 dBm,
the listen period shrinks by almost 40% and the off period
adjusts accordingly.

In Fig. 7h, the relationship of MAC and TP with the CPU
brings that in the case of CSMA, there are no DLMP periods
that make the task of energy conservation difficult. In gen-
eral, the regulation CPU consumption is more for CSMA
compared to TSCH. CPU consumption also increases slightly
as TP increases. The DLPM periods also rise a bit as TP
increases.

We carried out a wide spectrum analysis of different com-
munication parameters including MAC, RPL-OF, TP, PS,
MT, IAT, NAN, NT, and NID in connection with PDR, THP,
and EC (divided into radio and CPU usage). The purpose of
this analysis primarily was to identify whether the variation
in the values of these parameters and their combinations
have some certain effect on the outcome of different metrics
under consideration. In seeking an answer to this question,
we startedwith a correlationmatrix (Fig. 4) to witness the cor-
relation scores. Next, we used box plots (Fig. 5) to reveal the
variation in the values of metrics against certain parameters.
Following this, we used 3-D scatter plots (Fig. 6) to extend
the analysis by multiple parameters simultaneously. We then
used the bar-charts (Fig. 7) to show the trend in metrics
including detailed radio and CPU behavior against a vast
combination of parameters of interest. The analysis reveals

that the variations and combinations of different parameters
do affect the outcome of QoS metrics in different ways.

V. CONCLUSION AND FUTURE WORK
In this study, we highlighted the growing potential and signif-
icance of the data-driven research paradigm for performance
improvements in the domain of WSNs in contrast to the
legacy research cycle.We signified the time and cost-oriented
limitations in the legacy approaches and compared it with
the potential advantages offered by the data-driven paradigm
to facilitate adaptive, robust, and real-time improvements
interactively. The importance and rarity of datasets were
accentuated in the context.We then presented the experiments
conducted on a state-of-the-art real testbed (i.e., w-iLab.t) and
dataset collected against a comprehensive set of parameters
including inter-arrival time, packet size, maximum trans-
missions, number of nodes, network density/topology, MAC
protocols, RPL objective functions, transmission power, and
distance. In addition, the values for node-ids, maximum trans-
mittable packets, the actual number of packets transmitted
were observed for all experiment runs. For almost 6500 con-
figurations of these parameters, we observed packet delivery
ratio, throughput, and detailed energy consumption. A com-
prehensive statistical and pictorial analysis reveals the effec-
tive relationships among these parameters and QoS metrics.
This work sets the direction for the adoption of data-driven
research for solving various problems in the domain of
WSNs and IoT and contributes a large scale dataset.
In the future, we shall use machine learning for predicting
the QoS metrics based on the parameters available in the
dataset.
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