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A B S T R A C T

The 5th Generation (5G) and Beyond 5G (B5G) are expected to be the enabling technologies for Internet-of-
Everything (IoE). The quality-of-service (QoS) for IoE in the context of uplink data delivery of the content is of
prime importance. The 3rd Generation Partnership Project (3GPP) standardizes the Narrowband Internet-of-
Things (NB-IoT) in 5G, which is Low Power Wide Area (LPWA) technology to enhance the coverage and
to optimize the power consumption for the IoT devices. Repetitions of control and data signals between
NB-IoT User Equipment (UE) and the evolved NodeB/Base Station (eNB/BS), is one of the most prominent
characteristics in NB-IoT. These repetitions ensure high reliability in the context of data delivery of time-
sensitive applications, e.g., healthcare applications. However, these repetitions degrade the performance of
the resource-constrained IoT network in terms of energy consumption. Device-to-Device (D2D) communication
standardized in Long Term Evolution-Advanced (LTE-A) offers a key solution for NB-IoT UE to transmit in two
hops route instead of direct uplink, which augments the efficiency of the system. In an effort to improve the
data packet delivery, this study investigates D2D communication for NB-IoT delay-sensitive applications, such
as healthcare-IoT services. This study formulates the selection of D2D communication relay as Multi-Armed
Bandit (MAB) problem and incorporates Upper Confidence Bound (UCB) based Reinforcement Learning (RL) to
solve MAB problem. The proposed Intelligent-D2D (I-D2D) communication methodology selects the optimum
relay with a maximum Packet Delivery Ratio (PDR) with minimum End-to-End Delay (EED), which ultimately
augments energy efficiency.
. Introduction

Internet-of-Things (IoT) refers to the assortment of smart objects
ith the capability of self-reconfiguration, uniquely addressable, inter-
perable, and flexible that can sense, acquire, and process data [1].
oT applications are driving the advances for future wireless com-
unication and the smart applications/services, such as smart city.
urrently, the number of connected devices to the internet is 23 billion
evices [2], and the sum of connected devices is expected to extend
p to 75 billion by 2025 [3]. This exponential increase of IoT devices
praises the demand for Machine Type Communication (MTC) [4].
TC is categorized into three categories, that is long-range (range
100 m), medium-range (10 m<range<100 m), and short-range (range
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≤10 m). IoT devices have limited resources in the perspective of energy,
processing, and memory. Long-range MTC over such devices with
limited resources necessitates the standardization of Low Power Wide
Area (LPWA) technology [5].

Narrowband-Internet of Things (NB-IoT) introduced by 3rd Genera-
tion Partnership Project (3GPP) in Release 13 of Long Term Evolution
(LTE) [6]. NB-IoT is designed to improve spectrum efficiency, in-
depth and extended coverage [7]. NB-IoT is one of the licensed LPWA
technologies which provides a transmission range of more than 3 km
in urban and 15 km in open area with strong penetration capabilities
for MTC [7]. The main aim of NB-IoT is to support the IoT devices
with an intended life expectancy of 10 years [8]. One of the attractive
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characteristics of NB-IoT is that it can be directly integrated into
LTE or Global System for Mobile Communications (GSM) networks
to share spectrum and reuse the same hardware to scale down the
deployment cost. NB-IoT requires one Physical Resource Block (PRB)
of the LTE spectrum, that is 180 kHz from system bandwidth for
downlink and uplink communication. The limited one PRB bandwidth
increases the constraints of NB-IoT system resources [9]. Adequate
utilization of these deficient resources intensifies the challenges for
NB-IoT deployment.

IoT devices are usually focused on the uplink transmission to up-
load the acquired data to the gateway/sink node or the cloud server.
Efficient uplink data transmission is one of the leading research ar-
eas in IoT. Repetition of control and data signal is one of the main
approaches considered in NB-IoT to augment coverage and reliability.
However, network efficiency decreases with the increase of number
of transmission repetitions [10]. Besides, NB-IoT devices deployed in
deep indoor locations, experience an additional penetration loss of
up to 20 dB. To provide extended coverage, repetitions and extended
Transmission Time Interval (TTI) augments time delay and energy con-
sumption [11]. Thus, it is critical to have a delay and energy-efficient
uplink transmission mechanism for wide deployment applications.

Motivation: 5G and Beyond 5G (B5G) are expected to be the en-
abling technologies for Internet-of-Everything (IoE), enabled devices. In
the context of data delivery for these devices, quality-of-service (QoS)
is of prime importance. Currently, LTE-Advanced (LTE-A) supports
Device-to-Device (D2D) communication [12]. The D2D communica-
tion provides an efficient mechanism to assist the NB-IoT User Equip-
ment (UE) in transmitting the acquired critical data to the Evolved
NodeB/Base-Station (eNB/BS). The D2D communication exploit cellu-
lar devices within the proximity that can operate act as relay nodes.
The integration of NB-IoT within the LTE-A standard is one of the
appealing characteristics. Thus the amalgamation of NB-IoT and D2D
communication is anticipated to augment the performance of the wire-
less networks. In this research work, a Reinforcement Learning (RL)
based Intelligent-D2D (I-D2D) communication approach for a NB-IoT
UE has been presented, which exploits D2D communication as uplink
routing approach for NB-IoT UE to upload the critical data to eNB/BS.
The work presented in this paper is the extension of our Deterministic
D2D (2D2D) approach proposed in [13]. The 2D2D approach selects the
relay node in a deterministic manner at BS, which involves multiple
control signals towards BS that augments system overheads, energy
consumption, and delay. I-D2D reduces the additional overheads by
working as a distributed system at the NB-IoT UE, which models
the relay selection problem as a Multi-Arm Bandit (MAB) system, as
proposed in [14]. The MAB is well-known for working in a real-time
channel scenario [15]. One of the best and effective way to solve
the MAB problem is Upper-Confidence-Bound (UCB) algorithm that
converges quickly in stationary, independent, and identical distributed
traffic [16]. The proposed RL model augments the performance of the
NB-IoT system by minimizing overheads, optimizing End-to-End Delay
(EED), and increasing the Packet Delivery Ratio (PDR) by selecting the
best relay node for D2D communication. In summary, this paper aims
to make the following contributions:

• This article presents the description and background of NB-IoT,
D2D communication, and MAB learning schemes.

• We adapt the D2D communication as a routing extension to
upload the urgent NB-IoT UE data to eNB in order to maximize
PDR and minimize EED.

• This article presents a simple yet effective two-step RL-enabled
intelligent D2D communication model, which considers relay se-
lection as a MAB problem and solves it using the UCB algorithm.
The proposed I-D2D algorithm effectively selects the relay with
minimum overheads and uploads the UEs data to BS/eNB with

minimum delay and maximum PDR.

14
Table 1
Symbols used throughout the paper.

Symbol Meaning

𝛼 Exploration and exploitation coefficient
𝛽 SINR threshold
𝛾 Threshold of transmission power of NB-IoT UE
𝜎 Path loss exponent
𝜇𝑘 Stationary mean reward of the 𝑘th relay
𝜇∗ Expected value of the reward of the optimal relay
𝜋 Reinforcement learning policy
𝑎𝑡 Action of agent at time 𝑡
𝐴𝑘(𝑡) Upper confidence bias
𝐵𝑘(𝑡) UCB index
𝐵𝑆∕𝑒𝑁𝐵 Base Station/evolved NodeB
𝐶𝑈𝐸 Cellular user equipment
𝐸 Total number of data packets received
𝐸𝐸𝐷 End-to-end delay
𝑔 Channel gain
𝐾 State-space
𝑘𝑛(𝑡) State 𝑘𝑛 (CUE relay) at time 𝑡 where 𝑛 ∈ {1, 2,… , 𝑁}
𝑘𝑛 State (CUE relay)
𝐿 Total number of data packets transmitted
𝑀 Total number of UEs
𝑁 Total number of relays in PRS 𝑛 ∈ {1, 2,… , 𝑁}
𝑁𝑘(𝑡) Total number of times CUE 𝑘 is selected as relay from instant 0

to (𝑡 − 1)
𝑃𝑡 Transmission power
𝑃𝑟 Received power
𝑃𝑅𝑆(𝐾) Potential relay set
𝑃𝐷𝑅 Packet delivery ratio
𝑟𝑘(𝑡) Reward of relay 𝑘 at time 𝑡
𝑅𝜋

𝑡 The regret of the policy 𝜋 at time 𝑡
𝑅𝑟𝑒𝑞 Required transmission power of NB-IoT UE
𝑆𝐼𝑁𝑅 Signal-to-Interference-Noise-Ratio
𝑡 Discrete time step 𝑡 = {1, 2, 3,…}
𝜏 Processing time to select relay
�̄�𝑘(𝑡) Sample mean of the relay 𝑘

• A comparison of I-D2D with deterministic model [13] and oppor-
tunistic model [17] is presented. It shows that I-D2D communica-
tion has a higher PDR with minimum EED in terms of processing
time.

Paper Organization: The organization of the paper is as follows:
Section 2 presents a brief comparison with related work, the description
related to the overview of NB-IoT wireless technology, and the D2D
mechanism. Section 3 shows how RL and its tools can enable NB-
IoT UE to select relay nodes intelligently. Section 4 describes the
system model of D2D communication in NB-IoT and the proposed I-D2D
model. Performance evaluation and simulation results are presented in
Section 5. Section 6 concludes this article. Table 1 presents the list of
symbols used throughout the paper.

2. Related work and overview

2.1. Related work

In recent works, vast research has been conducted to enhance
the performance of the 5G communication systems in the context of
reliability and latency, which corresponds to PDR and EED of the
system by using D2D communication. An unorthodox work has been
presented in [18]. An effectual D2D communication-based approach
to improve the compliant content uploading is proposed. A trust-
based approach for the NB-IoT network is developed, which takes the
past reputation of a device is into consideration before establishing a
D2D communication link for security reasons. The proposed scheme
aims to filter out skeptical users and avoid unsuccessful transmissions.
Petrov et al. [19] proposed NB-IoT enabled opportunistic crowdsensing-
based application. The D2D communication link is exploited with the
help of the vehicles, which acts as a relaying system. The proposed

scheme is an opportunistic model in which energy abundant vehicles
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are equipped with advanced communication modules to assist the
battery constrained IoT devices. Osama et al. in [20] studied the effect
f mutual interference in cellular UE (CUE) and D2D NB-IoT UE. As
UE and NB-IoT UE transmits the data in the same resource block to

ncrease the spectral efficiency of the system. Elsawy et al. in [21] put
orward the analytical model for D2D communication. In this work, an
daptive mode selection model, along with truncated channel inversion
ower control for uplink cellular communication has been presented.
iu et al. in [22] considered the potential gain of D2D communication
or enhancing network coverage and spectral efficiency of the com-
unication system. Yang et al. [23] designed an approach to harvest

nergy for relay devices for D2D communication from BS. Sreedevi
t al. in [24] proposed RL-based latency controlled D2D connectivity
or indoor network.

D2D communication model based on dynamic programming has
een presented in [17], which uses a UE from the relaying group
or D2D communication to transmit the data of NB-IoT device to
S. The research paper formulates optimization problems in order
o maximize the reliability in terms of the expected delivery ratio
nd to optimize EED. In this work [17], an NB-IoT UE is allowed
o establish a D2D link with available CUE, which acts as a relay
n duty cycles in an opportunistic manner. When the transmission is
nsuccessful, the UE re-transmits on the next scheduled relay node from
he relaying group. The data packet is dropped after a fixed waiting
ime interval. In a pragmatical network, such an opportunistic scheme
esults in a significant increase in the system’s overhead and degrades
he system’s efficiency with an increase in energy consumption and
ncur a huge delay. Such overheads and delay are not tolerable for
ime-sensitive applications, for instance, surveillance and monitoring in
mart industry, critical readings of a heart patient in smart hospitals,
nd traffic management system in a smart city. Nauman et al. in [13]
roposed a deterministic approach instead of an opportunistic model
or relay selection. The proposed approach selects the relay for D2D
ommunication at BS, which eliminates the additional delay present in
he opportunistic model to wait for Cellular UE (CUE) to operate as

relay. However, to select the relay in a deterministic manner, NB-
oT UE has to transmit a pilot signal every time when it has data to
pload to the eNB/BS. The CUEs that qualify and are available for
2D communication transmit the pilot signal to eNB/BS to select the
est relay. The eNB/BS selects the best candidate for relaying the data
fter ranking the relays in decreasing order on the basis of channel gain
nd residual power. This incorporates additional processing and delay,
hereby increasing energy consumption. Therefore, this necessitates an
ntelligent mechanism based on ML to select the relay dynamically for
B-IoT UE with minimum processing time, ultra-reliability, and low

atency.

.2. NB-IoT overview

.2.1. NB-IoT deployment modes
NB-IoT uses one PRB of 180 kHz in the frequency domain for

ownlink and uplink transmission, which splits into 12 sub-carriers
f 15 kHz each. NB-IoT can be deployed directly in the LTE or GSM
pectrum in three different modes of operations to scale down the
eployment costs. When NB-IoT UE is first powered on, it searches
or carrier channel, thus the deployment mode should be clear to the
B-IoT UE [25]. Following are the deployment modes of NB-IoT [5].

n-band mode. One of the PRBs of the LTE spectrum is allocated for
B-IoT deployment. The total power of eNB is shared between LTE and
B-IoT.

tand-alone mode. NB-IoT can also be deployed within 200 kHz of the
SM spectrum. NB-IoT can exploit the power of BS, which significantly

mproves the coverage of the system.

uard-band mode. The guard-band of the LTE spectrum is utilized for

B-IoT deployment.

15
2.2.2. Downlink and uplink transmission
The NB-IoT follows similar numerology and frame structure as of

LTE for compatibility with LTE. Each frame of 10 ms is composed of
10 sub-frames. The sub-frame is of 1 ms duration. Each sub-frame is
equidivided into two slots of 0.5 ms length, which constitutes seven
Orthogonal Frequency Division Multiplexed (OFDM) symbols and a
normal Cyclic Prefix (CP). Uplink supports both single-tone and multi-
toned transmissions. The single tone occupies 3.75 kHz or 15 kHz
bandwidth. The 3.75 kHz numerology uses 2 ms slots, and the 15 kHz
numerology is identical to LTE. Multi-tone transmission is based on
Single Carrier Frequency Division Multiple Access (SC-FDMA) with the
same 15 kHz sub-carrier spacing. Uplink uses Binary Phase Shift Keying
(BPSK) or Quadrature Phase Shift Keying (QPSK), while downlink uses
only QPSK [26]. The standardized data rate of NB-IoT is 160–250
Kbps for downlink and 160–200 Kbps for uplink transmissions [7]. For
coverage enhancement, NB-IoT uses 128 re-transmissions for uplink
and 2048 re-transmissions for downlink [5].

2.2.3. Device-to-device communication
D2D refers to a direct communication link with nearby devices

without considering the intervention of the cellular networks. D2D
communication is also defined as Proximity-based Service (ProSe) [27].
D2D was included in the LTE release 12 in 2012 [28]. The 3GPP
standardizing community has approved the proposal of integrating
D2D communication into LTE-Advanced (LTE-A). D2D communication
has been classified into out-band D2D and in-band D2D communi-
cation. In-band, also referred to as LTE Direct, uses a licensed spec-
trum while out-band D2D exploits an unlicensed spectrum of other
wireless enabling technologies that supports D2D communication such
as IEEE 802.11 (WiFi) or IEEE 802.15 (Bluetooth) [29]. The D2D
UE can access the licensed spectrum in shared mode (also refer as
non-orthogonal/underlay mode) or dedicated mode (also known as
orthogonal/overlay mode) [29]. The use of D2D communication leads
to multiple advantages such as high packet delivery rate, minimum
delay, better spectrum re-usability, and low energy consumption. Fig. 1
depicts the D2D communication scenario in a NB-IoT systems.

3. Reinforcement learning enabled relay selection

Instead of selecting relay node to upload NB-IoT UE data to eNB/BS
in a deterministic or opportunistic manner [13,17], we propose in this
article a dynamic relay selection approach to learn about the relay,
which is more likely to be available and provide the best PDR. The
learning process to select an optimum relay can be modeled as a Multi-
Arm Bandit (MAB) system, as presented in [30]. The quality of the relay
changes based on the location of the relay and the channel condition
(Signal-to-Interference-Noise power Ratio SINR). Therefore, the selec-
tion of the optimum relay potentially leads towards the minimum delay
and a reliable PDR, less costly in terms of system overheads and energy
consumption.

3.1. Multi-arm bandit framework

The RL is the type of ML in which the learner (agent) has no
prior knowledge of which action to perform in order to maximize the
numerical reward (to move in the direction of the main objective).
However, the agent has to discover which action to perform that yield
maximum reward by hit and trial methodology. The motivation to
use RL is also the same, as the full dynamics of the network envi-
ronment is not known. If the dynamics of the network are known
prior, heuristic algorithms such as dynamic programming are used to
find the optimal solution. However, in real-time network scenarios
dynamics are not known. Therefore, RL algorithms are used to find
the optimal solution in real-time networks. The RL has three main
elements: agent, environment, and reward. The MAB problem is the
form of RL techniques in which a agent (player) repeatedly decides to



A. Nauman, M.A. Jamshed, R. Ali et al. Computer Communications 176 (2021) 13–22

c
𝑛
(
t
a
d
n

N
e
t
C
r
I

r
c
n
i
r
f
a

r
w
e
S
e
t
N
t
p
r
o
e
U

h
r
v
𝑒

Fig. 1. D2D communication in NB-IoT system.
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choose a state 𝑘𝑛 (machine) from 𝐾 number of states (machines), that
is 𝑘𝑛 ∈ {𝑘1, 𝑘2,… , 𝑘𝑁} at discrete time 𝑡 = {0, 1, 2,… , } based on their
orresponding reward. Where, 𝑁 is the total number of states, such that
∈ {1, 2,… , 𝑁}. The agent (player) is interested in choosing the state

machine), which maximizes the reward. The associated rewards with
he states (machines) are independent and identically distributed (i.i.d)
nd accompany an unknown and fixed distribution law 𝑑𝑘. The reward
istributions {𝑑1, 𝑑2,… , 𝑑𝐾} vary from state to state, and the player has
o prior knowledge about the distribution.
State-space and action: In this article, the player (agent) is the

B-IoT UE, and the state-space contain 𝐾 states (machines) of the
nvironment, which are the Cellular UEs (CUEs) used as a relay node
o upload NB-IoT data. The action 𝑎𝑡 is defined as the selection of relay
UE by the player (NB-IoT UE) with highest PDR, which maximizes the
eward. Fig. 2 shows the environment and mechanism of the proposed
-D2D model with its elements.
Reward: Let 𝑟𝑘(𝑡) be the reward of successful data transmission for a

elay node 𝑘 at instant 𝑡. In this paper, two values for reward have been
onsidered, i.e., 1 or 0. The reward is equal to 1 if the selected relay
ode successfully uploads the data to the eNB/BS, and acknowledgment
s received and with good PDR. Note that the channel quality of the
elay node is initially checked when cellular UE receives the pilot signal
rom NB-IoT UE with the request of D2D communication. The proposed
lgorithm is explained in Section 4.
Incentive for CUE Relay: The incentive for CUEs acting as the

elay is defined as proposed in the Smart Media Pricing (SMP) frame-
ork [31]. In reality, the CUEs are selfish and reluctant to share their
nergy and communication resources. In order to deal with selfishness,
MP relay framework proposes that the relay device will price its
nergy, computation and communication resource used on the relay
ransmission, and the source which is eNB/BS in downlink scenario or
B-IoT device in the uplink scenario will pay the price for the incentive

o the relay. The incentives can be defined as free service time or virtual
oints to be used later. Providing more incentives from the source to the
elay motivates the relay device to increase its resources offered to use
n the relay transmission. In this article, the incentive is provided by
NB/BS to CUEs acting as a relay, but the price will be paid by NB-IoT
E for these incentives.
Exploration and exploitation trade-off: At each time step, the agent

as a choice to either exploit or explore the action. The 𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛
efers to choose an action with the prior knowledge of the action
alues whose estimated value indicates the highest mean reward. The

𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 refers to choose an action with no prior knowledge, which

16
s to choose an action randomly from a set of actions to search for a
etter reward. The exploitation maximizes the immediate mean reward
n the one step. However, exploration may yield better-accumulated
eward in the long run. The uncertainty in exploration is that it is
nknown which action produces a better reward. It is better to explore
on-greedy actions if there are many time steps ahead to exploit
hem later on. However, it is not possible to select an action using
xploitation and exploration at a single time step. This dilemma refers
o as exploration and exploitation trade-off [16]. The UCB algorithm
utomatically balanced the exploration and exploitation as explained
n the next subsection.
Regret: It refers to the loss experienced by the difference between

he expected reward associated with the sub-optimal cellular relay node
elected by the NB-IoT UE and the ideal reward associated with the
ptimal relay. As the NB-IoT UE does not have prior knowledge about
he distribution of reward, it cannot avoid the loss when selecting a
ellular relay UE.

Let 𝜋 denote the learning policy for the best relay selection, and let
𝑘=E[𝑑𝑘] be the stationary mean reward of the 𝑘th relay, where E[.]
enotes the expectation function. The regret of the policy 𝜋 is defined

as

𝑅𝜋
𝑡 = 𝑡.𝜇∗ −

𝑡−1
∑

𝑙=0
𝑟𝑙 , (1)

where, 𝜇∗ is the expected value of the reward of the optimal cellular
relay.

Based on (1), the expected cumulative mean regret is

𝐸[𝑅𝜇
𝑡 ] =

𝐾
∑

𝑘=1
(𝜇∗ − 𝜇𝑘)𝐸[𝑁𝑘(𝑡)], (2)

where, 𝑁𝑘(𝑡) is the total number of times cellular relay 𝑘 has been
selected from instant 0 to instant 𝑡 − 1.

The MAB problem can be solved by many RL algorithms. Among
them, UCB is the most efficient way to solve the MAB problem. In the
following subsection, the use of UCB is briefly defined for dynamic relay
selection.

3.2. Upper confidence bound algorithm

The policy in this article is based on UCB algorithm to aid the NB-
IoT UE in the selection of a cellular relay node to upload its data to

eNB/BS. The UCB algorithm requires few resources for processing and
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Fig. 2. MAB based I-D2D with its elements.

torage and guarantees the optimal performance asymptotically [16].
he UCB index 𝐵𝑘(𝑡), is calculated for each relay 𝑘𝑛 and at each instant

𝑡. The UCB index reflects an estimation of the expected reward of a
relay 𝑘𝑛. The UCB index is defined as

𝐵𝑘(𝑡) = �̄�𝑘(𝑡) + 𝐴𝑘(𝑡), (3)

̄𝑘(𝑡) =
1

𝑁𝑘(𝑡)

𝑡−1
∑

𝑡=0
𝑟𝑘(𝑡)𝟏(𝛼𝑡=𝑘), (4)

𝑘(𝑡) =

√

𝛼 ln(𝑡)
𝑁𝑘(𝑡)

, (5)

where, �̄�𝑘 denotes the sample mean of the relay 𝑘 reward and 𝐴𝑘 is
upper confidence bias. 𝟏 is the indicator function, and 𝛼 in (5) is an
exploration coefficient for relay availability and good PDR. If 𝛼 gets
small, NB-IoT UE will exploit the already chosen cellular relays, and if
𝛼 gets larger, the UCB algorithm will explore more cellular relays for
better availability and PDR. As the number of times a specific selected
state increases, the upper confidence bias decreases. Therefore, the
UCB moves towards the state with the highest upper confidence bias
to explore. The upper confidence bias refers to the uncertainty of the
state that is not explored. However, the UCB index is the summation
of sample mean reward and upper confidence bias. The UCB ensures
that the state with the highest upper confidence bias also has the
highest accumulated reward in the past, which makes the exploration
more beneficial. The model at each time step continuously explores
and acts greedily simultaneously to select the state with the highest
accumulated reward and highest upper confidence bias. The value of
function indication 𝟏𝛼(𝑡=𝑘) = 1 when the cellular relay 𝑘 has been chosen
t instant 𝑡. The output at each time step is the state with a maximum
CB index.

𝑡 = argmax
𝑘

(𝐵𝑘(𝑡)), (6)

here, 𝑎𝑡 is the selected CUE relay using the policy 𝜋 at the 𝑡th
ransmission resulting from the UCB algorithm with the highest UCB
ndex.

. System model and proposed scheme

In this section, the network model and assumptions made in this
rticle are detailed.
17
.1. Network model

In this paper, a two-tier network model is considered with a sin-
le eNB/BS in a network cell, and NB-IoT UEs, operating in In-band
ode. The eNB/BS is assumed to be located in the center of the cell

urrounded by cellular devices, as shown in Fig. 1. The network model
epicts the scenario where the NB-IoT UE comprises IoT devices such
s smart ambulances, smart watches, or implants, which have critical
ata to transmit. Timely and reliable data transmission is of utmost
mportance. This paper is focused on uplink transmissions, where an
B-IoT UE has to transmit the acquired data to the eNB/BS. The
ploading of the data is limited to two hops, i.e., NB-IoT UE can
irectly upload the data to the eNB/BS or first transmitting the data
o a nearby cellular UE (CUE) that can upload the data to the eNB/BS.
he former case is using single-hop, and the latter case is using two-hop
ommunication via D2D link and cellular link, as shown in Fig. 1. The
plink cellular spectrum is divided into 𝐶 sub-channels, and each CUE
ommunicates with eNB/BS using one of the sub-channels. Moreover,
UE and NB-IoT D2D link use the same uplink resources of the eNB/BS.
ny CUE available in the cell can act as a relay in D2D communication.

.1.1. Channel model
The general power-law propagation is considered to characterize the

ath loss effect of all cellular and D2D link transmissions. The channel
oise is assumed to be Additive White Gaussian Noise (AWGN). A
ayleigh fading channel is considered between transmitter and receiver
air. The gain for Rayleigh fading channel is normally distributed. The
ower 𝑃𝑟 received on the receiver from the transmitter with power 𝑃𝑡
t a distance 𝑑 can be calculated as:

𝑟 = 𝑃𝑡.𝑔
−𝜎 , (7)

where 𝑔 is the channel gain and 𝜎 > 2 is the path loss exponent. It is
ssumed that all the fading coefficients are independent, and the D2D
nd cellular link share the same path-loss exponent 𝜎.

.1.2. Signal-to-interference-noise-ratio
Since all the communication links, i.e., cellular and D2D, are al-

owed to use the same uplink resources of the eNB/BS, the cross-tier
nterference among all the communication links is avoided assuming
hat a unique sub-carrier is allocated to each UE. The cross-tier interfer-
nce could also be ignored, assuming that the distance between the D2D
air is small and transmitting power required for the D2D link is lower
han the CUE direct link. As per the 3GPP specifications, the Signal-to-
nterference-Noise-Ratio (SINR) for LTE-A link is not defined [32]. SINR
s calculated by the UE internally and reported by UE to eNB during
plink transmission to determine the link quality of each UE. The SINR
s calculated from Reference Signal Received Quality (RSRQ), which is
etermined by Reference Signal Received Power (RSRP) [32]

𝑆𝑅𝑄 = 𝑁𝑃𝑅𝐵 .
𝑅𝑆𝑅𝑃
𝑅𝑆𝑆𝐼

, (8)

where, 𝑅𝑆𝑆𝐼 is the Received Signal Strength Indicator, and 𝑁𝑃𝑅𝐵 is
he number of Physical Resource Blocks. The SINR is then measured by

𝐼𝑁𝑅 = 12.𝑅𝑆𝑅𝑄
𝑥

, 𝑥 = 𝑅𝐸
𝑅𝐵

, (9)

where 𝑅𝐸 indicates Resource Element and 𝑅𝐵 indicates Resource
lock.

.1.3. Definitions
acket delivery ratio:. The 𝑃𝐷𝑅 is a key metric for evaluating the

performance in terms of reliability. The PDR is defined as the ratio of
the number of packets that originated at the transmitter to the number
of packets received at the receiver end [33]. The following expression
defines the PDR as

𝑃𝐷𝑅 =
∑𝐸

𝑒=0(𝐸𝑒)
∑𝐿 , (10)
𝑙=1(𝐿𝑙)
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where 𝐿 is the total number of packets transmitted and 𝐸 is the total
number of packets received. As stated in [17], average Bit Error Rate
(BER) based on SINR for binary signal detection in AWGN is

𝐵𝐸𝑅 = 𝑄(
√

𝑆𝐼𝑁𝑅). (11)

Here 𝑄(.) denotes the standard Gaussian error function 𝑄(𝑓 ) =
1∕

√

2𝜋) ∫ ∞
𝑓 𝑒

−1
𝑡2 𝑑𝑡. It is assumed that the error in bits occurs inde-

endently. For 𝐽 number of bits in a packet, the PDR is determined
y considering the probabilities of receiving all the bits correctly at
NB/BS. The 𝑃𝐷𝑅 of 𝑖th 𝐽 − 𝑏𝑖𝑡 packet can be expressed as

𝐷𝑅(𝑖) =
𝐽
∏

𝑗=1
(1 − 𝐵𝐸𝑅). (12)

The estimated 𝑃𝐷𝑅 of a transmission link can be calculated by
veraging (12) over 𝐿 packets

𝐷𝑅 = 1
𝐿

𝐿
∑

𝑙=1

𝐽
∏

𝑗=1
(1 − 𝐵𝐸𝑅). (13)

nd-to-end delivery ratio:. The End to End Delivery ratio (EDR) is a
erformance metric in multi-hop transmissions. It is the summation of
DR from NB-IoT UE to CUE relay and from relay CUE to BS/eNB. The
DR is calculated using the following expression:

𝐷𝑅 =
𝑁
∑

𝑛=1
(𝑃𝐷𝑅(𝑘𝑛)

𝑈𝐸→𝐶𝑈𝐸𝑘𝑛→𝐵𝑆∕𝑒𝑁𝐵), (14)

nd-to-end delay:. The 𝐸𝐸𝐷 for an NB-IoT UE is the 𝐸𝐸𝐷 for the
acket sent by NB-IoT UE and received by eNB/BS over two hops (using
UE as a relay for D2D communication). The EED in this paper is
ptimized by minimizing the processing time to select the CUE relay.

rocessing time:. The processing time 𝜏 is the time for NB-IoT UE to
elect the relay to upload the data to the eNB/BS. Minimum 𝜏 reduces
ED.

otential relay set:. The potential relay set (𝑃𝑅𝑆) for NB-IoT UE is the
umber of 𝑁 CUEs which are within the range of NB-IoT UE for D2D
ommunication and assist NB-IoT UE to forward the packet to the eNB.
n [17], these relays are sorted according to the availability of time-slot
eserved for CUE to be used as a relay in the proposed opportunistic
odel. A CUE can act as a relay in duty cycles, and NB-IoT UE has

o wait for the scheduled time-slot to transmit the data. This approach
romotes dropping the packet after the defined threshold time if NB-IoT
E is not able to find the opportunity to transmit the data.

However, in 2D2D [13], this uncertainty is eliminated by working
n a centralized manner at eNB/BS. The NB-IoT UE broadcasts a pilot
ignal to all CUE in its range to confirm the availability and eligibility
o act as a relay. Every CUE evaluates itself by comparing its channel
ain and residual energy with predefined threshold parameters, to find
ts eligibility and updates the eNB/BS. The channel gain is based on
INR of communication link with eNB/BS for uplink transmission and
esidual energy, which indicates either the CUE has enough energy
esources to utilize it for relaying the data in uplink transmission.
he 𝑃𝑅𝑆 is sorted in decreasing order at the eNB/BS that selects the
ighest-ranked relay. However, I-D2D works in a distributed manner at
B-IoT UE. Instead of broadcasting the pilot signal every time NB-IoT
E has data to upload, the NB-IoT UE broadcasts the pilot signal only

he first time when it has data to upload. The 𝑃𝑅𝑆 is formed formally,
.e., 𝐾 = {𝑘1, 𝑘2, 𝑘𝑛,… , 𝑘𝑁}, where 𝑁 is the total number of relays,
.e., 𝑁 = {1, 2,… , 𝑁}. After the learning period, which is explained
n the next section, the NB-IoT UE selects the best relay determined by
𝐶𝐵. This approach significantly reduces the control overheads, which

n turn augments 𝑃𝐷𝑅 and 𝐸𝐸𝐷.
18
.2. Proposed model

The MAB learning consists of an agent that learns (that is an NB-
oT UE), an environment (that is the number of CUEs available for
elay), a policy (that is to select relay which maximizes the PDR), a
eward (that is 0 or 1), and function 𝑋𝑘(𝑡) (a accumulated reward in
erm of sample mean). The learning and behavior of an NB-IoT UE at
given time 𝑡 depends on the policy 𝜋 it follows. A policy 𝜋 refers to a

et of specified rules to determine prospective actions that are mapped
ith the perceived states of the environment. The reward refers to the
ain objective of the NB-IoT UE, which determines the quantitative

alue of the situation at each time step. In the RL based MAB problem,
n agent’s objective is to select the state (CUE) that maximizes the
ccumulated mean reward over the long run. Where reward 𝑟𝑘(𝑡) is the
uantitative value for any single immediate action of a specific state.
he value 𝑋𝑘(𝑡) denotes the accumulated mean reward achieved till
he current time state. Perhaps, it is likely that a CUE achieves a low
mmediate reward but still possesses a high mean reward.

For the uplink transmission, NB-IoT UE decides its association as
ollows. When NB-IoT UE turns on, it establishes a link with its nearest
NB/BS. Each NB-IoT UE sends Channel Quality Indicator (CQI) to
he eNB/BS to check channel quality [32]. The CQI indicates SINR, as
xplained in the previous section. If SINR is over a stated threshold
alue, i.e., 𝛽, it forms a direct communication link with the eNB/BS.
therwise, the UE operates in D2D mode. In this paper, when NB-IoT
E is under deep fading, it requires to upload critical data to eNB/BS
nd will always transmit its data in a two-hop manner with the help
f CUE. To start sending the data via D2D link, this paper proposes
n I-D2D mechanism based on the RL model. The proposed I-D2D
echanism is elucidated in algorithm 1. The I-D2D works in two stages.
he following two steps are followed by NB-IoT UE to select the best
elay for D2D communication:

• Step 1: The NB-IoT UE has to formulate PRS for which a pilot
signal is broadcasted within its range. The CUE analyzes the pilot
signal by comparing and computing SINR of the communication
link with eNB/BS using Eq. (9) with SINR threshold (𝛽), and the
transmission power of NB-IoT UE 𝑅𝑟𝑒𝑞 threshold 𝛾. If the CUE
is eligible for D2D communication, it sends a response signal to
update NB-IoT UE about the availability for D2D communication.
Else it will withdraw from the selection process. The NB-IoT UE
formulates a PRS with 𝑁 number of CUE relays and considers PRS
as the state-space 𝐾 of the environment.

• Step 2: NB-IoT UE models the relay selection process as a rein-
forcement learning MAB problem and solves it by exploiting the
UCB algorithm as follows:

– The UCB works by initializing state-space 𝐾 and exploration
coefficient 𝛼.

– The inputs of the UCB algorithm are {𝑎𝑡=0, 𝑟𝑡=0, 𝑎𝑡=1, 𝑟𝑡=1,… ,
𝑎𝑡−1, 𝑟𝑡−1}. In UCB algorithm, player (NB-IoT UE) plays each
𝑘𝑛 machine (CUEs) in the 𝑃𝑅𝑆 one by one in an iterative
manner to determine the upper confidence bias using (5)
and accumulates the mean reward 𝑟𝑡(𝑘) against each action
𝑎𝑡(𝑘) using (4). The reward 𝑟𝑡(𝑘) is +1 if CUE successfully
transmits NB-IoT UE data with good 𝑃𝐷𝑅. Otherwise the
reward 𝑟𝑡(𝑘) is 0. Every time a CUE 𝑘𝑛 is selected and
given +1 reward, it decreases the upper confidence bias
because 𝑁𝑘(𝑡) is in the denominator of (5) and decreases
the uncertainty against an action to select a state. On the
other hands, every time an action is taken to select the state
other than 𝑘𝑛, the ln(𝑡) in numerator increases and augments
uncertainty.
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Algorithm 1: Intelligent-D2D (I-D2D).
Step 1:
Input: (𝛽, 𝛾, 𝑅𝑟𝑒𝑞 , 𝑆𝐼𝑁𝑅)
for (𝑀 = {1,… , 𝑚}) do

if 𝑆𝐼𝑁𝑅 ≤ 𝛽 then
if 𝑅𝑟𝑒𝑞 ≤ 𝛾 then

Push 𝑚(𝑡) UE in a new array 𝑃𝑅𝑆
else

withdraw from selection process
end if

else
withdraw from selection process

end if
end for
Output: (PRS 𝐾 = {𝑘1, 𝑘2, ..., 𝑘𝑁})
Step 2:
Input: {𝑎0, 𝑟0, 𝑎1, 𝑟1, ..., 𝑎𝑡−1, 𝑟𝑡−1}
Initialize parameters: PRS 𝐾 = {𝑘1, 𝑘2, ..., 𝑘𝑁}, 𝛼
Output: action (𝑎𝑡)
for 𝐿 = {1, 2, ..., 𝑙} do

if 𝑡 ≤ 𝐾 then
select the relay from PRS one by one in an iterative manner
if uplink transmission successful then

reward 𝑟𝑘(𝑡) = 1
else

reward 𝑟𝑘(𝑡) = 0
end if

else
select the relay from PRS with maximum UCB index
if uplink transmission successful then

reward 𝑟𝑘(𝑡) = 1
else

reward 𝑟𝑘(𝑡) = 0
end if
update reward 𝑟𝑘(𝑡) and �̄�𝑘(𝑡) using Eq. (4)
update UCB confidence bias 𝐴𝑘(𝑡) using Eq. (5)
update UCB index 𝐵𝑘(𝑡) using Eq. (3)
update 𝑎𝑡 = argmax𝑘 (𝐵𝑘(𝑡)) using Eq. (6)

end if
return action 𝑎𝑡 with maximum UCB index

end for

– The UCB algorithm checks if (𝑡 ≤ (𝐾)), then selects the
next relay in the 𝑃𝑅𝑆 to compute the upper confidence
index using (3)–(5) and return 𝑎𝑡 by Eq. (6). It means that I-
D2D will select every CUE relay one by one and determine
it’s UCB index. When (𝑡 > (𝐾)), the UCB selects the relay
with maximum UCB index directly using (6) and update
Eq. (3)–(5).

The proposed I-D2D algorithm works in a distributed manner at the
edge of the network and significantly reduces the processing time 𝜏 in
selecting the relay node for D2D communication with maximum PDR
at NB-IoT UE.

5. Performance evaluation

This section outlines the performance evaluation of the proposed I-
D2D scheme and provides a comparison with the state-of-art techniques
available in the literature.

5.1. Simulation deployment scenario

The setup comprises of a single cell-based cellular network, with
𝑀 users being deployed randomly, such that, each 𝑚 user undergoes
19
Table 2
Simulation parameters.

Symbol Value

No. of UEs 𝑀 50
Max. communication range 130 m
SINR threshold (𝛽) 13 dB
Path-loss exponent (𝜎) 3.5
Noise power density −174 dBm/Hz
Max. transmission power of NB-IoT UE (𝛾) 14 dB
Size of NB-IoT data packet (𝐿) 32 bytes
Exploration coefficient (𝛼) 1.5
Simulation iterations 100

Fig. 3. Convergence of the proposed I-D2D algorithm over a fixed number of iterations.

Fig. 4. PDR of the proposed I-D2D algorithm over a fixed number of iterations.

small scale fading. Each user is then segregated based on their received
signal strength at the eNB/BS into NB-IoT (unable to transmit the signal
to the eNB/BS) and relay users (able to transmit the signal to the
eNB/BS). Initially, a PRS is formed, i.e., the 𝑁 users have the capability
of uploading the traffic of NB-IoT users. Precisely, the users in PRS 𝐾
have good channel conditions with the eNB/BS as well as the NB-IoT
node. It is assumed that the NB-IoT is working in in-band deployment
mode within the LTE system spectrum. Lastly, this information is fed
into the MAB-based RL algorithm, as explained in the previous section.
The detailed simulation parameters are listed in Table 2.
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Fig. 5. Regret variation of the proposed I-D2D algorithm over a fixed number of
iterations.

When the NB-IoT UE has to upload the data, it tries to connect
to nearby relay devices for D2D communication that maximizes the
reward, as explained in the previous section. The reward matrix is
updated as follows:

• If the NB-IoT UE receives an acknowledgment for successful
packet transmission from eNB/BS, it will update the reward for
the CUE relay node with 1 and proceeds to the data transmission.

• Otherwise, the reward for selected CUE relay node is updated to
0.

5.2. Results and discussion

In Fig. 3, the convergence of the RL-based I-D2D algorithm has been
shown. The significant findings from this result are that, as the number
of iterations increases, the system converges towards optimality in
selecting the best relay selection, which corresponds to the CUE relay
with good PDR and minimum 𝜏. This result was expected from the
arget and behavior of the policy. During the initial iterations, the
lgorithm begins exploring the CUEs from PRS with an objective to
alculates the UCB index. The notch between iteration 10 and 20
ndicates packet loss, i.e., CUE relay with reward 0 is selected during
xploration, because the relay with the highest probability to be free
oes not necessarily yield the best PDR. Moreover, when CUE relay
ails to allocate resources, the NB-IoT device experience packet loss.

In Fig. 4, the PDR of the RL-based I-D2D algorithm has been shown.
t can be seen that over the increasing number of iterations, the PDR
ncreases. It can be seen in Fig. 4, that between iteration number 10
nd 20, there is a disconnection between the two points, which shows
he loss of packets during the transmission time interval because CUE
elay was not able to allocate the resources to NB-IoT device. The loss in
acket occurs during the learning period of the I-D2D algorithm, which
hows the wrong selection of CUE relay node over a fixed number of
ime slots during exploration.

Fig. 5 represents the cumulative regret variation of the RL-based
-D2D algorithm. The regret is because of a random selection of CUE
elay as there is no prior knowledge about the PDR associated with the
UE relay, and the availability of CUE relay for D2D communication

s also unknown. It can be seen that over the increasing number of
terations, the cumulative regret of the algorithm starts to decrease and
inally approaches zero as the system converges.

The principal motivation behind the I-D2D algorithm is to cutoff
he processing time 𝜏 required to select the relay for each transmission
uration. As explained in Section 4.1.3, the 2D2D algorithm in [13]

orks in a centralized manner at eNB/BS, which requires an additional

20
Fig. 6. A comparison of the transmission time accumulation of the proposed I-D2D
algorithm with some state-of-art techniques over a varying number of time slots.

Fig. 7. A comparison of EDR ratio of the proposed I-D2D algorithm with some
state-of-art techniques over a variation in transmit power of a NB-IoT user.

control signal to be transmitted by NB-IoT UE and CUE to eNB/BS.
Whereas [17] is an opportunistic manner that waits for the CUE to
act as a relay in reserved time slots in duty cycles. When an NB-IoT
UE cannot find a relay node after a specified time, it drops the data
packet, which promotes the packet loss rate. However, I-D2D reduces
𝜏 by working in a distributed manner and selecting the CUE relay
using RL based MAB problem, which learns the availability and PDR
associated with CUE. I-D2D automatically selects the best CUE relay as
the system converges. Fig. 6 shows the comparison of the processing
time 𝜏 accumulation over multiple transmission time slot of the I-D2D
scheme with the state-of-art schemes, i.e., 2D2D and the opportunistic
model proposed in [13] and [17], respectively. It can be seen that at
the 100th iteration, the learning period of I-D2D ends, i.e., UCB system
converges, after which it selects the CUE relay in significantly less time
with good PDR as compared to other models. From the fact that the I-
D2D requires significantly less 𝜏, it can be concluded that I-D2D reduces
EED by reducing 𝜏.

The comparison of the end-to-end delivery ratio (EDR) versus the
varying transmission power of NB-IoT users has been shown in Fig. 7.
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In comparison to similar schemes in [13] and [17], the I-D2D scheme
shows a considerable improvement in the EDR. This improvement can
be clarified using the I-D2D algorithm by incorporation of the UCB algo-
rithm in it, which ensures the reliability of the packet being transmitted
successfully by selecting the CUE relay. Ideally, after the learning
period, the I-D2D will ensure a 100% EDR, but it is impractical. In
order to justify 100% PDR, additional losses (mobility of relay user,
shadowing, etc.) have been considered. The learning period of I-D2D is
not considered while making the comparison shown in Fig. 7.

6. Potential application areas of the proposed method

Smart cities which includes smart grid, smart industries and smart
healthcare have gained significant recognition in the past decade. IoT
is one of the key enabler for future smart cities. The next genera-
tion communication requires devices to be adaptive and intelligent
to provide ultra reliable and low latency communication. For reliable
and time sensitive application such as healthcare, tele-surgery, drone
applications, and autonomous industry, data delivery is of prime im-
portance. Intelligent D2D communication can assist in achieving high
PDR, EDR with minimum time. The proposed mechanism enhances
PDR and reduces time delay by reducing number of retransmissions
with optimal cellular relay selection, which ultimately increases the
energy efficiency. The proposed model can be incorporated in other
scenarios where reliability and time-delay is of prime importance. The
future steps of our research work target to investigate the multi-player
scenario where number of NB-IoT UEs need to select a CUE relay
for uploading the data. Furthermore, cooperative ML techniques also
known as federated learning need to be investigated for large IoT
deployments.

7. Conclusion and future work

The emergence of massive MTC requires ultra-reliability in the
context of data delivery with extended in-depth coverage. NB-IoT ful-
fills these requirements by repetitions of control and data signals.
Reducing energy utilization is one of the prominent aspects of NB-
IoT. However, the fundamental solution of increased repetitions of
control and data signals consumes more energy. In order to improve
data delivery, a novel D2D communication link is used as a routing
approach for NB-IoT, which offers the NB-IoT UE a two-hop route to
reduce repetitions. An Intelligent D2D (I-D2D) relay selection model
based on RL is designed, which selects the cellular UE relay with
the highest probability to be available with the maximum PDR and
the minimum EED. Simulation results depict that the proposed I-D2D
algorithm outperforms the available state-of-the-art techniques in the
literature.
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