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ABSTRACT Future generation Internet of Things (IoT) communication infrastructure is expected to pave the
path for innovative applications like smart cities, smart grids, smart industries, and smart healthcare. To sup-
port these diverse applications, the communication protocols are required to be adaptive and intelligent.
At the network layer, an efficient and lightweight algorithm known as trickle-timer is designed to perform
the route updates and it utilizes control messages to share the updated route information between IoT nodes.
Trickle-timer tends to generate higher control overhead ratio and achieves lower reliability. Therefore, this
article aims to propose an RL-based Intelligent Adaptive Trickle-Timer Algorithm (RIATA). The proposed
algorithm performs three-fold optimization of the trickle-timer algorithm. Firstly, the RIATA assigns higher
probability to control message transmission to nodes that have received an inconsistent control message
in the past intervals. Secondly, the RIATA utilizes RL to learn the optimal policy to transmit or suppress
a control message in the current network environment. Lastly, the RIATA selects an adaptive redundancy
constant value to avoid unnecessary transmissions of control messages. Simulation results show that RIATA
outperforms the other state-of-the-art mechanisms in terms of reducing control overhead ratio by an average
of 21%, decreasing the average total power consumption by 10%, and increasing the packet delivery ratio
by 4% on an average.

INDEX TERMS Internet of Things (IoT), trickle-timer, reinforcement learning, RPL.

I. INTRODUCTION
The Internet of Things (IoT) is a communication paradigm
that enables physical devices to be integrated with the cyber-
world. Recently, IoT has grown exponentially [1]. Billions
of devices or things are getting connected to the internet
for various applications such as health monitoring, smart
industries, smart homes, and smart cities. These devices are
usually equipped with sensing and communication capabil-
ities to form an IoT communication infrastructure. The IoT
network is generally composed of small battery-powered
devices that possess limitedmemory and computational capa-
bilities. Traditional communication protocols are not suitable
for resource-constrained tiny sensor devices. At the network
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layer, for efficient data delivery, there are a number of control
overheads involved that consume valuable resources of these
devices [2]. To handle the network layer operation, the Inter-
net Engineering Task Force (IETF) is continuously striving to
design an efficient routing protocol for Low Power and Lossy
Networks (LLNs). The IETF working group proposed the
Routing Protocol for Low Power and Lossy Networks (RPL)
and adopted it in March 2012 [3].

The RPL is an IPv6-based proactive distance vector
routing protocol [4]. It builds the Destination-Oriented
Directed Acyclic Graph (DODAG) of the network based
on different objective functions such as Objective Function
zero (OF0) and Minimum Rank with Hysteresis Objective
Function (MRHOF). The OF0 utilizes hop counts as a routing
metric while the MRHOF is based on Expected Transmission
Count (ETX). The DODAGs are built with the help of three
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main control messages: DODAG Information Solicitation
(DIS), DODAG Destination Advertisement Object (DAO),
and DODAG Information Object (DIO) [5]. The DIS control
message is used for neighbor discovery, and DIO is utilized to
broadcast DODAG information. Similarly, the DAO control
message is used to propagate the destination information
upward along the DODAG. In DODAG control messages,
the primary overhead is owing to DIO messages because
these are broadcasted in each interval. The objective of the
RPL protocol is to reduce the nodes’ energy consumption
and minimize the network convergence time. The transmis-
sion of control messages consumes limited energy resources.
Thus, the energy consumption is directly proportional to the
transmission of DIO messages in the network. Maintaining
the network performance and reducing the number of control
messages is one of the most important design goals of IoT
communication protocols.

The transmission of DIO control messages is maintained
by a mechanism called a trickle-timer. Owing to its reliabil-
ity and scalability, the trickle-timer algorithm has become a
major research topic among researchers, and it is the focus
of numerous recent IoT-related research projects. The
trickle-timer algorithm is designed to increase or decrease the
frequency of DIO transmissions based on network conditions.
It increases the transmission rate of DIO messages if the
network is found to be inconsistent. Similarly, it decreases
the DIO transmission rate if the network is consistent [6].

The trickle-timer algorithm uses the following key
variables for its operation:

1) Minimum interval size Imin and maximum interval
size Imax .

2) Current interval size I .
3) Random time in current interval tTimer
4) Total number of consistent DIO messages received in

the current interval c.
5) Number of consistent DIO messages that must be

received in the current interval to suppress the
DIO transmission, also known as the redundancy
constant k .

Fairness in control messages transmission among IoT
nodes is one of themajor challenges faced by the trickle-timer
algorithm. Many researchers have proposed solutions for this
problem. One such solution is implemented by a fair broad-
cast suppression mechanism. In this mechanism, a variable s
keeps track of DIO suppression by a node in an interval. In the
next interval, a node with DIO suppression in the previous
interval is assigned a higher priority to transmit the DIO
message.

One of the recently proposed Drizzle algorithm [7]
achieves fairness in DIO transmission among nodes by
assigning different DIO transmission probabilities to them
depending on their DIO transmission history. The variable s
keeps track of the total number of DIO transmissions per-
formed by a node in the past intervals. A node with a higher
number of DIO transmissions in the past is assigned a lower
probability of DIO transmissions in subsequent intervals and

vice versa. TheDrizzle algorithm also removes the listen-only
period, which results in faster propagation of network infor-
mation to the neighboring nodes. Thus, it results in a shorter
network convergence time. However, Drizzle is unable to
assign priority to the node that has received an inconsistent
DIO messages in the past intervals. In addition, Drizzle algo-
rithm continuously changes it redundancy constant k value
and never converges to an optimal value of k .

The capabilities of the trickle-timer algorithm can be
enhanced by utilizing machine learning (ML) based mech-
anisms. Reinforcement Learning (RL) algorithms play a vital
role in imparting intelligence to wireless networks in order to
enhance their performance [8]. RL-based protocols have also
demonstrated their capabilities in other computing fields such
as networking [9], computer vision [10], natural language
processing [11], security [12], and computer games [13].

To enhance the capabilities of the trickle-timer algorithm,
we propose a RL-based Intelligent Adaptive Trickle-Timer
Algorithm (RIATA). The contributions of this study are as
follows:

1) Intelligent DIO Transmission: RL is employed to
perform intelligent decisions of DIO transmission or
suppression.

2) Priority Assignment: RIATA assigns higher priority in
terms of transmission probabilities to nodes that have
received an inconsistent DIO message in past intervals.

3) Adaptive Selection of Redundancy Constant: Redun-
dancy constants are adaptively selected. This adap-
tive selection is based on the average number of DIO
messages received in past intervals.

The remainder of this paper is organized as follows.
Section II describes related research work. Section III
outlines the proposed RL-based trickle-timer algorithm.
Section IV presents a discussion on the performance eval-
uation of the proposed algorithm, and Section V outlines
the potential application areas of the proposed method.
Section VI concludes this study.

II. RELATED RESEARCH WORK
Various approaches have been proposed to enhance the
trickle-timer efficiency. Trickle-F is a fair broadcast suppres-
sion mechanism that manages the load-balancing problem,
which considers the load-balancing issue. It maintains a vari-
able s at every node. If DIO is suppressed in the current
interval, then the variable s is incremented by one. In the next
interval, a random time tTimer is chosen between [ I

2(s+1)
, I
2(s)

].
A nodewith a higher value of s is given a higher probability of
transmitting the DIOmessage early in the next interval. Thus,
in this way, it can achieve fair DIO broadcast suppression
among nodes [14].

Similarly, the optimized trickle-timer mechanism [15]
aims to reduce the latency of the standardized trickle-timer
algorithm in resolving inconsistencies. It resets the interval I
to Imin when an inconsistency is detected and then chooses a
random time tTimer between [0, Imin] instead of [ I2 , I ]. Thus,
resulting in the rapid removal of inconsistencies. However,
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it may experience an increase in convergence time due to the
listen-only period in the subsequent time intervals.

The adaptive trickle-timer algorithm [16] primarily focuses
on having an adaptive redundancy constant k . In this mech-
anism, each node is allowed to have an adaptive redundancy
constant k value depending on the local node density. The
value of k must be higher in dense networks and lower in
sparse networks.The variable k is given by a function of
redundancy counter c, that is, k = f (c).
Conversely, the enhanced trickle-timer (E-trickle) algo-

rithm [17] decreases the network convergence time by remov-
ing the listen-only period. It chooses a random time tTimer
between [0, I ] rather than [ I2 , I ]. It also resets the redun-
dancy counter c at a random time tTimer instead of at the
beginning of an interval. To solve the energy consumption
problem, an Energy-Aware Adaptive Trickle-Timer (EAAT)
algorithm is proposed in [18]. The use of EAAT changes
the DIO transmission rate according to the predicted future
energy consumption and residual energy of the nodes. Thus,
it prolongs the lifetime of the network by decreasing the DIO
transmission rate of nodes with less remaining energy.

In the trickle-plus algorithm [19], a network can either have
a higher convergence time and lower energy consumption or
a lower convergence time and higher energy consumption.
Trickle-plus focuses on finding the optimal values for net-
work convergence time and energy consumption. It assigns
a new interval size equal to 2 × I × SF , where SF is a
shift factor that indicates howmany interval doublings can be
skipped to achieve a shorter network convergence time with
less energy consumption.

A variant of the trickle-timer algorithm, named FL-trickle,
was proposed in [20]. The FL-trickle-timer fixes the selec-
tion of transmission time at I

2 for the first two intervals.
Moreover, the FL-trickle-timer also selects a high value
of tTimer . These two essential changes lead to quicker update
propagation in the case of inconsistency and lower control
overheads. However, it does not consider the load-balancing
of control message transmission among nodes. Additionally,
FL-trickle-timer does not adaptively select a redundancy con-
stant value k .
Another improvement over Trickle-F, named I-Trickle,

was proposed in [21]. I-trickle-timer differs from Trickle-F in
selecting a random time tTimer among [0, I2 ] at the beginning
of an interval instead of [ I

2(s+1)
, I
2(s)

] by Trickle-F. Moreover,
it also resets the redundancy constant k at the expiry of
random time tTimer instead of the start or end of the interval by
Trickle-F. Trickle-I achieves lower energy consumption com-
pared to the Trickle-F algorithm. However, the DIOmessages
transmission load-balancing problem and adaptive selection
of the redundancy constant k are not considered.
The Drizzle algorithm presented in [7] achieves fairness in

DIO transmission among nodes by assigning different DIO
transmission probabilities based on their previous history.
This algorithm removes the listen-only period and selects a
random time tTimer between [s× I

n , (s+1)×
I
n ], which results

in faster propagation of network information to neighbor

nodes. Moreover, the Drizzle algorithm adaptively selects its
redundancy coefficient k by incrementing or decrementing
by one depending on the number of consistent DIO mes-
sages received in the current interval. The Drizzle algorithm
has proven its dominance over standard trickle, opt-trickle,
Trickle-F, and adaptive trickle-timers. However, the Drizzle
algorithm is unable to assign priority to a node that has
received inconsistent DIOmessages in past intervals. In addi-
tion, the Drizzle algorithm continuously changes its k value
and never converges to an optimal value of k .

The selection of the redundancy coefficient k significantly
impacts the control overhead, energy consumption, and time
to resolve network inconsistencies. In [22], a mathematical
analysis is provided that shows that the single redundancy
constant k adopted by standard trickle-timer for all nodes
results in higher DIO transmissions and consequently leads to
higher energy consumption for nodes with fewer neighboring
nodes. The authors in [16] highlighted the vagueness regard-
ing the redundancy constant k configuration in RPL-based
networks. For example, the trickle-timer algorithm in Request
For Comments (RFC) [6] recommends that the value of k
should be between one and five. Alternatively, RPL RFC [3]
declares 10 as the default value for k . The most recent IETF
draft [23] recommends a k value between three and five.
Similarly, the RFC of the multicast protocol for LLNs recom-
mends one as the value of k [24]. These different recommen-
dations indicate that the optimal setting of the redundancy
constant k strongly depends on the application scenario.

III. PROPOSED REINFORCEMENT LEARNING-BASED
ADAPTIVE TRICKLE-TIMER ALGORITHM
In this section, we present the proposed RL-based adaptive
trickle-timer algorithm. This section is divided into three
subsections. The first subsection formulates the problem and
outlines the system model. The second subsection explains
the RL. Finally, the third subsection discusses our proposed
RIATA algorithm in detail.

A. PROBLEM FORMULATION AND SYSTEM MODEL
Trickle-timer remains a topic of interest for researchers
because of its significant impact on the myriad of perfor-
mance metrics in a network such as convergence time, con-
trol overhead ratio, power consumption, and packet delivery
ratio. Striking a balance among these metrics is a critical
and complex task. The existing literature on the trickle-
timer variants emphasize the challenges in the following
areas:

1) A non-adaptive selection of redundancy constant k
value leads to increased control overhead ratio and
power consumption. therefore, an adaptive redundancy
constant k selection is critical for the efficient operation
of trickle-timer algorithm.

2) Load balancing in DIO transmission among nodes is
detrimental in terms of congestion control as well as
power consumption. Thus, achieving load balancing in
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DIO transmission is critical to ensure longer battery life
in a time-varying ad-hoc network.

3) The nodes which have received an inconsistent DIO
message must be given higher DIO transmission prob-
ability in coming interval to propagate the updated DIO
information as quickly as possible across the network.

4) Intelligent and self-learned decision of DIO trans-
mission or suppression can further fine tune the
performance of trickle-timer algorithm.

Table 1 depicts the desired key feature availability in
previously proposed major trickle-timer variants. During the
writing of this article, there is no known implementation of a
trickle-timer that encompasses all these key features.

TABLE 1. Comparison of desired features of trickle-timer algorithms in
the state-of-the-art.

The proposed algorithm utilizes Q-learning to enhance the
performance of the trickle-timer algorithm. In our proposed
Q-learning based model an IoT node m is considered as an
agent and has a set of states, that is, S = {s0, s1, . . . , sn}.
Moreover, the agent has a set of actions, that is,
A = {a0, a1, . . . , an}. The agent performs a particular action
a where a ∈ A in a particular state s where s ∈ S and
obtains a reward Rnm. Depending upon the received reward,
the agent moves to the next state s′ where s′ ∈ S with the aim
of saving the accumulated reward in the form of a Q-value
for a particular state-action pair (s, a). The agent exploits this
information for future action selection in a particular state.

B. REINFORCEMENT LEARNING
Embedding ML capabilities into communication networks
remains an active research area of this era. A popular ML
technique, RL has gained significant attention because of its
successful application to network communication domains
such as channel access [25], route selection [26], and parent
selection [27]. The RL mechanism focuses on learning by
interacting with the environment. The learner is referenced
as an agent in the RL paradigm. Everything outside the agent
is known as the environment. The agent interacts with the
environment through the selection of an action among the
available action sets. The environment responds back to this
action selection. This response is in the form of a reward.
The agent changes its state according to the received reward.
The agent tries to maximize this reward over time [28].
RL models learn via the Markov Decision Process (MDP),

Partially Observed Markov Decision Process (POMDP),
Bandit model, and Q-learning [29] techniques. Q-learning,
which is an RL technique, has been proven to be effective
in a number of wireless network applications. In particular,
it has been demonstrated to solve learning problems in com-
putational and energy-constrained networks. Motivated by
the promising features of the Q-learning technique, we utilize
it to optimize the trickle-timer mechanism.

C. PROPOSED RIATA ALGORITHM
The proposed RIATA algorithm performs three-fold
optimization of the trickle-timer algorithm. First, RIATA
applies Q-learning to make decisions for DIO transmission or
suppression. This results in an intelligent decision regarding
DIO transmission or suppression. Intelligent transmission
or suppression leads to an optimal control overhead ratio
and reduced power consumption. Second, RIATA provides
high transmission probabilities to nodes that have received
inconsistent DIOmessages in the previous interval. It ensures
a quicker resolution of inconsistencies across the network.
Finally, RIATA sets its redundancy constant k value adap-
tively based on the value of the average number of consistent
DIO messages received in past intervals. This adaptive selec-
tion sets the dynamic redundancy constant k for different
nodes according to their local network density. The key
notations of the proposed RIATA algorithm are summarized
in Table-2.

TABLE 2. List of notations used in the paper.
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In the proposed RIATA algorithm time is divided into
intervals; in every interval, the agent has two possible states,
that is, s0 = DIO suppression and s1 = DIO transmission.
The intelligent IoT device performs two actions that are
either to remain in the current state s or change state from
s to s′, where s′ ∈ S. In every interval, RIATA maintains
a record of the number of consistent and inconsistent DIO
messages received. A variable cnm holds the number of con-
sistent DIO messages received in the current interval n by a
node m, while a variable inconnm holds the number of incon-
sistent DIO messages received in the current interval n by
a node m.

1) INTELLIGENT DECISION FOR DIO
TRANSMISSION OR SUPPRESSION
Figure 1 shows the state-transition diagram of proposed
RIATA algorithm. If the agent in the proposed model is in
state s1, that is, the DIO transmission state, and it receives an
inconsistent DIO message inconn−1m in the previous interval,
n− 1, then the agent will remain in the same state to quickly
resolve inconsistencies and will receive a positive reward Rnm
in the current interval n because the decision to transmit the
DIO message was correct. However, when an agent is in
state s1 and it receives zero inconsistent DIO messages in the
previous interval, n− 1, it then moves to state s0. Because it
is redundant to transmit DIO message because the network
is stable, the agent obtains a zero reward Rnm in the current
interval n because its decision to transmit the DIOmessage in
the past interval was redundant. The agent did not receive any
inconsistencies in the previous interval. Now let us suppose
that the agent is in state s0 and receives zero inconsistent DIO
message, inconn−1m , in the previous interval, n−1. In this case,
the agent collects a positive reward for its correct decision of
DIO suppression, as the network is stable. However, if in state
s0, the agent receives an inconsistent message inconn−1m in the
previous interval, n − 1, then the agent receives a negative
reward for its incorrect decision of DIO suppression and it
moves to state s1 for DIO transmission in the next interval to
resolve inconsistencies.

In every interval n, the proposed RIATA algorithm calcu-
lates the reward Rnm for a particular node m using Eq. (1).

Rnm =

{
1− inconnm if s = s0
inconnm if s = s1.

(1)

The RIATA utilizes the calculated reward Rnm to measure
the learning estimate, that is, 1Q. The 1Q(s, a) value is an
improved learning estimate for a particular state-action pair,
where a ∈ A and s ∈ S, 1Q(s, a) is defined as follows:

1Q(s, a) = {Rnm(s, a)+ β × maxaQ(s
′, a)} − Q(s, a) (2)

where 0 ≤ β ≤ 1 is the discount factor. The value of β
determines how much importance an agent assigns to future
rewards over the current reward, that is, setting β = 0 means
that the agent considers the current reward more vigorously.
While setting β = 1 makes the agent aim for a long-term
reward over the current reward. The agent utilizes this calcu-
lated 1Q(s, a) to calculate Qnew(s, a), as given in Eq. (3):

Qnew(s, a) = Q(s, a)+ α ×1Q(s, a) (3)

where 0 ≤ α ≤ 1 is the learning rate. The learning rate α
determines how quickly the new value overrides the previous
value. If α = 0, the agent does not learn new values and
only exploits prior knowledge, whereas α = 1 forces an
agent to consider themost recent information and ignore prior
knowledge. The learning rate plays a vital role in determining
how quickly an agent converges to an optimal Q value. The
expression maxaQ(s′, a) in 2: represents the estimated value
for the next state-action pair. When an agent operates for a
longer time, this value converges to an optimal value for a
state-action pair as follows:

lim
t→∞

Q(s, a) = Qoptimal(s, a) (4)

The agent utilizes the learned Q–value in Eq. (3) during
the exploration phase and chooses an action a(current) that has
resulted in the maximum accumulated positive reward in the
past at a particular state, i.e,

aoptimalcurrent = argamaxQ(s, a) (5)

FIGURE 1. State-transition diagram of the proposed algorithm.
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FIGURE 2. Example to show the DIO transmission timer calculation of both Drizzle and proposed algorithm.

To make a trade-off between exploration and exploitation,
the proposed RIATA algorithm employs an epsilon-greedy
mechanism. In the epsilon-greedy mechanism, the agent
explicitly explores the environment with a probability epsilon
and performs exploitation for the remaining time.

The proposed algorithm picks up a random number
between 0 and 1 to choose among exploration and exploita-
tion. During exploration phase if the number of received
consistent DIO messages cnm are less than k then DIO is
transmitted and s1 is selected as the next state. On the other
hand, if number of received consistent DIO messages cnm are
less than k then DIO transmission is suppressed and s0 is
selected as the next state. While, in exploitation phase an
optimal action is chosen using Eq. (5). In Eq. (5) the proposed
algorithm selects an action which has resulted in highest
accumulated reward for a particular state action pair in the
past intervals.

2) HIGHER TRANSMISSION PROBABILITY
The proposed algorithm assigns higher DIO transmission
probabilities to the nodes that has received an inconsis-
tent DIO message in past intervals. It helps to quickly
resolve inconsistencies and keep the network status updated.
Figure. 2 explains the random time tnm selection procedure
for the transmission of DIO messages for the next interval
using the proposed RIATA and Drizzle algorithms. Let us
suppose that the Node 4 DODAG is not up to date and it
broadcasts an inconsistent DIO message onto the network.
Node 2 receives this inconsistent DIO message, as Nodes
2 and 4 are within transmission range of each other. To select
a DIO transmission time tnm in the next interval, the Driz-
zle algorithm selects the random time tnm using Eq. (6),

While RIATA selects the random time tnm using Eq. (7):

tnm = [s×
I
n
, (s+ 1)×

I
n
] (6)

tnm= [DIOsentm ×
I

n+inconnm
, (DIOsentm +1)×

I
n+inconnm

] (7)

ck =

∑n
I=1 DIOCount

n
m

n
(8)

The Drizzle algorithm selects a random time tnm for the
coming interval without considering the total number of
received inconsistent DIO messages in the past interval.
However, RIATA utilizes this information and selects a ran-
dom time tnm while taking into account the total number
of inconsistent DIO messages received in the past interval.
While running theDrizzle algorithm,Node 2 selects a random
time tnm between 0 and 1024. On the other hand, RIATA
selects a random time tnm between 0 and 512. It is evident
that RIATA assigns a higher DIO transmission probability to
Node 2 in the coming interval by selecting a random number
between 0 and 512 instead of 0 and 1024 by the Drizzle
algorithm.

3) ADAPTIVE REDUNDANCY CONSTANT SELECTION
As discussed in Section II, the dynamic selection of the
redundancy constant significantly affects the trickle-timer
performance. The proposed RIATA algorithm dynamically
adjusts its redundancy constant according to the local network
density. The RIATA algorithm accumulates the total number
of DIO messages received in the past intervals and selects
its redundancy constant ck by taking the average of the total
number of DIO messages received in the past intervals using
Eq. (8).
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The RIATA sums up the total number of DIO messages
received in the past intervals and then takes the average value.
Upon reception of an inconsistent DIO message, the variable
n, which holds the current interval number, and variable
DIOCountnm, which accumulates the total number of DIO
messages received in the past intervals, are reset to zero.
Moreover, ck is initialized with the highest value possible,
that is, ck = k , to ensure DIO transmission in the coming
interval and avoid DIO suppression. Algorithm 1 outlines the
Pseudo code of the proposed algorithm.

Algorithm 1 Reinforcement-Learning Based Adaptive
Trickle-Timer Algorithm
1: procedure Initialization
2: I ← Imin, ck ← k , sm ← 0, cnm ← 0, n ← 1,
inconnm← 0, reward ← 0, DeltaQ← 0, Q-table← 0

3: procedure New Interval
4: calculate tnm by using Eq. (7)

5: procedure Consistent DIO Received
6: cnm+ = 1

7: procedure Inconsisten DIO Recieved
8: I ← Imin, DIOSentm ← 0, cnm ← 0, n ← 1,
DIOCountnm← 0, inconnm+ = 1

9: procedure tnm Expired
10: pick a random number between [0,1] (rand)
11: to explore or exploit
12: if rand <= explore then
13: if cnm < ck then DIO transmit(s1),DIOsentm ++

14: else DIO suppress(s0)
15: else select optimal action which has resulted in

highest accumulated reward in the past using Eq. (5).
16: procedure Interval Expired
17: calculate Rnm using Eq. (1)
18: calculate 1Q using Eq. (2)
19: update Q-table using Eq. (3)
20: I ← I × 2
21: if I > Imax then I ← Imax
22: if DIOCountnm = 0 then cK ← k
23: else calculate ck using Eq. (8)
24: n+ = 1
25: DIOCountnm+ = cnm
26: inconcnm← 0

IV. PERFORMANCE EVALUATION
To evaluate the performance of our proposed algorithm, a set
of parameters are configured using the Cooja 3.0 emulator
running on the Contiki operating system. It is an open-source
emulator specifically designed for IoT devices [30].

Simulation results of the proposed RIATA algorithm are
presented along with an analysis. The proposed algorithm
is compared with two variants of the trickle-timer algo-
rithm, that is, the standard trickle-timer and the Drizzle algo-
rithm. The complete list of simulation parameters is provided

TABLE 3. Simulation parameters.

in Table 3. All simulation parameters utilized in this study are
in accordance with the standardized algorithm and Zolertia
Z1 mote specifications [31]. Simulations are performed for
variable network sizes of 25, 50, 75, and 100 nodes. Packet
loss rate of 0%, 10%, 20% and 30% is applied to UDGM
model for the network size of 25, 50, 75 and 100 nodes respec-
tively to observe the behaviour of trickle-timer at variable
packet loss ratio. There are two types of data transmission
rates utilized in the simulations. One is with a fixed data rate
of one packet every 40s, while in other scenarios, a variable
data rate is applied, where every node selects a random
number on start-up in the range of 0 to 60 and selects it
as their data rate.To analyze the performance under these
scenarios, we evaluate the Packet Delivery Ratio (PDR), total
network control overhead ratio, power consumption, and con-
vergence time of the network for the proposed RIATA algo-
rithm and compare them with those of other state-of-the-art
mechanisms. The PDR is calculated as expressed in Eq. (9).

PDR =

∑m
i=1 Total packets receivedi∑m
i=1 Total packets senti

(9)

The total control overhead ratio of the network is calculated
by first taking the sum of the total number of DIO, DAO, and
DIS messages sent by each node and then taking the sum of
the control overhead generated by each node to obtain the
total number of control overheads of the entire network as
per Eq. (10):

m∑
i=1

DIOi +
m∑
i=1

DAOi +
m∑
i=1

DISi (10)

Subsequently, the ratio of total control overheads generated
by the entire network to the total number of control and data
packets generated by the network is considered. We also used
the Energest module of Cooja to calculate the total power
consumed by each sensor node in the network. The total
power consumption is calculated using Eq. (11).

Energest value× current × voltage
Rtimer × Runtime

(11)

where the Energest value is the time in ticks that a node has
spent in a specific communication mode, that is, the CPU Idle
(CPUI), Low-Power (LPM), Transmission (Tx), or Reception
(Rx) modes. Moreover, the current and voltage values are in
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accordance with the Z1 mote specification. RTimer holds the
number of ticks per second, which is 32768 for the Contiki
timer, while Runtime is the time interval between the two
Energest tracking points.

Network convergence time is the time taken by all the
nodes to get connected to a DODAG, forming a network
for communicating with another. Network convergence time
can be calculated by subtracting the time when the last node
joins the network from the time when the first node joins the
network.

A. ANALYSIS UNDER FIXED DATA RATE SCENARIO
Figure. 3a displays the PDRof standard trickle-timer, Drizzle,
and RIATA at a fixed data rate of 1 packet every 40 s. The
simulation results show that, as the number of network nodes
increases, the PDR decreases for all trickle-timer variants
because of the increased network contention and congestion.
Additionally a higher loss ratio is applied at higher net-
work sizes. This results in frequent packet drops as network
gets dense; consequently, a lower PDR is attained. Standard
trickle-timer has the lowest PDR for all network sizes because
of its inability to adjust its redundancy constant k according
to the underlying local network density. Drizzle constantly
increases or decreases its redundancy constant k value; this
hopping helps Drizzle to attain a higher PDR as compared to
standard trickle-timer at lower network densities. However,
Drizzle never converges to an optimal redundancy constant k
value. Thus, as the network size increases, the PDR starts
degrading. Conversely, the RIATA is able to attain the high-
est PDR as compared to standard trickle-timer and Drizzle
because of its ability to adjust its redundancy constant k
value according to the local network density. Second, RIATA
utilizes Q-learning to learn the optimal decision of DIO
suppression and transmission over time.

Figure. 3b shows the control overhead ratio of all the
trickle-timer variants considered in this study. The control
overhead ratio increases as the number of network nodes
increases. Standard trickle-timer has the highest control over-
head ratio because it is unable to dynamically adjust its redun-
dancy constant value. However, Drizzle achieved a lower
control overhead ratio as compared to standard trickle-timer
owing to constantly incrementing or decrementing its redun-
dancy constant k value by one. Alternatively, RIATA learns
the optimal decision to transmit or suppress a DIO message
over time because of its learning capability. Therefore, it sup-
presses unnecessary DIO transmissions, leading to a lower
control overhead ratio. Additionally, RIATA also adjusts its
redundancy constant k value as per the local network density.
This helps to reduce unnecessary DIO transmissions during
the exploration phase.

Figure. 3c shows the normalized total power consumed
by the standard trickle, Drizzle, and RIATA algorithms.
The results indicate that the power consumption increases
with an increase in the number of network nodes. The
RIATA algorithm consumes the lowest power compared
to other state-of-the-art mechanisms, because RIATA is

able to achieve a lower control overhead ratio, as shown
in Figure. (b). Reducing unnecessary DIO transmissions
helps the RIATA to save energy and eventually makes it
capable of operating for a longer duration, as compared to
the other two trickle-timer variants.

Figure. 3d shows the network convergence time of all three
trickle-timer variants. At lower network densities, Drizzle
and RIATA have lower network convergence times as com-
pared to standard trickle, because Drizzle and RIATA elimi-
nate the listen-only period at the beginning of every interval,
which results in quicker network propagation at lower net-
work densities. Eventually, this leads to a lower network con-
vergence time for Drizzle and RIATA. The RIATA achieves
a lower network convergence time as compared to Drizzle,
as RIATA assigns higher DIO transmission probabilities to
nodes that have received an inconsistent DIO message in the
past interval. This assists in quickly resolving inconsistencies
and enables a quicker network convergence time, as explained
in Figure. 2.

However, as the network size increases, Drizzle andRIATA
start to experience higher network convergence times because
they have removed the listen-only period, and this elimination
has increased the workload on the radio duty-cycling algo-
rithm to avoid congestion and contention. The slight increase
in network convergence time at higher network density is
insignificant compared to other performance enhancements
as shown in Figure. 3.

B. ANALYSIS UNDER VARIABLE DATA RATE SCENARIO
In IoT networks, sensors generally tend to have variable data
rate requirements to support hybrid applications. Therefore,
to simulate the behavior of the three trickle-timer variants
under such a variable traffic environment, we performed sim-
ulations under variable data rates, where every sensor node
selects a random number from 1 to 60 on start-up and selects
this as its data rate. Figure. 4 show the PDR, control over-
head ratio, normalized total network power consumption, and
network convergence time of standard trickle, Drizzle, and
RIATAunder a variable data rate. The simulation results show
that the proposed algorithm outperforms other trickle-timer
variants by achieving a higher PDR and attaining a lower con-
trol overhead ratio. This lower control overhead ratio leads
to lower power consumption, which eventually increases the
battery life of the sensor nodes. The RIATA is able to achieve
a higher PDR and lower control overhead ratio in variable
traffic environment as well because of its ability to learn
the optimal decision of DIO transmission and suppression
over time by utilizing its learning capability. Additionally,
RIATA adaptively selects its redundancy constant k value,
which helps in adjusting the DIO transmission and suppres-
sion rate during the algorithm exploration phase. Although
RIATA experiences a slight increase in network convergence
time at larger network sizes, as discussed earlier. However,
in variable traffic environment as well the other performance
enhancements are significant compared to slight increase in
network convergence time.
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FIGURE 3. Fixed data rate scenario; (a) Packet delivery ratio (PDR); (b) Control overhead ratio; (c) Normalized total network power
consumption; (d) Total network convergence time (ms).

FIGURE 4. Variable data rate scenario; (a) Packet delivery ratio (PDR); (b) Control overhead ratio; (c) Normalized total network power
consumption; (d) Total network convergence time (ms).

C. ANALYSIS WITH VARIABLE REDUNDANCY CONSTANT
As briefly discussed in Section II, the dynamic selection of
the redundancy constant significantly affects the trickle-timer
performance. To illustrate RIATA’s ability in dynamically
selecting the redundancy constant value as per the local

network density, we evaluated these algorithms under vari-
able redundancy constant values. Figure. 5 show the PDR,
control overhead ratio, and power consumption of all the
algorithms considered in this study. Standard trickle-timer
was most sensitive to the variation in redundancy constant
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FIGURE 5. Variable redundancy constant k ; (a) Packet delivery ratio (PDR); (b) Control overhead ratio; (c) Normalized total network power
consumption.

k values, and at higher values of k , it yielded a higher control
overhead ratio. Standard trickle-timer transmits a DIO mes-
sage if the number of received DIO messages in that interval
is less than the redundancy constant k . Therefore, for higher
values of k , standard trickle-timer requires additional DIO
messages to be received in an interval before suppressing a
DIO transmission, leading to increased DIO transmissions.
In contrast, Drizzle is less sensitive to the variation in k value
as it constantly alters its redundancy constant k value between
1 and maximum value of k . Therefore, at lower values of k ,
it never readjusts its k value according to the local network
density, resulting in a lower PDR. Drizzle starts to perform
additional DIO suppressions, followed byDIO transmissions,
which delays network information propagation and leads to
a lower PDR. On the other hand, the RIATA adjusts the
k value according to the local network density, as it takes
the average of DIO transmissions received in past intervals
and sets it as its redundancy constant value. This enables
RIATA to achieve a higher PDR, lower control overhead
ratio, and lower power consumption at higher redundancy
constant values. However, at a lower redundancy constant
value, RIATA experiences higher control overhead ratio with
increased power consumption. This is because it adjusts the
redundancy constant k as per the local network density.

D. ANALYSIS WITH VARIABLE EXPLORATION RATES
The exploration rate also has a significant impact on the
performance of an agent in an RL-based environment.
We may want an agent to explore more in the beginning so

FIGURE 6. Proposed Algorithm behaviour under varying exploration rates.

it can explore all the possible options quickly. However, once
the agent explores all possible actions, it is desirable to exploit
the best learned action. On-the-contrary, it is advisable to
continue exploration for optimal action selection. Therefore,
appropriate balance between exploration and exploitation
rates is crucial for agent performance in the long run.

Figure. 6 shows the performance of the proposed RIATA
algorithm under different exploration rates. At higher explo-
ration rates, as the agent spends more time exploring the
available options in the environment, the proposed algorithm
achieves a higher PDR and a lower control overhead ratio.
As we decrease the exploration rate, the control overhead
ratio starts to increase. At lower exploration rates, that is,
below 20%, the control overhead ratio starts to decrease and
the PDR also starts to decline drastically because the agent
does not have adequate time to explore all available network
options. An exploration rate exceeding 20%yields reasonable
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FIGURE 7. Adaptive Selection of redundancy constant ck .

performance in sensor networks. For more dynamic networks
where the environment changes more frequently, we can
select a higher exploration rate of 70%. Thus, RIATA utilizes
70% as its exploration rate. The simulation results show that,
at this exploration rate, the RIATA achieves a lower control
overhead ratio and higher PDR as compared to standard
trickle-timer and Drizzle, as shown in Figure. 3 and 4.

E. ANALYSIS OF ADAPTIVE REDUNDANCY CONSTANT ck
SELECTION UNDER VARIOUS NETWORK SIZES
Figure. 7 shows variation of the adaptive redundancy constant
ck value selection under various network densities in the
proposed algorithm. When the network initializes, the ck
value set equal to the value of k , which is set to 10 in
this case. However, as soon as the network progresses over
time the proposed algorithm adaptively selects the ck value.
This adaptive selection is based on the local network density.
Therefore, the proposed algorithm selects a higher value of
ck for dense network sizes and a lower value of ck for lower
network densities.

F. ANALYSIS OF COMPUTATION
AND MEMORY COMPLEXITY
Determining the optimal state and action pair in the RL
paradigm requires the investigation of the entire state and the

action space by exploring every available option. The number
of actions and states are finite and therefore observable. Every
sensor node maintains a Q-value for every possible state and
action pair. The number of states and actions significantly
affects the computational complexity of the proposed algo-
rithm. The proposed algorithm has a computational complex-
ity of O(s)(a), where s represents the number of states and a
represents the number of actions available at every state. The
number of states and action pair on a particular sensor node
are independent of the network size. As the Q-learning policy
is applied locally on the sensor node.

Read-Only Memory (ROM) and Random-Access
Memory (RAM) are the two critical resources of IoT nodes.
The proposed RIATA algorithm requires additional memory
to cater to its RL-based implementation. Thus, it requires an
additional 3021 and 2431 bytes of ROM as compared to the
standard trickle-timer and Drizzle algorithms, respectively.
The RIATAmaintains a greater number of variables to cater to
the Q-value table, exploration and learning rate, and discount
factor and also to maintain the average number of DIO
transmissions received in the past intervals for its efficient
operation. Therefore, it requires only 48 and 36 bytes of
additional RAM for its operation as compared to the standard
trickle-timer and Drizzle algorithms, respectively.

V. POTENTIAL APPLICATION AREAS
OF THE PROPOSED METHOD
IoT based networks has gained significant attention in the
past decade due to their numerous potential applications
such as smart cities, smart grid, smart industries and smart
health care. These application scenarios have vast potential
to impact our daily lives. For example, next-generation indus-
tries demands an efficient IoT communication infrastructure
with high reliability and lower power consumption to operate
for a longer duration of time. The proposed mechanism for
next-generation smart industries is shown in Figure. 8. In this
figure numerous IoT devices are involved in critical decision

FIGURE 8. Practical application scenario for the proposed mechanism.
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making of industrial processes effecting their cost effective-
ness. The proposed mechanism enhances the reliability of
IoT devices and reduces the power consumption. This reduc-
tion in power consumption ensures the longer life span of
these battery operated IoT devices. The proposed mechanism
can also be applied in other scenarios where reliability and
efficient energy consumption are of prime importance.

VI. CONCLUSION
Future IoT communication paradigms require IoT devices
to be intelligent and adaptive. The standard IoT commu-
nication involves numerous control over heads that greatly
impacts its performance. In the standardized RPL protocol
the control overheads are managed by a route update mecha-
nism known as trickle-timer. However, trickle-timer does not
make intelligent decisions for its control messages exchange.
Recently, ML techniques have enabled promising approaches
to efficiently optimize IoT devices. Motivated by these ML
implementations, in this article, we proposed the RIATA
for IoT sensors. The proposed algorithm involves three-fold
changes in the trickle-timer algorithm. First, RIATA applies
Q-learning for an intelligent decision of DIO transmission
or suppression based on past experience. Second, RIATA
provides a high DIO transmission probability to nodes in the
next interval that have received an inconsistent DIO message
in the past interval. This leads to a faster resolution of incon-
sistencies in the network. Finally, it also adaptively selects its
redundancy constant.We implemented the RIATA in the Con-
tiki Cooja emulator and performed an extensive comparative
analysis of RIATA with other state-of-the-art trickle-timer
algorithms for RPL. The simulation results demonstrate that
the RIATA achieves a lower control overhead ratio and con-
sumes less power while maintaining a higher packet delivery
ratio, as compared to other techniques.

In future research, we plan to improve the RIATA
algorithm to adjust its listen-only period as per local node
density. We also plan to focus on federated RL-based RIATA
implementation.

REFERENCES
[1] A. Musaddiq, Y. B. Zikria, O. Hahm, H. Yu, A. K. Bashir, and S. W. Kim,

‘‘A survey on resource management in IoT operating systems,’’ IEEE
Access, vol. 6, pp. 8459–8482, 2018.

[2] J. Yick, B. Mukherjee, and D. Ghosal, ‘‘Wireless sensor network survey,’’
Comput. Netw., vol. 52, no. 12, pp. 2292–2330, Aug. 2008.

[3] T. Winter, P. Thubert, A. Brandt, J. W. Hui, R. Kelsey, P. Levis, K. Pister,
R. Struik, J.-P. Vasseur, and R. K. Alexander, RPL: IPv6 Routing Protocol
for Low Power and Lossy Networks, document RFC 6550, 2012.

[4] T. Clausen, U. Herberg, and M. Philipp, ‘‘A critical evaluation of the
IPv6 routing protocol for low power and lossy networks (RPL),’’ in Proc.
IEEE 7th Int. Conf. Wireless Mobile Comput., Netw. Commun. (WiMob),
Oct. 2011, pp. 365–372.

[5] N. Accettura, L. A. Grieco, G. Boggia, and P. Camarda, ‘‘Performance
analysis of the RPL routing protocol,’’ in Proc. IEEE Int. Conf. Mecha-
tronics, Apr. 2011, pp. 767–772.

[6] P. Levis, T. Clausen, J. Hui, O. Gnawali, and J. Ko, The Trickle Algorithm,
document RFC 6206, Mar. 2011.

[7] B. Ghaleb, A. Y. Al-Dubai, E. Ekonomou, I. Romdhani, Y. Nasser, and
A. Boukerche, ‘‘A novel adaptive and efficient routing update scheme for
low-power lossy networks in IoT,’’ IEEE Internet Things J., vol. 5, no. 6,
pp. 5177–5189, Dec. 2018.

[8] Y. Yu, S. C. Liew, and T. Wang, ‘‘Multi-agent deep reinforcement learn-
ing multiple access for heterogeneous wireless networks with imperfect
channels,’’ IEEE Trans. Mobile Comput., early access, Feb. 9, 2021, doi:
10.1109/TMC.2021.3057826.

[9] F. Yao and L. Jia, ‘‘A collaborativemulti-agent reinforcement learning anti-
jamming algorithm in wireless networks,’’ IEEE Wireless Commun. Lett.,
vol. 8, no. 4, pp. 1024–1027, Aug. 2019.

[10] M. Pfeiffer, S. Shukla, M. Turchetta, C. Cadena, A. Krause, R. Siegwart,
and J. Nieto, ‘‘Reinforced imitation: Sample efficient deep reinforcement
learning for mapless navigation by leveraging prior demonstrations,’’ IEEE
Robot. Autom. Lett., vol. 3, no. 4, pp. 4423–4430, Oct. 2018.

[11] M. Korpusik and J. Glass, ‘‘Deep learning for databasemapping and asking
clarification questions in dialogue systems,’’ IEEE/ACM Trans. Audio,
Speech, Language Process., vol. 27, no. 8, pp. 1321–1334, Aug. 2019.

[12] Z. Ni and S. Paul, ‘‘A multistage game in smart grid security: A reinforce-
ment learning solution,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 30,
no. 9, pp. 2684–2695, Sep. 2019.

[13] Q. Zhang and D. Zhao, ‘‘Data-based reinforcement learning for nonzero-
sum games with unknown drift dynamics,’’ IEEE Trans. Cybern., vol. 49,
no. 8, pp. 2874–2885, Aug. 2019.

[14] C. Vallati and E. Mingozzi, ‘‘Trickle-F: Fair broadcast suppression to
improve energy-efficient route formation with the RPL routing protocol,’’
in Proc. Sustain. Internet ICT Sustainability (SustainIT), 2013, pp. 1–9.

[15] B. Djamaa and M. Richardson, ‘‘Optimizing the trickle algorithm,’’ IEEE
Commun. Lett., vol. 19, no. 5, pp. 819–822, May 2015.

[16] T. M. M. Meyfroyt, M. Stolikj, and J. J. Lukkien, ‘‘Adaptive broadcast
suppression for trickle-based protocols,’’ in Proc. IEEE 16th Int. Symp.
WorldWireless, Mobile Multimedia Netw. (WoWMoM), Jun. 2015, pp. 1–9.

[17] B. Ghaleb, A. Al-Dubai, and E. Ekonomou, ‘‘E-trickle: Enhanced trickle
algorithm for low-power and lossy networks,’’ in Proc. IEEE Int. Conf.
Comput. Inf. Technol., Ubiquitous Comput. Commun., Dependable, Auto-
nomic Secure Comput., Pervas. Intell. Comput., Oct. 2015, pp. 1123–1129.

[18] A. Musaddiq, Y. B. Zikria, and S. W. Kim, ‘‘Energy-aware adaptive trickle
timer algorithm for RPL-based routing in the Internet of Things,’’ in Proc.
28th Int. Telecommun. Netw. Appl. Conf. (ITNAC), Nov. 2018, pp. 1–6.

[19] B. Ghaleb, A. Al-Dubai, E. Ekonomou, B. Paechter, and M. Qasem,
‘‘Trickle-plus: Elastic trickle algorithm for low-power networks and Inter-
net of Things,’’ in Proc. IEEE Wireless Commun. Netw. Conf. Workshops
(WCNCW), Apr. 2016, pp. 1–6.

[20] H. Lamaazi and N. Benamar, ‘‘RPL enhancement based FL-trickle:
A novel flexible trickle algorithm for low power and lossy networks,’’
Wireless Pers. Commun., vol. 110, no. 3, pp. 1403–1428, Feb. 2020.

[21] S. Goyal and T. Chand, ‘‘Improved trickle algorithm for routing protocol
for low power and lossy networks,’’ IEEE Sensors J., vol. 18, no. 5,
pp. 2178–2183, Mar. 2018.

[22] T. Coladon, M. Vučinić, and B. Tourancheau, ‘‘Multiple redundancy con-
stants with trickle,’’ in Proc. IEEE 26th Annu. Int. Symp. Pers., Indoor,
Mobile Radio Commun. (PIMRC), Aug. 2015, pp. 1951–1956.

[23] O. Gnawali and P. Levis, ‘‘Recommendations for efficient imple-
mentation of RPL, Internet draft,’’ IETF, Chicago, IL, USA, Tech.
Rep. draft-gnawali-roll-rpl-recommendations-05, Feb. 2011.

[24] W. J. Hui and R. Kelsey, Multicast Protocol for Low-Power and Lossy
Networks (MPL), document RFC 7731, Feb. 2016.

[25] R. Ali, N. Shahin, Y. B. Zikria, B.-S. Kim, and S. W. Kim, ‘‘Deep
reinforcement learning paradigm for performance optimization of channel
observation–basedMACprotocols in denseWLANs,’’ IEEEAccess, vol. 7,
pp. 3500–3511, 2019.

[26] Z. Mammeri, ‘‘Reinforcement learning based routing in networks: Review
and classification of approaches,’’ IEEE Access, vol. 7, pp. 55916–55950,
2019.

[27] A. Musaddiq, Z. Nain, Y. A. Qadri, R. Ali, and S. W. Kim, ‘‘Reinforce-
ment learning-enabled cross-layer optimization for low-power and lossy
networks under heterogeneous traffic patterns,’’ Sensors, vol. 20, no. 15,
p. 4158, Jul. 2020.

[28] S. R. Sutton and G. A. Barto, Reinforcement Learning: An Introduction.
London, U.K.: MIT Press, 2014.

[29] C. Jiang, H. Zhang, Y. Ren, Z. Han, K.-C. Chen, and L. Hanzo, ‘‘Machine
learning paradigms for next-generation wireless networks,’’ IEEEWireless
Commun., vol. 24, no. 2, pp. 98–105, Apr. 2017.

[30] Contiki: The Open Source Operating System for the Internet of Things.
Accessed: Feb. 15, 2021. [Online]. Available: http://www.contiki-os.org/

[31] Z1 Datasheet. Accessed: Feb. 15, 2021. [Online]. Available:
http://wiki.zolertia.com/

81172 VOLUME 9, 2021

http://dx.doi.org/10.1109/TMC.2021.3057826

