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Abstract
Quality of service (QoS) implementation in a wireless local area network (WLAN) enables the prediction of network

performance and utilization of effective bandwidth for multimedia applications. In QoS-supported WLAN, enhanced

distributed channel access (EDCA) adjusts back-off parameters to implement priority-based channel access at the medium

access control (MAC) layer. Although conventional QoS-supported EDCA in WLANs can provide a certain degree of QoS

guarantee, the performance of best effort data (low-priority) traffic is sacrificed owing to the blind use of a binary

exponential back-off (BEB) mechanism for collision avoidance among WLAN stations (STAs). In EDCA, the BEB

mechanism exponentially increases the contention window (CW[AC]) for any specific priority access category (AC) when

collision occurs and resets it to its initial size after successful data transmission. This increase and reset of CW[AC] is

performed regardless of the network density inference, i.e., a scarce WLAN does not require an unnecessary exponential

increase in CW[AC]. Similarly, a dense WLAN causes more collisions if CW[AC] is reset to its initial minimum size.

Machine-learning algorithms can scrutinize an STA’s experience for WLAN inference. Therefore, in this study, we

propose a machine-learning-enabled EDCA (MEDCA) mechanism for QoS-supported MAC layer channel access in dense

WLANs. This mechanism utilizes a Q-learning algorithm, which is one of the prevailing models of machine learning, to

infer the network density and adjust its back-off CW[AC] accordingly. Simulation results show that MEDCA performs

better as compared to the conventional EDCA mechanism in QoS-supported dense WLANs.

Keywords QoS-supported WLANs � MAC layer channel access � Machine learning � Dense WLANs � EDCA

1 Introduction

Recently, multimedia data traffic, such as audio and video,

in wireless local area networks (WLANs) has been

receiving much attention. With the increase in the popu-

larity of WLAN-enabled smart devices, such as smart-

phones, laptops and tablets, the requirement of multimedia

applications is becoming an interesting research area for

academic and industrial researchers. One of the key

research interests is the strict loss and delay bounds

imposed by such multimedia applications on WLANs.

However, the traditional WLAN standard, IEEE 802.11,

cannot fulfill the network constraints imposed by multi-

media applications.

Traditional WLANs do not support the quality of service

(QoS) requirements imposed by real-time multimedia

applications. In 2005, a QoS-supported WLAN standard,
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IEEE 802.11e, emerged [1]. IEEE 802.11e introduces

enhanced distributed channel access (EDCA) as a medium

access control (MAC) layer channel access function for

QoS level improvement in WLANs. EDCA classifies and

prioritizes multimedia traffic by using MAC layer resource

allocation (MAC-RA) parameters [1]. In addition to QoS-

supported WLAN stations (STAs), legacy devices can also

be present. Because legacy devices do not offer QoS-based

capabilities and use conventional MAC-RA parameters,

EDCA recommends the use of a priority group of values

for contention parameters to maintain device compatibility

between both QoS-supported and legacy devices. As shown

in Table 1, higher priority access categories (ACs) such as

voice (VO) and video (VI) have a smaller initial contention

window (CW) size (CWmin½AC�) as compared to lower

level priority ACs such as best effort (BE) and background

(BK). Although QoS-supported IEEE 802.11e improves

the performance of real-time multimedia applications,

these prioritized values are not the optimal solution for

QoS data traffic in many cases of diverse dense networks.

Therefore, the key issue is to adjust the MAC-RA param-

eters in EDCA appropriately and intelligently.

Machine-learning (ML) techniques are increasingly

becoming popular in solving complex problems in many

wireless communication fields that usually require human

reasoning [2]. ML is now a thriving field in active research

topics and a relevant application in wireless communica-

tion networks, ranging from learning complex scenarios

with unknown channel models to the deployment of cog-

nitive radio networks. The use of ML philosophies on an

extensive collection of wireless networks has had a wide

history and has attained numerous achievements in MAC

layer resource management [3]. Relating to the context of

this study, the use of ML-based mechanism may be useful

and network adaptable, given the diverse conditions of

QoS-supported dense wireless networks. Hence, in this

study, we introduce an ML-enabled EDCA (MEDCA)

mechanism for determining the contention parameters in

EDCA to optimize the performance of QoS-supported

dense WLANs. The proposed MEDCA uses a Q-learning

(QL) model, which is one of the prevailing ML models.

QL, inspired by behaviorist psychology, is used to discover

an optimum strategy for any finite Markov decision pro-

cess, particularly when the environment is unknown [4].

The rest of the paper is organized as follows. Section 2

explains QoS-supported dense WLANs and briefly elabo-

rates the structure of the conventional EDCA mechanism.

Section 3 mentions the research work related to the EDCA

enhancement of QoS-supported WLANs. In Sect. 4, the

proposed MEDCA mechanism is explained in detail. Sec-

tion 5 evaluates the performance of the EDCA and

MEDCA mechanisms. Finally, in Sect. 6, a comprehensive

conclusion is determined from the study. Table 2 shows a

list of abbreviations and acronyms used in this paper.

2 QoS-supported dense WLANs

The IEEE 802.11e amendment aims to provide QoS sup-

port to multimedia applications (such as voice and video)

over conventional IEEE 802.11 WLANs [1]. The main

feature of IEEE 802.11e is the capacity to differentiate

Table 1 EDCA parameter sets

Type AC CWmin CWmax AIFSN TXOP

0 BK 31 1023 7 0

1 BE 31 1023 3 0

2 VI 15 31 2 5

3 VO 7 15 2 3

Table 2 List of abbreviations acronyms used in this paper

Acronyms Full description

AC Access category

AEDCA Adaptive EDCA

AFEDCF Adaptive fair enhanced DCF

AIFS Arbitration inter-frame spacing

AIFSN AIFS number

BE Best effort

BEB Binary exponential back-off

BK Background

COSB Channel observation-based scaled BEB

CW Contention window

DCF Distributed coordination function

EDCA Enhanced distributed channel access

FCR Fast collision resolution

GDCF Gently decreased CW-based DCF

HCF Hybrid coordination function

MAC Medium access control

MAC-RA MAC layer resource allocation

MEDCA Machine-learning-enabled EDCA

ML Machine learning

PHY Physical layer

QL Q-learning

QoS Quality of service

SIFS Short inter-frame space

STA Station

TXOP Transmission opportunity

VI Video

VO Voice

WLAN Wireless local area network
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traffic flows and services. For this purpose, IEEE 802.11e

implements a hybrid coordination function (HCF). The

HCF is of two types: a centralized scheme known as HCF

controlled channel access and a distributed scheme known

as EDCA. It is mandatory to implement an HCF of any

type for all the QoS-supported WLAN STAs. However,

EDCA is the most popular and widely implemented

method for accessing a WLAN medium owing to its dis-

tributed and decentralized characteristics [5].

Four ACs are defined in EDCA to differentiate data

traffic streams. From their highest to lowest priority, the

ACs are VO, VI, BE and BK, as shown in Fig. 1. The

figure shows that each AC uses its own transmission queue

and is characterized by an EDCA MAC-RA parameters set.

The EDCA MAC-RA parameters set specifies the priority

level of a data frame by an arbitration inter-frame spacing

(AIFS) combination and the sizes of CW minimum

CWmin½AC� and CW maximum CWmax½AC�. A transmission

opportunity (TXOP) interval is also used by the VI and VO

data traffic to transmit data frames in bulk. To provide

compatibility and fair transmission for traditional non-QoS

STAs, the IEEE 802.11e amendment defines a standard

combination of the MAC-RA parameters as shown in

Table 1.

The AIFS period determines the amount of time an STA

must wait before beginning a new transmission. For each

AC, an AIFS number (AIFSN) value derives the AIFS

period as follows:

AIFS½AC� ¼ AIFSN½AC� � tslot þ SIFS; ð1Þ

where tslot denotes the duration of a time slot according to

the physical (PHY) layer. The short inter-frame space

(SIFS) refers to the amount of time used by high-priority

actions that require an immediate response.

The size of CW[AC] defines the length of the idle period

a given STA waits before transmission. This size is allo-

cated in the reverse order of priority of the corresponding

AC as shown in Table 1. If transmission fails, the size of

CW[AC] exponentially increases until it reaches the max-

imum limit CWmax½AC�. The STA remains at CWmax½AC�

until it successfully transmits a data frame or reaches the

retry limit. Once a data frame is transmitted successfully,

CW[AC] is reset to its minimum value CWmin½AC�. This
increase and reset of CW[AC] is performed regardless of

the density of the network, i.e., a scarce network does not

require an unnecessary increase in CW[AC]. Similarly, a

dense network causes more collisions if CW[AC] is reset to

CWmin½AC� [6].

3 Related research work

Some comprehensive surveys [7, 8] classify the approaches

that enhance MAC layer channel access to provide QoS. In

[7], the authors show a hierarchical taxonomy of service

differentiation in QoS-supported 802.11 networks. Based

on their taxonomy, the channel access approaches can be

classified as priority-based methodologies using back-off

algorithms or CW differentiation. In [8], the authors

compare several service-differentiation-based MAC layer

channel access schemas. These schemas are classified as

STA-based, MAC layer queue-based, HCF-based and dis-

tributed coordination function-based (DCF). In particular,

these studies provide approaches to modify the binary

exponential back-off (BEB) of an EDCA mechanism by

changing the way the CW is determined or back-off timer

is decreased by introducing exponential behavior in the

algorithm. In [9–11], the authors proposed approaches to

enhance the BEB of EDCA by changing the CW deter-

mination mechanism. The authors in [9] proposed an

adaptive EDCA mechanism (AEDCA) to adjust the

CW[AC] size of each AC by considering the channel col-

lision rate. Their proposed AEDCA mechanism enhances

system throughput; however, other researchers suggest that

the performance of low-priority ACs degrades in high-load

environments, i.e., in dense WLANs [12]. A gently

decreased CW-based DCF (GDCF) is proposed in [10],

which changes the way CW is decreased after successful

transmissions. Instead of resetting CW to its CWmin value,

GDCF exponentially decreases the size of CW after a

specific number of successful transmissions. However, it

does not support QoS-supported multimedia traffic. In [11],

the authors improved AEDCA [9] by proposing an

enhanced DCF with a dual measurement (EDCF-DM)

mechanism by utilizing not only the network condition

inference but also the traffic state of each AC at each active

STA. EDCF-DM performs better as compared to AEDCA

in terms of throughput; however, it increases the average

delay. In [12, 13], the authors proposed approaches to

enhance the BEB of EDCA by changing the back-off

decrement process. In [12], a fast collision resolution

(FCR) mechanism is proposed. The FCR mechanism

implements a fast decrease in the back-off timer with aFig. 1 Priority AC mapping in EDCA
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static back-off threshold. The back-off timer decreases

linearly and exponentially above and below the threshold,

respectively. An adaptive fair enhanced DCF (AFEDCF)

mechanism is proposed in [13]. AFEDCF, inspired by the

FCR [12] approach, considers ACs for multiple types of

service data packets and adjusts the threshold value

dynamically according to the network environment. All of

the above mechanisms focus and try to improve the EDCA

mechanism of QoS-supported WLANs. However, some of

them lack off-network density inference, while some others

have limitations in observing/learning the environment

behavior. Therefore, in this study, we propose an intelligent

mechanism, which is capable of network inference and

environment learning.

4 MEDCA

As described earlier, QL is one of the ML models, which

overtly reflects the entire problem of an agent interacting

with an uncertain environment, and is directed toward

performance optimization. A goal-directed device can be a

small part of a larger behaving system, such as a wireless

STA in a QoS-supported IEEE 802.11e network environ-

ment, seeking to maximize its performance in terms of

throughput. In the proposed MEDCA, the channel density

observation-based optimized selection of CW for every AC

may lead to a reduction in channel collisions. The major

contribution of this study is the capacity to tune the EDCA

back-off parameters (such as CW[AC]) dynamically based

on the network density by using the MEDCA mechanism.

Thus, MEDCA requires only a small number of modifi-

cations to the MAC layer of QoS-supported devices,

thereby maintaining full compatibility with legacy devices.

4.1 Channel observation-based back-off
mechanism

In this section, we replace the currently implemented BEB

mechanism of EDCA with a channel observation-based

scaled (COSB) [14, 15] mechanism. Then, we explain QL

in detail, and in the further sections, our proposed MEDCA

is described.

To unravel the performance deprivation problem caused

by the blindness of the current BEB mechanism, a versatile

channel observation-based channel collision probability [14]

is determined to scale CW[AC]. In the proposed MEDCA,

contending STAs proceed to the back-off procedure by

selecting a random value B[AC] according to their current

CW[AC] after the communication medium has been idle for

an AIFS[AC] period as shown in Fig. 2. The time slots fol-

lowing AIFS[AC] are considered as discretized observation

time slots (a).The duration of a equals either an idle time slot

r (a constant) or a variable occupied time slot, which is

occupied owing to the successful/collided transmission of

other STAs. The value of B[AC] decrements by one when-

ever the medium is detected as idle. Any STA transmits a

data frame after B[AC] reaches zero. Furthermore, when the

communication channel is detected as occupied, the tagged

STA stops decrementing B[AC] and continues sensing the

channel until it is again sensed as idle for AIFS[AC]. Every

individual contending STA can measure the channel colli-

sion probability pACobs by observing the channel, which is

defined as the probability that the transmission of an ACwill

fail. Subsequently, the time is discretized into BAC
obs obser-

vation time slots for any specific AC, where the value of BAC
obs

is the total number of a slotted observation slots between two
consecutive back-off stages. A tagged contending STA

updates pACobs from BAC
obs as follows:

pACobs ¼
1

BAC
obs

�
XBAC
obs

�1

k¼0

Sk; ð2Þ

where for observation time slot k, Sk ¼ 0 if a is sensed as

idle or the tagged STA transmits a data frame successfully,

whereas Sk ¼ 1 if a is detected as occupied or the tagged

STA experiences a collision as shown in Fig. 2.

Instead of resetting CW[AC] after a successful trans-

mission, MEDCA decrements it exponentially based on the

currently measured pACobs. The increment or decrement of

CW[AC] is performed as follows:

CWcur½AC� ¼
2� CWpre½AC� � xpAC

obs ; if collision

CWpre½AC�
2

� xpAC
obs ; if successful

8
<

: ;

ð3Þ

where x is used as a constant design parameter to control

the optimal size of the current CW CWcur½AC� for any

specific AC and is expressed as x ¼ CWmin½AC�.

4.2 QL model

Besides a learning device (i.e., an STA) and an environ-

ment (i.e., a QoS-supported WLAN), a QL algorithm has

Fig. 2 Channel observation-based collision probability according to

COSB [14]
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elements: policy, reward and Q-value function [5]. A

learner’s behavior and learning at a given time are based on

its policy. In other words, a policy is a rule by which a

learner decides to map the perceived states of its environ-

ment with the prospective actions performed in those

states. A reward signal is the main objective of a QL-

enabled learner. At each time step, the environment

determines a quantitative value known as a reward. The

learner’s only objective is to maximize the accumulated

reward it receives over the long run. A learner changes its

policy based on the reward signal. Another important ele-

ment of QL algorithms is a Q-value function. While the

reward signal is the immediate reward for any single

action, the Q-value postulates the total reward attained at

that state. It is possible that a state always yields a low

immediate reward but still has a high Q-value because it is

regularly followed by other states that yield high rewards.

4.3 Proposed MEDCA mechanism

The proposed MEDCA mechanism consists of a set of

states SAC (back-off stages) for any specific AC, where an

intelligent STA performs an action aAC (such as increase

CW[AC] if collision occurs, or decrease CW[AC] if trans-

mission is successful). By performing action aAC following

a policy pAC in a particular state sAC, the STA collects a

reward rAC, i.e., rACðsAC; aACÞ, with the objective to exploit

the collective reward, which is a Q-value function

QACðsAC; aACÞ. Figure 3 depicts the model environment

with its elements for the proposed MEDCA mechanism.

Let SAC ¼
�
0; 1; 2; . . .;mAC

�
denote a finite set of mAC

possible states of the environment, and let AAC ¼
�
0; 1

�

represent a finite set of permissible actions aAC to be per-

formed, where 0 indicates decrement and 1 indicates incre-

ment. At time slot t, an STA observes the current state sAC,

i.e., sACt ¼ sAC 2 SAC, and performs an action aAC, i.e., aACt ¼
aAC 2 AAC based on policy pAC . As mentioned earlier, the

default policy of a device inMEDCA is to increment its state

if collision occurs and decrement it for a successful trans-

mission. Thus, action aACt changes the environmental state

from sACt to sACtþ1 ¼ sAC
0
2 SAC according to

pACðaACjsACÞ ¼ sAC
0
¼ sAC þ 1, if collision

sAC
0
¼ sAC � 1, if successful

(
: ð4Þ

The objective of the QL algorithm is to discover an optimal

policy pAC
�
, which exploits the total expected reward

QAC� ðsAC; aACÞ (optimal Q-value), which is given by the

Bellman equation [4],

QAC� ðsAC; aACÞ ¼ EfrACt ðsAC; aACÞ þ b

� max
aAC

0 QAC� ðsAC
0
; aAC

0
jsACt ¼ sAC; aACt ¼ aACÞg:

ð5Þ

Because the reward may easily get unbounded, a dis-

counted reward factor b (0\b\1) is used. In the QL

algorithm, QACðsAC; aACÞ estimates the reward as the

cumulative reward and is updated as follows:

QACðsAC; aACÞ ¼ ð1� cÞ � QACðsAC; aACÞ
þ c� DQACðsAC; aACÞ;

ð6Þ

where c is the learning rate and is defined as 0\c\1. The

learning occurs quickly based on the improved learning

estimate DQACðsAC; aACÞ, which is expressed as

DQACðsAC; aACÞ ¼ frACðsAC; aACÞ

þ b� max
aAC

0 QACðsAC
0
; aAC

0
Þg � QACðsAC; aACÞ:

ð7Þ

max
aAC

0 QACðsAC
0
; aAC

0
Þ defines the best estimated value for

the prospective state sAC
0
. In the long run, QACðsAC; aACÞ

converges to the optimal Q-value, i.e.,

lim
t!1

QACðsAC; aACÞ ¼ QAC� ðsAC; aACÞ: ð8Þ

The naivest policy for action selection can be to choose one

of the actions with the maximum measured Q-value (i.e.,

exploitation). The exploitation method is known as a

greedy action aAC
�
selection method and can be written as

pAC
� ðaAC� jsACÞ ¼ argmaxaACQ

ACðsAC; aACÞ; ð9Þ

where argmaxaAC represents that QACðsAC; aACÞ is exploited
with respect to aAC. The instant reward is maximized by

continuous exploitation in a greedy manner. A modest sub-

stitute is to exploit more often; however, occasionally, a

learning STA explores all the allowable actions independent

of aAC
�
with probability � (known as exploration). The

greedy selection and non-greedy selection of actions are

together known as the �-greedy method [4]. In �-greedy

technique, every action guarantees the convergence of

QACðsAC; aACÞ as the number of instances increases. An STA

would exploit to improve its performance and explore to

know the changes in the network. To use exploitation and

exploration in the proposed MEDCA mechanism, an �-Fig. 3 QL model environment and its elements
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greedy method is applied with probability � for exploration

and probability 1� � for exploitation.

We express the reward of actions performed at any state

to minimize the channel collision probability pACobs. The

reward given by the action aACt taken at state sACt in time

slot t is expressed as

rACt ðsACt ; aACt Þ ¼ 1� pACobs: ð10Þ

The above statement indicates how pleased an STAwas with

its action in state sACt . Figure 4 depicts the state transition

diagramof the back-off stages in theMEDCAmechanism. In

the figure, the STA moves from one state (back-off stage) to

another with 1� pACobs as the reward. The STA observes and

learns the environment to optimize the back-off parameters.

Algorithm 1 depicts the steps performed by the proposed

MEDCA mechanism. Figure 5 shows a flowchart of the

proposed MEDCA mechanism. The flowchart shows the

extra steps added by MEDCA to EDCA.

5 Performance evaluation

We simulated the proposed MEDCA mechanism using the

ns-3 network simulator, version 3.28 [16], with a QoS-

supported IEEE 802.11 model for four types of service data

traffic (BK, BE, VI and VO). Some important simulation

parameters are listed in Table 3. The Q-learning paradigm

suggests that a low learning rate (c) and high discount

factor (b) accumulate the Q-value function in a smooth

way. By setting low c and high b values, we allow our QL

algorithm to consider future rewards heavier than instant

rewards [17]. Therefore, in our simulations, we used c ¼
0:2 and b ¼ 0:8. To maintain balance between exploration

and exploitation, the probability � is set to 0.5. However,

Fig. 6a–i reveals that channel observation-based collision

probability pACobs eventually converges to a certain value.

The convergence of pACobs clearly indicates that the system

has its optimal point, and the performance of the envi-

ronment can be optimized to the converged value. The

figures show the results for different combinations of c, b
and � to determine the best combination of these parame-

ters. The figures show different combinations of c, b and e,
which may not affect the convergence time; however, a

low value of c (i.e., c ¼ 0:2) shows close convergence of

pACobs for all b and � values.

Figure 7 shows the throughput comparison between the

conventional EDCA and proposed MEDCA mechanisms

for BK, BE, VI and VO. The figure clearly depicts that the

performance of the ACs severely degrades with an increase

in the number of contending STAs. Particularly, the BK

data traffic type suffers much degradation owing to less

chance of channel access. Although the QoS data types VI

and VO have high priority for channel access, their per-

formance starts degrading as the number of contenders

increases in the network. The performance degradation

with the increase in contenders is caused by the blindness

issue of the currently implemented binary exponential

channel access mechanism of EDCA. As compared to the

performance of EDCA, the proposed MEDCA outperforms

Fig. 4 MEDCA QL model

environment and its element

Algorithm 1 CW [AC] selection using MEDCA
1: Global: rAC(sAC , aAC), QAC(sAC , aAC)
2: Procedure: Select CW [AC] using MEDCA
3: Input: pAC

obs

4: Output: optimized CW [AC]
5: Initialize: cur rew = 0, ΔQAC(sAC , aAC) = 0, ε = 0
6: Calculate reward according to equation (10)
7: Update reward matrix rAC(sAC , aAC) with cur rew
8: Calculate improved estimate ΔQAC(sAC , aAC) using

equation (7)
9: Update Q-value matrix for QAC(sAC , aAC) using equa-

tion (6)
10: Pick a random value to explore or exploit (ε-greedy

method)
11: If (exploit)
12: Use optimal policy πAC∗

as in equation (9)
13: Scale CW [AC] according to the optimal action

aAC∗

14: Else (explore)
15: Use policy πAC as in equation (4)
16: Scale CW [AC] according to the action aAC

17: End If
18: Return CW [AC]
19: End Procedure
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for multiple types of service ACs, particularly for BE, VI

and VO. However, the performance improvement is not

visible for the BK data traffic type because it is of the

lowest priority in the network. This allows the STAs to

transmit less number of BK data frames; thus, MEDCA

does not learn enough to optimize the performance of BK

traffic. However, MEDCA enhances the performance of

BK data type in small-size networks owing to the relatively

less number of data frames from the high-priority traffic

types. The proposed machine intelligence-enabled net-

work-adaptable MEDCA channel access mechanism

enhances the aggregate system throughput as shown in

Fig. 8. The performance improvement affirms the machine

intelligence capabilities of the proposed mechanism. Fig-

ure 9 shows 500 instances of simulation to determine the

time complexity of EDCA, EDCA with COSB and our

proposed MEDCA mechanism. In the figure, processing

time of the MEDCA mechanism is high owing to the

requirement of machine intelligence in EDCA. Machine

intelligence requires extra steps in EDCA to observe and

optimize the performance of the back-off mechanism.

These extra steps cause an increase in time complexity of

the MEDCA mechanism.

Fig. 5 MEDCA flowchart

Table 3 MAC and PHY layer simulation parameters

Parameter type Value

Frequency 5 GHz

Channel bandwidth 20 MHz

Data rate 54 Mbps

Payload size 1472 bytes

Transmission range 10 m

Simulation time 100 s

Propagation loss model LogDistance

Mobility model ConstantPosition

Rate adaptation models ConstantRate

Error rate models YansErrorRateModel

Neural Computing and Applications (2020) 32:13107–13115 13113

123

Author's personal copy



6 Conclusion

QoS-supported EDCA for MAC layer channel access in

WLANs successfully fulfills the requirements of real-time

multimedia applications. However, one of the challenges of

QoS-supported wireless networks is addressing the issue of

efficient MAC layer resource allocation in WLANs owing

to their distributed contention-based nature. Currently,

Fig. 6 Convergence of channel observation-based collision probability for different combinations of a, b and �

Fig. 7 Throughput comparison of EDCA and MEDCA for different

ACs (BK, BE, VI and VO)

Fig. 8 Aggregate system throughput comparison between EDCA and

MEDCA
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EDCA uses a BEB mechanism, which blindly increases

and decreases the CW after collisions and successful

transmissions, respectively. To handle the performance

degradation challenge caused by this blindness, an

MEDCA mechanism is proposed in this study. The pro-

posed MEDCA mechanism overcomes the limitations of

EDCA by implementing a channel observation-based col-

lision probability for the scaling of back-off parameters.

Furthermore, to satisfy the diverse requirements of QoS-

supported wireless networks, one of the deep reinforcement

learning models, QL, is used to optimize the performance

of multiple types of service applications in the network.

Simulation results show that the proposed MEDCA

mechanism outperforms the traditional EDCA mechanism.

The proposed MEDCA mechanism increases the time

complexity of system processing; however, this increase in

processing time is small enough to neglect as compared to

the performance enhanced in terms of throughput.

In the future, we aim to further investigate the applica-

tions of our proposed MEDCA mechanism in various IoT-

based real-time applications such as smart-city, smart-

healthcare, smart-home, smart-grid and smart-industry.
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