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Abstract: The next generation of the Internet of Things (IoT) networks is expected to handle a 
massive scale of sensor deployment with radically heterogeneous traffic applications, which leads 
to a congested network, calling for new mechanisms to improve network efficiency. Existing 
protocols are based on simple heuristics mechanisms, whereas the probability of collision is still one 
of the significant challenges of future IoT networks. The medium access control layer of IEEE 
802.15.4 uses a distributed coordination function to determine the efficiency of accessing wireless 
channels in IoT networks. Similarly, the network layer uses a ranking mechanism to route the 
packets. The objective of this study was to intelligently utilize the cooperation of multiple 
communication layers in an IoT network. Recently, Q-learning (QL), a machine learning algorithm, 
has emerged to solve learning problems in energy and computational-constrained sensor devices. 
Therefore, we present a QL-based intelligent collision probability inference algorithm to optimize 
the performance of sensor nodes by utilizing channel collision probability and network layer 
ranking states with the help of an accumulated reward function. The simulation results showed that 
the proposed scheme achieved a higher packet reception ratio, produces significantly lower control 
overheads, and consumed less energy compared to current state-of-the-art mechanisms. 

Keywords: Internet of Things; IEEE 802.15.4; MAC protocols; RPL; reinforcement learning; Q-
learning 

 

1. Introduction 

The Internet of Things (IoT) is a promising communication technology that can provide 
connectivity to physical objects anywhere and anytime. The things in IoT refer to sensors, actuators, 
and microprocessor-based embedded devices [1]. The IoT network consists of a large number of 
sensors and actuators which are battery-powered and contain limited processing and storage 
capacity [2]. Internet of Things-based systems have numerous applications such as smart cities [3], 
smart healthcare [4,5], smart industries [6], and smart grids [7]. Thus, a large number of IoT sensors 
are expected to be deployed over wireless links in the future. These large-scale networks must be 
efficient and reliable. For example, in the case of industrial automation, machine-to-machine 
communication poses new challenges in autonomous data acquisition. Some studies have investigated 
the incentive mechanism design and cross-layer resource allocation approach [8]. The sensors are 
expected to be deployed in a complicated environment. The system cost is high, and deployment in 
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a harsh environment is challenging. Therefore, these tiny devices must be able to handle data 
processing, packet transmission, and energy consumption intelligently. The medium access control 
(MAC) protocol and routing mechanism can be prescribed with simple mathematical models; 
however, it still requires a complex protocol. Because the IoT-based network is constrained in terms 
of its resources, designing an intelligent communication protocol is a challenging task.  

The routing protocol for low-power and lossy networks (RPL) was proposed by the Internet 
Engineering Task Force (IETF) [9]. The RPL is a de facto routing protocol for resource-constrained 
IoT devices and is based on the Internet Protocol version 6 (IPv6) low-power wireless personal area 
network. In the RPL mechanism, the routes are constructed as soon as the network is initialized, 
indicating that it is a proactive routing protocol. The nodes utilizing the RPL create a tree-like routing 
topology called a destination-oriented directed acyclic graph (DODAG). The packets are directed to 
one or more sink nodes, hence the name “destination-oriented”. These routes are created based on 
some specific objective function (OF). The IETF proposed the minimum rank with hysteresis OF 
(MRHOF) [10] which is based on expected transmission counts (ETX) and OF zero (OF0) [11], which 
is based on hop counts, as default routing metrics. The routes in MRHOF are based on the link cost 
associated with the routes. The link cost or link quality is calculated by broadcasting probe packets 
at time intervals. The receiving node rebroadcasts the probe packet. This mechanism of continuous 
link assessment causes congestion in the network.  

Similarly, at the MAC layer, the devices use carrier-sense multiple access with collision 
avoidance (CSMA/CA) to access the channel [12]. Thus, the device manages the resources 
dynamically at the MAC layer to proficiently increase the network performance. The overall network 
quality can be improved by enhancing the capability of the device at the lower layers of the open 
systems interconnection (OSI) model. Similarly, the network performance can be improved by 
enhancing the device capabilities to learn traffic heterogeneity and diversity [13]. Thus, cross-layer 
optimization along with intelligent communication protocols are key to attaining optimal 
performance in heterogeneous data traffic scenarios. The CSMA/CA mechanism avoids collisions in 
the network. The collision probability on a wireless channel mainly depends on the number of 
neighboring nodes in the vicinity. As the network becomes denser, the probability of collision 
increases and network performance becomes poorer [14]. 

Moreover, the probability of collision increases with an increase in the network traffic flow. In a 
real network deployment, the traffic is saturated and heterogeneous. Heterogeneous refers to a lack 
of uniformity and saturated means that every node always has a packet to send. In the IoT network, 
some of the nodes may be traffic-intensive, whereas others produce traffic with a low generation rate. 
Thus, the overall resulting traffic pattern is unpredictable, and load imbalance may occur frequently. 
However, the current communication protocols lack the adaptability to the heterogeneous data traffic 
environment and suffer from severe congestion and packet loss due to the lower utilization of the 
full network capacity. Hence, the devices need an efficient mechanism at both the MAC and network 
layers to manage the network during fluctuating transmission loads. 

Future IoT networks are predicted to have diverse and exciting features that optimize network 
performance and communication efficiently. Machine learning (ML) is one of the most powerful 
artificial intelligence tools that provide machines with the ability to learn without a specific program 
[15]. Machine learning techniques to enable machine intelligence capabilities in IoT communication 
technologies are attracting much attention [16]. The popularity of ML is due to the fact of its successful 
application in the area of speech recognition, big data analytics, and language processing. 

In the case of industrial automation, machine-to-machine communication poses new challenges 
in autonomous data acquisition. Some studies have investigated the incentive mechanism design and 
cross-layer resource allocation approach. Similarly, ML-based edge computing is playing an 
important role to support the industrial IoT. For example, edge computing, along with a learning-
based channel selection mechanism, can achieve high performance for industrial IoT [17]. Popular 
technology companies, such as Google, Microsoft, and Facebook, are already employing ML-based 
algorithms to enhance their operational capabilities. The ML establishes a paradigm to learn from 
data patterns and sequences of actions. It observes the environment and develops an action policy. 
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In the context of IoT networks, an intelligent IoT device would observe and learn from a series of 
actions to improve a specific objective function. Based on the learning, the device improves its 
performance by executing future actions and exploiting previous experiences. The ML can be used 
extensively for improving numerous practical problems in IoT networks [18]. 

The ML at the routing layer and MAC layer is one of the technology drivers for next-generation 
low power networks. Similarly, heuristic models are also prevalent. The MAC layer and network 
layer capabilities for future dense IoT networks can be improved with ML-based algorithms. We 
utilized a cross-layer approach as a technology driver for a low-power network. Reinforcement 
learning (RL) is one of the significant ML techniques that are capable of training an agent (IoT device) 
to interact with an environment to maximize the cumulative reward [19]. For example, the 
conventional routing procedure involves an exchange of expensive (in terms of computational and 
energy cost) control packets. The cooperation of multiple communication layers can improve the 
quality of service. The RL can extract essential correlations between the MAC layer and network layer 
parameters to learn the network dynamics. Hence, the sensors can handle the communication task 
independently with reduced resource utilization. 

In the IoT-based network, the network layer protocol takes the decisions using a specific OF. For 
example, the MRHOF is based on the ETX mechanism, and the OF0 applies hop counts to route 
packets. In the ETX mechanism, the nodes estimate the link quality using a probe broadcasting 
mechanism at time intervals. The broadcasting and rebroadcasting of the probe packet increase 
network congestion. Similarly, the queue utilization-based algorithm (QU-RPL) uses queue 
information along with hop counts and ETX to improve network performance [20]. The stability-
aware load balancing (SL-RPL) [21] mechanism is also proposed to strengthen the RPL-based 
network. The SL-RPL uses packet transmission rate along ETX for a routing metric. The main 
objective of SL-RPL is to mitigate the frequent parent changing and to provide load balancing. Instead 
of utilizing the ETX-based mechanism, it is more efficient to exploit the probability of collision 
information at the MAC layer to learn the network dynamics and consequently improve the overall 
network performance. 

The self-sustainability of low-power and lossy IoT nodes, according to network condition, is one 
of the open issues of the IoT network. To solve this issue, we present a Q-learning (QL)-based 
intelligent collision probability learning algorithm (iCPLA). The proposed method exploits the 
probability of collision at the MAC layer to learn the collision in the network. In iCPLA, each node 
recursively examines the environment. In a heterogeneous traffic environment, the probability of 
collision varies due to the fluctuating traffic flow. However, we can learn and exploit the probability 
of collision information at the MAC layer to make efficient network layer decisions.  

In iCPLA, each node learns the channel collision probability and uses this information at the 
network layer. In this way, it tunes the RPL-based network layer using MAC layer collision 
information through interacting with the environment. The iCPLA algorithm runs on each node 
independently; in this distributed way, the nodes update the routing table entries accordingly. The 
proposed method is an intelligent adaptive protocol that can achieve a defined goal by learning the 
dynamics of a sensor network. The QL-based mechanism allows sensor nodes to learn to find an 
optimal forwarding path. In the proposed mechanism, the node determines the different states and 
performs actions based on the corresponding reward for each action. By updating the Q-values at 
each iteration, each device makes rational decisions based on its state–action–reward tuple.  

Significant contributions of this study are as follows; 
 The incorporation of a cross-layer mechanism is introduced to be used for low-power and lossy 

networks (LLNs). For the utilization of the cross-layer method, the IPv6 neighbor discovery 
function, as specified in RFC 4861 is used to calculate collision probability at IEEE 802.15.4 
CSMA/CA-based MAC layer. 

 A collision probability-based ranking mechanism is developed to construct the routing table 
entries.  

 The learning estimate is updated by exploring and exploiting the environment. During 
exploitation, control overheads transmissions are reduced, which further improves the energy 
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consumption of nodes. The nodes trickle timer operation is enhanced by suppressing DIO 
control packet transmissions during the exploitation phase.  

 The standard and extended performance assessment metrics (i,e., packets reception ratio, control 
overheads, and energy consumption during different stages of communication) have been 
utilized comprehensively to evaluate the performance of the proposed mechanism.  
The rest of the paper is structured as follows. Section 2 discusses ML for IoT-based systems. 

Section 3 presents the proposed iCPLA mechanism in detail. Section 4 demonstrates the performance 
evaluation of the proposed mechanism, and, finally, Section 5 provides a general conclusion along 
with future research directions. 

2. Machine Learning for IoT-Based Systems  

The ML algorithms are usually categorized as supervised learning, unsupervised learning, and 
RL. In supervised learning, the agent learns the history to map the input and output data for future 
predictions. The agent has input and output variables and determines the mapping function from the 
input to the output. Thus, the agent can predict the output variables using the input data. The 
supervised learning algorithm trains an agent to generate a response to a new dataset. The objective 
of supervised learning is to find relationships in the input data to effectively generate the output data 
for future data processing [22]. Predictive models are developed using classification and regression 
techniques. The supervised algorithms include linear regression [23], k-nearest neighbor [24], support 
vector machines [25], and Bayesian learning [26]. The supervised learning algorithms are significant 
ML techniques; however, they are not suitable for systems where an agent requires learning without 
the help of a supervisor and training dataset. 

By contrast, in unsupervised ML, only the input data are available. The data in an unsupervised 
system are unlabeled and uncategorized. The agent deduces information or patterns from an input 
dataset without reference to a known outcome. The goal is to find symmetries in the dataset to 
categorize it into groups or clusters for better understanding. The unsupervised algorithms include 
principal component analysis, k-means clustering, and independent component analysis. 
Unsupervised ML helps to find features and known patterns in data. The main applications of 
unsupervised ML techniques include anomaly detection and data processing to reduce the number 
of features in the dataset [15]. Similarly, the effect of ML for securing the data and network 
information is very profound [27,28].  

The RL concerns how the system or agent takes action in an environment to obtain the optimal 
reward. The aim is to find the most efficient method of accomplishing a particular goal. In a sensor 
network, the sensor node is the learner and a decision maker. Several factors influence the decision 
to select a specific action in a particular environment. The node seeks to find the best action for each 
possible input; thus, it iteratively learns the actions to pursue its goal, adapting to various network 
conditions [19]. 

In learning algorithms, the agent learns the environment and then performs the actions. During 
learning, it explores different actions called the exploration phase. If it selects the best performing 
action, it is called exploitation. The multi-armed bandit (MAB) is an RL decision-making probability-
solving technique to trade-off exploration and exploitation. Exploitation means choosing the best 
decision given the current information, and exploration denotes gathering more information [29]. In 
RL, there are k possible actions that a sensor node can take. For example, in a tree-like topology 
forwarding mechanism, a child node selects a parent node from N candidate parent nodes; this is the 
action of a child node. In return, the child node receives a reward. In the next period, the selection 
(i.e., whether the child node should continue using that parent node (i.e., exploitation) to deliver the 
packets to the sink node or it should select a new parent (i.e., exploration)) is solved via the MAB 
technique. Balancing exploration and exploitation is a challenging task in RL because too much 
exploration may yield negative rewards, and too much exploitation of a particular environment may 
result in preventing optimal long-term rewards. 

The epsilon-greedy (∊-greedy) MAB technique is used to balance exploration and exploitation 
[30]. With the ∊-greedy technique, the sensor node selects the best available option; however, with 
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every occasion, it also explores the other available options with a probability of 0 ≤ ∊ ≤ 1. A value of ∊ = 1 means that the algorithm always chooses a random action. Similarly, ∊ = 0.7 gives 70% time of 
exploration and 30% time of exploitation. Thus, we can add randomness to the learning algorithm by 
varying the ∊ value. 

Different network layer approaches have been proposed to improve the performance of IoT-
based network. To enhance the quality of the link, Ancillotti et al. [31] proposed an RL-based link 
quality estimation (LQE) strategy for RPL. It measures the trend of the received signal strength 
indicator (RSSI) and uses the RSSI value along with the ETX metric. This method improves the RPL 
network link repair procedure but increases the control overheads. Similarly, Aziz et al. [32] used a 
MAB-based clustering method for the probing system of the ETX metric. This method uses a 
clustering technique to optimize the network. Communicating with cluster heads increases the 
control overhead. Non-ML techniques are also proposed to improve IoT network communication. 
For example, Tang et al. [33] discuss the congestion avoidance mechanism and proposed a composite 
metric named CA-RPL. The CA-RPL computes the weight of each path. It also includes ETX value 
alongside the number of received packets. The utilization of the ETX metric in this method also 
increases the control overheads. Another method, CoA-OF, uses ETX, QU, and residual energy metric 
for parent selection [34]. It improves packets delivery ratio, energy consumption, and throughput, 
but it introduces frequent parent changes in high traffic scenarios that also result in increased control 
overhead. 

Enhanced RPL (E-RPL) is proposed to decrease the control overheads [35]. This method limits 
the nodes to wait for the control packet to update rank information. Limiting control packets 
improves energy consumption; however, it increases the network convergence time. The fuzzy logic-
based mechanism is based on ETX and energy consumption for rank calculation [36]. It shows 
improvement in the network throughput but increases overall energy consumption. Ghaleb et al. [37] 
proposed a solution to balance the load by monitoring the list of child nodes and also introduced a 
fast propagation timer to update the child list. The proposed method improves the packet delivery 
ratio and energy consumption, but it presents a looping in the network which increases the 
convergence time. The genetic algorithm-based method is also proposed which utilizes weighted 
queue length, delay, residual energy, ETX, and hop counts metrics [38]. The algorithm improves the 
packet’s average success ratio, end-to-end delay, and remaining energy. However, the network 
control overheads are not considered in this research. Taghizadeh et al. [39] utilized the QU factor to 
solve energy and packet loss problems under heavy traffic load scenarios. The proposed scheme 
improves energy consumption and packet loss ratio. However, this method also increases the control 
overheads that updates the node rank information.  

Next-generation technologies must shift from rule-based protocols to learning-based methods 
to improve the network conditions. The intelligent, self-sustaining IoT nodes are the key to 
sustainable smart IoT applications. So, integrating learning capabilities according to environmental 
conditions can support extensively advanced applications for smart cities. 

3. Proposed Reinforcement Learning-Enabled Optimization of Low-Power and Lossy Networks 
(LLNs) 

In this section, we present the proposed RL-enabled optimization of LLNs. This section is 
divided into four subsections. The first subsection explains the reinforcement learning and Q-
learning model. The second subsection describes the IEEE 802.15.4 collision resolution and path 
forwarding mechanism, whereas the third subsection explains the problem formulation and system 
model. Finally, the fourth subsection provides an intelligent QL-based algorithm to optimize the 
performance of LLNs. 
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3.1. Reinforcement Learning and Q-Learning Model 

In RL, the device learns the actions required to map the situations for these actions in the 
environment. The RL-based algorithms are usually based on an estimated value function (state–action 
pairs) which indicates whether the current state is good or bad. The objective of the RL-based algorithm 
is to maximize the numerical reward. The trade-off between exploration and exploitation is 
fundamental in the RL algorithm. The devices should explore actions that provide global optimum 
solutions. The purpose of each action is to acquire the maximum reward. At the start, it is possible to 
find actions that can lead to poor performance. Thus, in stochastic tasks, each action must be tested 
several times to gain a consistent estimation of its expected reward [19]. The RL system has four main 
sub-elements: a policy, a reward signal, a value function, and sometimes (optionally) an environment 
model. 

The QL technique is a model-free RL technique for solving decision problems. The “Q” in QL 
stands for quality. The quality shows how useful the current action is in obtaining a high reward. The 
QL algorithm creates a Q-table of states and actions. After each episode, the table is updated, and the 
device then chooses the best action based on the Q-value. The Q-value is updated based on the 
learning rate, discount factor, the difference between the discounted new value and old values (𝛥𝑄), 
and reward. The learning rate is represented by 𝛼 which indicates the extent to which the new value 
overrides the previous one.  

The sensor node decides to select an action under a particular state depending on the policy 𝜋(𝑎|𝑠), also referred to as policy function. A Bellman equation determines the optimal policy and 
value function, which allows us to formulate an equation that represents our state–value function 
[19] as shown below: 𝑄గ∗(𝑠௧, 𝑎௧) = 𝔼{𝑟௧ + 𝛽 × 𝑚𝑎𝑥ᇲ𝑄గ∗(𝑠ᇱ, 𝑎ᇱ)|𝑠௧ = 𝑠, 𝑎௧ = 𝑎}, (1) 

where 𝛽 represents a discount factor (0 ≤ 𝛽 ≤ 1), which affects how much weight an algorithm gives 
to future rewards in the value function. A discount factor of 𝛽 = 0 results in a state–action value 
representing the immediate reward, while a higher discount factor of 𝛽 = 1 results in a state–action 
value representing the cumulative discounted future reward. The 𝑟௧  represents the reward of the 
action 𝑎௧ at time 𝑡. There are multiple possible actions determined by a policy 𝜋(𝑎|𝑠). Each possible 
action is associated with an action–value function 𝑄గ(𝑠, 𝑎), returning a Q-value of that particular 
action. In QL, 𝑄(𝑠, 𝑎) estimates the reward as the aggregated reward, and it is updated using the 
following equation: 

 𝑄(𝑠, 𝑎) = (1 − 𝛼)  ×  𝑄(𝑠, 𝑎) +  𝛼 ×  𝛥𝑄(𝑠, 𝑎), (2) 
where 𝛼 is the learning rate with a value between 0 and 1, which indicates the extent to which the 
new value overrides the previous value. As shown in the equation, if 𝛼 = 0, the device does not learn 
a new value, whereas if 𝛼 = 1, the device only considers a new value. Hence, for a higher learning 
rate, the learning estimate fluctuates because, in each episode, the node gives more consideration to 
new value irrespective of its previous experience. In the above equation, 𝛥𝑄(𝑠, 𝑎) is an improved 
learning estimate defined as follows: 

 𝛥𝑄(𝑠, 𝑎) = {𝑟(𝑠, 𝑎) +  𝛽 × 𝑚𝑖𝑛𝑄(𝑠ᇱ, 𝑎ᇱ)} − 𝑄(𝑠, 𝑎),   (3) 
where 𝛽 indicates if the current reward is more desirable than future rewards. The 𝑚𝑖𝑛𝑄(𝑠ᇱ, 𝑎ᇱ) is 
the minimum (best) Q-value obtained from the state–action pair. The QL gives the wireless sensor 
node an ability to discover its reward and new state from the environment and makes it applicable 
for optimizing the LLN devices. The mathematical framework to describe states 𝑠, actions 𝑎, reward 𝑟, and state-transition probabilities 𝑃 is shown in Figure 1. The greedy action can be written as: 

 𝑎గ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑄(𝑠, 𝑎), (4) 
where 𝑎𝑟𝑔𝑚𝑖𝑛  represents the exploitation of 𝑄(𝑠, 𝑎)  concerning action 𝑎 . The continuous 
exploration in a greedy manner increases the instant reward. As the number of episodes increases, 
the value of 𝑄(𝑠, 𝑎) moves toward the optimum value of 𝑄∗(𝑠, 𝑎). 
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Figure 1. State-transition diagram for Markov decision process (MDP) with m states. 

3.2. IEEE 802.15.4 Collision Resolution and Path Forwarding Mechanism 

The IEEE 802.15.4 standard specifies the MAC layer and the physical (PHY) layer for LLNs [40]. 
It utilizes the CSMA/CA mechanism to access a wireless channel. The MAC layer uses a distributed 
coordination function (DCF) to access the channel [41]. Similarly, LLN nodes utilize the RPL method 
for the path forwarding mechanism. 

3.2.1. IEEE 802.15.4 CSMA/CA BEB Mechanism  

The CSMA/CA protocol is based on a DCF mechanism with a binary exponential backoff (BEB) 
algorithm for resource allocation. The objective of the CSMA/CA BEB protocol is to minimize 
collisions due to the fact of multiple nodes simultaneously accessing a wireless medium. In the DCF 
mechanism, when a node has a packet to transmit, it first listens to the channel status for a short 
duration, called the DCF interframe space (DIFS) interval, to determine if the channel is idle or in use. 
If the channel is empty for a DIFS duration, the node proceeds to transmit the packet. If the medium 
is occupied, the node postpones its transmission until the end of the ongoing communication. The 
node initializes its backoff timer with randomly selected backoff intervals from 0 to CWi−1, where 
CWi is the current contention window size, and i is the backoff stage. The BEB counter decrements 
again every time the channel becomes idle for a DIFS. The probability of two or more nodes selecting 
the same backoff value is low [42]. The size of CW depends on the number of failed transmissions 
due to the fact of collisions. At the first collision, the size of CW is CWmin; after each collision, CW is 
doubled until it reaches the maximum value (CWmax). The CW remains at the maximum value until a 
successful transmission or when it reaches the maximum retransmission limit [43]. 

3.2.2. RPL Routing 

The RPL uses a ranking mechanism as a conventional route selection method. In the RPL, the 
route construction involves an exchange of control messages, namely, destination oriented directed 
acyclic graph (DODAG) information objects (DIO), destination advertisement objects (DAO), 
destination advertisement object acknowledgments, and DODAG information solicitations (DIS) [9]. 
These messages are very crucial for optimizing network performance. The format of these control 
messages is shown in Figure 2. The transmission of control message DIO is based on a timer selected 
by an algorithm called the trickle timer algorithm [44,45]. The DIO transmission rate increases 
exponentially if the network is inconsistent but decreases to its initial rate if the network is consistent. 
For a system with a heavy traffic load, the DIO messages result in more congestion and poor network 
performance. They also cause unnecessary network delays. The two objective functions (i.e., OF0 and 
MRHOF) for routing decisions in the RPL perform poorly. The OF0 selects the forwarding path based 
on a simple hop-count irrespective of the path condition, whereas the MRHOF assesses the link quality 
using a probing method and introduces overheads.  
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Figure 2. Formats of RPL control messages. 

3.3. Problem Formulation and System Model  

The IoT networks have wide application areas, including smart, sustainable cities. The sensor 
nodes transmit their data to the sink or root node via multiple relay nodes. Each sensor sense and 
produce data according to its application requirements. Thus, the overall resulting traffic pattern is 
unpredictable, and load imbalance may occur frequently. The internet layer defines the path, rules, 
and regulations for the LLN nodes to transmit the data to the sink node. The LLN nodes often suffer 
from packet loss due to the fact of collision in the densely deployed network. Future generation 
technologies are expected to be more intelligent, self-sustaining, and adaptive. By integrating the 
learning capabilities in the LLN devices, the system can be more efficient and self-sustainable. The 
overall network efficiency can be improved by enhancing the capabilities of the device at lower layers 
of the OSI model to achieve this goal. 

In this study, we utilized a QL technique. The agent was a sensor node, and the environment 
was the wireless medium. The sensor node learns the environment based on the value function. The 
function evaluates how good the action is in a given state. The system must satisfy the Markov 
property called the Markov decision process (MDP) to apply the RL to provide learning and 
intelligence [46]. The MDP is a mathematical framework for modeling decision making in a specific 
environment as illustrated in Figure 1. Figure 1 represents the state-transition diagram of the MDP 
of our proposed system. This figure depicts that a node transmits its state by selecting a forwarding 
node and updates its routing entries as well as rank information in a practical case study, such as a 
smart city or smart grid, where a system includes hundreds of connected sensor nodes. In such a 
system, a transmitting node is always searching for an efficient forwarding neighbor node. The 
probability that the agent moves into its new state 𝑠ᇱ  is known as state-transition probability 
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Moving from one state to another requires an action space such as, 

 ∑ 𝑃௦ᇲ∊ௌ (𝑠ᇱ, 𝑟|𝑠, 𝑎) = 1, for all 𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴(𝑠). (5) 
which shows that the sum of the probabilities of taking n number of actions is 1. For example, during 
path selection, the node either decides to switch the parent node or not. If it decides to change, the 
action of switching has a probability of 0.5. If it does not change, the probability of not switching is 
also 0.5, which is like that of a simple probability problem of tossing a coin. The reward function 
gives the reward for acting 𝑎 from state 𝑠 and transiting to 𝑠ᇱ. In the MDP, the first step is to specify 
the system state-space and action-space and satisfy the Markov property. One of the primary 
purposes of the implementation of a QL algorithm is to construct a mathematical framework to solve 
MDP-based problems. For example, QL Equations (1)–(5) are helpful to measure how good an action 
is in a state, or it helps us to understand what actions to take under different states. There exist several 
practical case studies which utilize these equations for system optimization. For example, the authors 
in Reference [5] proposed a QL-based CW optimization mechanism which uses these equations to 
select a CW size optimally.  

In the proposed mechanism, the network is created using a graph called DODAG, which is based 
on a parent–child topology. There are 𝑁 = 𝑃 𝑈 𝐶 communicating nodes, and each node is ranked 
based on its position in the graph. Where 𝑃 = (𝑝ଵ, 𝑝ଶ, 𝑝ଷ, … , 𝑝)  represents the set of parent nodes, and 𝐶 = (𝑐ଵ, 𝑐ଶ, 𝑐ଷ, … , 𝑐) is the set of all child nodes in the network. The root node is denoted as rank 1, 
the node next to it as rank 2, etc. Each child node forwards its packets to its selected parent node. 
Each node utilizes the CSMA/CA BEB channel access mechanism for the contention. The nodes are 
placed randomly with random distances from each other. Some of the nodes produce heavy traffic 
while others generate packets with low transmission rates. Thus, the traffic load is heterogeneous 
with fluctuating and unpredictable patterns. The maximum allowable transmission attempts for the 
link layer are eight retransmissions, and the CSMA/CA maximum backoff exponent is five. 

3.4. Proposed Intelligent Collision Probability Learning Algorithm   

In this subsection, we explain our proposed optimized QL-based iCPLA mechanism for more 
efficient LLNs. The QL model and its elements for the proposed mechanism are presented in Figure 3. 
In the iCPLA protocol, we define the state s of each node as its neighboring nodes, i.e., s ∈ S (S = {0, 1, 2, 
…, m}), where m denotes the number of states. The value 𝑚𝑖𝑛𝑄(𝑠ᇱ, 𝑎ᇱ) provides the best-estimated 
value for the potential state s'. The selection of a particular neighboring node for path forwarding is the 
action. The proposed protocol has two-fold changes to the standard one. First, it replaces the ETX 
mechanism for forwarding path decisions with the CSMA probability of collision. Second, it learns the 
collision probability from the MAC layer to be used during the exploration and exploitation phases and 
consequently constructs the routing table entries.  

In wireless communication, MAC protocols rely on the DCF mechanism to sense and assess the 
channel and avoid channel collision by performing an exponential backoff. In a shared medium, 
collisions happen when multiple transmissions coincide. The collision probability increases when the 
network is dense with a saturated traffic load. The theoretical collision usually is derived from the 
assumption that each node has a saturated traffic load. A saturated node means that the node always 
has traffic to transmit.  
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Figure 3. Q-learning model environment for intelligent IoT system device. 

By estimating the probability of collision in a heterogeneous traffic environment, it is possible to 
learn the network dynamics. The load imbalance caused by the heterogeneous traffic condition 
profoundly impacts on the network’s performance due to the collisions. The node increases the 
backoff exponent (BE) with a range of 0–5 at each collision. The collision probability is defined as a 
function of the minimum BE stages and contention window size during a given time slot. The node 
then calculates the CW size using the following equation:  

 𝐶𝑊 = 2ா − 1.  (6) 
Using (6), the value of CW is in the range of 0–31. The collision probability is defined as at least 

one of the other k−1 neighbors that transmit simultaneously. Based on the CW estimates, the node 
calculates the probability of collision as follows: 

 𝑃 = 1 − (1 − 1/𝐶𝑊)ିଵ, (7) 

 
 𝑃 =  ଵ௬  × ∑ 𝑃(௫)௬௫ୀଵ , (8) 

 𝑃(𝑁) = (𝑃 + 𝑃(௨௧))/2, (9) 
where k represents the number of neighboring nodes, 𝑃 is the probability of collision, 𝑃 is the 
mean probability of total current intervals (i.e., y), x is a counter for each collision value. Ni represents 
ith sensor node, and 𝑃(𝑁)  is the probability of collision of Ni node to be used during the 
construction of the routing table. The information of the neighboring node is obtained from the 
network layer. The RPL-based nodes use the DIS control packet to probe its neighborhood. The RPL 
uses the IPv6 neighbor discovery concept as specified in RFC 4861 [47]. The analytical model in (7) is 
provided in Reference [48]. Based on the backoff window, the probability of transmission in an 
arbitrary slot is given by 1/𝐶𝑊. The analytical model in (7) has been widely used in the literature 
[49]. With each transmission interval, the node calculates the mean of the collision probabilities of the 
last five intervals as indicated in (8). In (9), the average current collision probability with the prior 
mean collision probability is obtained. The network layer utilizes this information for exploration 
during forwarding path selection decisions. The network layer is based on the RPL as described in 
Section 3.2.2. In the RPL, the routing decisions are made using the rank information embedded in the 
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DIO control packets. Each node broadcasts the DIO packet. The nodes generate a list of potential 
parent nodes using ranks obtained in the DIO messages. In the RPL method, during the forwarding 
path selection, the node with the smallest rank is picked as a parent node. In the proposed 
mechanism, the probability of collision information from the MAC layer is embedded in the DIO 
message for the rank calculation as follows: 

 𝑅𝑎𝑛𝑘൫𝑐൯ = 𝑅𝑎𝑛𝑘(𝑝) + 𝑃(𝑝),  (10) 
where 𝑅𝑎𝑛𝑘(𝑝) is the parent node rank, and 𝑃(𝑝) is the collision information obtained using (9). 
The ETX-based node uses a probe broadcasting mechanism at each interval to measure the quality of 
links. To alleviate congestion and overhead problems caused by the ETX probing mechanism, we did 
not utilize the ETX information in the rank calculation. The probability of collision reflects congestion 
without producing extra overheads.  

Each node generates a routing table entry corresponding to the Q-table value during 
exploitation. Each node also maintains an estimated rank value for each of its neighbors. The 
probability of collision in (10) is observed using CW size and number of k–1 neighboring nodes. As 
the network becomes denser, the probability of collision increases and the network performance 
becomes poorer. Since each node has different k–1 neighbors, the obtained 𝑃 is different for each 
node. It has been observed that collision probability increases with the increase in traffic load [50]. In 
the case of heterogeneous traffic patterns, some of the nodes may be traffic-intensive, whereas others 
produce traffic with a low generation rate. Thus, the overall resulting traffic pattern is unpredictable, 
and load imbalance may occur frequently. Therefore, in a heterogeneous traffic environment, the 
probability of collision varies due to the fluctuating traffic flow. The nodes perform exploration using 
equation (10) and exploitation using minimum Q-values obtained from Equation (2) to reach an 
optimal action value.  

One of the most critical aspects of IoT communication is the control overhead. The control 
overheads are regulated by a mechanism called the trickle timer. Because the LLN nodes have limited 
computational and energy resources, it is highly advantageous to restrict the transmission of 
overhead packets at the minimum level. The trickle timer schedules a control message transmission 
and service discovery. The frequency of control packets is adjusted according to network stability. 
The trickle timer algorithm schedules the transmission of DIO control packets. The DIO packet carries 
rank information. 

The rank information is required only during the exploration phase. Thus, we reset the trickle 
timer period for the exploitation phase. During exploitation, the node selects the forwarding node 
using a Q-table value. In this case, nodes do not require the transmission of DIO messages. Thus, the 
DIO transmissions are halted. The transmissions of DIO packets start again during the exploration 
phase. This procedure significantly reduces the number of control overheads in the network without 
compromising the network performance. The RL-based algorithm updates the network information 
during the exploration phase and exploits the network during the exploitation phase. Consequently, 
it mitigates the requirement of hasty DIO transmissions during exploitation.  

The reward in (11) represents the channel collision probability. After a node acts 𝑎 in state 𝑠, it 
receives a reward indicating how desirable such an action is. A positive reward is given if the current 
probability of the collision value of the current state is less than its previous collision probability. 
Similarly, a negative reward is given if the collision probability increases. The reward for each node 
is given as: 

 𝑟 ∈  ൜𝑅ା, 𝑖𝑓 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒𝑠 𝑅ି,                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.  (11) 

In the state-transition diagram of the iCPLA mechanism, (Figure 1), the node moves from one 
state to another with 𝑅ା and 𝑅ି as rewards. The reward in (11) is based on observations. The node 
learns the collision probabilities to optimize the network performance. We used Equations (6)–(10) in 
our Q-learning-based proposed algorithm to optimize RPL-based network performance. Equations 
(6)–(9) are helpful to measure the collision probability within a sensor network. Further, we 
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embedded these calculated values in the rank Equation (10) to formulate our reward function as in 
Equation (11). The child nodes in a sensor network select its forwarding path using the learned Q-
value based on the reward formulated in Equations (6)–(11). Thus, in a smart-city or smart-grid 
environment, nodes can learn to optimize the network’s performance using Equations (1)–(11). 
Algorithm 1 describes the steps required to optimize the network using our proposed iCPLA 
mechanism. 

Algorithm 1: Cross-layer optimization for low-power and lossy networks using iCPLA 
1. while the device is on do 
2. set maximum retry limit  
3. set maximum backoff stages  
4. set CWmin = 0, CWmax = 31 
5. set current reward = 0, 𝛥𝑄 (s, a) = 0, 𝑄(s, a) = 0 
6. BE = MIN (n_collisions, CSMA_MAX_BE) 
7. measure CW using BE in (6) 
8. calculate 𝑃 using CW in (7) 
9. calculate 𝑃 using (8) 
10. counter++ 
11.   if (counter = 5), then 
12.      counter  = 1 
13.     𝑃 = 𝑃(௨௧) 
14. end if 
15. 𝑃(𝑁) = 𝐴𝑣𝑔(𝑃, 𝑃(௨௧)) 
16. if  (𝑃(௨௧) <  𝑃), then 
17.    reward = positive 
18. else 
19. reward = negative 
20. update reward table for r (s, a)  
21. update Q-values table according to (2) 
22. pick a random value to explore and exploit  
23. if (exploit), then 
24. find 𝑚𝑖𝑛𝑄(𝑠ᇱ, 𝑎ᇱ) IP address 
25. else (explore) 
26. if (node = root node), then 
27.     root rank = 1 
28. end if 
29. if (parent = null), then 
30.     rank = max path cost  
31. end if 
32. if (parent != null), then 
33.     𝑅𝑎𝑛𝑘൫𝑐൯ = 𝑅𝑎𝑛𝑘(𝑝) + 𝑟𝑎𝑛𝑘௦ 
34.     𝑟𝑎𝑛𝑘௦ = (𝑃(𝑁)) 
35. end if 
36. if (𝑅𝑎𝑛𝑘(𝑝) = 0), then 
37.     rank = base rank (128) 
38. end if 
39. return MIN (𝐵𝑎𝑠𝑒 𝑟𝑎𝑛𝑘 + 𝑟𝑎𝑛𝑘௦) 
40. end while 

4. Performance Evaluation  

This section describes the simulation study of the proposed mechanism. The Contiki OS Cooja 
simulator version 3.0 was used for the simulation analysis [51]. The proposed iCPLA scheme was 
compared with OF0, MRHOF, QU-RPL, and SL-RPL. The network was analyzed in a densely 
deployed heterogeneous traffic environment, where nodes are placed randomly and packets are 
generated with different transmission rates. The specific MAC layer and PHY layer parameters 
utilized during the implementation are provided in Table 1. For the heterogeneous traffic pattern, the 
transmission interval of the nodes varied with respect to the clock second; for example, 1 packet per 
second; 1 packet every 2 s; 1 packet every 6 s; and 1 packet every 60 s. The nodes utilized the Zolertia 
Z1 mote platform [52]. The read-only memory (ROM) size was 96 KB with a payload size of 140 bytes.  
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Table 1. Simulation Parameters. 

Parameters Value  
Contiki OS version  Contiki 3.0 
RTIMER_SECOND 32768 ticks/s 

Packet size  127 bytes 
Simulation time 720 s 

Number of nodes  20, 30, 40, 50, 60, 70, 80, 90, 100 
PHY & MAC protocol 802.15.4 with CSMA 

Packet size  127 bytes 
uIP payload buffer size 140 bytes 

Buffer occupancy 4 packets 
Mote device model Z1 Zolertia 

CWmin 0 
CWmax 31 

Maximum back-off stage 5 
Maximum retry limits  8 

RAM 8 KB 
Flash 92 KB 

Tx Current 17.4 mA 
Rx Current 18.8 mA 

CPU idle current 0.426 mA 
CPU power-down current 0.020 mA 

Send interval  Varying with respect to clock second. 
Script text analysis Python 3.7 

4.1. Contiki OS Implementation  

The Contiki OS is a C language-based event-driven operating system that provides IP 
communication support to LLN devices [53]. It gives an emulator named Cooja, which offers an 
excellent environment to debug, test, and verify the behavior of networking devices. Cooja consists of 
a simulation visualizer, simulation timeline, and radio logger for analysis, where each simulation is 
stored in a simulation configuration (CSC) XML file. To support communication, the Contiki OS 
provides two networking stacks: uIPv6 and Rime. The uIPv6 endorses the implementation of TCP/IP, 
UDP, and RPLs for low-end devices containing 8 bit microcontrollers that usually have 64 KB to 256 KB 
of flash memory and 8 KB to 32 KB of random access memory (RAM). 

Similarly, Rime supports a communications stack for low-power radios. ContikiRPL implements 
the OF in three different modules: (1) a protocol logic module that contains DODAG and parent–child 
association information; (2) a message-construction and message-parsing module that generates 
ICMPv6 messages and data structures for the network; and (3) an OF module that provides an OF 
application program interface. A packet travels through each module, and the uIP layer offers 
minimum functionality to support the full TCP/IP stack. It allows a maximum IP payload size of 140 
bytes. The system parameters are according to standardized protocols [40] and Z1 mote specifications 
[52].  

4.2. QL Parameter Selection  

We evaluated the results with varying learning rate α and discount factor 𝛽. Similarly, ∊ was 
varied to learn the network dynamics with different exploration and exploitation values. We varied 𝛼 and 𝛽 from small to large values (i.e., 0.3, 0.7, and 0.9) with a probability ∊ of up to 0.7. If the 
learning rate α was high, the learning estimated 𝛥𝑄 fluctuated, because, in each episode, the node 
gave more consideration to the new value irrespective of its previous experience. The convergence of 
the learning estimate 𝛥𝑄 is depicted in Figure 4 for various learning rates. The value of α indicates 
the extent to which the new value overrides the previous value, and it ranged between 0 to 1. If the 
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value of α is closer to zero, the device slowly learns a new value, whereas if the value of α is closer to 
1, the device only considers a new value and learns faster. Thus, as shown in the Figure 4, for a higher 
learning rate α, the learning estimate 𝛥𝑄 fluctuated more often, because, in each episode, the node 
gave more consideration to the new value irrespective of its previous experience.  Figure 5 shows the 
convergence of the learning estimate 𝛥𝑄 for various discount factors, i.e., 𝛽 = (0.3, 0.7, and 0.9). The 
value 𝛽 affects how much weight it gives to future rewards in the value function. A discount factor 
close to 0 results in state–action values representing the immediate reward, while a higher discount 
factor (i.e., 𝛽 closer to 1) results in the cumulative discounted future reward. The discount factor 
profoundly influences the convergence of learning estimates. Thus, the value of 𝛽  is determined 
based on the convergence of the learning estimate. If a device values the long-term future reward 
more (i.e., high discount factor 𝛽), the learning estimates are closer to the optimal value. If the device 
gives more value to the current reward, the learning estimate highly diverges from the optimal value 
initially. The value of 𝛥𝑄 is obtained using (3). Therefore, a small value of 𝛼 and substantial value of 𝛽  makes 𝛥𝑄  converge faster with less fluctuation. According to Reference [54], Q-learning will 
converge if the learning rate goes to zero or small state–action space will also converge if the learning 
rate is low and fixed. In our proposed mechanism, the nodes visit each state–action pair a number of 
times and updates the process. During the time duration of the network, all state–action pairs are 
performed. 

 

Figure 4. Convergence of learning estimate 𝛥𝑄 for varying the learning rate 𝛼 (𝛽 = 0.7, ∊ = 0.7). 

 
Figure 5. Convergence of learning estimate 𝛥𝑄 for varying the discount factor 𝛽 (𝛼 = 0.7, ∊ = 0.7). 

The convergence of 𝛥𝑄 indicated that the nodes in the network learned the environment. The 
nodes exploited the learned information to make better decisions. The 𝛥𝑄 value was not uniform at 
the start owing to the exploration of the environment which also means that the value function was 
not optimized at this stage. With each episode, the nodes tended to move toward the positive reward 
state. In the early stages of learning, the Q-function was not adequately trained. We can observe that 
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after ten episodes, the network started to become stable which led to the optimization of the 
performance. Each episode had a 10 s duration of transmission interval. The convergence of 𝛥𝑄 
indicates that there existed an optimal solution for the environment, and the network converged to a 
stable equilibrium. We also evaluated the learning estimate in a dynamic network environment by 
adding 20 more nodes to the network during the simulation. Figure 6 displays the effect of a dynamic 
network environment on 𝛥𝑄 which shows that after 23 episodes, when new nodes were added in the 
network, the proposed mechanism performed learning activities to relearn the network dynamics. 
Therefore, the value of learning estimate (𝛥𝑄) fluctuated when the episode was 23 (Figure 6). Later, 
the network again converged and, thus, optimized the network’s performance in a dynamic setting.  

 
Figure 6. Convergence of learning estimate 𝛥𝑄  in a dynamic network environment (adding new 
nodes in the network during simulation). 

4.3. Packets Reception Ratio  

The packet reception ratio (PRR) is the total number of packets successfully received by the sink 
node divided by the total number of transmitted packets. To evaluate the performance of the iCPLA, 
we compared its simulation results with those of the de facto MRHOF, OF0, and recently proposed 
SL-RPL along with QU-RPL. Figure 7 shows that the iCPLA optimized the PRR. Its performance was 
better than those of the other protocols, indicating that the learning-based protocol was useful for 
learning the wireless network. The SL-RPL, QU-RPL, and MRHOF also developed a more reliable 
system compared to the OF0. The OF0 did not contain any link reliability protocol and utilized only 
the hop-count information. The MRHOF used the ETX-based link assessment method. 

 

Figure 7. Comparison of packet reception ratio (PRR) between iCPLA, QU-RPL, SL-RPL, MRHOF, 
and OF0 with 𝛼 = 0.3 and 𝛽 = 0.7 in a network of 20 to 100 nodes. 

Similarly, the QU-RPL was based on hop-counts, ETX, and queue utilization for path selection. 
The SL-RPL also utilized ETX for routing metrics. The iCPLA used the collision probability 
information from the MAC layer to assess the network’s condition, and the nodes learned the 
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collision information using the QL technique. Thus, it eliminated the need for a computationally 
expensive ETX mechanism.  

4.4. Average End-to-End Packet Delivery Delay  

The average end-to-end packet delivery delay (E2E) shows the average delay of all packets in 
the network. The E2E delay is the time taken by a packet to reach its destination node from its source. 
Figure 8 illustrates the performance of the iCPLA protocol along with the standard MRHOF, OF0, 
SL-RPL, and QU-RPL mechanisms in terms of the average E2E packet delay (in milliseconds). The 
OF0 incurred the highest E2E delay. The OF0 used a forwarding path based on hop-counts 
irrespective of the congestion status of the links. The MRHOF, QU-RPL, and SL-RPL had almost 
similar delay patterns, because both they used a continuous probing method. The proposed iCPLA 
mechanism had a higher E2E delay compared to MRHOF and QU-RPL; however, it did not exceed 
that of OF0. The higher delay was due to the learning process of the intelligent nodes.  

 
Figure 8. Comparison of average E2E packet delay between iCPLA, QU-RPL, SL-RPL, MRHOF, and 
OF0 with 𝛼 = 0.3 and 𝛽 = 0.7 in a network of 20 to 100 nodes. 

4.5. Control Overheads 

The IoT devices contain minimal energy, memory, and computational capabilities. The nodes 
transmit control packets along with data transmission. These control packets significantly reduce the 
energy, memory, and computational capacity of the devices. Thus, it is imperative to reduce the 
transmission of control messages without compromising network performance. The RPL incurs three 
control overheads, i.e., DIO, DAO, and DIS (explained in Section 3.2.2.). The nodes maintain the 
network connectivity using these control packets, and these control packets are regulated by a 
mechanism called trickle timer. If the network is stable, fewer overheads are exchanged and vice 
versa. Based on the network conditions, DIO messages are exchanged, and a trickle timer algorithm 
controls their transmission frequency. Figures 9 and 10 present the total number of DIO and DAO 
control packets transmitted in the network, respectively. The proposed iCPLA method significantly 
reduced the control packet transmissions compared to QU-RPL, SL-RPL, MRHOF, and OF0. After 
learning, the 𝛥𝑄  estimate become stable, and the nodes estimated the collision probability 
intelligently. The nodes in the iCPLA evaluated, learned, and observed their actions based on 
learning to achieve optimal performance. The network with poor PRR incurred the highest DIO 
transmission. As an increasing number of packets were dropped, the network became more unstable 
which led to more DIO transmissions. Therefore, the OF0 incurred the highest DIO overhead in the 
network. The QU-RPL, SL-RPL, and MRHOF both used the ETX probing method which required 
more control packets. The QU-RPL incurred slightly fewer overheads compared to the MRHOF due  
 



Sensors 2020, 20, 4158 17 of 25 

 
Figure 9. Comparison of number of DIO control messages between iCPLA, QU-RPL, SL-RPL, 
MRHOF, and OF0 with 𝛼 = 0.3 and 𝛽 = 0.7 in a network of 20 to 100 nodes. 

 
Figure 10. Comparison of number of DAO control messages between iCPLA, QU-RPL, SL-RPL, 
MRHOF, and OF0 with 𝛼 = 0.3 and 𝛽 = 0.7 in a network of 20 to 100 nodes. 

to the utilization of queue information which helped in balancing the load. Similarly, SL-RPL further 
balances the load by considering the packet transmission rate in its routing metric. 

The destination information of the transmitting nodes was transmitted to the sink node via the 
DAO control packet. Generally, DAO packets are generated and contribute significantly to the control 
overhead. The DAO is sent to the sink node when the upward path is changed. With the transmission 
of DIO and DAO packets, the scarce energy of the nodes is wasted. The proposed iCPLA protocol 
also reduced the number of DAO control packets significantly, compared to the QU-RPL, SL-RPL, 
MRHOF, and OF0. When the network was initialized, all packets were control messages. The nodes 
started the transmission of data packets after the network construction was completed. A comparison 
of the transfer of the total percentage of control overhead versus the data packet transmission is 
shown in Figure 11. The proposed iCPLA protocol had the lowest overall percentage of overhead. 
More transmission of the control overhead means more energy is wasted in its transmission rather 
than data packet transmissions. The OF0 had the highest percentage of control overhead, because it 
was unable to resolve the congestion and load-balancing problem. The iCPLA maintained almost the 
same overhead percentage whether with a small or a large number of nodes. Its total overhead was 
only approximately 8–9%. The self-learning capability using the RL-based technique gave nodes the 
ability to make intelligent decisions in an unknown environment. The overhead percentage graphs 
demonstrate that the iCPLA created a consistent, stable, and less congested network which also 
affected the network’s energy consumption. 
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Figure 11. Comparison of total control overhead (%) between iCPLA, QU-RPL, SL-RPL, MRHOF, and 
OF0 with 𝛼 = 0.3 and 𝛽 = 0.7 in a network of 20 to 100 nodes. 

4.6. Effect on Energy Consumption  

Energy is the most important resource in a sensor network. The IoT nodes consume most of the 
energy during communication. The nodes spend a significant amount of energy during the 
transmission and reception of packets. The nodes turn their radios off when they are not transmitting 
or receiving any packet. The state when the radio is off, and the microcontroller is idle is called low-
power mode (LPM). For the Z1 mote, the current consumption during LPM is 20 µA. Similarly, the 
state when the radio is off, and the microcontroller is on is referred to as CPU idle state (CPUI). The 
Z1 mote consumes 42.6 µA during the CPUI state. The highest amount of current is consumed during 
the transmission and reception periods. The transmission current (Tx) consumption is 17.4 mA, 
whereas the reception current (Rx) consumption is 18.8 mA. These current consumptions come from  

the Z1 mote specifications [52]. During the simulation, the RTIMER_SECOND value was used 
to convert the ticks into seconds. The ticks per second value of the Z1 mote was 32, 786. During the 
current consumption of all four stages, a voltage of 3 V was utilized. We measured the energy 
consumption of the proposed iCPLA protocol and compared it to those of the QU-RPL, SL-RPL, 
MRHOF, and OF0 during all four stages of communication, i.e., LPM, CPU, Tx, and Rx. The energy 
consumption (in joules) in each state was measured as follows: 

 LPM = (LPM × 0.020 × 3)/32768 (12) 

 
 CPU = (CPU × 0.426 × 3)/32768 (13) 

 Tx = (Tx × 17.4 × 3)/32768 (14) 

 Rx = (Rx × 18.8 × 3)/32768 (15) 
We utilize the Energest function (energest_flush()) in Contiki OS to obtain the LPM, CPU, Tx, and 

Rx tick values. The LPM energy consumptions of all protocols are depicted in Figure 12. Similarly, 
the CPU energy consumption comparison between the iCPLA, QU-RPL, SL-RPL, MRHOF, and OF0 
is exhibited in Figure 13. The MRHOF caused a high CPU utilization due to the calculation of the ETX 
measurement. During LPM, the sensors conserved energy by turning their radios off. The CPU and 
LPM energy consumptions were very small, ranging from 0.5 J to 5 J (from small to large networks). 
The LPM energy consumption was approximately similar in all four protocols. The CPU and LPM 
energy consumptions were very insignificant compared to the Tx and Rx energy consumptions.  
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Figure 12. Comparison of LMP energy consumption (J) between iCPLA, QU-RPL, SL-RPL, MRHOF, 
and OF0 with 𝛼 = 0.3 and 𝛽 = 0.7 in a network of 20 to 100 nodes. 

 
Figure 13. Comparison of CPU energy consumption (J) between iCPLA, QU-RPL, SL-RPL, MRHOF, 
and OF0 with 𝛼 = 0.3 and 𝛽 = 0.7 in a network of 20 to 100 nodes. 

The energy consumptions during Tx are displayed in Figure 14. The OF0 had the highest total 
amount of overhead, but it shows a lower Tx value due to the fact of its poor packet delivery ratio. 
The size of the data packets was more significant than that of the control overhead; thus, it required 
more energy for transmission. Because most of the packets were dropped in the OF0, the nodes 
consumed less energy in transmitting the data packets. The proposed iCPLA maintained a Tx lower 
than those of the QU-RPL, SL-RPL, and MRHOF. The iCPLA had the lowest control overhead, and 
therefore the overall Tx was lower compared to those of the QU-RPL, SL-RPL, and MRHOF. The 
overhead of iCPLA was approximately 8–9% more economical as compared to 20–42% of the QU-
RPL, SL-RPL, and MRHOF. Also, it was 48–58% in the OF0, as presented in Figure 11. Similarly, Rx 
energy consumption is shown in Figure 15.  

 
Figure 14. Comparison of average Tx energy consumption (J) between iCPLA, QU-RPL, SL-RPL, 
MRHOF, and OF0 with 𝛼 = 0.3 and 𝛽 = 0.7 in a network of 20 to 100 nodes. 
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Figure 15. Comparison of average Rx energy consumption (J) between iCPLA, QU-RPL, SL-RPL, 
MRHOF, and OF0 with 𝛼 = 0.3 and 𝛽 = 0.7 in a network of 20 to 100 nodes. 

From the results, we can conclude that the OF0 consumed most of the energy for transmitting 
control packets. In contrast, most of the energy in the iCPLA was consumed during data packet 
transmission. Even with a higher PRR, the iCPLA energy consumption was lower due to the 
significantly lower control overhead. The node spends the highest amount of energy during packet 
reception. Each node receives packets from multiple nodes and acts as a relay node. The total energy 
consumption versus the number of transmitted data packets in the network is illustrated in Figure 16. 
The proposed protocol maintained the lowest total energy consumption compared to the other state-
of-the-art mechanisms. Energy reduction is one of the most important design goals in IoT network 
communication because sensor nodes are required to operate for months or years in a remote location.  

 
Figure 16. Total energy consumption (J) versus number of transmitted data packets for iCPLA, QU-
RPL, SL-RPL, MRHOF, and OF0 with 𝛼 = 0.3 and 𝛽 = 0.7. 

4.7. Analysis with Different Network Topologies and Traffic Load Heterogeneity.  

For further analysis and proof of concept, we also simulated the network with tree topology and 
grid topology of 50 nodes. The network runs for a longer duration of simulation time (3600 s) with 
heavy traffic. The traffic heterogeneity is varied concerning clock time. The nodes have high 
transmission pattern, for example, 2 packets per second; 5 packets per second; 1 packet every 2 s; and 
1 packet every 6 s.  The performance assessment of tree topology and grid topology with varied 
heterogeneous traffic load is shown in Tables 2 and 3, respectively. These results also indicate a better 
performance assessment of the proposed mechanism in different network topologies. 
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Table 2. Analysis of tree topology with varying heterogeneous traffic load. 

No. of 
Nodes 

OF  
Total 

Packets 
Sent 

Total 
Packets 

Received 

Total 
Packets 

Lost  
PRR % 

Packet 
Lost % 

Avg. 
Delay 
(ms) 

Total 
Overheads % 

Network 
Energy 

Consumption 
(mJ) 

50 
nodes 

OF0 95126 18578 76548 19.52 80.48 56.23 40.25 10132887.34 

50 
nodes 

MRHOF 95318 59058 36260 61.95 38.04 48.44 26.47 10129675.19 

50 
nodes 

QU-RPL 95308 60543 34765 63.52 36.47 47.95 23.83 10128015.73 

50 
nodes 

SL-RPL 95214 60973 34241 64.03 35.97 46.17 22.41 10121103.67 

50 
nodes 

iCPLA 95321 62982 32339 66.07 33.92 53.67 9.87 10082474.88 

Table 3. Analysis of grid topology with varying heterogeneous traffic load. 

No. of 
Nodes 

OF  
Total 

Packets 
Sent 

Total 
Packets 

Received 

Total 
Packets 

Lost  

PRR 
% 

Packet 
Lost 

% 

Avg. 
Delay 
(ms) 

Total 
Overhead

s % 

Network 
Energy 

Consumption 
(mJ) 

50 nodes OF0 98426 18579 79847 18.87 81.12 52.71 41.55 10165773.69 

50 nodes 
MRHO

F 
98480 57378 41102 58.26 41.73 45.98 27.33 10149734.52 

50 nodes 
QU-
RPL 

98472 59288 39184 60.02 39.98 44.62 25.39 10140776.65 

50 nodes SL-RPL 98467 59895 38572 60.08 39.92 44.74 26.12 10140102.28 
50 nodes iCPLA 98479 62018 36461 62.97 37.02 49.17 10.05 10133481.35 

4.8. Computational Complexity  

Reaching a goal state in the RL algorithm requires exploring the entire state space by performing 
several actions at every state. The numbers of states and actions are finite, and the state space is 
observable. In RL, every action yields either a positive (𝑅ା) or negative (𝑅ି) reward. The reward is 
obtained after each iteration during the node lifetime. The nodes maintain the Q-value in every state 𝑠  for every action  𝑎 , performed in that particular state. The 𝑄(𝑠, 𝑎)  reflects the total cumulative 
optimal reward received for every state and action pair. The selection of action is based on a policy 
that performs its operation in two phases, i.e., exploration and exploitation. The 𝛥𝑄 is also calculated 
for every action at a particular state, and utilizing 𝛥𝑄 in (3) yields the Q-values for a specific state and 
action pair. Therefore, the computational complexity of the proposed iCPLA mechanism is 𝑂(𝑛)(𝑎), 
where 𝑛 is the number of neighbors (states) that are candidates for being selected as parents, and 𝑎 is 
the number of actions available at every state. 

4.9. Summarization of Results and Discussions 

The graphs of the performance evaluation show a significant improvement in the results during 
the simulation. According to the results, iCPLA showed the highest PRR, followed by SL-RPL,  
QU-RPL, MRHOF, and OF0. The improvement in PRR of the proposed mechanism shows the 
effectiveness of ML and proves that ML is a promising approach to enhancing network performance in 
terms of PRR. Similarly, the proposed iCPLA method significantly reduced the control packet 
transmissions compared to other state-of-the-art methods. The trickle timer mechanism can reduce total 
overheads in the network by intelligently utilizing the ML-based approach as well as optimization. The 
reduction of overheads and improvement in PRR also affected the total energy consumption of the 
overall system. The proposed mechanism achieved improved results in terms of total energy 
consumption which is one of the most important design goals in IoT network communication. The 
proposed protocol incurred slightly higher delay due to the learning estimation; however, overall, the 
proposed method showed significantly better performance in terms of packet reception ratio, total 
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percentage of control overheads, and total energy consumption. The proposed iCPLA protocol created 
a consistent, stable, and less congested network environment which means that the proposed protocol 
has potential in many applications for IoT-based networks.  

4.10. Practical Applications of Proposed Framework 

In the last few years, IoT-based networks and their potential applications have increased 
exponentially. The IoT networks have given birth to new perspectives on data acquisition and 
transmission. The IoT networks have the vast potential to affect diverse areas of life, for example, 
smart, sustainable cities. A smart, sustainable cities’ architecture includes an extensive area network, 
local area network, home area network, or neighborhood area network. In a smart city, there are 
several potential applications which include smart parking, smart grids, smart traffic, smart 
streetlights, public safety, surveillance systems, and so forth. These applications mainly depend on 
the availability of communication resources including energy resources. The proposed framework 
for smart, sustainable city applications is shown in Figure 17. We take an example of a smart grid 
application where numerous IoT devices are involved for critical decision-making purposes. The 
proposed approach makes use of intelligent cross-layer based MAC and network layer 
communication to help in accurate delivery of data to the integrated smart grid infrastructure in the 
smart-cities scenario. As the proposed protocol saves energy, the sensors’ devices would be able to 
work for a longer duration. According to the proposed scenario, there can be many different types of 
sensors nodes such as water meters, gas meters, or temperature sensors for weather control.  

 
Figure 17. Proposed framework for smart sustainable cities applications. 

5. Conclusion and Future Studies  

Futuristic green IoT networks demand an efficient, densely deployed network with 
heterogeneous traffic applications. Studies on cross-layer optimization for sensor nodes, particularly 
the impact of heterogeneous traffic on the resource-constrained devices, are still minimal. This paper 
discussed the handling of collision probability in the dense and congested network. Collision due to 
the contention-based nature of networks, congestion, and packet loss are the key challenges of future 
IoT devices. In this paper, the well-known OSI model and particularly the IEEE 802.15.4 and RPL-
based network layer were scrutinized to improve the performance of networks. This study presented 
ML-based algorithms and their applications in the domain of dense IoT networks producing dynamic 
traffic patterns. Motivated by the promising applications and features of RL for cognitive radios, we 
presented the utilization of an RL-based intelligent algorithm for densely deployed IoT networks. 
The proposed learning algorithm uses a smart QL-based method, which is one of the RL techniques, 
to optimize the performance of LLNs utilizing the cooperation of lower layers of the OSI model. The 
proposed mechanism learned the collision probability information at the MAC layer to make 
intelligent decisions at the network layer. The proposed protocol utilized the IPv6 neighbor discovery 
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function as specified in RFC 4861 to calculate collision probability. The method also enhanced the 
operation of the trickle timer mechanism to reduce the transmission of DIO control packets. The 
performance of the proposed mechanism was evaluated through extensive simulations using the 
Contiki 3.0 Cooja simulator. Compared to the de facto standards (i.e., MRHOF and OF0) and QU-
RPL and SL-RPL, the proposed scheme offers enhanced performance in terms of PRR, control 
overhead, and energy consumption. The results indicate the ability of the QL method to enhance the 
network efficiency in a densely deployed IoT network with heterogeneous traffic.  

In conclusion, ML is a promising area for future wireless research for improving smart 
application, for example, if we consider the applications of IoT-based smart cities for future 
generation networks. The main applications could include smart grids, smart parking, smart traffic, 
smart streetlights, public safety, surveillance systems, etc.  

5.1. Limitations and Future Studies 

Currently, we have implemented our proposed framework in a simulated environment. 
Moreover, due to the learning-based RPL, the computational complexity of the overall system was 
increased, which is evident in the form of an increased end-to-end delay (E2E). In the future, we plan 
to address these limitations by implantation of the proposed algorithm in a more realistic 
environment. We also aim to reduce the E2E delay of the proposed mechanism. In addition, we plan 
to study an intelligent adaptive trickle timer mechanism to optimize the network further.  
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