
electronics

Article

A Network Adaptive Fault-Tolerant Routing
Algorithm for Demanding Latency and Throughput
Applications of Network-On-A-Chip Designs

Zulqar Nain 1, Rashid Ali 2 , Sheraz Anjum 3, Muhammad Khalil Afzal 3 and
Sung Won Kim 1,*

1 Department of Information and Communication Engineering, Yeungnam University,
Gyeongsan 38541, Korea; Zulqarnain@ynu.ac.kr

2 School of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, Korea; rashidali@sejong.ac.kr
3 Department of Computer Science, COMSATS University Islamabad, Wah Campus,

Wah Cantt 47040, Pakistan; drsherazanjum@gmail.com (S.A.); muhammad.khalil.afzal@gmail.com (M.K.A.)
* Correspondence: swon@yu.ac.kr

Received: 14 May 2020; Accepted: 27 June 2020; Published: 1 July 2020
����������
�������

Abstract: Scalability is a significant issue in system-on-a-chip architectures because of the rapid
increase in numerous on-chip resources. Moreover, hybrid processing elements demand diverse
communication requirements, which system-on-a-chip architectures are unable to handle gracefully.
Network-on-a-chip architectures have been proposed to address the scalability, contention, reusability,
and congestion-related problems of current system-on-a-chip architectures. The reliability appears to
be a challenging aspect of network-on-a-chip architectures because of the physical faults introduced
in post-manufacturing processes. Therefore, to overcome such failures in network-on-a-chip
architectures, fault-tolerant routing is critical. In this article, a network adaptive fault-tolerant
routing algorithm is proposed, where the proposed algorithm enhances an efficient dynamic and
adaptive routing algorithm. The proposed algorithm avoids livelocks because of its ability to select
an alternate outport. It also manages to bypass congested regions of the network and balances the
traffic load between outports that have an equal number of hop counts to its destination. Simulation
results verified that in a fault-free scenario, the proposed solution outperformed a fault-tolerant XY
by achieving a lower latency. At the same time, it attained a higher flit delivery ratio compared to the
efficient dynamic and adaptive routing algorithm. Meanwhile, in the situation of a faulty network,
the proposed algorithm could reach a higher flit delivery ratio of up to 18% while still consuming less
power compared to the efficient dynamic and adaptive routing algorithm.

Keywords: fault-tolerant routing; system on a chip (SOC); congestion awareness; network on a chip
(NoC); load balancing

1. Introduction

The contracting size of transistors to submicron levels leads to a large number of cores combined
onto a chip known as a system-on-a-chip (SoC). The bus-based architectures of SoCs are not able
to meet the growing diverse communication requirements. According to Moore’s law, the doubled
packing density of micron technology is achievable every eighteen months. SoC architectures are
unable to exploit the availability of these doubled PEs after every eighteen months due to latency and
power nightmares [1].

Network-on-a-chip (NoC) architectures have evolved to overcome these growing challenges
experienced by SoC architectures. An NoC’s communication is based on packet routing networks
instead of the wires and busses used in SoC. NoC architectures are used to provide the advantages of

Electronics 2020, 9, 1076; doi:10.3390/electronics9071076 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-9756-1909
https://orcid.org/0000-0001-8454-6980
http://dx.doi.org/10.3390/electronics9071076
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/9/7/1076?type=check_update&version=2

Electronics 2020, 9, 1076 2 of 18

reduced power, scalability, lower electromagnetic effects, and lower latency. In an NoC, communication
is done via packet switching. These packets are further subdivided into smaller chunks called flits,
where these flits are delivered via intermediary nodes to their desired destination. Routing algorithms
are responsible for deciding the path to follow from a source to the final destination for these flits.
This decision is dependent on the location of these PEs and the underlying network topology. In the
literature, multiple topologies have been proposed, such as a mesh (two-dimensional (2D) and
three-dimensional (3D) [2]), torus, honeycomb [3], butterfly, and hypercube [4–6].

The routing algorithms of NoCs are mainly arranged into three groups that are deterministic,
partially/moderately adaptive, and fully/completely adaptive. Among these, routing algorithms in
the deterministic category are not robust. They select predetermined paths between every sender
and receiver node. To handle livelocks and deadlocks in the network, they restrict a few turns [7].
Deterministic routing algorithms are simple and straightforward. In contrast, the algorithms in the
partly adaptive category send flits through distant alternative available routes depending upon the
underlying network conditions of those routes; this classification aims to strike a balance between
the router’s performance and its complex implementation. Finally, the algorithms in the completely
adaptive category adapt themselves to the ever-changing network circumstances. This category does
not consistently follow a predetermined route. In fact, the route is chosen on the fly depending
upon the underlying network situation by considering faults, business, congestion, and hot-spots.
The flit’s routing is also influenced by the switching mechanism employed by the network. A few of
the established switching approaches include store and forwarding, wormhole, virtual cut-through,
and circuit switching [8].

NoCs are also prone to radiation and temperature variations. These variations in radiation
and temperature may cause transient or permanent faults, reducing NoCs’ reliability, notably in
extreme environments. To achieve reliability, fault-tolerant routing algorithms in NoCs avoid faulty
channels while computing the next hop. Hence, for NoCs, adaptive mechanisms are essential to
prevent faults [9].

This study aimed to propose a network adaptive fault-tolerant routing (NAFTR) algorithm for
the throughput and latency-critical NoC interconnections, where latency and throughput are the
pivotal parameters. NAFTR extends the efficient dynamic and adaptive routing (EDAR) algorithm [10].
The main contributions of this article can be summarized as follows:

1. The proposed NAFTR algorithm decreased the latency in fault-free scenarios by avoiding the
congested regions in the network.

2. When there was a tie between two outports in terms of having a similar hop count toward a
destination, the NAFTR algorithm ensured load balancing regarding route selection.

3. Moreover, the NAFTR algorithm increased the flit delivery ratio by selecting alternate outports to
avoid livelocks in the network.

The rest of the article is organized as follows. Section 2 summarizes the related research articles.
The problem statement is formulated in Section 3. Section 4 briefly describes the proposed solution.
Section 5 presents the experimental findings of this study. The article is concluded in Section 6.

2. Related Research

Many research works have proposed efficient routing mechanisms for NoC architectures. XY is
a non-adaptive routing scheme [11] and is well known because of its simplicity in NoC architecture.
In the XY algorithm, packets are always first routed to the horizontal plane and then to the vertical
plane to reach its destination. This algorithm invariably routes packets via the shortest route. However,
the XY algorithm is not able to avoid busy and congested links. Deterministic/partially adaptive routing
algorithms [12] route packets while considering predetermined restricted turns to avoid livelocks
and deadlocks in the network. Figure 1 depicts all the restricted turns in deterministic and partially

Electronics 2020, 9, 1076 3 of 18

adaptive routing algorithms. Negative first, north last, and west first have two restricted turns while
odd even (OE) and XY have four restricted turns to avoid livelocks and deadlocks in the network.Electronics 2020, 9, x FOR PEER REVIEW 3 of 17

Figure 1. Restricted turns in different deterministic and partially adaptive routing algorithms.

On the other hand, fully adaptive routing algorithms dynamically adapt according to the network

conditions. These algorithms add some virtual or physical channels to attain deadlock-free

communication [13,14]. Various fault-tolerant routing algorithms have been proposed [15]. A partially

adaptive fault-tolerant routing algorithm built on a negative-first approach is proposed in Glass and Ni

[16]. However, in multiple faulty node scenarios, this algorithm does not perform efficiently. Another

partially adaptive fault-tolerant routing algorithm is proposed in Wu [17], which is an enhanced version

of the odd-even routing algorithm. An analogous algorithm, pertinent to the partially adaptive category,

is proposed in References [18,19]. Numerous other research works have also utilized virtual channels to

achieve fault-tolerance in NoCs [20,21]. The major drawback of virtual channel usage is the addition of

the extra logic circuitry required for their implementation. Larger logical circuits yield an increased

probability of faults occurring in the network, along with extra power requirements to operate them.

An adaptive fault-tolerant routing algorithm, which employs table-based routing for delivering

packets from a particular source to the destination, is proposed in Schonwald et al. [22]. This algorithm is

an enhanced version of fully force-directed wormhole routing (FDWR). Every node maintains a routing

table to perform route decisions when forwarding packets to other nodes in the network. This algorithm

is unable to ensure in-order delivery of packets. Additionally, building and maintaining the routing table

yields an extra control overhead. An adaptive fault-tolerant routing algorithm is proposed in Singh et al.

[23] that considers faults up to two hops away when considering the route selection for a packet. However,

this algorithm does not manage busyness or hot spot regions in the network. Based on adaptive route

selection, a fault-tolerant scheme is proposed in Savio Tse et al. [24]; unfortunately, this algorithm also

does not manage busyness and congested regions of the network.

Figure 1. Restricted turns in different deterministic and partially adaptive routing algorithms.

On the other hand, fully adaptive routing algorithms dynamically adapt according to the
network conditions. These algorithms add some virtual or physical channels to attain deadlock-free
communication [13,14]. Various fault-tolerant routing algorithms have been proposed [15]. A partially
adaptive fault-tolerant routing algorithm built on a negative-first approach is proposed in Glass and
Ni [16]. However, in multiple faulty node scenarios, this algorithm does not perform efficiently.
Another partially adaptive fault-tolerant routing algorithm is proposed in Wu [17], which is an
enhanced version of the odd-even routing algorithm. An analogous algorithm, pertinent to the partially
adaptive category, is proposed in References [18,19]. Numerous other research works have also utilized
virtual channels to achieve fault-tolerance in NoCs [20,21]. The major drawback of virtual channel
usage is the addition of the extra logic circuitry required for their implementation. Larger logical
circuits yield an increased probability of faults occurring in the network, along with extra power
requirements to operate them.

An adaptive fault-tolerant routing algorithm, which employs table-based routing for delivering
packets from a particular source to the destination, is proposed in Schonwald et al. [22]. This algorithm
is an enhanced version of fully force-directed wormhole routing (FDWR). Every node maintains a
routing table to perform route decisions when forwarding packets to other nodes in the network.
This algorithm is unable to ensure in-order delivery of packets. Additionally, building and maintaining
the routing table yields an extra control overhead. An adaptive fault-tolerant routing algorithm is
proposed in Singh et al. [23] that considers faults up to two hops away when considering the route
selection for a packet. However, this algorithm does not manage busyness or hot spot regions in the
network. Based on adaptive route selection, a fault-tolerant scheme is proposed in Savio Tse et al. [24];
unfortunately, this algorithm also does not manage busyness and congested regions of the network.

Electronics 2020, 9, 1076 4 of 18

Liu et al. proposed an efficient dynamic and adaptive routing (EDAR) algorithm [10]. For route
calculations, EDAR considers busy, congested, and faulty links up to one hop away. However, because
this route decision is based on the knowledge of only one hop away, this may point to a congested
region, which results in a further delay. Moreover, EDAR assigns the same priority weight to outports
with an equal number of hops to a destination. Thus, EDAR is restricted regarding load balancing
between available paths with an equal number of hops. A hybrid fault-tolerant routing algorithm
(HFTRA) was proposed by Bishnoi et al.; however, HFTRA requires additional network power and
area overheads because of the additional virtual channels employed. Additionally, the proposed
algorithm does not have the mechanism of fault identification [25]. Yang et al. [26] presented a
fault-tolerant routing algorithm designed for a honeycomb-like topology. This algorithm does not
cater for 2D/3D mesh topologies. Furthermore, Moriam et al. [27] designed an analytic approach to
conduct the reliability assessment of adaptive routing algorithms of NoCs. Melo et al. [28] proposed
a finite state machine (FSM)-based router controller. Their study focused on mitigating the error
propagation rate in the router controller. They did not cater to business and congestion avoidance
mechanisms in their proposed algorithm. Zhang et al. proposed an improved fault-tolerant routing
algorithm [29]. Their study primarily focused on mitigating multiple packet diversions, which may
result in livelocking. Unfortunately, they did not consider business and congestion avoidance scenarios
in their proposed work. Low-power and high-performance adaptive routing for on-chip designs are
proposed in Xiang and Pan [30]. The study focused on bypassing k hops to deliver the packet to the
final destination in a fewer number of cycles. The study did not consider congestion and business
avoidance mechanisms in their proposed solution. Another similar study focusing on reducing the
hop count toward a destination via the use of specialized channels, known as a transmission line
(TL), was proposed in Deb et al. [31]. This study also did not consider congestion and business
avoidance mechanisms in their proposed algorithm. Song et al. proposed uniform-minimal-first
(UMF) routing [32]. UMF alternatively selects between XYX and YXY routing. This alternate selection
leads to load balancing of traffic across the network; however, this study unfortunately did not
consider fault tolerance, congestion, or business avoidance in their proposed mechanism. Liu et al. [33]
proposed a congestion-aware OE router, which employs fair arbitration for outport selection rather than
random selection. This fair arbitration policy helps to obtain a lower latency and a higher throughput.
This study is solely focused on congestion avoidance. Jin et al. proposed a history-aware-adaptive
routing algorithm called HARE [34]. HARE intends to solve the end-point congestion problem by
identifying head-of-line blocking flits in buffers. HARE achieves higher throughput and lower latency
because of its ability to separate head-of-line blocking flits. The study did not consider fault and busy
port avoidance in the proposed mechanism. Table 1 summarizes the state-of-the-art routing algorithms
of NoCs. The comparison identifies the primary focus of each study, the supported network topology,
the simulation platform, and whether the study utilizes virtual channels to handle faults in the network.
The key features that are essential for a routing algorithm are simplicity, fault tolerance, congestion,
and business awareness. We selected EDAR to be optimized because it is a routing algorithm that
possesses all these key features. We further optimized EDAR to propose NAFTR. NAFTR achieved a
lower latency and higher throughput compared to EDAR, as indicated by the results presented in the
experimental results section.

Electronics 2020, 9, 1076 5 of 18

Table 1. Comparison of the state-of-the-art for routing in a network-on-a-chip (NoC).

Ref. Primary Focus of the
Study is to Propose

Supported
Network
Topology

Analysis
Performed on

Virtual Channel
Utilization to
Avoid Faults

Fault Tolerance Congestion
Awareness

Business
Awareness

Proposed
Algorithm

Compared with

Glass et al. [16]
Negative-first-
based adaptive

fault-tolerant routing
2D mesh

In-house
built simulator

×
√

× × Negative first

Jie Wu [17] Adaptive
fault-tolerant routing 2D mesh ×

√
× × -

Boppana et al. [18] Adaptive
fault-tolerant routing

2D mesh
and torus

√ √
× × e-cube

Chen et al. [19] Adaptive
fault-tolerant routing 2D mesh ×

√
× ×

Boura’s
algorithm

Su et al. [20] Adaptive
fault-tolerant routing

2D mesh
and hypercube

√ √
× × e-cube

Park et al. [21] Adaptive
fault-tolerant routing 2D mesh

√ √
× × -

Schonwald et al. [22] Adaptive
fault-tolerant routing

2D mesh
and torus ×

√
× × XY

Singh et al. [23] Adaptive
fault-tolerant routing 2D mesh ×

√ √
×

XY, west first,
north last,

negative first

Tse et al. [24] Adaptive
fault-tolerant routing 2D mesh - ×

√
× × -

Bishnoi [25] Adaptive
fault-tolerant routing 2D mesh -

√ √
× × -

Yang et al. [26] Adaptive
fault-tolerant routing Honeycomb Nirgam

Simulator ×
√ √

×
Dimensional
order routing

Moriam et al. [27]
Analytical model to
assess fault-tolerant
routing algorithms

2D mesh
and hexagonal In-house

built simulator

- - - - -

Douglas et al. [28] Router controller
design 2D mesh -

√
× × -

Electronics 2020, 9, 1076 6 of 18

Table 1. Cont.

Ref. Primary Focus of the
Study is to Propose

Supported
Network
Topology

Analysis
Performed on

Virtual Channel
Utilization to
Avoid Faults

Fault Tolerance Congestion
Awareness

Business
Awareness

Proposed
Algorithm

Compared with

Zhang et al. [29] Fault-tolerant routing 2D mesh
In-house

built simulator

-
√

× × -

Xiang et al. [30] Fully adaptive
routing 2D mesh × × × ×

DyXY, DP,
SU, EVC

Deb et al. [31]
Routing technique

using on-chip
transmission lines

2D mesh Booksim
simulator × ×

√
× -

Song et al. [32] Latency reduction in
oblivious routing 2D mesh PopNet

simulator × × × ×

Valiant,
dimension

order routing

Liu et al. [33]

Congestion-aware
odd-even (OE)

router employing
fair arbitration

2D mesh Noxim
simulator × ×

√
×

OE, CAOE-
random

Jin et al. [34]
History-aware

adaptive Routing for
end-point congestion

2D mesh Booksim
simulator × ×

√
×

Footprint,
Dimensional
order routing

Liu et al. [10] Low-cost
fault-tolerant routing 2D mesh Noxim

simulator ×
√ √ √

DyAD, OE, XY,
Negative first,

FoN, Cost,
FTDR, FTDR-H,
LAFT, HLAFT,

This work

Fault-tolerant routing
for throughput and

latency-critical
NoC architectures

2D mesh Nirgam
simulator ×

√ √ √
EDAR, FTXY

e-cube is a static routing method that employs XY-routing algorithm for hypercube networks., express virtual channel (EVC), dynamic XY (DyXY), VCT-switched Duato’s protocol (DP),
safe unsafe(SU), congestion aware odd-even (CAOE), dynamic adaptive (DyAD), look ahead fault-tolerant(LAFT), hybrid look ahead fault-tolerant (HLAFT), fault-tolerant deflection
routing (FTDR), fault on neighbor(FoN), hierarchical FTDR (FTDR-H).

Electronics 2020, 9, 1076 7 of 18

3. Problem Statement

EDAR is a valuable choice among other proposed fault-tolerant routing algorithms because of
its simplicity; this leads to implementation ease and reduced latency. Moreover, EDAR also avoids
congested and busy channels, along with avoiding faulty channels in the network. However, this route
decision is based on the knowledge of only one hop. Therefore, the packet may reach a congested
region or, in a few scenarios, bring us to a node that re-transmits the packet backward. In the livelock
depicted in Figure 2a, node 5 needs to send a few packets toward node 7. While at node 5, the east
port has the smallest weight of 1 because it leads to the smallest route to the destination only two
hops away, whereas the south and north ports lead to a four-hop route from node 5 to the destination;
therefore, they are assigned a weight of 2 each. Meanwhile, the west port leads to the longest route
to the destination, which is seven hops from the current node; therefore, it has the highest weight
of 3. Thus, node 5 selects the east outport for the packet forwarding because of its lower weight.
However, the following east port will lead the packet to node 6, which falls in the congested region.
Although EDAR tries to follow the shortest path to the destination, it leads the packet to a congested
region, which results in an additional delay before reaching the destination. Consider another scenario,
shown in Figure 2b, where node 6 has some packets to send to node 7. The shortest path to the
destination uses the east port from node 6. However, the east port of node 6 is congested. The weight
of the east port becomes 4 because an additional weight of 3 is added for a congested port (1 + 3 = 4),
and the north and south ports are assigned the same weight of 2 each because they have the same hop
count to the destination. EDAR does not have a mechanism to balance the traffic load among outports
with a similar number of hops toward a destination. Therefore, EDAR will not utilize the south port,
and it will continue to select the north port until it is congested.

Electronics 2020, 9, x FOR PEER REVIEW 6 of 17

This work

Fault-tolerant

routing for

throughput and

latency-critical

NoC architectures

2D mesh
Nirgam

simulator
× √ √ √ EDAR, FTXY

e-cube is a static routing method that employs XY-routing algorithm for hypercube networks., express

virtual channel (EVC), dynamic XY (DyXY), VCT-switched Duato’s protocol (DP), safe unsafe(SU),

congestion aware odd-even (CAOE), dynamic adaptive (DyAD), look ahead fault-tolerant(LAFT), hybrid

look ahead fault-tolerant (HLAFT), fault-tolerant deflection routing (FTDR), fault on neighbor(FoN),

hierarchical FTDR (FTDR-H).

3. Problem Statement

EDAR is a valuable choice among other proposed fault-tolerant routing algorithms because of its

simplicity; this leads to implementation ease and reduced latency. Moreover, EDAR also avoids congested

and busy channels, along with avoiding faulty channels in the network. However, this route decision is

based on the knowledge of only one hop. Therefore, the packet may reach a congested region or, in a few

scenarios, bring us to a node that re-transmits the packet backward. In the livelock depicted in Figure 2a,

node 5 needs to send a few packets toward node 7. While at node 5, the east port has the smallest weight

of 1 because it leads to the smallest route to the destination only two hops away, whereas the south and

north ports lead to a four-hop route from node 5 to the destination; therefore, they are assigned a weight

of 2 each. Meanwhile, the west port leads to the longest route to the destination, which is seven hops from

the current node; therefore, it has the highest weight of 3. Thus, node 5 selects the east outport for the

packet forwarding because of its lower weight. However, the following east port will lead the packet to

node 6, which falls in the congested region. Although EDAR tries to follow the shortest path to the

destination, it leads the packet to a congested region, which results in an additional delay before reaching

the destination. Consider another scenario, shown in Figure 2b, where node 6 has some packets to send

to node 7. The shortest path to the destination uses the east port from node 6. However, the east port of

node 6 is congested. The weight of the east port becomes 4 because an additional weight of 3 is added for

a congested port (1 + 3 = 4), and the north and south ports are assigned the same weight of 2 each because

they have the same hop count to the destination. EDAR does not have a mechanism to balance the traffic

load among outports with a similar number of hops toward a destination. Therefore, EDAR will not utilize

the south port, and it will continue to select the north port until it is congested.

Figure 2. (a) EDAR behavior in the presence of a congested region in the network. (b) EDAR behavior

when selecting between outports with the same number of hops to the destination.

4. Proposed Solution

The 2D mesh is the most trivial topology used in NoCs. In this article, we have evaluated the

proposed algorithm on a 2D mesh topology. Figure 3 depicts a traditional 2D mesh topology of an NoC,

where each PE is linked to a router via a local port for communication. Each router is also connected to

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Source Node

Destination
Node

Congested Link

Busy Link

43

2

2

(a) (b)

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Source Node
Destination

Node

Congested Link

13

2

2

1
Congested

Region

Congested Region

Figure 2. (a) EDAR behavior in the presence of a congested region in the network. (b) EDAR behavior
when selecting between outports with the same number of hops to the destination.

4. Proposed Solution

The 2D mesh is the most trivial topology used in NoCs. In this article, we have evaluated the
proposed algorithm on a 2D mesh topology. Figure 3 depicts a traditional 2D mesh topology of an NoC,
where each PE is linked to a router via a local port for communication. Each router is also connected
to the available immediate next hop neighbors via west (W), east (E), south (S), and north (N) ports.
Every PE is assigned an ID starting from 0. This ID is utilized to obtain the X and Y coordinates of a
particular PE’s location inside of an NoC network. Equations (1) and (2) can be used to calculate the X
and Y coordinates of a particular PE.

Xcoordinate = mod(ID, nocolumns) (1)

Ycoordinate = bID/nocolumnsc (2)

Electronics 2020, 9, 1076 8 of 18

Electronics 2020, 9, x FOR PEER REVIEW 7 of 17

the available immediate next hop neighbors via west (W), east (E), south (S), and north (N) ports. Every

PE is assigned an ID starting from 0. This ID is utilized to obtain the X and Y coordinates of a particular

PE’s location inside of an NoC network. Equations (1) and (2) can be used to calculate the X and Y

coordinates of a particular PE.

Figure 3. Generic 2D-mesh NoC topology.

𝑋𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 = 𝑚𝑜𝑑(𝐼𝐷, 𝑛𝑜𝑐𝑜𝑙𝑢𝑚𝑛𝑠) (1)

𝑌𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 = ⌊𝐼𝐷/𝑛𝑜𝑐𝑜𝑙𝑢𝑚𝑛𝑠⌋ (2)

NAFTR virtually breaks down the network into eight regions labeled from D1 to D8. This virtual

network division depends on the location of the destination PE relative to the current PE. The packet

forwarding is done depending on the region the destination PE is located in (from D1 to D8). For every

region, i.e., from D1–D8, for a particular packet, all of the outports of the router are assigned with a

preferred port (PP) number from PP1 to PP3. The port leading toward the shortest route to the destination

is labeled as PP1, the ports leading toward the next shortest route are labeled as PP2, and the port leading

toward the longest route is labeled as PP3. Figure 4 illustrates this virtual network division for an 8 × 8

NoC network. The whole network is virtually partitioned into eight regions labeled from D1 to D8. This

virtual partitioning will be different for every current and destination PE pair. The current PE is the one

that is in the process of making a forwarding decision for a particular packet. The current and source PEs

can be the same, but this will not be true in all cases. At the green-colored source PE, the east port leads

toward the shortest path to the destination PE; therefore, it is labeled as PP1. The south and north ports

lead toward the next shortest route to the destination; therefore, they are marked as PP2. Similarly, the

port leading toward the longest route to the destination is the west port; therefore, it is marked as PP3.

Node

0

R

Node

4

R

Node

8

R

Node

12

R

Node

1

R

Node

2

R

Node

3

R

Node

5

R

Node

9

R

Node

13

R

Node

6

R

Node

10

R

Node

14

R

Node

7

R

Node

11

R

Node

15

R

EW

N

S

R Router N Node Local Port

Figure 3. Generic 2D-mesh NoC topology.

NAFTR virtually breaks down the network into eight regions labeled from D1 to D8. This virtual
network division depends on the location of the destination PE relative to the current PE. The packet
forwarding is done depending on the region the destination PE is located in (from D1 to D8). For every
region, i.e., from D1–D8, for a particular packet, all of the outports of the router are assigned with
a preferred port (PP) number from PP1 to PP3. The port leading toward the shortest route to the
destination is labeled as PP1, the ports leading toward the next shortest route are labeled as PP2, and the
port leading toward the longest route is labeled as PP3. Figure 4 illustrates this virtual network division
for an 8 × 8 NoC network. The whole network is virtually partitioned into eight regions labeled
from D1 to D8. This virtual partitioning will be different for every current and destination PE pair.
The current PE is the one that is in the process of making a forwarding decision for a particular packet.
The current and source PEs can be the same, but this will not be true in all cases. At the green-colored
source PE, the east port leads toward the shortest path to the destination PE; therefore, it is labeled
as PP1. The south and north ports lead toward the next shortest route to the destination; therefore,
they are marked as PP2. Similarly, the port leading toward the longest route to the destination is the
west port; therefore, it is marked as PP3.Electronics 2020, 9, x FOR PEER REVIEW 8 of 17

Figure 4. Network adaptive fault-tolerant routing (NAFTR) region distribution.

4.1. Modified EMBRACE Router Architecture

We have modified the emulating biologically-inspired architecture in hardware(EMBRACE) [35–38]

router architecture. The EMBRACE router can detect busy, congested, and faulty channels efficiently. The

modified EMBRACE router architecture is shown in Figure 5. A dotted black line surrounds the newly

added components. Channel conditions, such as busy, congestion, and faults, are shared with the adaptive

routing scheme (ARS). ARS utilizes this information for the packet-forwarding decision. Adaptive

arbitration policy (AAP) handles simultaneous requests for a particular outport. AAP resolves conflicts

via arbitration. AAP also handles the allocation of virtual channels. The monitor module (MM) is

responsible for monitoring the channel condition of the neighboring node. MM outputs the appropriate

signal depending upon the channel condition, i.e., busy, congested, or faulty. Four MMs are responsible

for monitoring all four adjacent node channels. This signal from four MMs is conveyed to ARS as a

faulty/congested/busy flag, which is required for the computation of the next outport. Outputs of all four

MMs are connected via AAP. If all three outgoing channels of a node are congested, then MM declares its

fourth incoming channel as congested to its immediate neighbor as well to avoid incoming packets

entering into the congested region. To do so, one additional set of OR and AND gates are applied at every

MM. Figure 6 shows a scenario to further clarify the operation of newly added AND and OR gates.

Suppose that node 6 has its east, west, and south ports congested. Let us have a close look at the operation

of the north port’s MM of the sixth node. The MM of the north port has all three inputs of the AND gate

as 1 because the three other ports are congested. Now, the AND gate’s output becomes 1 as all three inputs

are 1 but the north port is not congested; therefore, the north port’s MM output is 0. When this 0 and 1 are

applied at the OR gate, its output becomes 1; therefore, node six will declare its incoming north port as

congested to node 2 to avoid incoming packets from node 2 entering the congested region. Let us now

have a look at the south port’s MM operation for the same node. In fact, the AND gate of the south port’s

MM is given two 1’s and one 0 as the input because its east and west ports are congested but its north

port is not congested. The output of the AND gate becomes 0. The output of the MM of the south port is

1 because the south port is congested; therefore, when this 1 and 0, i.e., the output of the AND gate is

applied at the OR gate, its output also becomes 1. Therefore, either the current channel is congested or all

three remaining channels are congested; therefore, the MM declares its current channels as congested.

This enables the neighboring router to avoid the congested region. The modified EMBRACE router

requires one additional OR and AND gate per port for this purpose.

PP-2

PP-2

PP-1PP-3 D1

D2D3D4

D5

D6

D7

D8

Source Node Destination Node

Figure 4. Network adaptive fault-tolerant routing (NAFTR) region distribution.

Electronics 2020, 9, 1076 9 of 18

4.1. Modified EMBRACE Router Architecture

We have modified the emulating biologically-inspired architecture in hardware(EMBRACE) [35–38]
router architecture. The EMBRACE router can detect busy, congested, and faulty channels efficiently.
The modified EMBRACE router architecture is shown in Figure 5. A dotted black line surrounds the
newly added components. Channel conditions, such as busy, congestion, and faults, are shared with
the adaptive routing scheme (ARS). ARS utilizes this information for the packet-forwarding decision.
Adaptive arbitration policy (AAP) handles simultaneous requests for a particular outport. AAP resolves
conflicts via arbitration. AAP also handles the allocation of virtual channels. The monitor module
(MM) is responsible for monitoring the channel condition of the neighboring node. MM outputs the
appropriate signal depending upon the channel condition, i.e., busy, congested, or faulty. Four MMs are
responsible for monitoring all four adjacent node channels. This signal from four MMs is conveyed to
ARS as a faulty/congested/busy flag, which is required for the computation of the next outport. Outputs
of all four MMs are connected via AAP. If all three outgoing channels of a node are congested, then MM
declares its fourth incoming channel as congested to its immediate neighbor as well to avoid incoming
packets entering into the congested region. To do so, one additional set of OR and AND gates are
applied at every MM. Figure 6 shows a scenario to further clarify the operation of newly added AND
and OR gates. Suppose that node 6 has its east, west, and south ports congested. Let us have a close
look at the operation of the north port’s MM of the sixth node. The MM of the north port has all three
inputs of the AND gate as 1 because the three other ports are congested. Now, the AND gate’s output
becomes 1 as all three inputs are 1 but the north port is not congested; therefore, the north port’s MM
output is 0. When this 0 and 1 are applied at the OR gate, its output becomes 1; therefore, node six
will declare its incoming north port as congested to node 2 to avoid incoming packets from node 2
entering the congested region. Let us now have a look at the south port’s MM operation for the same
node. In fact, the AND gate of the south port’s MM is given two 1’s and one 0 as the input because
its east and west ports are congested but its north port is not congested. The output of the AND gate
becomes 0. The output of the MM of the south port is 1 because the south port is congested; therefore,
when this 1 and 0, i.e., the output of the AND gate is applied at the OR gate, its output also becomes
1. Therefore, either the current channel is congested or all three remaining channels are congested;
therefore, the MM declares its current channels as congested. This enables the neighboring router to
avoid the congested region. The modified EMBRACE router requires one additional OR and AND gate
per port for this purpose.Electronics 2020, 9, x FOR PEER REVIEW 9 of 17

Figure 5. Modified EMBRACE router architecture. FIFO: First in, first out; MM: Monitor module.

Figure 6. Modified EMBRACE behavior for avoiding congested regions.

4.2. NAFTR Algorithm

The key annotations are explained in Table 2 and the proposed algorithm’s working is illustrated via

the pseudocode in Algorithm 1. The NAFTR algorithm performs the following defined steps while

performing the packet forwarding decision.

Control Logic

Processing

Element

F
IF

O
M

M

FIFO MM

FIFO MM

N

Ew

S

MM

E
a

st

W
est

N
orth

F
IF

O
M

M

Adaptive

Routing Scheme

Adaptive

Arbitration

Policy

MM

EWS

1 11

0
1

Incoming congestion

status of north bound

neighbor

Out going congestion status

of current node to north

bound neighbour

1

0

1

MMN W E

110

0
0

Incoming congestion

status of south bound

neighbor

Out going congestion

status of current node to

south bound neighbour

0

Monitor Module
FIFO

Busy FIFO

1

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Figure 5. Modified EMBRACE router architecture. FIFO: First in, first out; MM: Monitor module.

Electronics 2020, 9, 1076 10 of 18

Electronics 2020, 9, x FOR PEER REVIEW 9 of 17

Figure 5. Modified EMBRACE router architecture. FIFO: First in, first out; MM: Monitor module.

Figure 6. Modified EMBRACE behavior for avoiding congested regions.

4.2. NAFTR Algorithm

The key annotations are explained in Table 2 and the proposed algorithm’s working is illustrated via

the pseudocode in Algorithm 1. The NAFTR algorithm performs the following defined steps while

performing the packet forwarding decision.

Control Logic

Processing

Element

F
IF

O
M

M

FIFO MM

FIFO MM

N

Ew

S

MM

E
a

st

W
est

N
orth

F
IF

O
M

M

Adaptive

Routing Scheme

Adaptive

Arbitration

Policy

MM

EWS

1 11

0
1

Incoming congestion

status of north bound

neighbor

Out going congestion status

of current node to north

bound neighbour

1

0

1

MMN W E

110

0
0

Incoming congestion

status of south bound

neighbor

Out going congestion

status of current node to

south bound neighbour

0

Monitor Module
FIFO

Busy FIFO

1

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Figure 6. Modified EMBRACE behavior for avoiding congested regions.

4.2. NAFTR Algorithm

The key annotations are explained in Table 2 and the proposed algorithm’s working is illustrated
via the pseudocode in Algorithm 1. The NAFTR algorithm performs the following defined steps while
performing the packet forwarding decision.

Table 2. Key Notations.

Variable Description

Current ID ID of the current node
Destination ID ID of the destination node

Xcur x coordinate of the current node
Ycur y coordinate of the current node
Xdest x coordinate of the destination node
Ydest y coordinate of the destination node

numcols Number of columns in the network
Inport Inport of incoming flit

Outport Selected outgoing port for a flit
Sb[N/E/S/W] Busy status of neighboring channels
Sc[N/E/S/W] Congestion status of neighboring channels
S f [N/E/S/W] Fault status of neighboring channels
Wp[N/E/S/W] Direction priority of each outport, which depends on the location of the destination node
Wb[N/E/S/W] Weight for busy neighboring channels either have a value of 0 or 2
Wc[N/E/S/W] Weight for congested neighboring channels either have a value of 0 or 3
W f [N/E/S/W] Weight for faulty neighboring channels either have a value of 0 or 10
Wi[N/E/S/W] Total weight of each outport, which is calculated by adding Wb, Wc, Wp, and W f

Step 1: Compare the X and Y coordinates of the destination node with the current node. If they
are equal, then send the packet toward the local outport. If they are not equal, then perform step 2.

Electronics 2020, 9, 1076 11 of 18

Step 2: Assign the preferred port number from PP1–PP3 to all legitimate outports. This decision
is based on which region the destination PE falls (region from D1–D8).

Step 3: Examine the condition of all legitimate outports. Assign a busy (Wb) one with a weight of
2, a congested (Wc) one with a weight of 3, and a faulty (W f) one with a weight of 10. Add Wb, Wp, W f ,
and Wc together to get the final total weight for every legitimate outport.

Step 4: Search for the outport with the minimum total weight among all possible outports. If this
outport is equivalent to the inport of the packet, then perform step number 5. Otherwise, forward the
packet towards this outport.

Step 5: Search for the alternate outport leading toward the path with the second-lowest weight
and forward the packet to that outport. If there are two possible candidates for the second-lowest
total weight selection due to having the same hop count to the destination, then randomly select one
outport among them. This random selection will ensure load balancing between outports having a
similar distance in hops toward a destination.

4.2.1. Latency Improvement Achieved Using NAFTR in Fault-Free Scenarios

NAFTR can lower the latency because of its ability to avoid congested regions. Let us revisit
Figure 2a. Node 5 needs to send a few packets toward node 7. Three out of four outports of node 6
are congested; therefore, node 6 declares its west incoming port as congested. Now, the total weight
of the east port at node 5 becomes 1 + 3 = 4. Therefore, node 5 selects the north port as the outport.
This enables NAFTR to avoid congested regions in the network.

4.2.2. Load Balancing

EDAR assigns equal weights to outports with a similar hop distance toward a destination. It does
not have a mechanism to break ties. EDAR selects the first port among those with the same hop count
and continues to select that port until it is congested. This leads to congestion of one port all of the
time and the other port not utilized to its full capabilities. NAFTR does not assign the same weight to
all outports having the same hop distance toward a destination. Rather it randomly selects between
two outports with a similar hop count. Thus, it distributes the share of traffic with equal probabilities
among outports with a similar hop distance toward a destination.

4.2.3. Livelock/Deadlock Avoidance

The following assumptions were used in this paper for the avoidance of deadlock and livelock:
(a) a packet is absorbed when it reaches a destination, (b) a node is not allowed to send a packet to
itself, and (c) the source and destination PEs fall in a connected region. The strategies used to handle
deadlocks are deadlock prevention, deadlock avoidance, and recovery. Using a virtual channel (VC) at
the router falls under the category of deadlock avoidance [39]. The EMBRACE router architecture uses a
VC to avoid deadlocks in the network. A VC is implemented as a first in, first out (FIFO) queue. When a
packet enters a physical channel, it is assigned to the VC. This packet stays in the VC until the next
computed outport is idle and ready to receive this packet. The router does not allow the VC assignment
in a closed path/loop, which avoids deadlocks from happening in the network in the first place.

For livelock avoidance, a data packet coming from a given direction is not allowed to return in the
same direction. NAFTR selects the outport with the next-lowest weight for packet forwarding if the
shortest route toward a destination is the route from where the packet entered the router. Thus, the packet
will eventually reach the destination, although it may experience a longer path delay in the process
of avoiding congested regions. In the case of higher fault rates in the network, re-routing constraint
mechanisms [40] may be applied, which constrains the maximum number of re-routings to be performed
for a given packet. When the number of re-routings exceeds that threshold, the packet is discarded.
This may raise concerns regarding the quality of service. In that case, an automated repeat request (ARQ)
mechanism can be adopted to re-transmit the dropped packet through a different port number.

Electronics 2020, 9, 1076 12 of 18

Algorithm 1: Network-Adaptive Fault-Tolerant Routing (NAFTR) Algorithm

Input: numcols, DestinationID, CurrentID, Sb,c, f [N/E/S/W], In-port
Output: Chosen Out-portOutput
01 procedure Determine_Next_Hop
02 Xcur= CurrentID / numcols, Ycur = CurrentID % numcols
03 Xdest= DestinationID / numcols, Ydest = DestinationID % numcols
04 if (Xcur == Xdest && Ycur == Ydest) then
05 return local port;
06 end if
07 Wp[4]=DPWC(x)
08 for i=E to W do
09 if Sc/b/ f [i] equals 1 then
10 Wc/b/ f [i]=3/2/10
11 end if
12 Wi[i] = Wb[i] + Wp[i] + W f [i]+ Wc[i]
13 end for
14 Selected-port=Min-weigh-port-in Wi[i]
15 if Selected-port equals In-port then
16 Out-port=Second_Min_Weigh_Port_in Wi[i]
17 else
18 return Selected-port
19 end if
20 end procedure
01 procedure DPWC(x)
02 if (x==0) then
03 z1=0,z2=0.5
04 else z1=0.5,z2=0
05 if (Xd > Xc && Yd == Yc) then //D1
06 Wp[N/E/S/W]={2+z1,1,2+z2,3} end if
07 else if (Xd > Xc && Yd < Yc) then //D2
08 Wp[N/E/S/W]={2,1,3+z1,3+z2} end if
09 else if (Xd == Xc && Yd < Yc) then //D3
10 Wp[N/E/S/W]={1,2+z1,3,2+z2} end if
11 else if (Xd < Xc && Yd < Yc) then //D4
12 Wp[N/E/S/W]={2,3+z1,3+z2,1} end if
13 else if (Xd < Xc && Yd == Yc) then //D5
14 Wp[N/E/S/W]={2+z1,3,2+z2,1} end if
15 else if (Xd〈Xc && Yd〉Yc) then //D6
16 Wp[N/E/S/W]={3+z1,3+z2,2,1} end if
17 else if (Xd == Xc && Yd > Yc) then //D7
18 Wp[N/E/S/W]={3,2+z1,1,2+z2} end if
19 else if (Xd > Xc && Yd > Yc) then //D8
20 Wp[N/E/S/W]={3+z1,1,2,3+z2} end if
21 end procedure

5. Experimental Results

The proposed routing algorithm NAFTR was compared with EDAR and fault-tolerant XY (FTXY)
under various traffic patterns, such as bit-reversal, bit-shuffle, butterfly, and transpose, with a variable
packet injection rate (PIR) and a variable fault rate. Table 3 outlines the details about the simulator and
its essential parameters. We have extended the Nirgam simulator [41] and embedded the NAFTR and
EDAR algorithms. The performance assessment between the algorithms was completed on a mesh
(2D) topology with numerous traffic patterns. To provide a reasonable examination of the algorithms,
the fault rates of 3%, 6%, 9%, and 12% were applied arbitrarily.

Electronics 2020, 9, 1076 13 of 18

Table 3. Simulation parameters.

Name Description

Simulator Nirgam 2.1
Routing algorithms EDAR, FTXY, NAFTR

Topology 2D mesh
Traffic pattern Bit-shuffle, bit-reversal, butterfly, transpose

Size of the network 5 × 5
Warm-up time 5 cycles

Simulation time 5000 cycles
Fault percentage 3%, 6%, 9%, 12%

Figure 7 shows the latency vs. average flit delivery ratio comparison of the routing algorithms
examined, which was done in a fault-free network scenario at different packet injection rates. The latency
increased as the data rate increased in all traffic patterns. In bit-reversal, bit-shuffle, and butterfly
traffic patterns, the traffic was seriously imbalanced. As the data rate increased, it resulted in the
formation of congested regions in the network. At higher data rates, FTXY had the highest latency
because of its inability to avoid congested regions and congested ports in the network. At lower data
rates, NAFTR had a latency equal to or higher than FTXY because of its adaptive nature. As the data
rate increased, NAFTR experienced lower latency than FTXY because of its key feature of avoiding
congested regions. NAFTR also balanced the traffic among outports with a similar number of hops
to the destination. Moreover, FTXY and NAFTR maintained a higher flit delivery ratio than EDAR
because of their ability to handle livelocks in the network. Although EDAR had a lower average
latency than FTXY and NAFTR, it achieved a lower flit delivery ratio. Due to EDAR’s inability to
select an alternate outport, the outport of a packet was occasionally the same as the inport of the
packet, thus resulting in livelock in the network and consequently leading to a lower flit delivery ratio
and non-monotonic behavior. Under the transpose traffic pattern in Figure 7d, NAFTR experienced
slightly higher latency than FTXY because in the transpose traffic pattern, the traffic is not as severely
imbalanced as in the case of bit-reversal, bit-shuffle, and butterfly patterns. Therefore, NAFTR followed
longer paths to avoid rare busy and congested ports in the network, resulting in slightly higher average
latency per channel at higher data rates.

Electronics 2020, 9, x FOR PEER REVIEW 13 of 17

was occasionally the same as the inport of the packet, thus resulting in livelock in the network and

consequently leading to a lower flit delivery ratio and non-monotonic behavior. Under the transpose

traffic pattern in Figure 7d, NAFTR experienced slightly higher latency than FTXY because in the

transpose traffic pattern, the traffic is not as severely imbalanced as in the case of bit-reversal, bit-shuffle,

and butterfly patterns. Therefore, NAFTR followed longer paths to avoid rare busy and congested ports

in the network, resulting in slightly higher average latency per channel at higher data rates.

Bit-Reversal Bit-Shuffle

Butterfly Transpose

Figure 7. Average latency vs. average flit delivery ratio comparison under synthetic traffic patterns at

different pack injection rates in a fault-free scenario.

Figure 8 shows the average latency per channel and the average flit delivery ratio comparison of

FTXY, EDAR, and NAFTR at different fault rates under various synthetic traffic patterns. Figure 8a,b

show that NAFTR achieved a higher average flit delivery ratio at higher fault rates because of its ability

to select the next-lowest weight outport when the outport calculated was equal to the inport of a packet.

NAFTR followed longer paths to avoid faults and congested regions in the network, which resulted in a

slight increase in average latency per channel compared to FTXY. EDAR had the highest average latency

per channel because of its inability to select an alternate outport when the calculated outport was the same

as the inport of the packet, which resulted in livelock, consequently leading to a higher latency in the

network. The comparison results under bit-shuffle, butterfly, and transpose traffic patterns in Figure 8c–

h show that NAFTR outperformed FTXY and EDAR by offering a higher flit delivery ratio at higher fault

rates.

Figure 7. Average latency vs. average flit delivery ratio comparison under synthetic traffic patterns at
different pack injection rates in a fault-free scenario.

Electronics 2020, 9, 1076 14 of 18

Figure 8 shows the average latency per channel and the average flit delivery ratio comparison of
FTXY, EDAR, and NAFTR at different fault rates under various synthetic traffic patterns. Figure 8a,b
show that NAFTR achieved a higher average flit delivery ratio at higher fault rates because of its ability
to select the next-lowest weight outport when the outport calculated was equal to the inport of a packet.
NAFTR followed longer paths to avoid faults and congested regions in the network, which resulted in
a slight increase in average latency per channel compared to FTXY. EDAR had the highest average
latency per channel because of its inability to select an alternate outport when the calculated outport
was the same as the inport of the packet, which resulted in livelock, consequently leading to a higher
latency in the network. The comparison results under bit-shuffle, butterfly, and transpose traffic
patterns in Figure 8c–h show that NAFTR outperformed FTXY and EDAR by offering a higher flit
delivery ratio at higher fault rates.

Electronics 2020, 9, x FOR PEER REVIEW 14 of 17

Bit-Reversal

Bit-Shuffle

Butterfly

Transpose

Figure 8. Overall average latency vs. flit delivery ratio comparison at different fault induction rates under

synthetic traffic patterns.

Figure 9a shows the total average network power consumed by FTXY, EDAR, and NAFTR in the

fault-free network scenarios. The results indicate that EDAR and NAFTR consumed more power than

FTXY as they required additional circuits to avoid busy and congested ports/regions in the network. On

average, EDAR consumed 130% more power than FTXY, while NAFTR consumed only 33% more power

than FTXY. Moreover, NAFTR consumed 41% less power than EDAR on average because of its ability to

Figure 8. Overall average latency vs. flit delivery ratio comparison at different fault induction rates
under synthetic traffic patterns.

Electronics 2020, 9, 1076 15 of 18

Figure 9a shows the total average network power consumed by FTXY, EDAR, and NAFTR in the
fault-free network scenarios. The results indicate that EDAR and NAFTR consumed more power than
FTXY as they required additional circuits to avoid busy and congested ports/regions in the network.
On average, EDAR consumed 130% more power than FTXY, while NAFTR consumed only 33% more
power than FTXY. Moreover, NAFTR consumed 41% less power than EDAR on average because of
its ability to avoid congested regions in the network (passing through congested regions requires
additional power to hold the flits in intermediate virtual channels until the route is clear and the
packet can be passed to the next hop). Figure 9b shows the total network average power consumed
by EDAR, FTXY, and NAFTR in faulty network scenarios. The results show that EDAR and NAFTR
consumed 76% and 67% more power than FTXY, respectively, as they consumed additional power to
avoid congested and busy channels. However, NAFTR consumed 5% less total network average power
than EDAR, while it offered a higher flit delivery ratio than FTXY and EDAR, as shown in Figure 8.

Electronics 2020, 9, x FOR PEER REVIEW 15 of 17

avoid congested regions in the network (passing through congested regions requires additional power to

hold the flits in intermediate virtual channels until the route is clear and the packet can be passed to the

next hop). Figure 9b shows the total network average power consumed by EDAR, FTXY, and NAFTR in

faulty network scenarios. The results show that EDAR and NAFTR consumed 76% and 67% more power

than FTXY, respectively, as they consumed additional power to avoid congested and busy channels.

However, NAFTR consumed 5% less total network average power than EDAR, while it offered a higher

flit delivery ratio than FTXY and EDAR, as shown in Figure 8.

Figure 9. Total network average power consumed under faultless and faulty network scenarios.

Hardware Requirement Analysis

The modified EMBRACE router architecture requires one OR and one AND gate per outport to signal

neighbor nodes about congested regions to make them avoid congested regions in the network. For the

2D mesh topology, a modified Embrace router architecture requires four OR and four AND gates per

router to avoid congested regions in the network. A four-input AND gate requires eight complementary

metal-oxide-semiconductor (CMOS) transistors, while a two-input OR gate requires six CMOS transistors;

therefore, a total of 56 CMOS transistors are required per router. For a 5 × 5 network, the total number of

increased CMOS transistors would be 1400. This is not very high given that nowadays, millions of

transistors are embedded in a single chip.

6. Conclusion

In this article, we propose a routing algorithm (NAFTR) for NoC interconnections. The proposed

algorithm introduces a three-fold optimization of EDAR. First, NAFTR introduces load balancing of the

traffic between routes that are an equal distance from the destination. To perform this load balancing,

when all outports lead to routes having an equal hop count to a destination, NAFTR randomly selects an

outport for packet forwarding. Second, NAFTR can also avoid livelocks by choosing an alternate route.

When there is a possibility of a livelock, NAFTR calculates the outport with the next-lowest weight and

forwards the packet to that alternate outport. Lastly, NAFTR is also able to avoid congested regions in the

network. NAFTR achieves this through the use of one AND and one OR gate per port at the router.

NAFTR was extensively compared with EDAR and FTXY under numerous synthetic traffic patterns and

variable fault rates. The simulation results illustrated that NAFTR reduced the latency because of its

ability to avoid congested regions and NAFTR also achieved a higher flit delivery ratio in a fault-free

network due to its ability to avoid livelocks. Moreover, NAFTR also achieved a higher flit delivery ratio

of up to 18% in the presence of multiple faults, while consuming less power than EDAR. In the future, we

plan to extend NAFTR to work for other network topologies, such as 3D, honeycomb, and torus topologies.

We plan to make NAFTR a routing algorithm that can be configured on the fly for most of the widely

used topologies in NoCs. NAFTR can also be extended to work with wireless NoCs, where congestion

and business can be a critical factor for wireless routers. Additionally, NAFTR can also be implemented

on real hardware to further emphasize its performance gains.

Authors Contributions: Z.N. conceived and designed the algorithm. Z.N. and S.A. performed the experiments and

analyzed the results. Z.N. wrote the paper. M.K.A., R.A., and S.A. proofread the manuscript. S.W.K. supervised and

finalized the manuscript for submission.

Figure 9. Total network average power consumed under faultless and faulty network scenarios.

Hardware Requirement Analysis

The modified EMBRACE router architecture requires one OR and one AND gate per outport to
signal neighbor nodes about congested regions to make them avoid congested regions in the network.
For the 2D mesh topology, a modified Embrace router architecture requires four OR and four AND
gates per router to avoid congested regions in the network. A four-input AND gate requires eight
complementary metal-oxide-semiconductor (CMOS) transistors, while a two-input OR gate requires
six CMOS transistors; therefore, a total of 56 CMOS transistors are required per router. For a 5 × 5
network, the total number of increased CMOS transistors would be 1400. This is not very high given
that nowadays, millions of transistors are embedded in a single chip.

6. Conclusions

In this article, we propose a routing algorithm (NAFTR) for NoC interconnections. The proposed
algorithm introduces a three-fold optimization of EDAR. First, NAFTR introduces load balancing of the
traffic between routes that are an equal distance from the destination. To perform this load balancing,
when all outports lead to routes having an equal hop count to a destination, NAFTR randomly selects
an outport for packet forwarding. Second, NAFTR can also avoid livelocks by choosing an alternate
route. When there is a possibility of a livelock, NAFTR calculates the outport with the next-lowest
weight and forwards the packet to that alternate outport. Lastly, NAFTR is also able to avoid congested
regions in the network. NAFTR achieves this through the use of one AND and one OR gate per port at
the router. NAFTR was extensively compared with EDAR and FTXY under numerous synthetic traffic
patterns and variable fault rates. The simulation results illustrated that NAFTR reduced the latency
because of its ability to avoid congested regions and NAFTR also achieved a higher flit delivery ratio in
a fault-free network due to its ability to avoid livelocks. Moreover, NAFTR also achieved a higher flit
delivery ratio of up to 18% in the presence of multiple faults, while consuming less power than EDAR.
In the future, we plan to extend NAFTR to work for other network topologies, such as 3D, honeycomb,
and torus topologies. We plan to make NAFTR a routing algorithm that can be configured on the fly

Electronics 2020, 9, 1076 16 of 18

for most of the widely used topologies in NoCs. NAFTR can also be extended to work with wireless
NoCs, where congestion and business can be a critical factor for wireless routers. Additionally, NAFTR
can also be implemented on real hardware to further emphasize its performance gains.

Author Contributions: Z.N. conceived and designed the algorithm. Z.N. and S.A. performed the experiments and
analyzed the results. Z.N. wrote the paper. M.K.A., R.A., and S.A. proofread the manuscript. S.W.K. supervised
and finalized the manuscript for submission. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the 2020 Yeungnam University Research Grant and by the Brain Korea 21
Plus Program (No. 22A20130012814) funded by the National Research Foundation of Korea (NRF).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hassan, A.S.; Morgan, A.A.; El-Kharashi, M.W. An Enhanced Network-on-chip Simulation for Cluster-based
Routing. Procedia Comput. Sci. 2016, 94, 410–417. [CrossRef]

2. Fathi, M.; Ebrahimi, S.; Pedram, H. A fault-tolerant routing algorithm in 3D topology manycore processors.
In Proceedings of the 2015 2nd International Conference on Knowledge-Based Engineering and Innovation
(KBEI), Tehran, Iran, 5–6 November 2015; pp. 217–222.

3. Yang, P.; Wang, Q. Heterogeneous Honeycomb-like NoC Topology and Routing based on Communication
Division. Int. J. Futur. Gener. Commun. Netw. 2015, 8, 19–26. [CrossRef]

4. Anuradha, K.S.; Mahendra, A.G. Review of Odd-Even Routing Algorithm for 2D Mesh Topology of
Network-on-Chip Architecture for Bursty Traffic. IJCA Spec. Issue Recent Trends Eng. Technol. 2013, RETRET,
9–12.

5. Gulzari, U.A.; Anjum, S.; Aghaa, S.; Khan, S.; Torres, F.S. Efficient and scalable cross-by-pass-mesh topology
for networks-on-chip. IET Comput. Digit. Tech. 2017, 11, 140–148. [CrossRef]

6. Gulzari, U.A.; Sajid, M.; Anjum, S.; Agha, S.; Torres, F.S. A New Cross-By-Pass-Torus Architecture Based on
CBP-Mesh and Torus Interconnection for On-Chip Communication. PLoS ONE 2016, 11, 0167590. [CrossRef]

7. Glass, C.J.; Ni, L.M. The Turn Model for Adaptive Routing. In Proceedings of the 19th Annual International
Symposium on Computer Architecture, Queensland, Australia, 19–21 May 1992; pp. 278–287.

8. Jiang, S.; Jiang, S.; Liu, P.; Liu, Y.; Cheng, H. Network on Chip-based Fault-Tolerant Routing Algorithm and
Its Implementation. Trans. Comput. Sci. Technol. 2013, 2, 55–61.

9. Chand, M.S.; Naveen, C.; Dharm, J. An Efficient Routing Implementation for Irregular Networks. Glob. J.
Comput. Sci. Technol. 2014, 14, 65284796.

10. Liu, J.; Harkin, J.; Li, Y.; Maguire, L. Low-cost fault-tolerant routing algorithm for Networks-on-Chip.
Microprocess. Microsyst. 2015, 39, 358–372. [CrossRef]

11. Du, G.; He, J.; Song, Y.; Zhang, D.; Wu, H. Comparison of NoC routing algorithms based on packet-circuit
switching. In Proceedings of the 2013 IEEE Third International Conference on Information Science and
Technology (ICIST), Yangzhou, China, 23–25 March 2013; pp. 707–710.

12. Chiu, G.-M. The Odd-Even Turn Model for Adaptive Routing. IEEE Trans. Parallel Distrib. Syst. 2000, 11,
729–738. [CrossRef]

13. Boura, Y.M.; Das, C.R. Efficient fully adaptive wormhole routing in n-dimensional meshes. In Proceedings of
the 14th International Conference on Distributed Computing Systems, Poznan, Poland, 21–24 June 1994;
pp. 589–596.

14. Chien, A.A.; Jae, H.K. Planar-Adaptive Routing: Low-cost Adaptive Networks for Multiprocessors.
In Proceedings of the 19th Annual International Symposium on Computer Architecture, Queensland,
Australia, 19–21 May 1992; pp. 268–277.

15. Reza, A.; Ali, A.E.; Farshad, S. An efficient fault-tolerant routing algorithm in NoCs to tolerate permanent
faults. J. Supercomput. 2016. [CrossRef]

16. Glass, C.J.; Ni, L.M. Fault-tolerant wormhole routing in meshes. In Proceedings of the FTCS-23 The
Twenty-Third International Symposium on Fault-Tolerant Computing, Toulouse, France, 22–24 June 1993;
pp. 240–249.

17. Wu, J. A Fault-Tolerant and Deadlock-Free Routing Protocol in 2D Meshes Based on Odd-Even Turn Model.
IEEE Trans. Comput. 2003, 52, 1154–1169.

http://dx.doi.org/10.1016/j.procs.2016.08.063
http://dx.doi.org/10.14257/ijfgcn.2015.8.1.03
http://dx.doi.org/10.1049/iet-cdt.2016.0184
http://dx.doi.org/10.1371/journal.pone.0167590
http://dx.doi.org/10.1016/j.micpro.2015.06.002
http://dx.doi.org/10.1109/71.877831
http://dx.doi.org/10.1007/s11227-016-1749-0

Electronics 2020, 9, 1076 17 of 18

18. Chalasani, S.; Boppana, R.V. Fault-Tolerant Wormhole Routing Algorithms for Mesh Networks. IEEE Trans.
Comput. 1995, 44, 848–864.

19. Chiu, K.-H.C.A.G.-M. Fault-Tolerant Routing Algorithm for Meshes Without Using Virtual Channels. J. Inf.
Sci. Eng. 1998, 14, 765–783.

20. Su, C.-C.; Shin, K.G. Adaptive Fault-Tolerant Deadlock-Free Routing in Meshes and Hypercubes. IEEE Trans.
Comput. 1996, 45, 666–683.

21. Park, D.; Nicopoulos, C.; Kim, J.; Vijaykrishnan, N.; Das, C.R. Exploring Fault-Tolerant Network-on-Chip
Architectures. In Proceedings of the International Conference on Dependable Systems and Networks,
Philadelphia, PA, USA, 25–28 June 2006; pp. 93–104.

22. Schonwald, T.; Zimmermann, J.; Bringmann, O.; Rosenstiel, W. Fully Adaptive Fault-Tolerant Routing
Algorithm for Network-on-Chip Architectures. In Proceedings of the 10th Euromicro Conference on Digital
System Design Architectures, Methods and Tools, Lubeck, Germany, 29–31 August 2007; pp. 527–534.

23. Singh, S.K.; Mondal, A.J.; Majumder, A. Generation and Performance Evaluation of Reconfigurable
Fault-Tolerant Routing Algorithm for 2D-Mesh NoC. Procedia Comput. Sci. 2015, 57, 232–240. [CrossRef]

24. Tse, S.S.H.; Zhou, J.; Lau, F.C.M. Fault-tolerant Routing for Irregular Faulty Patterns in 2D-Mesh without
Virtual Channel. In Proceedings of the 2012 12th International Symposium on Pervasive Systems, Algorithms
and Networks, San Marcos, TX, USA, 13–15 December 2012; pp. 96–103.

25. Bishnoi, R. Hybrid fault-tolerant routing algorithm in NoC. Perspect. Sci. 2016, 8, 586–588. [CrossRef]
26. Yang, P.; Wang, Q.; Li, W.; Yu, Z.; Ye, H. A Fault Tolerance NoC Topology and Adaptive Routing Algorithm.

In Proceedings of the 2016 13th International Conference on Embedded Software and Systems (ICESS),
Chengdu, China, 13–14 August 2016; pp. 42–47.

27. Moriam, S.; Fettweis, G.P. Reliability assessment of fault-tolerant routing algorithms in networks-on-chip: an
analytic approach. In Proceedings of the Conference on Design, Automation & Test in Europe, Lausanne,
Switzerland, 27–31 March 2017; pp. 61–66.

28. Melo, D.R.; Zeferino, C.A.; Dilillo, L.; Bezerra, E.A. Maximizing the Inner Resilience of a Network-on-Chip
through Router Controllers Design. Sensors 2019, 19, 5416. [CrossRef]

29. Zhang, Z.; Serwe, W.; Wu, J.; Yoneda, T.; Zheng, H.; Myers, C. An improved fault-tolerant routing algorithm
for a Network-on-Chip derived with formal analysis. Sci. Comput. Program. 2016, 118, 61–66. [CrossRef]

30. Xiang, D.; Pan, Q. Low-power and high-performance adaptive routing in on-chip networks. CCF Trans. HPC
2019, 1, 92–110. [CrossRef]

31. Deb, D.; Jose, J.; Das, S.; KKapoor, H. Cost effective routing techniques in 2D mesh NoC using on-chip
transmission lines. J. Parallel Distrib. Comput. 2019, 123, 118–129. [CrossRef]

32. Song, Y.; Lin, B. Uniform Minimal First: Latency Reduction in Throughput-Optimal Oblivious Routing for
Mesh-Based Networks-on-Chip. IEEE Embed. Syst. Lett. 2019, 11, 81–84. [CrossRef]

33. Lin, L.; Sun, Y.; Zhu, Z.; Yang, Y. A congestion-aware OE router employing fair arbitration for network-on-chip.
J. Semicond. 2018, 39, 125006. [CrossRef]

34. Kang, J.; Cunlu, L.; Dezun, D.; Binzhang, F. HARE: History-Aware Adaptive Routing Algorithm for Endpoint
congestion in Networks-on-Chip. Int. J. Parallel Program. 2018, 47, 433–450.

35. Carrillo, S.; Harkin, J.; McDaid, L.; Pande, S.; Cawley, S.; McGinley, B.; Morgan, F. Advancing interconnect
density for spiking neural network hardware implementations using traffic-aware adaptive network-on-chip
routers. Neural Networks 2012, 33, 42–57. [CrossRef] [PubMed]

36. Liu, J.; Harkin, J.; Li, Y.; Maguire, L. Online traffic-aware fault detection for networks-on-chip. J. Parallel
Distrib. Comput. 2014, 74, 1984–1993. [CrossRef]

37. Pande, S.; Morgan, F.; Smit, G.; Bruintjes, T.; Rutgers, J.; McGinley, B.; Cawley, S.; Harkin, J.; McDaid, L. Fixed
latency on-chip interconnect for hardware spiking neural network architectures. Parallel Comput. 2013, 39,
357–371. [CrossRef]

38. Carrillo, S.; Harkin, J.; McDaid, L.J.; Pande, S.; Cawley, S.; McGinley, B.; Morgan, F. Hierarchical
Network-on-Chip and Traffic Compression for Spiking Neural Network Implementations. In Proceedings of
the 2012 IEEE/ACM Sixth International Symposium on Networks-on-Chip, Lyngby, Denmark, 9–11 May
2012; pp. 83–90.

39. Jerger, N.E. On-Chip Networks; Morgan & Claypool: San Rafael, CA, USA, 2009; Volume 4.

http://dx.doi.org/10.1016/j.procs.2015.07.471
http://dx.doi.org/10.1016/j.pisc.2016.06.028
http://dx.doi.org/10.3390/s19245416
http://dx.doi.org/10.1016/j.scico.2016.01.002
http://dx.doi.org/10.1007/s42514-019-00009-5
http://dx.doi.org/10.1016/j.jpdc.2018.09.009
http://dx.doi.org/10.1109/LES.2019.2897766
http://dx.doi.org/10.1088/1674-4926/39/12/125006
http://dx.doi.org/10.1016/j.neunet.2012.04.004
http://www.ncbi.nlm.nih.gov/pubmed/22561008
http://dx.doi.org/10.1016/j.jpdc.2013.09.001
http://dx.doi.org/10.1016/j.parco.2013.04.010

Electronics 2020, 9, 1076 18 of 18

40. Alhussien, A.; Wang, C.; Bagherzadeh, N. Design and evaluation of a high throughput robust router for
network-on-chip. IET Comput. Digit. Tech. 2012, 6, 173–179. [CrossRef]

41. School of Electronics and Computer Science, University of Southampton. Available online: http://nirgam.ecs.
soton.ac.uk/ (accessed on 10 February 2020).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1049/iet-cdt.2011.0082
http://nirgam.ecs.soton.ac.uk/
http://nirgam.ecs.soton.ac.uk/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Research
	Problem Statement
	Proposed Solution
	Modified EMBRACE Router Architecture
	NAFTR Algorithm
	Latency Improvement Achieved Using NAFTR in Fault-Free Scenarios
	Load Balancing
	Livelock/Deadlock Avoidance

	Experimental Results
	Conclusions
	References

