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A B S T R A C T

The emergence of Internet of Things (IoT) has increased number of connected devices and consequently
transmitted traffic over the Internet. In this regard, Long Term Evolution (LTE) is growing its utilization in
unlicensed spectrum as well, and Licensed Assisted Access (LAA) technology is one of the examples. However,
unlicensed spectrum is already occupied by other wireless technologies, such as Wi-Fi. The diverse and
dissimilar physical layer and medium access control (MAC) layer configurations of LTE-LAA and Wi-Fi lead to
coexistence challenges in the network. Currently, LTE-LAA uses a listen-before-talk (LBT) mechanism, and Wi-Fi
uses a carrier sense multiple access with collision avoidance (CSMA/CA) as a channel access mechanism. LBT
and CSMA/CA are moderately similar channel access mechanisms. However, there is an efficient coexistence
issue when these two technologies coexist. Therefore, this paper proposes a Reinforcement Learning-enabled
LBT (ReLBT) mechanism for efficient coexistence of LTE-LAA and Wi-Fi scenarios. Specifically, ReLBT utilizes
a channel collision probability as a reward function to optimize its channel access parameters. Simulation
results show that the proposed ReLBT mechanism efficiently enhances the coexistence of LTE-LAA and Wi-Fi
as compared to the LBT, thus improves fairness performance.

1. Introduction

Next-generation wireless networks of 5th Generation (5G) tech-
nology are expected to support thousands fold of increased capacity,
and at least hundred billion connected devices with tens of Gbps per-
user throughput and less than one-millisecond latency [2]. Another
upcoming technology, the Internet of Things (IoT) has exponentially
increased wireless communication due to massively connected sensors
and actuators [3]. Third Generation Partnership Project (3GPP) pro-
posed to extend licensed Long-Term Evolution (LTE) wireless system to
unlicensed spectrum [4,5] to effectively support these widely connected
devices. For this purpose, LTE-licensed assisted access (LTE-LAA) is
introduced in LTE Release 13, which uses 5 GHz unlicensed band
to coexist with Wireless-Fidelity (Wi-Fi) wireless local area networks
(WLANs) [1,6]. However, other Industrial, Scientific and Medical (ISM)
public wireless communication technologies, such as IEEE 802.11 (also
known as Wi-Fi or WLAN), ZigBee, and Bluetooth, etc. already occupy
the unlicensed spectrum [4]. Thus, LTE-LAA and ISM spectrum will
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face a considerable interference challenge due to massive channel con-
tention. While, the use of LTE-LAA in an unlicensed spectrum improves
the capacity and accomplishes a smooth user quality of experience
(QoE), the issues of allowing diverse networks to use a jointly shared
spectrum need to be deemed. One important issue is the coordination
and management of an interference among the different coexisting
technologies [7]. Fig. 1 shows the interference of unlicensed wireless
communication devices from LTE-LAA and Wi-Fi.

Currently, medium access control (MAC) layer channel access in Wi-
Fi primarily focuses on maximization of the channel utilization using
fair MAC layer resource allocation (MAC-RA) schemes [8]. MAC-RA
scheme uses a distributed coordination function (DCF)-based Carrier
sense multiple access with collision avoidance (CSMA/CA) mechanism
to reasonably access the wireless spectrum [8]. On the other hand,
standard LTE uses continuous data transmission with a minimum gap.
Therefore, to withstand the fair coexistence challenge between LTE-
LAA and Wi-Fi, a Listen-Before-Talk (LBT) mechanism is adapted in
LTE-LAA. LBT performs CSMA/CA like medium access procedure to
access the wireless channel [9,10]. CSMA/CA considers collision if the
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Fig. 1. LTE-LAA and Wi-Fi coexistence deployment and interference scenario in the IoT system.

Fig. 2. LBT mechanism of LTE-LAA [1].

sender does not receive an acknowledgment (ACK) control message.
However, there is no such frame in LBT. LBT examines collision based
on a hybrid automatic repeat request (HARQ) feedback of the current
transmission opportunity (TXOP) [11,12]. HARQ shows the number of
negative acknowledgments (NACK) from the current TXOP. An 80% of
NACK response in HARQ feedback is considered as the collision in the
network [13].

LTE-LAA schedules multiple devices in a single transmission frame,
where it is usually hard to meet an 80% NACK threshold. According
to 3GPP, collision with less than 80% NACK threshold is also ne-
glected [14]. Moreover, due to the integral latencies introduced by
the LTE continues transmission protocol stack, the HARQ feedback
associated with a specific sub-frame is received at least 4 ms after
its transmission time. Therefore, 3GPP proposes only to consider the
collisions detected during the first sub-frame of a TXOP [14]. Thus,
collisions from the rest of the TXOPs are also ignored.

In spite of adopting CSMA/CA like protocol in LTE-LAA and Wi-
Fi coexistence (that is LBT), the performance of Wi-Fi highly depends
on the configurations of LBT channel access parameters [15]. There-
fore, in this paper, we propose to intelligently adjust channel access
parameters with the help of reinforcement learning (RL). RL is inspired
by behaviorist psychology, which allows an agent/device to learn the
environment by its interactions and to select an optimum strategy for
taking actions [16]. One of the substantial characteristics of RL is that
it explicitly imitates the entire problem of learners interacting with an
uncertain environment and being directed to its goal [17]. This goal-
oriented learner can be the smallest device of a broader behavioral
context, such as an LTE-LAA user-equipment (UE), seeking to maximize
its performance in terms of fair coexistence with Wi-Fi stations (STAs).
Therefore, we propose an RL-enabled LBT (ReLBT) for LTE-LAA and
Wi-Fi coexistence in IoT systems. The proposed ReLBT mechanism
intelligently optimizes the MAC-RA channel access parameters for LBT.
Following are the contributions of our proposed mechanism,

• Our proposed ReLBT mechanism considers channel observation-
based collision probability [1] as a reward of its transmission
attempts.

• Instead of waiting for 80% HARQ feedback, it exploits the ac-
cumulated reward for scaling-up and scaling-down of contention
parameters.

• During the exploration phase, ReLBT utilizes a channel
observation-based scaled backoff (COSB) [18,19] mechanism, to
scale-up and scale-down its contention parameters.

• In particular, the proposed ReLBT mechanism finds optimal ac-
tions by interaction and observation from the environment
through the RL approach.

The rest of this paper is organized as follows. In the next section,
we describe the currently implemented LBT mechanism of LTE-LAA.
In Section 3, we discuss the proposed ReLBT mechanism. Section 4
evaluates the performance of the proposed mechanism using an event-
driven NS3 simulator with a densely deployed LTE-LAA and Wi-Fi
coexistence scenario. Finally, we make conclusions and present our
future research in Section 5.

2. Listen Before Talk (LBT)

As mentioned earlier, 3GPP evaluated multiple preferences of LBT
before finalizing it to coexist with CSMA/CA. Eventually, the selected
LBT flavor is the one that allows channel access most similar to the
currently implemented CSMA/CA in Wi-Fi, which uses a binary ex-
ponential backoff (BEB) [8] for channel contentions. Specifically, BEB
is a DCF-based mechanism and uses a random backoff mechanism to
contend among the competing Wi-Fi STAs. In BEB, a random value is
selected from a contention window (𝐶𝑊 ) to observe the channel be-
fore transmission [20,21]. An STA exponentially increases the selected
𝐶𝑊 on collision and resets back to its initial value once transmitted
successfully. BEB imposes limits on the TXOP before contention occurs
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Fig. 3. The flowchart of the LBT mechanism in LTE-LAA.

again, that is, an STA needs to contend for the channel for each data
frame.

On the other hand, LTE-LAA UE performs a clear channel assess-
ment (CCA) before LBT implementation. An LTE-LAA UE is aiming
to transmit data frames, must observe the channel for a CCA idle
period as an initial deferral period. The observing UE performs another
deferral-based, known as extended CCA (ECCA) after the successful
CCA, as shown in Fig. 2. In ECCA, the UE selects a random backoff
value (𝑏), where 𝑏 describes the number of observed idle slots that
need to be sensed before a TXOP, and each of a size of CCA slot-time
(𝜎) [13,22]. Initially, the random backoff value 𝑏 is selected from a
range of [0, 𝐶𝑊𝑚𝑖𝑛−1], where 𝐶𝑊𝑚𝑖𝑛 is the minimum backoff contention
window. The size of 𝐶𝑊 is exponentially increased upon 80% NACKs
from the current TXOP and is reset to the 𝐶𝑊𝑚𝑖𝑛 if the number of
NACKs is detected less than 80% [14]. Fig. 3 shows the flowchart of the
LTE-LAA LBT mechanism. In the figure, it is shown that a UE increases
the size of its CW if it finds NACKs higher than 80%.

3. Reinforcement learning-enabled LBT (ReLBT)

This section discusses our proposed ReLBT mechanism. Q learning
(QL) is one of the RL models, which significantly reflects the whole
problem where a learner interacts with an uncertain environment for
the purposes of its performance optimization [16]. A specific goal-
oriented learner can be a wireless UE in an LTE-LAA environment

seeking to maximize its performance in terms of fair coexistence along
with Wi-Fi. In ReLBT, the QL-based selection of contention parameters
leads to a reduced channel collision and enhances the fairer channel ac-
cess. One of the major contributions of this paper is the ability to adjust
the backoff parameters, such as current 𝐶𝑊 selection (𝐶𝑊𝑐𝑢𝑟) dynam-
ically based on the LTE-LAA and Wi-Fi users’ density. Our proposed
mechanism requires only a few modifications to the state-of-the-art LBT
mechanism in LTE-LAA and maintains full compatibility.

3.1. Replacement of HARQ-based collision detection

Before the implementation of ReLBT, we replace the standard
HARQ-based collision detection mechanism of LBT with a more realistic
channel observation-based collision probability (𝑝𝑜𝑏𝑠) [1] mechanism.
In this replaced mechanism, the backoff parameters are scaled based
on 𝑝𝑜𝑏𝑠 instead of 80% NACKs in current HARQ. Besides, instead of the
exponential increase of 𝐶𝑊 and reset back to minimum 𝐶𝑊𝑚𝑖𝑛 as of
LBT, ReLBT scales-up, and scales-down the backoff 𝐶𝑊 based on 𝑝𝑜𝑏𝑠.

In the proposed ReLBT mechanism, after the communication
medium has been idle for a CCA, an LTE-LAA UE competing for a
channel for transmission proceeds to the ECCA procedure by selecting
a random backoff value 𝑏. ReLBT discretizes the time immediately
following an idle CCA into observation time slots (𝛼). The duration
of 𝛼 slot is either a constant slot-time (𝜎) during an idle period or a
variable busy (successful or collided transmission by other devices in
the network) period. 𝑏 decrements by one of the channels is sensed as
idle for a period of 𝜎. A TXOP is availed only at the beginning of the slot
time when 𝑏 reaches zero. Also, the UE freezes 𝑏 and continues sensing
the channel for idle CCA if the channel becomes busy. Later, if the
channel is again detected to be clear for CCA, 𝑏 is resumed. Each UE in
the network can proficiently measure channel observation-based con-
ditional collision probability 𝑝𝑜𝑏𝑠. This measured 𝑝𝑜𝑏𝑠 may call a pseudo
collision probability as it seems that the estimation of 𝑝𝑜𝑏𝑠 requires each
UE to observe and count the number of failed transmissions (NACKs)
and divide it by the total number of transmission attempts. However,
a more realistic observation for 𝑝𝑜𝑏𝑠 can be achieved if busy and idle
time durations of the ECCA procedure are also counted. ReLBT updates
𝑝𝑜𝑏𝑠 at every ECCA backoff contention stage by counting the number of
NACKs (𝑆𝑛𝑎𝑐𝑘) in recent TXOP and the number of busy slots (𝑆𝑏) during
observed time-slot (𝛼).

All observed 𝛼 time-slots (busy and idle) are represented by 𝐵𝑜𝑏𝑠,
which is 𝐵𝑜𝑏𝑠 = 𝑏 + 𝑆𝑏 between two consecutive ECCA backoff stages.
A tagged UE updates 𝑝𝑜𝑏𝑠 from 𝐵𝑜𝑏𝑠 of ECCA backoff stage as follows:

𝑝𝑜𝑏𝑠 =
(𝑆𝑏 + 𝑆𝑛𝑎𝑐𝑘)
(𝑆𝑛𝑎𝑐𝑘 + 𝐵𝑜𝑏𝑠)

, (1)

where 𝑆𝑏 =
∑𝐵𝑜𝑏𝑠−1

𝑘=0 𝑆𝑘, and for an observation time slot 𝑘, 𝑆𝑘 = 0 if 𝛼
is empty (idle), while 𝑆𝑘 = 1 if 𝛼 is busy due to other device trans-
missions. The formulation of channel observation-based reasonable
collision probability has a prominence to the ReLBT mechanism. ReLBT
updates its 𝐶𝑊 based on the observed practical collision probability,
which leads to a more adaptive contention procedure. Thus, brings a
fair share between the two coexisting technologies.

As mentioned earlier, in a HARQ feedback-based collision detection
mechanism, scaling of contention parameters is based on observed
NACKs from the recent TXOP. However, in our proposed replacement,
a tagged UE detects a collision and scales current ECCA contention
parameters if it finds 𝑝𝑜𝑏𝑠 > 0. This process indicates that even if there is
no NACK received in the current feedback, still contention parameters
can be scaled due to busy slots during observation. Besides, unlike the
existing exponential increase for unsuccessful and resetting back to a
minimum value of 𝐶𝑊 in LBT, the ReLBT operates as, scaling-up and
scaling-down of the 𝐶𝑊 . ReLBT scales-up the 𝐶𝑊 if 𝑝𝑜𝑏𝑠 > 0 (that
is, there exist busy slots or/and NACKs), and scales-down the 𝐶𝑊 if
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Fig. 4. Q learning-based ReLBT with its elements.

𝑝𝑜𝑏𝑠 = 0 (that is no busy slots and NACKs) [1]. The scaling-up and
scaling-down of the ECCA CW operate as follows:

𝐶𝑊𝑐𝑢𝑟 =

{

𝑚𝑖𝑛[2 × 𝐶𝑊𝑝𝑟𝑒 × 𝜔𝑝𝑜𝑏𝑠 , 𝐶𝑊𝑚𝑎𝑥],∀𝑝𝑜𝑏𝑠 > 0

𝑚𝑎𝑥[𝐶𝑊𝑝𝑟𝑒×𝜔𝑝𝑜𝑏𝑠

2 , 𝐶𝑊𝑚𝑖𝑛],∀𝑝𝑜𝑏𝑠 = 0,
(2)

where 𝐶𝑊𝑐𝑢𝑟 is current scaled-up/scaled-down ECCA 𝐶𝑊 from a previ-
ous 𝐶𝑊𝑝𝑟𝑒. The 𝜔 is a constant design parameter to control the adaptive
size of the ECCA 𝐶𝑊 according to the observed 𝑝𝑜𝑏𝑠 and is expressed
as 𝜔 = 𝐶𝑊𝑚𝑖𝑛.

3.2. Proposed ReLBT mechanism

A QL model consists of a learner (that is an LTE-LAA UE), an
environment (that is an LTE-LAA and Wi-Fi coexistence), a policy
(that is scale-up and scale-down of 𝐶𝑊 ), a reward (that is 𝑝𝑜𝑏𝑠), and
a Q-value function (an accumulated reward) [16]. An LTE-LAA UE’s
behavior and learning at a given time depends on the policy it follows.
Whereas, a policy is a rule to decide perspective actions to map the
perceived states of its environment. A reward is the core objective of a
UE, which is a quantitative value determined by the situation at each
step. In a QL-based model, a learner’s only goal is to maximize the
accumulated reward over the long run. While the reward is immediate
quantitative value for any single action in a specific state, the Q-value
denotes the accumulated reward attained at that state. It is possible
that a state always yields a low immediate reward but still has a high
Q-value because of continuously followed by other states that produce
high rewards.

The proposed ReLBT mechanism contains a set of states (𝑆) (backoff
stages in an ECCA), where an intelligent LTE-LAA UE has the ability to
act from a set of actions (𝐴) as, 𝐴 = {increase 𝐶𝑊 if 𝑝𝑜𝑏𝑠 > 0, decrease
𝐶𝑊 if 𝑝𝑜𝑏𝑠 = 0}. By performing an action 𝑎 following a policy 𝜋 in
a particular state 𝑠, a UE collects a reward 𝑟, that is 𝑅(𝑠, 𝑎) to exploit
the collective reward 𝑄(𝑠, 𝑎), which is known as a Q-value function.
Fig. 4 depicts the model environment with its elements for the proposed
ReLBT mechanism.

Let 𝑆 = {0, 1, 2,… , 𝑚} denotes a finite set of 𝑚 possible states of the
environment and let 𝐴 = {0, 1} represents a finite set of permissible
actions allowed to an LTE-LAA UE, where zero indicates decrement,
and one indicates increment. At time slot 𝑡, a UE observes the current
state 𝑠𝑡, that is 𝑠𝑡 = 𝑠 ∈ 𝑆 and takes action 𝑎𝑡, that is 𝑎𝑡 = 𝑎 ∈ 𝐴 based on
policy 𝜋𝑡. A default policy of a UE in ReLBT is to increment its state for
collision and decrement for successful transmission. Thus, an action 𝑎𝑡
changes the environmental state from 𝑠𝑡 to 𝑠𝑡+1 = 𝑠′ ∈ 𝑆 according to,

𝜋(𝑎 ∣ 𝑠) =

{

𝑠′ = 𝑠 + 1,∀𝑝𝑜𝑏𝑠 > 0
𝑠′ = 𝑠 − 1,∀𝑝𝑜𝑏𝑠 = 0.

(3)

In a QL model, 𝑄(𝑠, 𝑎) estimates the cumulative reward and is updated
as follows,

𝑄(𝑠, 𝑎) = (1 − 𝛾) ×𝑄(𝑠, 𝑎) + 𝛾 × 𝛥𝑄(𝑠, 𝑎), (4)

where 𝛾 is the learning-rate defined as 0 < 𝛾 < 1. A learner learns
quickly based on the improved learning estimate 𝛥𝑄(𝑠, 𝑎), which is
expressed as,

𝛥𝑄(𝑠, 𝑎) = {𝑅(𝑠, 𝑎) + 𝛽 × 𝑚𝑎𝑥′𝑎𝑄(𝑠′, 𝑎′)} −𝑄(𝑠, 𝑎). (5)

Fig. 5. The flowchart of the proposed ReLBT mechanism.

The reward may easily get unbounded, thus a discounted reward factor
𝛽, where 0 < 𝛽 < 1 is used. In Eq. (5), the 𝑚𝑎𝑥′𝑎𝑄(𝑠′, 𝑎′) represents the
best estimated Q-value for the prospective state–action pair. In the long
run, 𝑄(𝑠, 𝑎) converges to the optimal Q-value, that is lim𝑡→∞ 𝑄(𝑠, 𝑎) =
𝑄∗(𝑠, 𝑎). A heuristic policy for action selection can be to exploit the
actions with the maximum measured Q-value. However, QL requires a
frequent exploration to update learning outcomes dynamically. In QL-
based algorithms, one of the methods for exploration and exploitation
is known as the 𝜀-greedy method [16]. In this method, a greedy action
policy (exploitation) 𝜋∗(𝑎∗ ∣ 𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄(𝑠, 𝑎) is performed with
a probability of 𝜀, where 𝑎𝑟𝑔𝑚𝑎𝑥𝑎 represents that 𝑄(𝑠, 𝑎) is exploited
concerning 𝑎. Continuous exploitation leads to the maximization of the
instant reward in a greedy manner. A modest substitute is to exploit
more often. However, the LTE-LAA UE explores all the legal actions
independent of optimal policy (𝜋∗) with a probability of 1 − 𝜀 (known
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Fig. 6. LTE-LAA and Wi-Fi coexistence scenario for simulation.

Fig. 7. Latency (ms) performance of LTE-LAA and Wi-Fi coexistence with proposed
ReLBT for traffic arrival rate 𝜆 = 1.5 with five UEs/STAs per cell/operator.

Fig. 8. Latency (ms) performance of LTE-LAA and Wi-Fi coexistence with proposed
ReLBT for traffic arrival rate 𝜆 = 2.5 with five UEs/STAs per cell/operator.

as exploration). In the 𝜀-greedy method, over time every action (step)
of the learner guarantees the convergence of 𝑄(𝑠, 𝑎). A UE exploits
to optimize its performance and explores to learn the changes in the
LTE-LAA environment.

As the objective of our proposed ReLBT mechanism is to optimize
the fair coexistence of LTE-LAA and W-Fi, which is achieved by re-
ducing the unnecessary collisions in the environment. Therefore, we
express the reward of the actions performed at any specific state in
relation to the channel observation-based collision probability 𝑝𝑜𝑏𝑠.
Therefore, the reward given by an action 𝑎𝑡 taken at state 𝑠𝑡 in a time

Table 1
List of abbreviations and acronyms used in this paper.

Acronyms Full description

3GPP Third Generation Partnership Project
5G 5th Generation
ACK Acknowledgment
BEB Binary Exponential Backoff
CCA Clear Channel Assessment
CDF Cumulative Distribution Function
COSB Channel Observation-based Scaled Backoff
CSMA/CA Carrier Sense Multiple Access with Collision Avoidance
CW Contention Window
DCF Distributed Coordination Function
ECCA Extended CCA
eNB Evolved Node B
HARQ Hybrid Automatic Repeat Request
ISM Industrial, Scientific and Medical
LBT Listen-Before-Talk
LTE Long Term Evolution
LTE-LAA LTE-Licensed Assisted Access
MAC Medium Access Control
MAC-RA MAC layer Resource Allocation
NACK Negative Acknowledgments
QoE Quality of Experience
QL Q Learning
ReLBT RL-enabled LBT
RL Reinforcement Learning
TXOP Transmission Opportunity
UE User Equipment
Wi-Fi Wireless-Fidelity

slot t is expressed as,

𝑅𝑡(𝑠𝑡, 𝑎𝑡) = 1 − 𝑝𝑜𝑏𝑠. (6)

The Eq. (6) shows the level of satisfaction (pleasure) of a UE with
its action in state 𝑠𝑡. Fig. 5 describes the flowchart of our proposed
ReLBT mechanism. As shown in the figure, a UE continuously observes
the channel conditions and updates its QL-based parameters. The UE
increases or decreases its CW only based on the channel collision
probability, that is 𝑝𝑜𝑏𝑠.

4. Performance evaluation

This section evaluates the performance of our proposed ReLBT
mechanism using an event-driven simulator NS3 [23] with an available
LTE-LAA and Wi-Fi coexistence scenario [24].

4.1. Simulation deployment scenario

In this scenario, we consider that two operators; operator-A (LTE-
LAA), and operator-B (Wi-Fi), and both use the same 20 MHz channel
in the 5 GHz frequency spectrum. We evaluate the performance of
proposed ReLBT compared to the state-of-the-art LBT mechanism in
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Table 2
Parameters used in simulations.

Parameter Value

Number of cells/operator 4
Number of devices/cell 5, 15
Traffic model FTP over UDP
Packet arrival rates (𝜆) 1.5, 2.5
Operating frequency 5 GHz
Channel bandwidth 20 MHz
Physical rate of the channel MCS 15 (130 Mbps)
Data frame payload 1000 bytes
𝐶𝑊𝑚𝑖𝑛 (LBT/BEB) 15/15
𝐶𝑊𝑚𝑎𝑥 (LBT/BEB) 63/1023
ED threshold (LTE-LAA/Wi-Fi) −72 dBm
CCA/DIFS (LTE-LAA/Wi-Fi) 60/43 μs
Slot-time 𝜎 (LTE-LAA/Wi-Fi) 9 μs
TXOP (LTE-LAA) 8 ms
NACKs feedback (LTE-LAA) 80%
Scaling design factor (𝜔) 32

terms of the cumulative distribution function (CDF) of both operators
with latency (ms) and throughput (Mbps). Fig. 6 shows our deployment
scenario, where two operators are deployed in four small cells. The four
LTE-LAA eNBs and four Wi-Fi APs are fixed at their locations. Several
LTE-LAA UEs and Wi-Fi STAs are randomly distributed around LTE-
LAA eNB and Wi-Fi AP, respectively, as shown in Fig. 6. We performed
simulations for two set of densities (see Table 2),

1. Five UEs/STAs (𝑁) per cell (that is, 𝑐𝑒𝑙𝑙𝑠∕𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 = 4, 𝑁 = 5,
𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠 = 2, 𝑡𝑜𝑡𝑎𝑙𝑁 = 4 × 2 × 5 = 40), and

2. fifteen UEs/STAs (𝑁) per cell (that is, 𝑐𝑒𝑙𝑙∕𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 = 4, 𝑁 = 15,
𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠 = 2, 𝑡𝑜𝑡𝑎𝑙𝑁 = 4 × 2 × 15 = 120).

Table 1 shows detailed simulation parameters.

4.2. Results and discussion

Figs. 7–8 show the latency impact of the LTE-LAA and Wi-Fi coex-
istence for LBT and ReLBT with five number of devices per cell and
two different traffic arrival rates (that is, 𝜆 = 1.5 and 𝜆 = 2.5). The
figures show that the proposed ReLBT mechanism performs more fairly
between LTE-LAA and Wi-Fi. Besides, an increase in the traffic arrival
rate (that is, 𝜆 = 2.5) increases the fairness challenges, as shown in
Fig. 8. However, proposed ReLBT enables enhanced fairness between
the operators. It becomes more severe for the LTE-LAA and Wi-Fi
coexistence when the number of UEs/STAs increases per cell/operator,
as shown in Fig. 9 and Fig. 10, where the total number of 𝑁 is increased
to 120 from 40 in the network. These figures show that the proposed
ReLBT mechanism enhances the fair coexistence between LTE-LAA and
Wi-Fi operators.

Figs. 11–14 evaluate the proposed mechanism for LTE-LAA and
Wi-Fi coexistence (Figs. 11–12 for five number of devices per cell
per operator, and Figs. 13–14 for fifteen number of devices per cell
per operator) for LBT and ReLBT schemes. Fig. 11 shows that for
the LBT mechanism, there exists a prominent amount of throughput
degradation for the Wi-Fi STAs, and it is more miserable for the
higher data arrival rate, as shown in Fig. 12. However, the proposed
ReLBT mechanism enables LTE-LAA UEs to perform their transmissions
intelligently, which increases the channel access chances for Wi-Fi
STAs. Hence improves the overall systems performance. The fairness
between LTE-LAA and Wi-Fi becomes more noticeable for the dense
network environment, where the number of Nodes/STAs (𝑁) increases
per cell, as shown in Figs. 13–14. This is because of the increase in
channel occupancy probability and time by LTE-LAA UEs. Currently
implemented LTE-LAA LBT mechanism only considers the HARQ feed-
back for contention parameters update, which is received with much
more delay that is after 7 ms [14]. As shown in Figs. 13–14, the Wi-Fi
operator faces noticeable performance degradation due to the LTE-LAA

Fig. 9. Latency (ms) performance of LTE-LAA and Wi-Fi coexistence with proposed
ReLBT for traffic arrival rate 𝜆 = 1.5 with fifteen UEs/STAs per cell/operator.

Fig. 10. Latency (ms) performance of LTE-LAA and Wi-Fi coexistence with proposed
ReLBT for traffic arrival rate 𝜆 = 2.5 with fifteen UEs/STAs per cell/operator.

Fig. 11. Throughput (Mbps) performance of LTE-LAA and Wi-Fi coexistence with
proposed ReLBT for traffic arrival rate 𝜆 = 1.5 with five UEs/STAs per cell/operator.

LBT mechanism. Our proposed ReLBT allows LTE-LAA UEs to access
channel resources more efficiently and fairly. Therefore, the perfor-
mance of Wi-Fi STAs is improved. Since the LTE-LAA ReLBT adjusts
the 𝐶𝑊 based on the channel inference by using channel collision
probability, thus the throughput degradation due to an increase of the
number of contenders has a small effect on ReLBT as compared to LBT
as shown in Figs. 13 and 14. The reinforcement learning-based channel
access of ReLBT enhances the fair channel occupancy for both LTE-LAA
and Wi-Fi devices in the network.
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Fig. 12. Throughput (Mbps) performance of LTE-LAA and Wi-Fi coexistence with
proposed ReLBT for traffic arrival rate 𝜆 = 2.5 with five UEs/STAs per cell/operator.

Fig. 13. Throughput (Mbps) performance of LTE-LAA and Wi-Fi coexistence with
proposed ReLBT for traffic arrival rate 𝜆 = 1.5 with fifteen UEs/STAs per cell/operator.

Fig. 14. Throughput (Mbps) performance of LTE-LAA and Wi-Fi coexistence with
proposed ReLBT for traffic arrival rate 𝜆 = 2.5 with fifteen UEs/STAs per cell/operator.

5. Conclusion and future work

LTE-LAA and Wi-Fi coexistence performance are very delicate to the
channel access mechanisms of these two diver technologies that are LBT
of LTE-LAA and BEB of Wi-Fi. Essentially, the reason is the contention
parameter choices in LTE-LAA LBT, such as HARQ feedback. Thus, the
different LTE-LAA procedures for parameter selection affect coexistence
performance. With the realization of this problem statement, this paper
proposes an intelligent reinforcement learning-enabled LBT (ReLBT) to
enhance the fairness of LTE-LAA and Wi-Fi coexistence. This paper eval-
uates the influence of the parameters associated with the LBT access

protocol to improve the fairness between LTE-LAA and Wi-Fi networks.
In particular, we assessed the sensitivity to HARQ feedback-based
collision detection and the exponential backoff mechanism used by
LTE-LAA LBT for scaling of the 𝐶𝑊 . Our proposed ReLBT mechanism
utilizes Q learning, one of the reinforcement-learning (RL) paradigm
for performance optimization of LTE-LAA and Wi-Fi coexistence. The
potential applications of RL to the channel access to unlicensed wireless
networks have already been increasingly recognized. RL is a behaviorist
learning technique, which uses experience from the environment to
optimize its performance. ReLBT uses channel observation-based colli-
sion probability to learn the environment and optimize its performance.
Simulation results show that the proposed ReLBT mechanism scales the
contention parameters more intelligently and effectively to enhances
the LTE-LAA and Wi-Fi coexistence as compared to the state-of-the-art
LBT mechanism. The future work expects to extend the applications of
ReLBT for QoS-based traffic in the network, such as voice and video
applications.
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