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Abstract

One of the key applications for the Internet of Things (IoT) is the eHealth service that targets sustaining patient health
information in digital environments, such as the Internet cloud with the help of advanced communication
technologies. In eHealth systems, wireless networks, such as wireless local area networks (WLAN), wireless body sensor
networks (WBSN), and wireless medical sensor networks (WMSNs), are prominent technologies for early diagnosis and
effective cures. The next generation of these wireless networks for IoT-based eHealth services is expected to confront
densely deployed sensor environments and radically new applications. To satisfy the diverse requirements of such
dense IoT-based eHealth systems, WLANs will have to face the challenge of assisting medium access control (MAC)
layer channel access in intelligent adaptive learning and decision-making. Machine learning (ML) offers services as a
promising machine intelligence tool for wireless-enabled IoT devices. It is anticipated that upcoming IoT-based
eHealth systems will independently access the most desired channel resources with the assistance of sophisticated
wireless channel condition inference. Therefore, in this study, we briefly review the fundamental models of ML and
discuss their employment in the persuasive applications of IoT-based systems. Furthermore, we propose Q-learning
(QL) that is one of the reinforcement learning (RL) paradigms as the future ML paradigm for MAC layer channel access
in next-generation dense WLANs for IoT-based eHealth systems. Our goal is to contribute to refining the motivation,
problem formulation, and methodology of powerful ML algorithms for MAC layer channel access in the framework of
future dense WLANs. This paper also presents a case study of next-generation WLAN IEEE 802.11ax that utilizes the QL
algorithm for intelligent MAC layer channel access. The proposed QL-based algorithm optimizes the performance of
WLAN, especially for densely deployed devices environment.

Keywords: Internet of Things, eHealth systems, Machine learning, Next-generation dense WLANs, MAC layer channel
access

1 Introduction
Internet of Things (IoT) technology connects physical
objects with the help of sensors and actuators by utilizing
the existing infrastructure of communication networks,
specifically with the help of unlicensed wireless networks
[1]. Therefore, IoT technology uses the existing network
infrastructure and communication technologies to ensure
its strength. Sensors and actuators play a vital role in
connecting the physical world to the digital world [2, 3].
The applications of IoT technology such as smart-cities,
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smart-industries, smart-metering, smart-grid, and smart-
healthcare systems (IoT-based eHealth) are continuously
increasing. It is expected that by the end of 2020, wireless-
enabled devices will increase to 36.5 billion, and 70% of
those would comprise sensor devices [1].
One of the key applications for the IoT is the eHealth

service that targets sustaining patient health information
in digital environments such as the Internet cloud with
the help of advanced communication technologies. The
World Health Organization (WHO) conducted a survey
in 2013 and highlighted that upcoming decades would
face the challenge of shortage of global health workforce,
which would reach 12.9 million [4]. The main reasons of
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the decline are decreased interest in young people to pur-
sue this profession, aging of current workforce, and the
growing risk of non-infectious diseases such as cancer
and heart stroke [4]. However, nowadays, health-related
information can be easily monitored and tracked with the
help of smart sensors and devices. This IoT-based eHealth
enables people to allow emergency services/hospitals,
doctors, and relatives to access their health-related data
through different applications for immediate and efficient
treatment. Handheld devices, such as smartphones and
fitness bands, can act as on-body coordinators for person-
alized healthmonitoring because they are equipped with a
variety of sensors, such as heart rate measurement sensor,
blood glucose and pressure sensors, temperature sensors,
humidity measurement sensors, accelerometers, magne-
tometers, and gyroscope (Fig. 1) [5]. There exist several
built-in applications in such handheld smartphones, such
as S-Health, to keep track of daily body fitness. How-
ever, there are always concerns regarding data privacy and
security, reliability, and trustworthiness in the extensive
usage of wearable smart devices [5].
One of the key issues in IoT-based eHealth systems is

the requirement of appropriate communication technolo-
gies for efficient information sharing [6, 7]. Particularly,
reliable connectivity is essential for real-time health-
related information sharing. Wireless communication
technologies are flexible and cost-effective for IoT-based

information sharing. As shown in Fig. 1, a combination
of both short-range wireless communication technologies,
such as Bluetooth Low Energy (BLE), ZigBee, and IEEE
802.11 wireless local area network (WLAN), and long-
range wireless communication technologies, such as
Sub-1 Giga, LoRaWAN, and 4G/5G/LTE cellular systems,
are typically considered [8, 9]. Both academic and indus-
trial communities have recognized the significant atten-
tion given to future WLANs (IEEE 802.11) for IoT-based
eHealth systems. One of their motivating services is
the promisingly high throughput to support extensively
advanced technologies even in densely deployed devices
environment [10, 11]. However, unlicensed WLAN would
face huge challenges in the future to access the shared
channel resources, especially for highly dense IoT device
deployments. The use of small cells and information-
centric sensor networks in forthcoming IoT-based system
may help to reduce the performance degradation issues
[3, 12]. The most popular wireless channel resource uti-
lization technique utilized by the WLAN medium access
control (MAC) protocol is known as carrier sensemultiple
access with collision avoidance (CSMA/CA). To achieve
maximum channel resource utilization through fair chan-
nel access in the WLANs with the ever-increasing density
of contending IoT devices, the CSMA/CA scheme is very
important as a part of IoT-based systems. CSMA/CA
uses a binary exponential backoff (BEB) as its typical and

Fig. 1 Role of communication technologies in IoT-based eHealth system



Ali et al. EURASIP Journal onWireless Communications and Networking        (2019) 2019:178 Page 3 of 12

traditional channel contention mechanism [11]. In BEB, a
backoff value for contention is generated randomly from a
specified contention window (CW). The CW size is expo-
nentially increased for each unsuccessful transmission
and reset to its initial size once transmitted successfully.
For a network with a heavy load, resetting CW to its mini-
mum size after successful transmission will result in more
collisions and poor network performance. Similarly, for
fewer contending devices, the blind exponential increase
of CW for collision avoidance causes an unnecessary
long delay. Besides, this blind increase/decrease of the
backoff CW is more inefficient in highly dense net-
works proposed for IoT-based systems. Thus, the current
CSMA/CA mechanism does not allow wireless networks
to achieve high efficiency in highly dense environments.
Future denseWLANs are anticipated to infer the diverse

and interesting features of both the devices’ environments
and their behavior to spontaneously optimize the relia-
bility and efficiency of communication. Machine learning
(ML), which is one of the prevailing machine intelligence
tools, establishes an auspicious paradigm for optimiza-
tion of the performance of WLANs [13]. As illustrated
in Fig. 2, we can imagine an intelligent IoT device that is
capable of accessing channel resources with the aid of ML.
Therefore, an intelligent device would observe and learn
the performance of a specific action with the objective of
preserving a specific performance metric. Further, based
on this learning, the intelligent device aims to reliably
improve its performance while executing future actions
by exploiting previous experience. ML algorithms are typ-
ically categorized into supervised [14] or unsupervised
[15] learning algorithms. The supervised and unsuper-
vised algorithms specify whether there are categorized
samples in the available data (usually known as training
data). Recently, another class of ML, known as reinforce-
ment learning (RL), has emerged. It is encouraged by
behavioral psychology [16, 17]. RL is concerned with a cer-
tain form of reward for a learner (such as an intelligent IoT
device) that is associated with its environment (such as
IoT-based eHealth system) through its observations and
actions.

In this study, we briefly assess the fundamental
perceptions of ML and propose services in persuasive
applications for IoT-based systems based on the super-
vised, unsupervised, and RL categories. ML can be used
extensively for revealing numerous practical problems in
the future dense WLANs of the IoT-based application
like eHealth systems. Examples include massive multiple-
input multiple-output (MIMO), device-to-device (D2D)
communications, femto/small cell-based heterogeneous
networks, and high contention in dense WLAN environ-
ments. Following are the contributions of this paper:

• We briefly present the fundamental insights of ML in
persuasive applications for IoT-based systems.

• Furthermore, we propose Q-learning (QL) that is one
of the prevailing algorithms of RL as the future ML
paradigm for channel access in contention-based
dense WLANs for IoT-based systems.

The goal of this paper is to aid readers in refining the
enthusiasm for problem devising and the approach to
powerful ML algorithms for channel access in the frame-
work of future dense WLANs to tap into previously unex-
plored applications of IoT-based systems. Table 1 shows
list of acronyms used in this paper.

2 Machine learning inWLANs for IoT-based
systems

As aforementioned, ML is usually categorized as super-
vised, unsupervised, and the most recently evolved RL
algorithms. In this section, we elaborate the role of these
categories in wireless communication networks for IoT-
based systems. Figure 3 summarizes the family archi-
tecture of ML techniques, models, and their potential
applications in dense IoT-based systems.

2.1 Supervised learning
In supervisedML, the learning agent learns from a labeled
training dataset supervised by an erudite exterior super-
visor. Each labeled training dataset is a depiction of a
state comprising a specification, label, particular action,

Fig. 2 Intelligent channel access mechanism for IoT-based systems
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Table 1 List of acronyms used in this paper

Acronyms Full description

AP Access point

BL Bayesian learning

BLE Bluetooth Low Energy

CRNs Cognitive radio networks

CSMA/CA Carrier sense multiple access/collision avoidance

D2D Device-to-device

HMM Hidden Markov model

ICA Independent component analysis

IoT Internet of Things

LoRaWAN Long-range wireless area network

LTE Long-Term Evolution

MAC Medium access control

MDP Markov decision process

MIMO Multiple-input multiple-output

MIP Mixed integer programming

ML Machine learning

PCA Principle component analysis

POMDP Partially observed MDP

QL Q-learning

RA Regression analysis

RL Reinforcement learning

SVM Support vector machine

WBSN Wireless body sensor network

WHO World Health Organization

WLAN Wireless local area network

WMSN Wireless medical sensor network

and class to which that particular action belongs. The
objective of supervised ML is to make the system infer its
retorts so that it acts intelligently in states not present in
the labeled training dataset [18]. Although supervised ML
is a significant type of ML, it is not suitable for a learner
to learn the environment without the help of a supervisor
and the available training dataset in it. Therefore, for the
systems that need to deal interactively, it is often imprac-
tical to obtain a sample training dataset of anticipated
behavior that is equally precise and descriptive regarding
all the states in which the device has to perform actions
in the future. In an unexplored environment, wherein ML
is expected to be most valuable, a device must be able
to learn from its own experience of interaction with the
environment [18, 19].
Examples of supervised ML algorithms are regression

models [20], k-nearest neighbor (KNN) [21], support vec-
tor machine (SVM) [22], and Bayesian learning (BL) [18].
Regression analysis (RA) depends on a statistical method
for assessing the relations among input parameters. The

objective of RA is to envisage the assessment of one or
more continuously valued estimation objectives, given the
assessment of a vector of input parameters. The estima-
tion objective is a function of the independent parameters.
The KNN and SVM techniques are mostly employed to
categorize different objects in the system. In the KNN
technique, an agent/device is categorized according to
the votes of the neighbor agents. The agent is associ-
ated with the category that is most common among its
k-nearest neighbors. On the contrary, the SVM algorithm
uses non-linear mapping for object classification. First,
it converts the original training dataset into a higher
measurement, where it befits distinguishability. Later, it
explores for the optimized linearly separating hyperplane
that is accomplished by distinguishing one category of
agents from another [18]. On the contrary, the idea of
BL is to estimate a posterior distribution of the target
variables, given some inputs and the available training
datasets. The hidden Markov model (HMM) is a simple
example of reproductive paradigms that can be learned
with the help of BL [19]. HMM is a tool for expressing
probability distributions of the trail of observations in the
system. More specifically, it is a generalization method,
where the unseen (hidden) variables of the system are
associated with each other through a Markov decision
process (MDP) [23]. These hidden variables control the
particular constituent to be selected for each observation,
while being relatively independent of each other.
These examples of supervised ML paradigms can be

used for estimating wireless radio parameters that are
related to the quality of service and quality of experience
requirements of a particular user/device. Similar to a mas-
sive MIMO system of hundreds of radio antennas, the
available channel estimation may lead to optimal dimen-
sional search problems, which can be easily learned using
any of the abovementioned supervised learning models.
The SVM functions are cooperative for data classifica-
tion problems. A hierarchical SVM (H-SVM), in which
each hierarchical level is comprised of a fixed number of
SVM classifiers, was proposed in [23]. H-SVM is used to
intelligently estimate the Gaussian channel’s noise level
in a MIMO system by exploiting the training data. KNN
and SVM can be pragmatic in finding the optimum han-
dover solutions in wireless networks. Similarly, the BL
model can be invoked for wireless channel characteristics
learning and estimation in future generation ultra-dense
wireless networks. For example, Wen et al. [24] estimated
both the radio channel parameters in a specific radio
cell and those of the intrusive links of the neighboring
radio cells using BL techniques to deal with the pilot con-
tamination problem faced by massive MIMO systems.
Another application of BL was proposed in [25], where a
Bayesian inference model was proposed for considering
and statistically describing a variety of methods that are
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Fig. 3Machine learning family architecture models and their potential applications in dense IoT systems

proficient at learning the predominant factors for cogni-
tive radio networks (CRNs). Their proposed mechanism
covers both the MAC and the network layers of a wireless
network.

2.2 Unsupervised learning
Unsupervised ML is usually regarding the verdict
structure veiled in a collection of unlabeled training
datasets. The terms supervised ML and unsupervised ML
would appear to profoundly categorize most ML-based
paradigms; however, they are not accurate. The aim of
supervised ML is to learn the mapping from an input
dataset to an output result where accurate values are pro-
vided by a supervisor. On the contrary, in unsupervised
learning, there is no external supervisor but only the avail-
able input dataset. The objective is to find symmetries in
the dataset. There is an edifice of the available dataset
space, e.g., that certain patterns occur often, such patterns
can help understand the action to be performed in the
future for any unknown input. In the statistical context,
this is also known as density estimation [18].
Examples of unsupervised ML algorithms are k-means

clustering [21], principle component analysis (PCA) [26],
and independent component analysis (ICA) [27]. The
objective of k-means clustering is to divide user obser-
vations into k clusters, where each observation is asso-
ciated with the adjacent cluster. It uses the center of
gravity (centroid) of the cluster, which is the mean value

of the observation points within that particular cluster.
Continuous iteration of the k-means clustering algorithm
keeps assigning an agent to the particular cluster in which
the centroid is close to the agent based on a similar-
ity metric. This similarity metric is known as Euclidean
distance. Further, the in-cluster differences are also mini-
mized until convergence by iteratively updating the cluster
centroid is achieved [18]. PCA is used to transform a set of
possibly associated parameters into a set of unassociated
parameters that are known as the principal components
(PCs). The number of PCs is always less than or equal
to the number of original parameters/components. The
first PC has the largest possible variance, and each sub-
sequent PC has the utmost variance probable under the
limitation that it is unassociated with the prior PCs. Basi-
cally, the PCs are orthogonal (unassociated) because they
are the eigenvectors of the covariance matrix that is sym-
metric. Unlike PCA, ICA is a statistical method applied
to expose unseen elements that inspire sets of haphazard
parameters/components within the system [18].
Clustering is one of the common problems in densely

deployed wireless networks of IoT-based systems, espe-
cially in heterogeneous network environments with
diverse cell sizes. In such cases, small cells have to be
wisely grouped to avoid interference using coordinated
multi-point transmission, whereas the mobile devices are
grouped to follow an optimum offloading strategy. The
devices are grouped in device-to-device (D2D) wireless
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networks to attain high energy efficiency, and the WLAN
users are grouped to uphold an optimum access point
(AP) association. Xia et. al. [28] proposed a hybrid sce-
nario to diminish inclusive wireless traffic by encouraging
the exploitation of a high-capacity optical infrastructure.
They formulated a mixed-integer programming (MIP)
problem to cooperatively optimize both network gateway
splitting and the virtual radio channel provision based on
typical k-means clustering. Both PCA and ICA are for-
mulated to recover statistically autonomous source signals
from their linear combinations using powerful statistical
signal processing techniques. One of their key applica-
tions is in the area of intrusion detection in wireless
networks, which depends on traffic monitoring. Besides,
similar issues may also be resolved in the dense wire-
less communications technologies of IoT-based systems.
PCA and ICA can also be invoked to classify user behav-
ior in CRNs. In [29], the authors applied PCA and ICA
in a smart grid scenario of IoT systems to improve the
concurrent wireless transmissions of smart devices set
up in the smart home. The statistical possessions of the
received signals were oppressed to blindly isolate them
using ICA. Their proposed mechanism enhances trans-
mission capability by evading radio channel assessment
and data security by excluding any wideband intrusion.

2.3 Reinforcement learning
Reinforcement learning (RL) is motivated by behavior-
ist sensibility and a control philosophy, where an agent
can achieve its objective by interacting with and learn-
ing from its surroundings. In RL, the agent does not have
clear information whether it is close to its target objective.
However, the agent can observe the environment to aug-
ment the aggregate reward in an MDP [30]. RL is an ML
technique that learns about the environment, what to do,
and how to outline circumstances to current actions to
maximize a numerical reward signal. Mostly, the agent
is not informed about which actions to perform, and it
has to learn which actions will produce maximum reward.
In some exciting and inspiring situations, it is possible
that actions will affect not only the instant reward but
also the following state, and consequently, all succeeding
rewards. MDPs offer a precise framework for model-
ing decision-making in particular circumstances, where
the consequences are comparatively haphazard, and the
decision-maker partially governs the consequences.
Partially observable MDP (POMDP) [31] and QL [17]

are the examples of RL. POMDPmight be seen as specula-
tion with MDP, where the agent is inadequate to perceive
the original state transitions in a straightforward manner;
therefore, it only has constrained information. The agent
has to retain the trajectory of the probability distribution
of the appropriate states based on a set of annotations,
and the probability distribution of both the observation

probabilities and the original MDP [32]. QL might be
conjured up to discover an optimum strategy for perform-
ing action from any finite MDP, particularly when the
environment is unknown [18].
The uses of POMDP paradigms create vital tools for

supportive decision-making in IoT-based systems, where
the IoT devices may be considered agents and the wire-
less network constitutes the environment. In a POMDP
problem, the technique first postulates the environment’s
state space and the agent’s action space. Additionally,
it endorses the Markov property among the states.
Secondly, it constructs the state transition probabilities
formulated as the probability of navigating from one state
to another under a specific action. The third and final
step is to enumerate both the agent’s instant reward and
its long-term reward via Bellman’s equation [17]. Later,
a wisely constructed iterative algorithm may be consid-
ered to classify the optimum action in each state. The
applications of POMDP comprise the network selection
problems of heterogeneous networks, channel sensing,
and user access in CRNs. In [32], the authors proposed
a mechanism for transmission power control problems of
energy-harvesting systems, which were scrutinized with
the help of the POMDP model. In their proposed inves-
tigation, the battery, channel, data transmission, and data
reception states are defined as the state space, and an
action by the agent is related to transmitting a packet
at a certain transmission power. QL, usually in aggre-
gation with the MDP models, has also been used in
applications of heterogeneous networks. Alnwaimi et al.
[33] presented a heterogeneous, fully distributed, multi-
objective strategy for the optimization of femtocells based
on a QL model [33]. Their proposed model solves both
the channel resource allocation and interference coordi-
nation issues in the downlink of heterogeneous femtocell
networks. Their proposed model acquires channel distri-
bution awareness and classifies the accessibility of vacant
radio channel slots for the establishment of opportunis-
tic access. Further, it helps choose sub-channels from the
vacant spectrum pool.

3 Q-learning-enabled channel access for dense
WLANs

As described in the previous section, QL has already
been extensively applied in heterogeneous wireless net-
works [14]. In such a case, the QL paradigm also covers
a set of states where an agent can make a decision on an
action from a set of available actions. By performing an
action in a particular state, the agent collects a reward
with the objective of exploiting its collective rewards. A
collective reward is illustrated as a Q-function and is
updated in an iterative approach after the agent performs
an action and attains the subsequent reward [18]. The
trade-off between exploration and exploitation is one of
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the challenges arising in QL but not in other types of ML
techniques. To achieve considerable rewards, it is oblig-
atory for a QL agent to choose those actions that it has
tried before, and found them to be effective in construct-
ing the reward (exploitation). However, to learn more
about the environment, an agent has to try actions that
it has not selected before (exploration). In exploitation,
the agent has to attain what it has already experienced
to optimize the process, and additionally, it must explore
the environment to maximize the aggregated reward to
make better selections in the future. The quandary is that
neither exploration nor exploitation can be pursued exclu-
sively without failing in the other process. The agent must
try a diversity of actions and gradually favor those that
appear to be the best. It is not possible to both explore
and exploit with a particular action selection; therefore,
we frequently refer to the “tussle” between these two.

3.1 Q-learning prototype
As aforementioned, QL algorithm utilizes a form of RL to
solve MDPs without possessing complete information. In
addition to the agent and the environment, a QL system
has four main sub-elements: a policy, a reward, a Q-value
function, and sometimes a model of the environment as
an optional entity [17], as shown in Fig. 4.

3.1.1 Policy
The learning agent’s manner of behaving at a particu-
lar time is defined as a policy. A policy can be a modest
utility or a lookup table; however, it may comprise exten-
sive computations such an exploration process. A policy is
fundamental for a QL agent because it alone is adequate
to determine the behavior of an agent. Generally, poli-
cies might be stochastic. A policy decides which action to
perform in which state [17].

3.1.2 Reward
In each iteration, the QL agent receives a particular quan-
tity from the environment known as the reward. The main
objective of a QL algorithm is to collect as much reward

as possible. An agent’s exclusive goal is to exploit the accu-
mulated reward collected over the long run. The reward
describes the pleasant and unpleasant events for the agent.
Reward signals are the instant and crucial topographies
of the problem faced by the agent. The agent decides to
change its policy based on the reward. For example, if the
current action of the policy is followed by a low reward,
then an agent may decide to select other actions in the
future [17].

3.1.3 Q-value function
Although the reward specifies what is good at one instant,
a Q-value function stipulates what is good in the end.
Therefore, the Q-value of a state is the accumulated
amount of reward that an agent gains at this state to pre-
sume in the future [17]. For example, although a state
may continuously produce a low instant reward, it may
have a high Q-value owing to being repeatedly trailed
by other states that produce high rewards. In a WLAN
environment, rewards are similar to a high channel col-
lision probability (unpleased) and a low channel collision
probability (pleased), whereas Q-values resemble a more
sophisticated and prophetic verdict of how pleased or
unpleased the agent is in a particular state (e.g., the back-
off stage). If there is no reward, then there will be no
Q-value, and the only purpose of estimating the Q-value
is to attain additional rewards. An agent is most anxious
about the Q-value while giving and assessing verdicts. An
agent selects optimum actions based on Q-value findings.
It seeks actions that carry states of a maximum Q-value
and not a maximum reward because these actions attain
the highest amount from the rewards for the agent over
the long run.

3.1.4 Environmentmodel
Environment model is an optional element of QL, which
imitates the performance of the system to some extent.
Typically, it allows drawing inferences to be made about
how the environment will perform [17]. For example,
given a state and an action, the model might envision the

Fig. 4 Q-learning system environment with its sub-elements
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subsequent state and the next reward. Environment mod-
els are used for planning amethod to decide on a sequence
of actions by considering latent future situations. In an
example of a WLAN system, a device would like to plan
its future decisions based on the given state (e.g., the back-
off stage) and action, along with its rewards (e.g., channel
collision probability).

3.2 Q-learning algorithm
Let S represent a finite set of conceivable states of an envi-
ronment and A represent a finite set of allowable actions
to be performed. At time t, a learner (IoT device) observes
the current state (s) of the environment and performs an
action (a), i.e., at = a ∈ A, based on both the apparent
state and its previous experience. The action at changes
the environmental state from st to st+1 = s∗ ∈ S; conse-
quently, the agent receives the reward (r) at time t, rt for
the specific action: at . The QL algorithm finds an optimal
policy for state s that optimizes the rewards over a long
period of time. In the QL algorithm, a Q-value function,
Q(s, a), estimates the reward as the cumulative discounted
reward. An optimal Q-value, i.e., Qopt(s, a), is determined
using the Q-values. The QL algorithm finds the optimal
Q-value in a greedy manner. The Q-value is updated as:

Q(s, a) = (1 − α) × Q(s, a) + α × �Q(s, a), (1)

where α is the learning rate and takes values such as 0 ≤
α ≤ 1. When α is minimum, i.e., zero, the agent does not
learn from the environment; therefore, the Q-value is not
updated. When α is maximum, i.e., 1, the agent always
learns; therefore, learning occurs quickly as seen in the
following equation:

�Q(s, a) = {
r(s, a) + β × maxa′Q

(
s′, a′)} − Q(s, a),

(2)

where β (0 ≤ β ≤ 1) weighs the immediate rewards
more heavily than future rewards, and is known as the dis-
count factor. Over a considerable period of time, Q(s, a)
converges into Qopt(s, a). The simplest policy for action
selection is to choose one of the actions with the max-
imum measured Q-value (i.e., exploitation). If there are
more than one greedy actions, then a choice is randomly

made among them. This greedy action selection method
can be written as:

aopt = argmaxaQ(s, a), (3)

where argmaxa signifies the action a, for which the
expression that follows it is exploited. An agent continu-
ously exploits current knowledge to maximize the instant
reward. A simple substitute is to perform greedily in most
cases; however, sometimes (e.g., with a small probability ε)
the agent can randomly select from all the equal probabil-
ity actions, independent of the Q-value. Themethod using
this greedy and non-greedy action selection rule is known
as the ε-greedy method [17]. An advantage of such a tech-
nique is that as the number of iterations increases, every
action will guarantee that Q(s, a) converges to Qopt(s, a).
This leads to the inference that the probability of choos-
ing the optimum action converges to a value that is larger
than 1 − ε, i.e., to adjacent certainty. In WLANs, for
dense IoT-based systems, an agent would choose greedy
actions from high-value actions (exploitation) to improve
the throughput performance, and would perform a non-
greedy action (exploration) to know the dynamicity of the
network environment.

3.3 Case study: DCF-based backoff mechanism
TheQL-based channel access scheme can be used to guide
densely deployed IoT devices and allocate radio resources
more efficiently. When an IoT device is deployed in a new
environment, usually, no data are available on historical
scenarios. Therefore, QL algorithms are the best choice
to observe and learn the environment for optimal policy
selection. For example, we consider the case study of DCF-
based backoff mechanism of dense WLANs in IoT-based
systems. In a densely deployed WLAN, channel collision
is the most vital issue causing performance degradation.
To tackle collision issues at the MAC layer, we propose
adopting the QL algorithm. QL finds solutions through
interacting and learning with an environment; therefore,
we propose using the QL algorithm to model the optimal
contention window (CW) in a channel observation-based

Fig. 5 QL model environment with its elements in the case study of DCF-based backoff mechanism
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scaled backoff (COSB) mechanism [34] for dense wireless
networks of IoT-based systems. In other words, a station
(STA; a WLAN-enabled IoT device referred to as an STA)
controls the CW selection intelligently with the aid of the
QL-based algorithm.
In COSB [34] protocol, STAs select a random backoff

value from the initial CW (CWmin) to contend for the
wireless medium after observing the channel in an idle
state for a distributed inter-frame space (DIFS) period.
The period after DIFS is divided into Bobs discrete obser-
vation time slots. The duration of each discrete time slot
is either a constant idle slot time (σ ) or a variable busy
slot time (owing to successful or collided transmission).
In COSB, each STA proficiently measures the channel
observation-based collision probability (pobs) as:

pobs = 1/Bobs ×
(Bobs−1)∑

(k=0)
Sk , (4)

where Sk = 0 if Bobs is observed as idle or if the transmis-
sion is successful, whereas Sk = 1 if Bobs is observed as
busy or the transmission has collided [34].
We assume backoff stages of COSB as a set of m states,

i.e., S = {0, 1, 2, ...,m}, where an intelligent IoT device per-
forms an action a from a finite set of permissible actions
A = {0, 1}, where 0 indicates decrement and 1 indicates
increment. This is because in COSB, there are two possi-
ble actions: increase or decrease the CW size [34]. At time
t, the STA collects reward rt in the response to an action at
following policy π in a particular state st ; i.e., rt(st , at)with
the objective to exploit collective reward Q(st , at), which
is a Q-value function defined in Eqs. (1) and (2). Figure 5
depicts the proposed QL model environment with its ele-
ments in a DCF-based backoff mechanism for channel
access in WLANs.
The selection of optimal action following πopt is known

as a greedy action
(
aπopt

)
selection policy that is defined

in Eq. (3). A naivest policy can be to exploit in most
cases; however, sometimes, the STA explores according
to the default policy π , independent of aπopt . The explo-
ration with probability (ε) and exploitation with probability
(1− ε) is called ε-greedy method [17]. The ε-greedy tech-
nique guarantees the convergence of learning estimate
�Q(s, a) with the increase of episodes (instances). In a
dense WLAN environment, exploitation can be used to
improve throughput performance by an IoT device, and
exploration can be used to know the dynamicity of the
WLAN environment.
In COSB [34], an STA conducts pobs at every transmis-

sion attempt. Therefore, we express pobs as the reward
of the action at any specific state. Therefore, reward rt
produced by action at taken in state st at time t can be
described as:

Table 2 MAC layer and PHY layer simulation parameters

Parameter type Value

Frequency 5 GHz

Channel bandwidth 160/20MHz

Data rate 1201/11Mbps

Payload size 1472 bytes

Transmission range 10m

Simulation time 100/500 s

Propagation loss model Log distance

Mobility model Constant position

Rate adaptation models Constant rate/minsttrel

rt(st , at) = 1 − pobs. (5)

The above equation indicates how pleased the STA was
with its action at in state st .

4 Experimental results and discussion
We used ns3.28 [35] simulator to perform experiments
of the proposed iQRA mechanism. Some important PHY
layer and MAC layer simulation parameters are shown
in Table 2. The results in Fig. 6a and b indicate that a
small value of α and a large value of β make �Q (learning
estimate) converge faster. The convergence of �Q clearly
indicates that there exist optimal values that can be
learned and exploited in the future. The throughput per-
formance optimization of COSB using proposed iQRA
is depicted in Fig. 7a. The performance of iQRA may
degrade in small networks (i.e., for < 10 contending STAs
as shown in Fig. 7a owing to low and irregular rewards).

Fig. 6 Learning estimate (�Q) convergence with varying a learning
rate α (ε = 0.5) and b discount factor β (ε = 0.5)
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Fig. 7 Comparison of BEB, COSB, and iQRA for a throughput (Mbps), b channel access delay (ms), and c successfully transmitted packets (fairness)

Additionally, the channel access delay is also increased
for iQRA as compared to COSB; this is obvious owing
to the environment inference characteristics; however,
it remains lower than the conventional binary exponen-
tial backoff (BEB) [11] mechanism shown in Fig. 7b.
Figure 7c portrays that the proposed iQRA also improves
the fairness of COSB. The optimized performance of
COSB using iQRA clearly stipulates that the QL-based
proposed mechanism is effective in learning the network
environment. Additionally, iQRA is essentially intended
to intelligently adjust its learning parameters according to
the dynamics of the WLAN. Therefore, we simulated a
dynamic network environment by increasing the number
of contenders by 5 after every 50 s until the number of
STAs reached 50. Figure 8 depicts the properties of net-
work dynamics on �Q. The figure shows simulation of
a 500 s period with 1500 learning instances of a tagged
STA. As shown in the figure, with the network dynamics,
a tagged STA observes fluctuation in its learning esti-
mate �Q, thereby indicating the inference of change in
the network. We see that the throughput performance
of iQRA eventually reaches a steady state in a dynamic
network environment, as shown in Fig. 9a. To evalu-
ate the performance of the proposed iQRA for moving
devices in the network, we simulated a distance-based
rate adaptation model. This model changes the transmis-
sion rate of the sender device according to the distance

between the sender and receiver to achieve the best pos-
sible performance. IEEE 802.11a (11 Mbps) WLAN with
10 contending STAs is simulated for distance-based rate
adaptation performance evaluation, as shown in Fig. 9b.
Contending STAs are placed randomly around the access
point (AP) within a distance of 25m. A tagged STA starts
moving away from the AP that is initially placed at a
1-m distance. As the distance from the AP increases,
performance of a tagged STA degrades for all the three
compared algorithms (BEB, COSB, and iQRA), as shown
in Fig. 9b. It is observed that the throughput of the BEB
algorithm approaches close to zero after the STA reaches
a distance of 60m, and it finally becomes zero after
reaching a distance of 80m. Owing to the observation-
based nature of COSB, it achieves higher throughput
even after a 60-m distance, compared to BEB. How-
ever, the proposed iQRA performs optimally, even if the
distance reaches 80m owing to its network inference
capability.

5 Conclusion
In this study, we investigated the benefits of ML-
based intelligent dense wireless networks for IoT-enabled
eHealth systems. We presented the key families of ML
algorithms and deliberated their application in the con-
text of dense IoT systems including next-generation wire-
less networks with massive MIMO; heterogeneous IoT

Fig. 8 Convergence of learning estimate (�Q) in a dynamic network environment (increasing the number of contenders after every 50 s)



Ali et al. EURASIP Journal onWireless Communications and Networking        (2019) 2019:178 Page 11 of 12

Fig. 9 Throughput comparison of BEB, COSB, and iQRA in a dynamic network environment with increasing number of contenders after every 50 s
and b distance-based rate adaptation network environment

networks based on small cells; smart applications, such
as the smart grid and smart city; and intelligent cognitive
radio. The three well-known categories of ML, super-
vised learning, unsupervised learning, and RL algorithms,
are scrutinized in addition to a consistent sculpting
methodology and possible future applications in dense
IoT systems. Furthermore, we proposed Q-learning as a
promising ML paradigm for MAC layer channel access
in dense IoT systems. The proposed paradigm is imple-
mented on a case study of DCF-based backoff mechanism
in denseWLANs. We proposed an intelligent Q-learning-
based resource allocation (iQRA) mechanism to optimize
the performance of an existing (COSB) mechanism. The
proposed iQRA mechanism infers unknown wireless net-
work conditions and exploits rapidly unexpected changes
to learn dynamicity in dense WLANs. The experimental
results show that iQRA significantly enhances the per-
formance of COSB in terms of throughput and fairness.
Results reveal the ability of the Q-learning scheme to
determine dense wireless network environments in IoT-
based systems. In conclusion, ML is a promising area for
self-scrutinized intelligence-aided dense wireless network
research for IoT-enabled eHealth systems.
In the future, we aim to further investigate the appli-

cations of our proposed mechanism in various IoT-based
systems such as smart city, smart home, smart grid, and
smart industry.
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