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Abstract: The increased demand for spectrum resources for multimedia communications and a
limited licensed spectrum have led to widespread concern regarding the operation of long term
evolution (LTE) in the unlicensed (LTE-U) band for internet of things (IoT) systems. Because Wi-Fi and
LTE are diverse with dissimilar physical and link layer configurations, several solutions to achieve an
efficient and fair coexistence have been proposed. Most of the proposed solutions facilitate a fair
coexistence through a discontinuous transmission using a duty cycling or contention mechanism and
an efficient coexistence through a clean channel selection. However, they are constrained only by
fairness or efficient coexistence but not both. Herein, we propose joint adaptive duty cycling (ADC)
and dynamic channel switch (DCS) mechanisms. The ADC mechanism supports a fair channel access
opportunity by muting certain numbers of subframes for Wi-Fi users whereas the DCS mechanism
offers more access opportunities for LTE-U and Wi-Fi users by preventing LTE-U users from occupying
a crowded channel for a longer time. To support these mechanisms in a dynamic environment,
LTE-U for IoT applications is enhanced using Q-learning techniques for an automatic selection of the
appropriate combination of muting period and channel. Simulation results show the fair and efficient
coexistence achieved from using the proposed mechanism.
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1. Introduction

An exponential increase in demand for wireless multimedia data and the limited nature of a
licensed spectrum for cellular networks have inspired the use of unlicensed bands for long term
evolution (LTE) in internet of things (IoT). In an unlicensed spectrum of below 6 GHz, a large part
of spectrum, approximately 600 MHz [1], is globally available for various purposes. LTE uses this
unlicensed band to offload multimedia traffic through either downlink-only or both downlink and
uplink approaches in IoT systems. Although, the use of LTE in an unlicensed band enhances the
capacity and achieves a seamless user experience, a few issues in allowing different networks to operate
in a mutually shared spectrum need to be considered. One important issue is the coordination and
management of an interference among the different coexisting technologies [2,3]. A Wi-Fi system
utilizes the carrier sense multiple access (CSMA) protocol to coexist harmoniously with various other
Wi-Fi systems, whereas LTE uses continuous traffic generation with the smallest time gaps even in
the absence of data traffic. Considering these operating characteristics in both systems, Wi-Fi seems
to have a minimal opportunity to use the channel compared with LTE under a coexistence scenario,
resulting in a performance degradation for Wi-Fi [4]. In the literature, some solutions such as license
assisted access (LAA) [5] and LTE-U [6] have been proposed for IoT systems. LAA is based on the
cellular industry’s standard body, the Third-Generation Partnership Project (3GPP), and its coexistence
processes follows the same path used in Wi-Fi, i.e., listen before talk (LBT). By contrast, LTE-U is
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built on proprietary technology established by the LTE-U forum, which takes a completely different
approach. A small group of companies such as Ericsson, Qualcomm, Verizon, and Samsung have been
developing LTE-U through a closed process. LTE-U applies a carrier ON/OFF switch which duty cycles
the LTE transmissions. It switches to ON mode to transmit the signal for a certain amount of time and
then it switches to OFF mode so that Wi-Fi can access the channel. Most of the proposed fair coexistence
mechanisms for LTE-U largely suffer from a loss of spectrum resource efficiency, while maintaining the
airtime and throughput fairness with Wi-Fi [7–10]. The experiment conducted by CableLabs [7], shown
in Figure 1, which demonstrated the fairness conceived by LTE-U over a proportionate airtime, has a
disproportionately negative impact on the Wi-Fi performance, i.e., a 50% duty cycle of LTE causes a
Wi-Fi performance decrease of 70%. As a result, LTE-U can be ON for only 35% of the cycle to maintain
50% Wi-Fi throughput. Similar to the authors in [8], our initial simulation results demonstrate that a
change in duty cycle affects both LTE-U and Wi-Fi under a coexistence scenario. We can see that, to
achieve a fair coexistence, the maximum achievable throughput of the network is significantly reduced
(18%) and vice versa, as shown in Figure 2. This occurs because of the unbalanced physical and link
layer parameters between these two technologies. In the case of Wi-Fi, most of the channel resources are
wasted during contention, thereby requiring significant radio resources to maintain equal throughput
as compared to LTE-U. Because both technologies have an equal right to use the unlicensed band, Wi-Fi
can be regarded as the least efficient technology compared to the schedule-based LTE-U technology in
terms of spectrum utilization [11,12]. Hence, enabling a fairness measure among Wi-Fi and LTE-U
may lead to an underutilization of the wireless spectrum resources compared to the exploitation of
the entire unlicensed band. Similarly, in the context of increasing the network efficiency, the studies
described in [13–17] have contributed to an increase in network efficiency by simply scarifying the
fairness measure under a coexistence scenario. Thus, fairness and efficiency are the two critical and
conflicting criteria in spectrum resource management under a Wi-Fi and LTE-U coexistence scenario.
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The present study attempted to reduce the above-mentioned conflicts by taking advantage of the
existence of multiple channels in the 5-GHz unlicensed spectrum. The 5-GHz band offers multiple
non-overlapping 20/40/80/160 MHz channels. Because all Wi-Fi APs are provisioned to operate in
different channels based on the received power measurement, the traffic load on each available channel
will be diverse. Therefore, to increase their throughput performance, choosing the least congested
channel for the operation of LTE-U with Wi-Fi will be highly advantageous for LTE-U and Wi-Fi
individually. The best channel selection approaches are greatly subsidized to increase the effectiveness
of the network but not the fairness. Hence, we designed a combination of adaptive duty cycling (ADC)
and dynamic channel switch (DCS) mechanisms for the network to access a channel under a dynamic
traffic load scenario. The ADC mechanism supports a fair channel access opportunity by reserving a
certain number of subframes for the operation of Wi-Fi Stations (STAs). In contrast, the DCS mechanism
offers more access opportunities for LTE-U users by avoiding most crowed channels for their operation.
When considering futuristic wireless applications, the user-demand will vary across a wider spectrum.
Such requirements cannot be satisfied by assigning fixed resources. Hence, the realization of LTE-U
collocated with Wi-Fi under a dynamic environment is a prerequisite. Thus, LTE-U is enhanced using
Q-learning techniques for an autonomous selection of the appropriate combination of best duty cycles
in various channels through iterations of the learning process. This process escalates the spectrum
efficiency of the network while assuring the fairness among these LTE and Wi-Fi systems. Meanwhile,
to simulate the proposed scenario, a system-level simulation program for a Wi-Fi and LTE-U system
was built and utilized. The analysis of the simulation results demonstrates that the proposed algorithm
enhances the network performance while sustaining the fairness among Wi-Fi and LTE-U systems.
The main contributions of this study are as follows:

• Description and analysis of collocated LTE-U and Wi-Fi system;
• A Q-learning mechanism used for an ideal and autonomous selection of an LTE-U operational

channel muting duration toward fair and efficient spectrum sharing under a dynamic environment;
• A performance evaluation of the proposed Wi-Fi and LTE-U coexistence mechanism with

pre-existing coexistence solutions, i.e., duty cycle (DC) only and channel occupancy time (COT)
based channel selection.

The remainder of this paper is organized as follows. Section 2 details and reviews some recent
related studies. Section 3 discusses the proposed LTE and Wi-Fi coexistence mechanism. Section 4
describes the simulation results and provides a detailed evaluation of its performance. Section 5
provides some concluding remarks.

2. Related Studies

In recent years, extensive research has been conducted to assure fair coexistence between LTE-U
and Wi-Fi networks. Some countries have prohibited a continuous signal transmission and bind
limits on the maximal duration of a transmission burst in an unlicensed spectrum, and as a result,
carrier sense adaptive transmission (CSAT) [18,19] was introduced during the early deployment of
LTE in the unlicensed band. CSAT permits an LTE-U network to share an unlicensed channel with a
Wi-Fi network through time division multiplexing. To implement CSAT, the existing almost-blank
subframes (ABS) framework (i.e., defined in 3GPP Release 10 of LTE) was initially considered in [20].
The ABS reserves a group of LTE subframes, during which the macro UEs are partly muted (data,
control, or reference symbols), allowing the UEs in pico-base stations (BSs) to be assisted with a lower
interference [21]. An LTE silence period occurs during these gaps, allowing the Wi-Fi system to access
the channel. Wi-Fi uses these gaps for transmission and must end its transmission whenever the
communication is resumed by LTE-U. However, synchronization signals and control information are
still present in ABS, which may influence the Wi-Fi transmissions and carrier sensing, as discussed
in [22]. To overcome this issue, the LTE-U forum [2] adopted the carrier aggregation feature of MAC
channel element activation and deactivation, which is compatible with the Rel. 10/11/12 LTE PHY/MAC
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standards. Many studies based on LTE-U have since been proposed. Rupasinghe et al. [9] introduced
the LTE time division duplex (TDD) configuration with different numbers of uplink and downlink
frames for LTE-U. However, their configuration consists of numerous uplink slots, making it inefficient
under a real scenario. Under such a real scenario, more downlink frames are expected than uplink
frames in any network. Cano and Leith in [19] proposed a duty-cycle mechanism for LTE-U that selects
the suitable probability to access the channel and transmission duration. This ensures proportional
fairness among LTE-U and Wi-Fi nodes. Almeida et al. [21] showed that, without a proper ABS
assignment, the throughput of a Wi-Fi network under the coexistence of an LTE-U network can be
seriously degraded, and similar concerns were reported in [22]. Likewise, in their technical report, the
3GPP Workgroup listed LBT [22–25] for LTE LAA for nations such as Japan and European countries.
The application of LBT potentially enhances the coexistence, such as with Wi-Fi, through a clear channel
assessment. Some analysis and performance tests have been reported toward the fairness under such a
scenario [26,27]. However, a duty-cycle based approach still utilizes resources more tightly and with
no modifications of the LTE standard [19].

In the context of increased network efficiency, approaches have been proposed [13–15] to increase
the LTE-U efficiency through the selection of most of the idle channels. Similarly, the authors in [28]
proposed a multichannel coexistence approach to increase the spectrum efficiency through which
LTE-U uses all available channels simultaneously. However, the realization of such an approach
requires a vast change in the preexisting system hardware.

3. LTE-U Coexistence Mechanism

There is approximately 600 MHz of spectrum below the 6-GHz unlicensed bands, which can
be further subdivided into multiple channels of the same or different bandwidths. Because Wi-Fi is
provisioned to connect to a channel with less interference, the traffic load offered by Wi-Fi in such
channels will differ. Therefore, simply considering the single best unlicensed channel for studying a
coexistence scenario does not meet the requirements of a practical environment. This paper considers
the number of different channels in the unlicensed band and creates a utility function by considering
the network efficiency and fairness factor. The duty cycle of LTE-U is adaptively manipulated using
the Q-learning mechanism to increase the performance of the systems, thereby allowing LTE-U to
occupy various unlicensed bands for a suitable duration.

3.1. Deployment Environment

We consider the deployment scenario shown in Figure 3, in which LTE-U BS consists of multiple
Wi-Fi access points (APs), which operate simultaneously in the unlicensed channel. LTE-U BS and
each Wi-Fi AP consists of M number of LTE-U user equipment (UE) and N Wi-Fi stations (STAs)
respectively, which are arbitrarily distributed within the coverage area of the cell. TDD LTE is taken
into consideration, and it is assumed that LTE-U BS and UEs are synchronized with each other for the
entire duration. In the 5-GHz band, a total of K unlicensed channels is accessible, with one AP and a
set of Nk STAs active in each unlicensed channel k. The LTE-U system communicates over the LTE air
interface. The BS informs the UEs regarding the use of a channel for transmission over the licensed
band. There are B resource blocks (RBs) accessible for transmission during each transmission time
frame (TTF), where B is the bandwidth of an unlicensed channel. The total aggregated throughput
served by LTE-U BS in channel k during a single TTF can thus be mathematically assessed as follows:

RLTE−U
k =

Mk∑
mk=1

B
Mk
∗ SINRmk ∗ (1−Θk) (1)

where Mk represents the total number of LTE-U UEs assisted by the LTE-U BS exploiting the
supplemental downlink capacity in channel k, SINRmk is the signal-to-noise and interference ratio
perceived by the mth UE when downlink data are conveyed on the kth channel, and Θ is the portion
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of time related with the idle periods imposed by the LTE-U strategy on the kth channel. In addition,
SINRm delivers the spectral efficiency, which relies on the propagation environments between the mth
UE and the LTE-U BS and the interference produced by other cells using the kth channel.
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In a Wi-Fi network, all STAs contend for channel access by means of a carrier sensing scheme
called a distributed coordination function (DCF) protocol. In a DCF, the system throughput of the
Wi-Fi network is determined based on the number of contending Wi-Fi STAs. Let Ptr

k represent the
probability of at least one transmission signal being present in a time slot, and Ps

k denote the probability
of a successful transmission on a channel, which can be mathematically formulated as

Ptr
k = 1− (1− τk)

Nk (2)

Ps
k =

Nkτk(1− τk)
Nk−1

Ptr
k

(3)

where τk is the transmission probability for each STA in channel k, and Nk is the number of competing
Wi-Fi STAs in channel k. According to Bianchi [29], the Wi-Fi network throughput SWi f i

k can be
formulated as

SWi f i
k (Nk) =

Ptr
k Ps

kE[P](
1− Ptr

k

)
Tσk + Ptr

k Ps
kTs

k + Ptr
k

(
1− Ps

k

)
Tc

k

(4)

where Ts
k is the average duration of a channel detected as busy owing to a successful transmission, Tc

k
is the average duration of a channel detected as busy owing to a collision, E[P] is the average packet
size, and Tσk is the empty time slot duration.

In LTE-U networks, Wi-Fi has an opportunity to access the channel only when LTE-U is OFF.
Thus, the throughput achieved by Wi-Fi in the shared spectrum when coexisting with LTE-U can be
expressed as follows:

Rk
Wi−Fi = SWi f i

k (Nk) × Θk (5)

3.2. LTE-U DC and CA Model

To devise a duty-cycle based LTE-U transmission, we consider a TDD configuration, as shown
in Figure 4. In this structure, an LTE-U frame of 10 ms is divided into multiple subframes while
maintaining the same frame length as that of LTE. In Figure 4, the dark blue slots represent blank
subframes, which can be used by Wi-Fi systems, with the remaining subframes used by LTE-U systems.
Four different duty cycles are considered (20%, 40%, 60%, and 80%), which can be configured by the
operators according to the network requirements. As shown, LTE will transmit for (1-Θ) percent of
the time from the allocated duty cycle period and will be mute for Θ percent of the time. A channel
selection is used to choose the operating carrier by LTE-U BS. Therefore, by choosing the cleanest
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channel based on the received power measurements, it can be used as a frequency domain coexistence
mechanism to guarantee that LTE-U is a “good neighbor” in the unlicensed band [30]. The design
of a proper channel allocation functionality can significantly increase the overall efficiency of the
LTE-U operation. Specifically, we can see from Equation (1) that the selection of channels will have an
impact on the achieved throughput performance mainly through the Θk and SINRmk terms . Thus, if
the selected kth channel is not used by other cells, a higher throughput will follow. In addition, if the
selected kth channel is affected by low interference levels, a high SINRmk will be observed along with
higher throughputs. Therefore, the channel selection for an LTE-U BS should be able to dynamically
identify and capture the key information regarding the present utilization of the channels allowing the
most suitable ones to be selected. Therefore, solutions recognizing the best channel are of high interest
in exploiting the full potential of LTE-U. However, it is always not the best case. This is because (as
environment remains the same) LTE-U will try to remain within the same parameters (i.e., channel and
duty cycle) as long as it does not find other parameter that can maximize its cost function. Residing
with the same parameters for a long period of time will continuously decrease the access opportunity
for the Wi-Fi user of that channel hence decreasing the fairness. Our algorithm intended to address
this problem by avoiding an LTE-U to occupy the same channel for a long duration and thus providing
more access opportunities for Wi-Fi users under low traffic load condition. Therefore, the proposed
Q-learning algorithm helps LTE-U to switch its current transmission from the optimal channel to a
second optimal channel easily in runtime without any increase in complexity in the algorithm. In
addition to this, Q-learning with its simple modeling approach provides LTE-U BS to learn from the
environment and automatically adapt to an appropriate parameter providing robustness to its dynamic
and uncertain operating environment.
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3.3. Q-Learning Based Joint ADC and DCS for LTE-U

Q-learning has been used in various studies to enhance the coexistence mechanisms and use
them individually to learn the best possible strategies to achieve the target [31]. In this paper, we use
Q learning for monitoring the Wi-Fi STA traffic load on an unlicensed channel and adjust the LTE
transmission accordingly. The objective of joint ADC and DCS reinforcement learning is to determine
a policy by which the LTE-U BS will choose the channel and duty cycle period based on measurements
observed during a muting period.

Q-learning is a model-free reinforcement-learning algorithm. The Q-learning process is built on a
Q-function (Q (k, a)), which is updated when it obtains a reward r from a state transition after the agent
carries out a certain action a. We use the single-state Q-learning approach with a null discount rate [31]
given by

Q(k, a) = (1− α) ∗Q(k, a) + α ∗ r(k, a) (6)
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where α є (0, 1) is the learning rate and r(k, a) is the reward obtained as a result of the current action. At
initialization, Q(k, a) is set to an arbitrary value Qinit. Based on the value of Q(k, a), the proposed duty
cycle decision making for LTE-BS follows the softmax policy [31]. The softmax approach is popular
owing to its effective and popular means of balancing the exploration and exploitation in reinforcement
learning. In a softmax policy, the duty cycling action a is chosen based on the following probability:

p(k, a) =
expQ(k, a)/Tempk∑n

a′=1 exp Q(k, a′)/Tempk
(7)

where Tempk is the temperature function, which helps reduce the temperature as the number of actions
generated by LTE-U BS increase. The resulting amount of exploration will be progressively decreased
as LTE-U learns the best solution, and can be expressed as follows:

Tempk =
Tempinit

k

log(1 + Yk)
(8)

where Tempinit
k is the initial temperature and Yk is the action counter. A high temperature causes

different actions to be equiprobable whereas a low temperature causes a greater difference in the
selection probability for actions that differ in their value estimates. Hence, our scope of Q-learning is
to discover the optimal policy for choosing an action in a given state that maximizes the value of the
overall reward. To learn this policy, an agent must estimate the value-function through experience.
The main components of Q-learning are as follows:

• An agent is the LTE-U BS. LTE-U BS can change its muting time period for each 10-ms duty
cycle period;

• An action that an agent can take is a set of duty cycle patterns A = {0.2, 0.4, 0.6, and 0.8}. Herein, a
duty-cycle pattern of 0.4 indicates that LTE-U mutes 0.8 portion of its frame time and transmits
during the remaining 0.4 portion of 10 ms;

• Q-learning decisions are taken for every duty cycle duration, which is repeated every 10 ms;
• A state indicates the carrier that is selected for operation {1, 2, . . . , K};
• A reward function is a utility function that guarantees the selection of an appropriate duty-cycle

action in the best available channel. This means the chosen action will be maintained close to the
target duty-cycle value, offering fair coexistence with other co-located systems (Wi-Fi). At the
same time, it compares the goodness of the selected channel with other available channels. The
reward for action a of an agent is given through the following function:

rk =
σ ∗

(
θ

target
k − θ

target
k − θaction

k

)
Nk

for θtarget
k − θaction

k > 00 for θtarget
k − θaction

k < 0 (9)

where σ defines the fraction of positive rewards, and θ
target
k and θaction

k are the predefined optimal duty
cycling action and the chosen action values from the set of available duty cycling actions, respectively.
In our system, the target duty cycling action in the network is the ratio of the sum of active LTE-U UEs
to the total number of active users in the channel, and can be denoted as follows:

θk
target =

M
M + Nk

(10)

The proposed Q-learning algorithm is briefly described in Algorithm 1 below:
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Algorithm 1 Q-Learning algorithm for joint ADC and DCS mechanism.

1: Input: Duty cycle patterns, θ; Number of channel, K; Number of Wi-Fi users in the channel, Nk
2: Output: Optimal duty cycles and channels.
3: Initialization: Q-table, Q(k, a); Selection probability, p(k, a); Action counter, Yk; Learning rate, α; Initial
temperature, Tempinit

k ; Positive reward, σ;
4: Randomly choose starting state (i.e., next state)
5: Set the iterations = 0
6: Learning procedure:
7: loop
8: current state = next state
9: execute the action a = max

a
(p(k , a) )

10: Receive the immediate reward:
11: if ( θ

target
k − θaction

k > 0)

12: rk =
σ ∗ (θtarget

k −θ
target
k −θaction

k )
Nk

13: else
14: 0
15: end
16: Update Q (k, a) according to Equation (6) as follows:
17: Q(k, a) = (1− α) ∗Q(k, a) + α ∗ r(k, a)
18: Update action counter Yk. = Yk + 1.
19: Compute the Tempk and p(k, a) according to softmax policy according to the Equations (6) and (7).

20: Tempk =
Tempinit

k
log(1+Yk)

; p(k, a) = expQ(k, a)/Tempk∑n
a′=1 exp Q(k,a′)/Tempk

21: Update p (k, a).
22: Choose the next state = max

k
(Q(k , a) )

23: end loop
24: Monitoring the wireless environment:
25: while (true) do
26: Periodically monitor the wireless environment
27: if (changes is identified) then
28: Reset Yk
29: end
30: end

Many LTE-U BSs available on the market are supported using a single or multiple Wi-Fi
interface [32–35] for monitoring the carrier and notification purposes in LTE-U. ULTRON [33], which
operates in a LTE-U BS, employs Wi-Fi embedding to transmit Wi-Fi data over an unmodified LTE PHY.
In addition, the same method is used to recognize a Wi-Fi preamble transmission directly applying
LTE PHY. In addition, ULTRON also facilitates scalable Wi-Fi sensing to efficiently set up a single
Wi-Fi sensing interface to jointly enhance the performance of both LTE and Wi-Fi [36]. Hence, we
can use existing estimation techniques such as a Kalman filter [37], machine learning techniques [38],
and power techniques [39] to approximate the number of active Wi-Fi STAs in each channel using
LTE-U [40]. Here, we use a Wi-Fi preamble decoding and energy detection (ED) mechanism in the
time domain [41,42] without synchronization to the Wi-Fi STAs. During every muting period, LTE-U
BS listens to the carrier to evaluate the collision probability (Pcoll

k ) and channel idle probability (Pidle
k )

among Wi-Fi STAs. The total number of observed slot times is denoted as Clisten
k and the number

of collisions in the observed period is represented by Ccoll
k . Hence, Pcoll

k can be calculated as Pcoll
k =

Ccoll
k /Clisten

k . Furthermore, Pidle
k can be acquired based on the ratio of the total number of idle slots to the

total number of observed periods, i.e., Pidle
k = Cidle

k /Clisten
k , where Cidle

k is the number of idle time slots in
channel k.

When an LTE-U BS is muted, the probability of channel k being idle is when all Wi-Fi STAs do not
transmit is Pidle

k = (1− τk )
Nk , where τk represents the transmission probability of Wi-Fi STAs when
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LTE-U BS is muted. Similarly, the probability that the channel will experience a collision when at least

one of the (Nk−1) remaining station transmits is Pcoll
k = (1− τk)

(Nk−1). Hence, Pcoll
k = 1−

Pidle
k

1−τk
and

numerically solving the equation for τk, we obtain τk = 1−
Pidle

k
1−Pcoll

k
.

Now, the active number of Wi-Fi STAs is obtained by solving the equation, Nk = log(1−τk)
Pidle

k ,

which is
log(Pidle

k )
log(1−τk)

.

3.4. Fairness in Unlicensed Spectrum

LTE-U is deemed successful if its coexistence with Wi-Fi is fair. A fair coexistence approach must
provide all coexisting networks with equal opportunities to access the medium. However, this kind of
fairness is limited between a system of the same type and a system having similar system parameters.
In an LTE-U network scenario, both technologies are diverse, having major design dissimilarities. The
normalized throughput achieved by both systems will be a good indicator of the fairness. That is,
when presenting LTE-U into a shared channel, the effect on the existing STAs should be similar to that
of adding the same type of STAs. Hence, in the remainder of this paper, the Jain fairness index on
the achieved throughput is implemented as key performance metric for the fairness evaluation. The
normalized throughput for each participating network is achieved based on the ratio of its achieved
throughput to the maximum throughput attained during the standalone operation.

Jain f airness index (µk) =
(Thwi f i

k + ThLTE−U
k)

2

2[
(
(Thwi f i

k
)

2 + (ThLTE−U
k)

2]
(11)

where, Thwi f i
k and ThLTE−U

k are the normalized throughputs attained by LTE-U and a Wi-Fi network.

3.5. Efficiency of Spectrum Utilization

Once a fair coexistence of Wi-Fi and LTE-U is accomplished, we can concentrate on an efficient
spectrum utilization of the unlicensed spectrum. To obtain the maximum throughput, each time slot
should be assigned to the system that makes best use of it. In an LTE-U scenario, the LTE-U achieves
a superior performance over Wi-Fi in terms of spectrum utilization owing to the advantage of its
scheduler when compared to contention-based access. Hence, to increase the efficiency of the spectrum,
LTE-U must be given greater access opportunity. However, this decision can significantly disturb
the fairness criteria of a coexisting system. In this study, we combat this tradeoff through switching
to most uncongested or free channels. The achieved throughput performance greatly relies on the
number of users connected to the channel and the interference. Thus, operating in the cleanest channel
provides more access opportunities for LTE-U users, increasing the throughput performance of the
network. In addition, it helps Wi-Fi STAs deliver more access opportunities under low load conditions
by deterring an LTE-U BS from keeping a channel busy for a longer period, i.e., if an LTE-U UE cannot
finish its transmission during its ON period, it will not stay on the same channel to transmit during the
next frame. Instead, it switches its existing transmission from the present channel to any other free
channel. By doing so, Wi-Fi STAs in the current channel will acquire the opportunity to access the
channel. Moreover, by switching the LTE-U channel after its transmission, the muting period of the
LTE-U is highly reduced, contributing to an increase in spectrum utilization. We calculate the network
efficiency as the ratio of total achieved network throughput by the proposed method to the maximum
achievable network throughput (Thk

max ) as follows:

Network e f f iciency (ηk) =
Thwi f i

k + ThLTE−U
k

Thk
max

(12)
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4. Performance Evaluation

In this study, we developed an LTE-U system level simulation platform using MATLAB. The
system simulation statistics were obtained by acquiring the mean values over random user positions.
A set of unlicensed channels and APs were deployed in each channel with a variable number of STAs.
The LTE-U BS is permitted to switch over unlicensed carriers and notify the LTE-U UE to complete
the communication procedure in the corresponding channel through a licensed carrier. The other
simulation parameters for LTE-U and Wi-Fi are set as shown in Table 1.

Table 1. Simulation parameters.

Parameter Value

Common Parameters:
Number Of channel 4

Simulation Time 1200 ms
Bandwidth 20 MHz
Spectrum 5 GHz

Traffic Model Full Buffer
Transmission Scheme OFDM

LTE-U Parameters:
LTE-U BS 1

UE Number 10
Frame Duration 10 ms

Duty Cycle 0.2/0.4/0.6/0.8
Transmit Power 15 dBm

Terminal Noise Figure 9 dB
PL Model 32.8 + 20*log10(f) + 16.9*log10(d) (ITU InH model [43])

Discount Factor β 0
Learning Factor α 0.3

Tinit 0.5

Wi-Fi Parameters:
Wi-Fi AP 4

STA Number 10/20/30/40
Wi-Fi MAC Protocol DCF

Time Slot 50 µs
CW 32–256
SIFS 28 µs
DIFS 128 µs

For an evaluation, the proposed algorithm is compared with a duty-cycle based method and a
COT-based channel selection approach. In the duty-cycle based approach, which is similar to those
described in [8,9], and [19], LTE-U BS selects the single best channel and applies the Q-learning
approach for a dynamic duty cycle selection. Using the COT-based channel selection approach [16,42],
the LTE-U BS adjusts its ON time, according to the channel occupancy measurement of coexisting
Wi-Fi users, i.e., the LTE-U ON time is proportional to the measured idle time in the channel. LTE-U BS
switches the channel with the highest occupancy time.

In this study, the LTE-U BS is facilitated using the Q learning approach [31,44] and thus the BS is
capable of adjusting its available actions according to the change in environment. In this way, LTE-U
BS can modify the Q-matrix and acquire new best duty-cycle patterns and achieve its goal. Figures 5–7
show the simulation results of the joint LTE-U DCS and ACS mechanisms for DC only, COT, and
the proposed mechanism. Here, the number of active STAs of each channel changes every 400 steps.
Ten STAs of each channel move to other channels, maintaining the same number of total STAs in the
network. In Figure 5a, we can see that the DC-only scheme uses a single channel throughout the
simulation. However, in Figure 6a and Figure 7a, we can see that COT and the proposed scheme
switch to best channel based on the changes in the number of STAs in the channel. Likewise, Figure 5b,
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Figure 6b, and Figure 7b, show the LTE-U BS duty-cycle pattern against the number of steps. In
Figure 5b, the DC-only scheme adaptably maintains its muting period according to the change in
the number of users in the operating channel. However, in Figures 6b and 7b, we can see different
trends in the LTE-U BS duty cycle against the number of steps, the reason being that the COT and
the proposed scheme both have easier channel switching features. They switch to the most optimal
channel and maintain the highest duty cycle pattern according to the target value.

Figure 8 shows the convergence of the Q-learning process by the LTE-U BS. The horizontal axis
indicates the number of steps, and the vertical axis is the aggregated sum of values of the Q matrix, i.e.,
the Q-value. When the Q matrix converges, the LTE-U BS has learned the present configurations and
can execute the optimal duty-cycle pattern in any channel. We can see that the sum of the Q-matrix
decreases during the start of the learning process. This occurs because the LTE-U BS tries to explore
many different states in search of achieving the highest reward.
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As the learning continues, the LTE-U BS discovers the channel and duty-cycle pattern that
can deliver the highest fairness and effective coexistence with a Wi-Fi network, increasing the
rewards received. As indicated in Figure 8, after approximately 240 iterations, LTE-BS determines
the configurations that can direct the system toward a fair and optimal coexistence. By contrast,
the DC-only scheme converges must faster than the other schemes because it has only one state.
The convergence is directly proportional to the available (no.o f state)no.o f actions. After the system
has already learned any changes in the environment, the configuration requires much fewer steps
(approximately less than 20 iterations) to converge.

Figure 9 shows the fairness index achieved in the proposed network scenario with the DC-only,
COT, and proposed schemes. The simulation results indicate that the proposed scheme attains the
highest fairness index in a dynamic network environment when compared to the other two schemes.
This is because the proposed scheme attempts to maintain its duty cycle close to the target value,
offering a proportional duty cycle configuration according to the load of each coexisting network.
However, the COT-based scheme attempts to maintain its target value toward the idle time of the
operating channel. In the COT-based scheme, the LTE-U continuously suffers from both airtime and
throughput unfairness as the number of users increases. The DC-based scheme achieves the highest
fairness index in a constant environment because it only operates in the single best channel. Although
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the DC-only mechanism learns to adapt its duty cycle according to a changing environment, as shown
in Figure 5b, the fairness of the network degrades because there is always the possibility of another
channel delivering a higher fairness to the network.
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Figure 10 shows the network efficiency achieved in a network scenario when applying the DC-only,
COT, and proposed schemes. The maximum network efficiency occurs under a scenario in which
LTE-U uses a single dedicated channel among the available channels (one channel used by LTE-U
and three other channels used by Wi-Fi) without having to share with Wi-Fi. The simulation results
in Figure 10 indicate that the proposed scheme achieves the highest overall network performance
compared to the COT-based and DC-only schemes. This is because our proposed scheme provides
more airtime access opportunity to LTE-U than the COT-based approach (higher priority given to
Wi-Fi), allowing it to operate in the most uncongested channel. Because the DC-only approach operates
in the single best channel for both fairness and efficiency, it demonstrates the highest performance
in a constant environment. However, with a change in environment, its performance is significantly
reduced because it lacks a switching feature to operate on the most uncongested channel in the network.
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5. Conclusions

The use of LTE-U in an unlicensed spectrum is an auspicious alternative to satisfy the multimedia
data demand foreseen by upcoming IoT systems. For coexistence between LTE-U and Wi-Fi systems,
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fair coexistence and a maximization of the channel utilizations are two important design goals.
However, achieving both of these design goals together is extremely difficult. This study presented a
Q-learning based joint adaptive duty cycling (ADC) mechanism and a dynamic channel switch (DCS)
mechanism to facilitate a fair and efficient coexistence. The adaptive DC mechanism supports a fair
channel access opportunity by muting a certain number of subframes for Wi-Fi STAs, whereas the
DCS mechanism offers more access opportunities for LTE-U UEs by avoiding the UEs to occupy a
crowded channel. The simulation results demonstrate a fair coexistence and reveal the benefit of using
the proposed mechanism over other DC-only and COT-based mechanisms.
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