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Abstract—Although the conventional QoS-supported enhanced
distributed coordination function (EDCA) for MAC layer channel
access in IEEE 802.11e wireless networks can provide QoS
guarantee at some degree, the performance of best-effort data
traffic is sacrificed. Mainly the reason for such performance
degradation is the blind use of binary exponential backoff
mechanism for collision avoidance among the devices. In EDCA,
backoff mechanism exponentially increases contention window
(CW [AC]) for any specific access category (AC) when a col-
lision happens, and reset it to initial value after a successful
transmission. The increase and reset of CW [AC] is performed
regardless of the network density. That is, a scarce network
does not require an unnecessary increase in CW [AC], and
similarly, a dense network causes more collisions if CW is
reset to an initial minimum value. In this paper, a machine-
learning-based network-adoptable EDCA (MEDCA) mechanism
is proposed for QoS-supported MAC layer channel access in
IEEE 802.11e wireless networks. In the proposed mechanism,
devices utilize Q-learning technique to infer the network density
and adjust their backoff CW [AC] accordingly. The proposed
MEDCA mechanism improves the network performance while
at the same time meeting the QoS demands of real-time traffic.
The simulation results show that the MEDCA performs better
over conventional EDCA of IEEE 802.11e.

Index Terms—IEEE 802.11e, QoS-supported WLANs, MAC
layer, EDCA, Q learning

I. INTRODUCTION

A lot of attention towards multimedia data traffic, such
as audio and video in wireless devices is observed now a
days. As the popularity of wireless-enabled smart devices, for
example, smart-phones and tablets etc. are growing day by
day, the needs of multimedia applications are becoming an
interesting research area for the academic as well as industrial
researchers. One of the key research interests is the strict loss
and delay bounds imposed by such multimedia applications on
the wireless networks. However, the traditional wireless local
area network (WLAN) standard, IEEE 802.11 has difficulty
meeting such network constraints imposed by multimedia
applications.
Real-time multimedia applications have increased the require-
ments of Quality of Service (QoS), which are not considered in

This work was supported by the National Research Foundation of Korea
(NRF) grant funded by the Korea government (No. 2018R1A2B6002399).

the traditional WLANs. Due to this drawback an amendment,
IEEE 802.11e emerged in 2005 [1], where the QoS level is
improved by introducing enhanced distributed channel access
(EDCA) as Medium access control (MAC) layer channel ac-
cess function. EDCA classifies and prioritizes the multimedia
traffic with the help of MAC layer resource allocation (MAC-
RA) parameters [1]. Nevertheless, some of the researches
prove that there are still many limitations in the QoS field
that must be overcome, particularly with respect to voice and
video transmissions. In addition to QoS supported devices in
IEEE 802.11e networks, legacy devices can also be present.
Since, legacy devices do not offer QoS-based capabilities
and use the conventional MAC-RA parameters, with the aim
of maintaining the device compatibility between both QoS-
supported and legacy devices, EDCA recommends the use of
a priority group of values for contention parameters. Although
QoS-supported IEEE 802.11e improves the performance of
real-time multimedia applications, these prioritized values are
not the optimal solution for voice and video data traffic in
many cases of diverse dense networks. Therefore, it is a key
issue to appropriately and intelligently adjust these MAC-RA
parameters.
Machine-learning (ML) techniques are increasingly attracting
the popularity for solving complex problems in many of
the wireless communication fields that usually require human
reasoning [2]. ML is now a thriving field in active research
topics and relevant applications of wireless communication
networks ranging from learning complex scenarios with un-
known channel models to the deployment of cognitive radio
networks (CRNs). The use of ML philosophies on an exten-
sive collection of wireless networks has had a wide history
and has attained numerous achievements, particularly in the
upper communication layers, such as in MAC layer resource
management [3]. Relating to the context, the use of ML-based
mechanism may be useful and network-adoptable given the
diverse conditions of QoS-supported wireless networks. In
particular, the probability of collision of the wireless channel
in a network is one of the factors that determine the network
status in a more significant way [4]. Therefore, the application
of ML-based technique could make it possible to obtain
channel collision probability by channel observation and con-
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tribute to optimizing the QoS level and the performance of
the network. Such intelligent mechanisms could also bring
network adaptability in wireless devices.
In this paper, we introduce an ML-based network-adoptable
EDCA (MEDCA) mechanism for the MAC-RA parameters in
EDCA to improve the QoS level over IEEE 802.11e wireless
networks. The proposed MEDCA uses Q-Learning model,
which is one of the prevailing ML models. QL is inspired by
behaviorist psychology, which is used to discover an optimum
strategy for taking action for any finite Markov decision
process (MDP), mainly when the environment is unknown [5].
A significant feature of QL is that it overtly reflects the whole
problem of a learner (device) interacting with an uncertain
environment (wireless network) and is directed to its goal
(performance optimization). A goal-directed device can be a
tiny piece of a larger behaving system, such as a wireless
node in a QoS-supported IEEE 802.11e network environment
seeking to maximize its performance in terms of throughput.
In the proposed MEDCA, the channel density observation-
based optimized selection of contention window (CW [AC])
size for every Access Category (AC) leads to a reduction in the
channel collisions. The major contribution of this paper is the
capacity to tune the EDCA backoff parameters dynamically
based on the network density conditions by using a ML-
based network-adoptable mechanism. Thus, it only requires a
few small modifications to the MAC layer of QoS supported
devices, maintaining full compatibility with legacy.
The rest of the paper is organized as follows. Section II
explains the QoS-supported wireless networks and briefly
elaborates the structure of conventional EDCA mechanism.
In Section III, proposed MEDCA mechanism is explained in
details. Section IV evaluates the performance of EDCA and
MEDCA mechanisms. Finally, in Section V, a comprehensive
conclusion is determined from the paper.

II. QOS-SUPPORTED WIRELESS NETWORKS

The aim of releasing the IEEE 802.11e amendment was
to provide QoS support to multimedia applications (such as
voice and video) over conventional IEEE 802.11 WLANs
[1]. The main feature of IEEE 802.11e is the capacity to
differentiate traffic flows and services. For this purpose, a
Hybrid Coordination Function (HCF) is implemented in the
802.11e amendment. To keep the backward compatibility,
a distinction is drawn between the QoS-supported wireless
stations (QSTAs) that use HCF and non-QoS-supported sta-
tions (nQSTAs) that use DCF. The HCF is of two types: a
centralized scheme known as HCF Controlled Channel Access
(HCCA) and a distributed scheme known as EDCA. It is
mandatory to implement HCF of any type for all the QSTAs.
However, EDCA is most popular and largely implemented
method for accessing the wireless medium due to its dis-
tributed and decentralized characteristic.
Four ACs are defined in EDCA to differentiate data traffic
streams. These ACs are defined as, highest to lowest priority,
Voice (V O[AC]), Video (V I[AC]), Best Effort (BE[AC]),
and Background (BK[AC]), as shown in Figure 1. The figure

Fig. 1. Priority access categories mapping in EDCA.

TABLE I
EDCA PARAMETERS VALUES

Type AC CWmin CWmax AIFSN TXOP
0 BK 31 1023 7 0
1 BE 31 1023 3 0
2 VI 15 31 2 5
3 VO 7 15 2 3

shows that each AC uses its own transmission queue and
is characterized by an EDCA MAC-RA parameters set. The
EDCA MAC-RA parameters set specifies the priority level of a
data frame through an Arbitration Inter-frame Spacing (AIFS)
combination, the size of the CW minimum CWmin[AC],
and the size of CW maximum CWmax[AC]. A transmission
opportunity (TXOP) interval is also used by the VI and VO
data traffics to transmit data frames in bulk. In order to
provide a compatibility and fair transmission for the traditional
DCF-based nQSTAs, the IEEE 802.11e amendment defines a
standard combination of the MAC-RA parameters, as shown
in Table 1. The AIFS period determines the amount of time
that a QSTA must wait before beginning a new transmission.
For each AC, an AIFS number (AIFSN) value derives AIFS
period as follows,

AIFS[AC] = AIFSN [AC]× tslot + SIFS, (1)

where tslot denotes the duration of a time-slot according to
the PHY layer. The short inter-frame space (SIFS) refers to
the amount of time used by high priority actions that require
an immediate response.
The size of a CW [AC] defines the length of the idle period
a given QSTA wait before its transmission. This size is
allocated in the reverse order to that of the priority of the
corresponding AC as shown in the Table 1. The size of
CW [AC] is exponentially increased if the transmission fails,
until it reaches the maximum limit CWmax[AC]. The station
remains at the CWmax[AC] until it successfully transmits
data frame or reaches to the retry limit. Once a data frame
is transmitted successfully, CW [AC] is reset to its minimum
value CWmin[AC]. This increase and reset of CW [AC] is
performed regardless of the density of the network, that is a
scarce network does not require an unnecessary increase in
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CW [AC], similarly, a dense network causes more collisions
if CW [AC] is reset to CWmin[AC].

III. MACHINE LEARNING-BASED NETWORK ADAPTABLE
EDCA

As described earlier, QL is one of the machine-learning
models. Initially, in this section, we replace currently imple-
mented binary exponential backoff with a channel observation-
based scaled mechanism. Later we explain QL in details and
further in this section proposed MEDCA is described.

A. Channel-observation-based Backoff Mechanism

To unravel the performance deprivation problem caused by
the blindness of the current backoff mechanism in EDCA, a
more versatile channel observation-based pseudo probability is
determined to scale the CW [AC]. In the proposed MEDCA,
contending QSTAs proceed to the backoff procedure by se-
lecting random backoff value B[AC] as per their current
CW [AC], after the communication medium has been idle
for a AIFS[AC] period. The time immediately following
the AIFS[AC] is considered as discretized observation time
slots (α). The duration of α is either an idle slot time σ (a
constant), or a variable occupied slot time (that is, occupied
due to successful transmission or a collision). The value of
B[AC] decrements by one whenever the medium is detected
as idle for σ. Any QSTA transmits its data frame after B[AC]
reaches zero. Furthermore, when the communication channel
is detected as occupied, the tagged QSTA stops decrementing
B[AC] and continues sensing the channel until it is again
sensed as idle for AIFS[AC]. Every individual contending
QSTA can capably measure the pseudo channel collision
probability pAC

obs , by observing the channel, which is defined
as the probability that a transmission of an access category
AC will fail. Subsequently, the time is discretized in BAC

obs

observation time slots for any specific AC, where the value of
BAC

obs is the total number of α slotted observation slots between
two consecutive backoff stages. A tagged contending QSTA
updates pAC

obs from BAC
obs as follows:

pAC
obs =

1

BAC
obs

×
BAC

obs−1∑
k=0

Sk, (2)

where for observation time slot k, Sk = 0 if α is sensed as
idle or the tagged QSTA transmits the data frame success-
fully, whereas Sk = 1 if α is detected as occupied or the
tagged QSTA experiences a collision. Instead of resetting the
CW [AC] after a successful transmission, MEDCA decrements
it exponentially based on the currently measured pAC

obs . The
increment or decrement of CW [AC] is performed as follows:

CWcur[AC] =

{
2× CWpre[AC]× ωpAC

obs , if collision
CWpre[AC]

2 × ωpAC
obs , if successful

(3)
where ω is used as a constant design parameter to control the
optimal size of the current contention window CWcur[AC]
for any specific AC, and is expressed as ω = CWmin[AC].

B. Q learning Model

Besides the learning device (a QSTA) and the environment
(WLAN network), a QL algorithm has more elements, such as
policy, reward, and Q-value function [5]. The way of behaving
of the learner and its learning at a given time is called its
policy. In other words, it is a rule by which a learner takes the
decision to map perceived states of the environment with the
prospective actions of those states. The reward signal is the
main objective of a QL-enabled learner. At each time step, the
environment conducts a quantitative value, known as a reward.
The learners only objective is to maximize the accumulated
reward it receives over the long run. A learner changes its
policy based on the reward signal. Another important element
of QL algorithms is a Q-value function. While the reward
signal is the immediate reward for any single action, the Q-
value postulates total reward attained at that state. It is possible
that a state always yields a low immediate reward but still has
a high Q-value because it is regularly followed by other states
that yield high rewards.

C. Proposed MEDCA

The proposed MEDCA consists of a set of states SAC

(backoff stages) for any specific AC, where an intelligent
QSTA performs an action aAC (such as increase CW [AC] if
collision, or decrease CW [AC] if successful). By performing
action aAC following a policy πAC in a particular state, sAC

the station collects a reward rAC , that is rAC(sAC , aAC) with
the objective to exploit the collective reward QAC(sAC , aAC),
which is a Q-value function. Figure 2 depicts the model
environment with its elements for the proposed MEDCA
mechanism. Let SAC =

{
0, 1, 2, · · · ,mAC

}
denotes a fi-

nite set of mAC possible states of the environment, and let
AAC =

{
0, 1
}

represents a finite set of permissible actions
(aAC) to be taken, where zero indicates decrement, and 1
indicates increment. At time slot t, the QSTA observes the
current state (sAC), that is sAC

t = sAC ∈ SAC , and
takes an action (aAC), i.e. aAC

t = aAC ∈ AAC based
on policy πAC . As mentioned before, the default policy of
a device in MEDCA is to increment its state if collision
happened and decrement for successful transmission. Thus,
action aAC

t changes the environmental state from sAC
t to

sAC
t+1 = sAC

′

∈ SAC according to,

πAC(aAC |sAC) =

{
sAC

′

= sAC + 1, if collision

sAC
′

= sAC − 1, if successful
(4)

The objective of the QL algorithm is to discover an optimal
policy πAC∗ that exploits the total expected reward (optimal
Q-value), which is given by the Bellmans equation [5]:

QAC∗(sAC , aAC) = E{rAC
t (sAC , aAC)+β×max

aAC
′QAC∗

(sAC
′

, aAC
′

|sAC
t = sAC , aAC

t = aAC)} (5)

Since the reward may easily get unbounded, a discounted
reward factor, β (0<β<1), is used. In the QL algorithm,
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Fig. 2. MEDCA Q learning model environment and its element.

QAC(sAC , aAC) estimates the reward as the cumulative re-
ward and is updated as follows,

QAC(sAC , aAC) = (1− γ)×QAC(sAC , aAC)+

γ ×∆QAC(sAC , aAC) (6)

where γ is the learning rate and is defined as 0 <γ <1.
The learning occurs quickly, based on the improved learning
estimate, ∆QAC(sAC , aAC), and is expressed as,

∆QAC(sAC , aAC) = {rAC(sAC , aAC)

+ β ×max
aAC

′QAC(sAC
′

, aAC
′

)} −QAC(sAC , aAC).

(7)

The max
aAC

′QAC(sAC
′

, aAC
′

) defines the best esti-

mated value for the prospective state sAC
′

. In the
long run, QAC(sAC , aAC) converges to the optimal Q-
value, QAC∗(sAC , aAC) that is, limt→∞QAC(sAC , aAC) =
QAC∗(sAC , aAC). The naivest policy for action selection can
be to pick one of the actions with the maximum measured Q-
value (that is, exploitation). The exploitation method is known
as a greedy action aAC∗ selection method, and can be written
as

πAC∗(aAC∗ |sAC) = argmaxaACQAC(sAC , aAC), (8)

where argmaxaAC represents the exploitation of
QAC(sAC , aAC) with respect to aAC . The instant reward is
maximized by continuous exploitation in a greedy manner. A
modest substitute is to exploit more often, but occasionally, the
learning QSTA explores all the allowable actions independent
of aAC∗ with probability ε (known as exploration). The greedy
and non-greedy selection of actions is known as the ε-greedy
method [4]. A feature of the ε-greedy technique is that, as
the number of instances increases, every action guarantees
the convergence of QAC(sAC , aAC) to QAC∗(sAC , aAC).
A QSTA would exploit to improve its performance, and
would explore to know the changes in the network. To
use exploitation and exploration in the proposed MEDCA
mechanism, a ε-greedy method is applied with probability ε
for exploration and probability 1− ε for exploitation.
We express the reward of actions performed at any state in

order to minimize channel collision probability pAC
obs . The

reward given by the action aAC
t taken at state sAC

t in slot
time t is expressed as,

rAC
t (sAC

t , aAC
t ) = 1− pAC

obs . (9)

The above statement indicates how pleased a QSTA was with
its action in state sAC

t . Figure 2 depicts the state transition
diagram of the MEDCA mechanism. In the figure, the QSTA
moves from one state (backoff stage) to another state with
1 − pAC

obs as a reward. The QSTA observes and learns the
environment to optimize the backoff parameters. Algorithm
1 depicts the steps performed by the proposed MEDCA
mechanism.

Algorithm 1 CW [AC] selection using MEDCA

1: GLOBAL: Initialize rAC(sAC , aAC) and
QAC(sAC , aAC)

2: Function: Select CW [AC] using MEDCA
3: Input: channel observation-based pseudo collision prob-

ability pAC
obs

4: Output: optimized CW [AC]
5: Initialize: cur rew = 0, ∆QAC(sAC , aAC) = 0, ε = 0
6: Calculate reward according to equation (9)
7: Update reward matrix rAC(sAC , aAC) with cur rew
8: Calculate improved estimate ∆QAC(sAC , aAC) as in (7)
9: Update Q-value matrix for QAC(sAC , aAC) as in (6)

10: Pick a random value to explore or exploit (ε-greedy
method)

11: If (exploit)
12: Use optimal policy πAC∗ as in (8)
13: Scale CW [AC] according to the optimal action

aAC∗

14: Else (explore)
15: Use policy πAC as in (4)
16: Scale CW [AC] according to the action aAC

17: End If
18: Return CW [AC]
19: End Function
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TABLE II
MAC LAYER AND PHY LAYER SIMULATION PARAMETERS

Parameter Type Value
Frequency 5 GHz
Channel bandwidth 20 MHz
Data rate 54 Mbps
Payload size 1472 bytes
Transmission range 10 m
Simulation time 100 sec
Propagation loss model LogDistance
Mobility model ConstantPosition
Rate adaptation models ConstantRate
Error Rate models YansErrorRateModel

IV. PERFORMANCE EVALUATION

00 We simulated the proposed learning-based MEDCA
mechanism using the ns-3 network simulator, version 3.28 [6],
with a QoS-supported IEEE 802.11 model for four multi-type
of service data traffics. Some important simulation parameters
are given in Table 2. The Q learning paradigm suggests [5] that
a high discount factor (β) and low learning rate (γ) accumulate
the Q-value function in a smooth way. By setting β value high
and γ value low, we allow our QL algorithm to weigh the
future reward heavier than the instant reward. Therefore, in
the simulations, we used β = 0.8, and γ = 0.2. To balance
the exploration and exploitation, the probability ε is set to 0.5.
Figure 3 shows the throughput comparison of the conventional
EDCA and the proposed MEDCA for multi-type of service
access categories (that is, BK, BE, VI and VO). The figure
clearly depicts that the performance of the access categories
severely degrades with the increase of a number of contending
QSTAs. Especially, the background data traffic type (BK)
suffers much degradation due to less chance of channel access.
Although the multimedia data types (that is VI, and VO) are of
higher priority for channel access, their performance starts de-
grading as the number of contenders increases in the network.
The performance degradation with the increase of contenders
depicts the blindness issue of currently implemented binary
exponential channel access mechanism. As compared to the
performance of EDCA, the proposed MEDCA outperforms
for multi-type of service access categories, especially for BE,
VI, and VO. However, the performance improvement is not
much seen for BK data traffic type due to lowest priority data
traffic in the network. The lowest priority of BK traffic allows
the QSTAs to transmit less number of BK data frames, thus
MEDCA learns not much enough to optimize the performance
of BK traffic. However, MEDCA enhances the performance
of BK data type in small size networks due to relatively less
number of data frames from the other priority traffics as well.
The proposed machine intelligence-based network-adaptable
MEDCA channel access mechanism enhances the aggregate
system throughput as shown in Figure 4. The performance
improvement affirms the machine intelligence capabilities of
the proposed mechanism.

Fig. 3. Throughput comparison of EDCA and MEDCA for different access
categories (BK, BE, VI and VO).

Fig. 4. Aggregate system throughput comparison of EDCA and MEDCA.

V. CONCLUSION

The QoS-supported EDCA for MAC layer channel access
in WLANs successfully fulfills the requirements of real-time
multimedia applications. However, one of the challenges for
QoS-supported wireless networks is tackling the issue of
efficient MAC layer resource allocation in WLANs due to
their distributed contention-based nature. Currently, EDCA
uses a binary exponential backoff mechanism, which blindly
increases and decreases the contention window after collisions
and successful transmissions, respectively. To handle the per-
formance degradation challenge caused by this blindness, a
machine learning-based network-adaptable EDCA (MEDCA)
mechanism is proposed in this paper. The proposed MEDCA
overcomes the limitations of EDCA by implementing a chan-
nel observation-based pseudo collision probability for the scal-
ing of backoff parameters. Furthermore, to satisfy the diverse

170  ICGHIT 2019



requirements of such QoS-supported wireless networks, one
of the deep reinforcement learning models, Q learning is
used to optimize the performance of the multi-type of service
applications in the network. Simulation results show that the
proposed mechanism MEDCA outperforms as compared to the
traditional EDCA mechanism.
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