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ABSTRACT The potential applications of deep learning to the media access control (MAC) layer of
wireless local area networks (WLANs) have already been progressively acknowledged due to their novel
features for future communications. Their new features challenge conventional communications theories
with more sophisticated artificial intelligence-based theories. Deep reinforcement learning (DRL) is one
DL technique that is motivated by the behaviorist sensibility and control philosophy, where a learner
can achieve an objective by interacting with the environment. Next-generation dense WLANs like the
IEEE 802.11ax high-efficiency WLAN are expected to confront ultra-dense diverse user environments and
radically new applications. To satisfy the diverse requirements of such dense WLANs, it is anticipated that
prospective WLANs will freely access the best channel resources with the assistance of self-scrutinized
wireless channel condition inference. Channel collision handling is one of the major obstacles for future
WLANs due to the increase in density of the users. Therefore, in this paper, we propose DRL as an intelligent
paradigm for MAC layer resource allocation in dense WLANs. One of the DRL models, Q-learning (QL),
is used to optimize the performance of channel observation-based MAC protocols in dense WLANs.
An intelligent QL-based resource allocation (iQRA) mechanism is proposed for MAC layer channel access
in dense WLANs. The performance of the proposed mechanism is evaluated through extensive simulations.
Simulation results indicate that the proposed intelligent paradigm learns diverse WLAN environments and
optimizes performance, compared to conventional non-intelligent MAC protocols. The performance of the
proposed iQRA mechanism is evaluated in diverse WLANs with throughput, channel access delay, and
fairness as performance metrics.

INDEX TERMS IEEE 802.11ax, denseWLANs, HEW, reinforcement learning, Q-learning,MAC protocols.

I. INTRODUCTION
Future dense wireless local area networks (WLANs) are
attracting significant devotion from researchers and indus-
trial communities. IEEE working groups are expected to
launch an amendment to the IEEE 802.11 (WLAN) stan-
dard by the end of 2019 [1]. The upcoming amendment,
covering the IEEE 802.11ax high-efficiency WLAN (HEW),

will deal with ultra-dense and diverse user environments,
such as sports stadiums, train stations, and shopping malls.
One inspiring service is the promise of astonishingly high
throughput to support extensively advanced technologies for
5th generation (5G) communications. HEW is anticipated to
infer the various and interesting features of both the learners’
environment of a HEW device as well as device behavior in
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order to spontaneously control the optimal media access con-
trol (MAC) layer resource allocation (MAC-RA) [2] system
parameters.

In real WLANs, the devices proficiently and dynamically
manage WLAN resources, such as the MAC layer carrier
sense multiple access with collision avoidance (CSMA/CA)
mechanism to improve users’ quality of experience (QoE) [3].
Overall device performance depends on exploitation of the
instability of network heterogeneity and traffic diversity.
Conventionally, the IEEE 802.11 standard uses a binary expo-
nential backoff (BEB) scheme as a CSMA/CA mechanism
to avoid collisions [2]. In BEB, a random backoff value is
generated from a contention window (CW) to obtain channel
access. The CW size is doubled after every collision and reset
to its minimum size on successfully transmissions. However,
this blindness when increasing and resetting the CW induces
performance degradation. For a dense network, resetting the
CW to its minimum size may result in more collisions and
poor network performance. Likewise, for a small network
environment, a blind increase in CW size may cause an
unnecessarily long delaywhile accessing the channel.WLAN
resources are fundamentally limited due to shared channel
access and wireless infrastructures, whereas WLAN services
have become increasingly sophisticated and diverse, each
with a wide range of QoE requirements. Thus, for the success
of the prospective HEW, it is vital to investigate efficient and
robust MAC-RA protocols [2].

Recently, the field of deep learning (DL) has been flourish-
ing in order to enable machine intelligence (MI) capabilities
in wireless communications technologies. This newly gained
popularity of DL is because of successful applications in
different research fields, such as speech recognition, natu-
ral language processing, and computer vision. The popular
technology titans (Google, Microsoft, Facebook, Amazon,
and Nvidia) have already started serious financing of their
prevailing computing resources to drive MI research, partic-
ularly aiming at DL breakthroughs [5]. DL is now a thriving
field in active research topics into relevant applications of
wireless communications networks, ranging from learning
complex scenarios with unknown channel models to the
deployment of cognitive radio networks (CRNs). The use
of DL philosophies on the extensive collection of wireless
networks has a long history and attained numerous achieve-
ments, particularly in the upper communications layers, such
as in CRNs and forMAC layer resource management [6]. The
WLAN’s physical (PHY) layer also poses many challenges
for DL [7], such as modulation recognition [8], channel
modeling [9], encoding/decoding [10], and channel statistics
estimation [11]. It is believed by researchers that WLANs
can optimize performance by introducing DL intoMAC layer
resource allocation. Deep reinforcement learning (DRL) is
one DL technique that is motivated by the behaviorist sen-
sibility and control philosophy, where a learner can achieve
an objective by interacting with the environment [12]. DRL
uses specific learning models, such as the Markov deci-
sion process (MDP), the partially observed MDP (POMDP),

and Q-learning (QL) [13]. DRL utilizes these techniques
in applications like learning an unknown wireless network
environment and resource allocation in femto/small cells in
heterogeneous networks (HetNets) [13]. Figure 1 depicts RL
with its specific learning models and their potential applica-
tions in futuristic dense wireless networks.

FIGURE 1. Deep reinforcement learning models and their potential
applications in dense WLANs.

Motivated by QL, which is one of the prevailing DRL
models, we propose an auspicious paradigm for MAC-RA
in future dense WLANs. As shown in Figure 2, we envision
an intelligent HEW device that accesses channel resources
with the assistance of QL techniques, and autonomously
observes, learns, and evaluates its actions based on learning
in order to achieve optimal performance. QL is inspired by
behaviorist psychology, which is used to discover an optimum
strategy for taking action for any finiteMDP,mainly when the
environment is unknown [14]. A significant feature of QL is
that it overtly reflects the whole problem of a learner/device
interacting with an uncertain environment and being directed
to its goal.

FIGURE 2. Intelligent MAC layer resource allocation (MAC-RA) learning
model for an intelligent HEW device.

A goal-directed device can be a tiny piece of a larger
behavioral system, such as HEW devices in dense WLAN
environments seeking to maximize performance in terms of
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throughput and channel access delay. In this paper, we use
QL to optimize one of our proposed channel observation–
based MAC protocol [15]. In [15], we proposed a channel
observation–based scaled backoff (COSB) mechanism to
handle the blind increase and reset of CW in BEB. The pro-
posed self-scrutinized COSB adaptively scales up and scales
down the backoff CW to enhance the performance of the
CSMA/CA in WLANs, specifically in dense environments.
Because QL finds solutions through the experience of inter-
acting with an unknown environment, this paper proposes an
intelligentQL-based resource allocation (iQRA) mechanism
for performance optimization of COSB.

The rest of this paper is structured as follows. Section II
describes deep reinforcement learning in detail along with
its challenges and features. This section also highlights the
elements, scope, and features of DRL. In Section III, the pro-
posed QL paradigm is defined. This section briefly explains
COSB and presents the proposed iQRA mechanism in detail.
Section IV contains performance evaluation of the proposed
mechanism. Finally, comprehensive conclusion and future
work are presented in Section V.

II. DEEP REINFORCEMENT LEARNING
In DRL, a device learns the actions to take and maps situa-
tions for these actions with the goal of maximizing a numer-
ical reward flag. Usually, a learning device does not know
what actions to perform; however, it has to discover which
actions produce the best reward by trying them. In many
stimulating and inspiring cases, actions might change an
instant reward as well as the next reward and, through that,
all successive rewards.

DRL is different from traditional supervised DL and
unsupervised DL techniques. It is the most recent, focused
research in the area of DL. In supervised learning, a learner
learns from a given labeled training dataset provided by
a knowledgeable external supervisor. This provided dataset
describes a situation composed of a description (that is,
the label) of the exact action the learner should take in a
specific environment. In collaborative problems, it is often
impractical to get such datasets of desired behavior that are
both correct and representative of all the states in which the
learner has to perform actions [14].

DRL is also different from unsupervised learning.
Unsupervised learning techniques are about finding structure
hidden in collections of unlabeled data. Both supervised and
unsupervised learning techniques seem to thoroughly clas-
sify DL paradigms. However, in an unfamiliar environment,
where one would imagine learning to be most advantageous,
a learner must be able to learn from experience.

A. CHALLENGES AND FEATURES OF DRL
The tradeoff between exploration and exploitation is a chal-
lenge for DRL that is not in other kinds of learning. To get
a considerable reward, a DRL device must learn toward
activities attempted in the past and observed to be com-
pelling in creating a reward. In any case, to find such actions,

it needs to attempt actions that it has not chosen previously
(exploration). The learner needs to exploit what it has effec-
tively experienced, keeping in mind that the target goal is
to acquire the maximized reward; however, it also needs to
explore in order to make better action selections in the future.
The difficulty is that neither exploration nor exploitation can
be pursued solely without failing at the task. The learner must
attempt an assortment of actions and continuously support
those actions that appear to be best. In a stochastic task, each
action must be attempted many times to gain a consistent esti-
mate of the expected reward. The exploration–exploitation
issue has been intensively examined by mathematicians for
a long time, yet remains uncertain [14]. In the HEW system,
an intelligent device would exploit to improve its perfor-
mance, and would explore to know the dynamicity of the
WLAN network.

A key component of DRL is that it expressly considers
the entire problem of an objective-directed learner interacting
with a speculative environment. This is unlike numerous
methodologies that consider sub-issues without attending to
how theymay fit into a bigger picture. DRL takes the opposite
strategy, which is beginning with a complete, interactive,
objective, seeking learner. All DRL learners have obvious
objectives, can detect features of their environments, and
can select actions to impact the environments. Besides, it is
generally expected from the beginning that the learner still
needs to operate, regardless of any huge vulnerability in the
environment it faces.

B. ELEMENTS OF DRL
Beyond the agent and the environment, a DRL framework has
four primary sub-components: policy (strategy), reward flag,
a value function, and, sometimes (optionally), environment
model.

1) POLICY
A strategy or policy characterizes the learner’s way of acting
at a given time. Generally, a policy is a mapping from appar-
ent states of the environment to actions to be taken in those
states. It compares to what in psychology would be called a
set of action–response relationships. In some cases, the policy
might be a straightforward function or lookup table, while
in others it might include broad computation (for example,
a pursuit procedure). The policy is the essence of a DRL
learner in the sense that it alone is adequate to decide its
behavior.

2) REWARD FLAG
A reward flag characterizes the objective of a learning prob-
lem. At each time step, the environment determines a solitary
number called the reward. The learner’s main objective is to
maximize the total reward it collects in the long run. The
reward flag, therefore, expresses the good and bad events for
the learner. The reward flag is the essential reason for altering
the policy at any state; if an action selected by the policy
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brings a low reward, at that point, the policymight be changed
to choose some other action for that state in the future.

3) VALUE FUNCTION
While the reward flag shows what is better in an immediate
sense, a value function indicates what is best in the end. Thus,
the value function of a specific state is the aggregate sum of
rewards a learner can collect in the long run, starting from
the initial state. For instance, a state may dependably yield
a low quick reward, yet at the same time, have a high value
function because it is frequently followed by other states that
yield high rewards. In any case, it is the value function with
which we are most concerned when making and evaluating
decisions. Action selections aremade based on value verdicts.
We pursue actions that bring states of highest values, not
the highest rewards, because these actions find the highest
extent of rewards for the learner over the long term. In fact,
the most significant element of almost all DRL algorithms is
a technique for proficiently estimating values.

4) ENVIRONMENT MODEL
An optional component of DRL frameworks is a model of
the environment. This is something that mirrors the behavior
of the environment, or more generally, that enables sugges-
tions to be made about how the environment will behave.
For instance, given a state and an action, the model may
anticipate the resultant next state and the next reward. Models
are utilized for planning, by which we mean any method for
settling on a sequence of actions by considering conceivable
future circumstances before they are actually experienced.

C. SCOPE AND LIMITATIONS OF DRL
As discussed above, DRL depends strongly on the notion
of the state as input to the policy and the value function.
Informally, we can think of the state as a flag passing to
the learner with some sense of how the environment is at
a specific time. A large portion of DRL techniques are
organized around evaluating value functions; however, it is
not entirely essential to do this to take care of DRL problems.
For instance, approaches like genetic algorithms, genetic
programming, simulated forging, and other optimization
algorithms have been utilized to approach DRL problems
while never engaging value functions [15]. These evolution-
ary approaches assess the lifetime conduct of numerous non-
learners, each utilizing an alternate policy for interfacing with
the environment and selecting those actions that are able to
acquire themost rewards. If the space of policies is adequately
small, or can be organized so that the best policies are
common or simple to discover, or if a considerablemeasure of
time is available for the search, then evolutionary approaches
can be viable. Furthermore, evolutionary approaches have
focal points for problems in which the learner cannot detect
the entire state of the environment. In contrast to evolutionary
approaches, DRL techniques learn while interfering with
the environment. Techniques ready to exploit the details of
individual behavioral interactions can be substantially more

productive than evolutionary strategies in many types of
wireless network.

D. Q-LEARNING MODEL
QL might be summoned to trace an optimal action policy for
any given (finite) MDP, particularly for an obscure system
model, as presented in Figure 3. In such a case, the QL
model is likewise comprised of a learner, of a set of states, S,
and a set of actions, A, for every state. By performing an
action in a particular state, the learner collects a reward with
the objective of maximizing its accumulated reward. Such
a reward is represented by a Q-function (also known as a
Q-value function). The Q-value is updated in an iterative way
after the learner performs an action and observes the resultant
reward, as well as the related prospective states, at each time
instant [16]. QL has recently been applied in heterogeneous
wireless networks. A heterogeneous, completely distributed,
multi-objective approach based on an DRL model was devel-
oped for self-optimization of femtocells in [17]. That pro-
posed paradigm is supposed to solve both the resource allo-
cation and interference coordination issues in the downlink
of femtocells.

FIGURE 3. Q-learning model environment for an intelligent HEW device.

III. PROPOSED Q-LEARNING PARADIGM FOR
DENSE WLANS
In this section, we propose DRL as an auspicious paradigm
for channel observation–basedMACprotocols in dense HEW
networks. This section is further divided into three subsec-
tions. The first subsection elaborates one of the channel
observation–basedMACprotocols, COSB. In the second sub-
section, we design a QL-based intelligent mechanism (iQRA)
to optimize the performance of COSB. Third sub-section
elaborates the computational complexity of the proposed
iQRA mechanism.

A. CHANNEL OBSERVATION–BASED MAC PROTOCOL
To unravel the performance deprivation problem in dense
WLANs caused by CSMA/CA of conventional MAC layer
distributed coordination function (DCF), a more versatile
channel observation–based scaled backoff approach is pro-
posed in [3], which primarily relies on the density of the
network. The proposed COSB protocol guarantees high
throughput and low channel access delay by reducing the
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FIGURE 4. Channel observation mechanism of the channel observation–based scaled backoff during the backoff
procedure [3].

number of collisions during the channel access procedure.
In COSB protocol, the contending stations (STAs) proceed to
the backoff procedure by selecting random backoff value B,
as shown in Figure 4 (B = 9 for STA1, and B = 7
for STA2), after the communication medium has been idle
for a distributed inter-frame space (DIFS) period. The time
immediately following the DIFS is considered as discretized
observation time slots (η). The duration of η is either an
idle slot time, σ (a constant), or a variable occupied slot
time (that is, occupied due to successful transmission or a
collision). The value of B decrements by one whenever the
medium is detected as idle for σ . A data frame is transmitted
after B reaches zero. Furthermore, when the communication
channel is detected as occupied, the tagged STA stops decre-
menting B and continues sensing the channel until it is again
sensed as idle for a DIFS period. Every individual contending
STA can capably measure the conditional channel collision
probability, pobs, which is defined as the probability that a
transmission will fail. Subsequently, COSB discretizes the
time in Bobs observation time slots, where the value of Bobs
is the total number of η slotted observation slots between two
consecutive backoff stages, as presented in Figure 4. A tagged
contending STA updates pobs from Bobs as follows:

pobs =
1
Bobs
×

Bobs−1∑
k=0

Sk (1)

where for observation time slot k , Sk = 0 if η is
sensed as idle or the tagged STA transmits the data frame

successfully, whereas Sk = 1 if η is detected as occu-
pied or the tagged STA experiences a collision, as shown
in Figuere 4. Instead of resetting the CW after a successful
transmission, COSB decrements it exponentially based on the
currently measured pobs. Because the current backoff stage
represents the number of collisions or successful transmis-
sions of a tagged STA, the increment or decrement of CW is
performed as follows:

CW cur =

2× CW pre × ω
pobs , if collision

CW pre

2
× ωpobs , if succesful

(2)

where ω is used as a constant design parameter to control
the optimal size of the current CW and is expressed as
ω = CWmin.

B. INTELIGENT QL–BASED RESOURCE ALLOCATION
The proposed iQRA mechanism considers backoff stages as
an available set of states, where a learning STA scales up
(increments to the next state) and scales down (decrements
to the previous state) the size of the CW. An action a, in a
particular state s, obtains a reward r , with the aim to exploit its
accumulatedQ-value function,Q(s, a). This Q-value function
is updated in an iterative manner after the STA performs an
action and perceives the resulting reward. Figure 5 depicts a
model environment of a channel observation–based backoff
mechanism (that is, COSB) with its elements for the proposed
iQRA mechanism. Let S = {0, 1, 2, . . . ,m} denote a finite
set of m possible states of a HEW environment for the COSB

3504 VOLUME 7, 2019



R. Ali et al.: DRL Paradigm for Performance Optimization

FIGURE 5. Intelligent Q-learning–based resource allocation (iQRA):
system environment and its elements.

mechanism, and let A = {0, 1} represents a fixed set of allow-
able actions to be taken, where zero indicates a decrement (for
successful transmission) and 1 indicates an increment (after
a collision). At time slot t , STA observes its current state (s),
i.e.st = s ∈ S, and takes an action (a), i.e. at = a ∈ A.
Action at changes the state of the environment from st to
st+1 = s′ ∈ S. The main goal of the QL algorithm is to learn
an optimal policy that exploits the total anticipated reward,
which is given by following Bellman’s equation [5],

Qopt (st , at) = E{rt + β ×maxa′Q
opt (s′, q′)|st = s, at =}.

(3)

Since the reward may effectively get unbounded, a dis-
counted reward factor, β (0 < β <1), is utilized. In the
QL algorithm, Q(s, a) estimates the reward as the aggregate
reward and is updated as follows:

Q (s, a) = (1− α)× Q (s, a)+ α ×1Q(s, a), (4)

where α is the learning rate, defined as 0 < α < 1.
The learning occurs quickly based on improved learning
estimate1Q (s, a), and is expressed as

1Q (s, a) =
{
r (s, a)+ β × maxaQ

(
s′, a′

)}
− Q (s, a) .

(5)

As characterized before, β is the discount rate. Parameter β
weighs instant rewards more vigorously than future rewards.
The expression maxaQ(s′,a′) in (3) and (5) defines the best-
estimated value for the potential states′. In the long run,
Q (s, a) converges to the optimal Q-value Qopt (s, a), that is,
lim
t→∞

Q (s, a) = Qopt (s, a). The naivest policy for action
selection can be to pick one of the actions with the maximum
measured Q-value (exploitation). If there is more than one
action with the maximum Q-value, a random choice can be
made. This exploitation method is known as a greedy action
aopt selection method, and can be written as

aopt = argmaxaQ (s, a) (6)

where argmaxa represents the exploitation of Q (s, a) with
respect to a. The instant reward is maximized by contin-
uous exploitation in a greedy manner. A modest substi-
tute is to exploit more often, but occasionally, the learning
STA explores all the allowable actions independent of aopt

with probability ε (known as exploration). The greedy and
non-greedy selection of actions is known as the ε-greedy

method [5]. A feature of the ε-greedy technique is that, as the
number of instances increases, every action guarantees the
convergence of Q (s, a) to Qopt (s, a). In a HEW environ-
ment, a STAwould exploit to improve throughput, and would
explore to know the dynamicity of the WLAN environment.
To balance exploitation and exploration under the proposed
iQRAmechanism, and ε-greedymethod is applied with prob-
ability ε for exploration and probability 1−ε for exploitation.
We express the reward in order to minimize channel colli-

sion probability pobs. The reward given by action at taken at
state st in slot-time t is expressed as

rt (st , at) = 1− pobs (7)

The above statement indicates how pleased an STA was with
its action in state st . Figure 5 depicts the state transition
diagram of the iQRA mechanism. In the figure, the STA
moves from one state to another state with 1−pobs as a reward.
The STA observes and learns the environment to optimize
the backoff process. Algorithm 1 depicts the steps performed
by the proposed iQRA mechanism to optimize the COSB
protocol.

Algorithm 1 COSB Performance Optimization Using iQRA
1: Global initialization: //The reward andQ-valuematrices

are initialized globally to keep track of the instant reward
and cumulative reward for all possible state transitions
(actions) for s states, that is, r (s, a) and Q (s, a).

2: Function Select CW using iQRA (pobs)
Input: channel observation–based collision probability
pobs
Output: CW: return optimized contention window

3: Initialize: cur_rew = 0, 1Q (s, a) = 0, ε = 0
4: Calculate reward as cur_rew = 1 -pobs
5: Update reward table for r (s, ra) = cur_rew
6: Calculate improved estimate 1Q (s,a)according to

Equation (5)
7: Update Q-value table for Q (s, a) according to Equa-

tion (4)
8: Pick a random value to explore or exploit (ε-greedy

method)
9: if (exploit)
10: Find aopt according to Equation (6)
11: Scale CW according to the optimal action.
12: else (explore)
13: Scale the CW using COSB mechanism
14: end if
15: return CW
16: end Function

C. COMPUTATIONAL COMPLEXITY
The computational complexity of the proposed iQRA mech-
anism is based on the learning phase of the system. An STA
learns the system by exploring different permissible actions
in every specific state. However, as soon as the environment
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FIGURE 6. CSMA/CA flowchart representing functional comparison of BEB, COSB and iQRA mechanisms.

is learned, the best action can be exploited in any given state
in an ε-greedy manner, resulting in the optimal solution.
Since iQRA performs only a constant amount of computation
(a fixed number of actions and states), its computational
complexity per iteration can be written either as O (1) if
explores, or asO (mln(i)) for i ∈ (1,m) of m number of states
if exploits. The best case for the computational complexity
is when there is only one possible state to move at any state,
that ism = 1, and the worst case arises with the m number of
states. The computational complexity of iQRAmechanism is
checked for m = 6, which is a default value of number of
backoff stages in most of the IEEE 802.11 standards. The
obtained results remain below 0.000ns+. Figure 6 shows
flowchart of CSMA/CA representing the functional compar-
ison of BEB, COSB and iQRA algorithms. The figure helps
to understand the addition of functions to the currently
implemented CSMA/CA mechanism. An observation-based
intelligence is embedded to the CSMA/CA for performance
optimization.

IV. PERFORMANCE EVALUATION
We simulated the proposed learning-based iQRAmechanism
using the ns-3 network simulator, version 3.28 [19], with
an IEEE 802.11ax HEW model for dense WLANs. Some
important simulation parameters are given in Table 1.

A. QL PARAMETER SELECTION
To evaluate the QL parameters for the proposed iQRA,
we simulated 25 contending STAs for 100 seconds, varying
α and β with small (0.2), medium (0.5) and large (0.8) values.
Probability ε was set to 0.5 for balanced exploration and

TABLE 1. MAC layer and PHY layer simulation parameters

exploitation. Figure 7 shows the convergence of learning
estimate 1Q from Equation (5) with respect to the learning
rate (α). The figure depicts how a smaller α makes 1Q con-
verge faster. The convergence of 1Q indicates that the STA
has learned its environment and can exploit optimal actions in
the future. An interesting observation is that1Q is not steady
in the beginning, which is due to the initial exploration of the
environment. Therefore, most of the states do not optimize
the value function in the beginning. Later, the STA infers the
states that can deliver the most rewards, increasing the cumu-
lative reward. After enough instances (such as 13 instances
for α = 0.2 in Figure 7), we can see that the learner has found
configurations that can lead to optimization of the process.
Similarly, we observe in Figure 8 1Q converges faster for a
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FIGURE 7. Convergence of learning estimate (1Q) for varying the learning
rate, α(β = 0.8, ε = 0.5).

FIGURE 8. Convergence graphs of the learning estimate (1Q) from
varying the discount factor β(α = 0.2, ε = 0.5).

large value of discount factor β. In both cases (Figure 7 and
Figure 8), ε was set to 0.5, indicating equal opportunities for
exploration and exploitation. The small value for α and the
large value for β (along with equal probability ε) yield the
best results for optimization in the system. The convergence
of learning estimates shows that an optimal solution for the
environment exists.

Figure 9 and Figure 10 portray the effects of the parameters
on throughput of the system (Figure 9 for a small network
of 15 STAs, and Figure 10 for a dense network of 50 STAs).
As shown in Figure 9(a), if ε is set to 0.2 for a small network
of 15 STAs, α = 0.5 and β = 0.2 give the best results.
However, in this case, decreasing α (that isα = 0.2) has little

effect on throughput, but increasing it to α = 0.8 degrades
throughput dramatically. Figure 9(b) shows that if ε and α
are set to 0.5, β can be set small, medium, or large. However,
for ε = 0.8 and α = 0.5, seting β to its medium value
(β = 0.5) enhances throughput, as shown in Figure 9(c).
Figures 10(a), 10(b) and 10(c) show that for a dense network
system of 50 STAs, a small value for α (that is, α = 0.2)
and a large value for β (that is, β = 0.8) are efficient for
small and medium values of ε (that isε = 0.2 and ε = 0.5).
With a large value for ε (that is,ε = 0.8), as shown
in Fig. 10(c), throughput is improved if the large α and β are
used (that is,α = 0.8, and β = 0.8). Thus, from Figure 9 and
Figure 10, we show that a combination of smallα, large β,
and a medium value for ε (that is, α = 0.2, β = 0.8, and
ε = 0.5) is somewhat efficient for both sparse and dense
network systems.

B. THROUGHPUT
To evaluate the performance of iQRA, we compared
simulation results with the traditional binary exponential
backoff (BEB) and COSB algorithms. Figure 11 shows how
the iQRA mechanism optimizes the throughput of COSB,
specifically in a dense network of 50 contending STAs.
The performance improvement clearly indicates that the
QL-based proposed mechanism is effective at learning the
wireless network. In a network of five contending STAs,
iQRA achieves relatively lower system throughput than
COSB. The performance of iQRA may degrades in small
networks due to low and irregular rewards.

C. CHANNEL ACCESS DELAY
The channel access delay for a successfully transmitted data
frame is defined as the interval from the time the frame
is at the head of the queue (ready for transmission) until
successful acknowledgement that the frame was received. If a
frame reaches the given retry limit, it is dropped, and its time
delay is not included in the calculation of channel access
delay. Figure 12 depicts the performance of the proposed
iQRA mechanism along with the conventional BEB and
the original COSB mechanisms in terms of channel access
delay (in milliseconds). From the figure, we observe that
the proposed iQRA mechanism has a higher channel access

FIGURE 9. Throughput comparison of α and β in a small network of 15 STAs with (a) ε = 0.2, (b) ε = 0.5 and (c) ε = 0.8.
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FIGURE 10. Throughput comparison of α and β in a dense network of 50 STAs with (a) ε = 0.2, (b) ε = 0.5 and (c) ε = 0.8.

FIGURE 11. Throughput comparison of BEB, COSB, and iQRA with
α = 0.2, β = 0.8 and ε = 0.5 in a network of five to 50 contending STAs.

FIGURE 12. Channel access delay comparison of BEB, COSB, and iQRA
with α = 0.2, β = 0.8, and ε = 0.5 in a network of five to 50 contending
STAs.

delay, compared to COSB; however, it does not exceed the
conventional BEB mechanism. It is obvious that the iQRA
mechanism has an increased channel access delay due to its
environment inference characteristics.

D. FAIRNESS
The fairness issue can be seen for COSB in Figure 13. In a
dense network environment of 50 STAs, COSB suffers from
the fairness problem due to some STAs continuously operat-
ing at a higher CW size, and a few fortunate STAs can operate
at a lower CW size. Under COSB, once the STA reaches
a larger CW, it has to transmit successfully many times to
return to the smaller CW, which seems difficult in a dense
network environment due to the high probability of collision.

FIGURE 13. The number of successfully transmitted packets by each STA
in a dense network of 50 STAs.

The proposed iQRA brings fairness to the contending STAs,
because every STA autonomously and intelligently exploits
its environment. Table 2 shows the values in Jain’s fairness
index [18] achieved by BEB, COSB, and iQRA for a small
network of five STAs to a large, dense network of 50 STAs.
We observe that the previously proposed COSB mechanism
was unfair for small to large network environments, while the
iQRA mechanism optimizes COSB to perform fairly among
the contending STAs, whether it is for a small network or a
large network.

TABLE 2. Jain’s fairness index comparison.

E. NETWORK DYNAMICITY
Subsequently, QL is essentially intended to make intelli-
gent adjustments according to the dynamics of the environ-
ment. A dynamic environment can be the activation of more
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contending STAs in the network or the deactivation of
previously active STAs. We evaluated the performance of
the proposed iQRA mechanism by activating five more
contending STAs every 50 seconds until the number of
STAs reached 50. Figure 14 explains the effects of network
dynamics on 1Q (that is, learning estimate) of a tagged
STA. The figure shows 1400 learning instances (events) of
a tagged STA during the simulation period (500 sec). Each
instance represents the updated value of learning estimate
1Q whenever a packet transmission is attempted. As shown
in the figure, with changes in the number of contending STAs
within the network, the tagged STA experiences a fluctuation
in1Q, indicating the change in the environment. Later, this
QL-equipped, intelligent tagged STA converges and is capa-
ble of optimizing the performance in a dynamic wireless
environment. In Figure 15, we see that iQRA eventually
reaches a steady state in system throughput. On the other
hand, BEB and COSB are severely affected by the increase
in the number of competing STAs.

FIGURE 14. Convergence of the learning estimates (δQ) in a dynamic
network environment (increasing the number of contenders every
50 seconds).

FIGURE 15. System throughput comparison in a dynamic network
environment (increasing contenders by five every 50 seconds).

F. DISTANCE-BASED RATE ADAPTATION MODELS
Throughput shown in Figure 11 and Figure 15 are achieved in
a network environment using the ConstantRateWifiManager
rate-adaptation algorithm [19], in which contending STAs
are placed at a fixed distance from the access point (AP).
Hence, all the devices are transmitting at a constant data rate.
To evaluate the performance of the proposed iQRAalgorithm,
we simulated a more practical and real network environ-
ment, such as MinstrelWifiManager [19]. The Minstrel rate
adaptation varies the transmission rate of the sender STA to
match the WLAN channel conditions (mainly based on the

distance from the AP), in order to achieve the best possible
performance. The results shown in Figure 16 are achieved in
an IEEE 802.11a (11 Mbps) wireless network for N = 10.
All contending STAs were randomly placed within a distance
of 25m from the AP. A tagged STA (initially placed at a
1m distance) moves away from the AP after a step-time
of 1sec. Throughput shown in Figure 16 was obtained after
each 5m distance from the AP. The performance of a tagged
STA for all three of the compared algorithms (BEB, COSB,
and iQRA) degrades as the distance from the AP increases,
as shown in Figure 16. We observe that the throughput of the
tagged STA for BEB is close to zero after the STA reaches a
distance of 60m, and finally becomes zero when it exceeds the
coverage (80m). Under COSB, due to its observation-based
nature, a STA achieves higher throughput even after a 60m
distance, compared to BEB. However, the proposed iQRA
maintains performance, even if the distance increases to 80m,
due to its intelligence capability.

FIGURE 16. Throughput comparison for distance-based rate-adaptation
network environments.

G. EFFECTS OF CHANNEL ERROR-RATE MODELS
In order to achieve reliable results to compare with real
device performance, it is essential to represent the PHY layer
of the WLAN as correctly as possible in simulations. The
ns-3 simulator states two error-rate models for calculation of
the bit error rate (BER) and corresponding packet error rate
(PER): YansErrorRateModel and NistErrorRateModel [19].
Currently, ns-3 recommends using NistErrorRateModel as
the default, specifically for ideal channel cases. There is
not much difference between these two, except that YansEr-
rorRateModel uses overly optimistic (analytical) results.
In Figure 17, we evaluate the effect of the above-stated
error-rate models. The figure shows that there is not much

FIGURE 17. Throughput comparison for NistErrorRateModel and
YansErrorRateModel network environments.
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difference among BEB, COSB, and iQRA performance when
simulated with the two different error-rate models. The per-
formance of COSB increases a little with YansErrorRate-
Model. The reason is that, similar to YansErrorRateModel,
COSB scales its parameters based on analytical results, that
is, channel collision probability. On the other hand, the per-
formance of iQRA remains almost the same, because it is the
optimized form of COSB.

V. CONCLUSION
The upcoming dense high-efficiency WLAN (that is,
IEEE 802.11ax HEW) promises per-device throughput per-
formance that is four times higher. One of the bottlenecks
for this performance achievement is tackling the huge chal-
lenge of efficient MAC layer resource allocation in WLANs
due to their distributed contention-based nature. Currently,
a CSMA/CA-based WLAN uses a binary exponential back-
off mechanism, which blindly increases and decreases the
contention window after collisions and successful transmis-
sions, respectively. To handle the performance degradation
challenge caused by the increasing density of WLANs,
a self-scrutinized channel observation–based scaled backoff
(COSB) mechanism based on a practical channel collision
probability was proposed. COSB overcomes the limitation
of BEB to achieve high efficiency and robustness in highly
dense networks, and enhances the performance of CSMA/CA
in dense networks. However, to satisfy the diverse require-
ments of such denseWLANs, it is anticipated that prospective
WLANswill autonomously access the best channel resources
with the assistance of sophisticated wireless channel condi-
tion inference. Motivated by the potential applications and
features of deep reinforcement learning in wireless networks,
such as the deployment of cognitive radio, we introduced
DRL as a paradigm for MAC layer resource allocation in
dense WLANs. In this paper, we propose one of the DRL
techniques, Q-learning, as an intelligent paradigm for MAC
layer resource allocation in dense WLANs. The proposed
DRL paradigm uses intelligent QL-based inference to opti-
mize the performance of COSB, and we call it intelligent
QL–based resource allocation. Simulation results show that
the proposed iQRA optimizes the performance of COSB in
fixed wireless STA network environments, as well as for
randomly placed and distance-based rate adaptation network
environments.

Future research considerations include the formulation
of a mathematical model for the proposed iQRA mecha-
nism. Future work also includes performance evaluations of
iQRA inmore realistic channel-error and signal-to-noise ratio
(SINR)–based data rate models.
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