

Far East Journal of Electronics and Communications
© 2017 Pushpa Publishing House, Allahabad, India
http://www.pphmj.com
http://dx.doi.org/10.17654/EC017040877
Volume 17, Number 4, 2017, Pages 877-887 ISSN: 0973-7006

Received: March 13, 2017; Accepted: May 2, 2017
Keywords and phrases: RIOT, NDN, CS, FIB, PIT.
A preliminary version of this paper was presented at the ICIDB-2016, Seoul, South Korea.
∗Corresponding author
Communicated by Gyanendra Prasad Joshi

RIOT-OS: FIRMWARE FOR FUTURISTIC
INTERNET OF THINGS

Illa Ul Rasool, Yousaf Bin Zikria, Arslan Musaddiq, Farhan Amin and
Sung Won Kim∗

Department of Information and Communication Engineering
Yeungnam University
South Korea
e-mail: illaulrasool@ynu.ac.kr

yousafbinzikria@ynu.ac.kr
arslan@ynu.ac.kr
farhanamin10@hotmail.com
swon@yu.ac.kr

Abstract

Internet of things redefine the modern networking by interconnecting
meaningless things in a more substantial way. It works towards paving
a path between things and technology. However, as things can scale
from small to relatively large, there exist certain constraints. These
constraints are classified as low memory footprint, low power CPU,
etc. Therefore, limiting the constraint factors of these devices is a
major challenge. An efficient operating system, however, can serve the
purpose of IoTs in future. Subsequently, RIOT-operating system can
operate with limited IoT hardware resources available and can be
considered as future de facto IoT-OS. Our work represents the RIOT-

I. U. Rasool, Y. B. Zikria, A. Musaddiq, F. Amin and S. W. Kim 878

OS study with respect to more recent network technology, named data
networking. The study mainly considers the resource constraints of
IoT devices and RIOT-OS features-implementation to mitigate them.
Further, a combined architecture of NDN-RIOT with smart tick less
timer scheduling mechanism to increase energy efficiency of devices
is discussed. Other relevant features of RIOT supporting existing
transport protocols are also studied.

1. Introduction

The use of technology and devices has reformed the way humans work.
It is the modern phase of technology where electronic devices can no more
afford to stay isolated and disconnected from the world. This motivation is
driving the devices or things towards interconnectivity forming a network of
things or internet of things (IoT) [1]. IoT is a network of things which ranges
between real-time devices such as wireless sensors, medical devices, security
cameras, and even large infrastructures and vehicles. The significance of IoT
powered devices is that they can be accessed remotely from anywhere,
as well as command other devices to perform necessary tasks. Although
these devices increase the physical world, awareness among devices
is constrained in: (i) available memory, (ii) processing power, (iii)
communication and (iv) battery life time [2]. With all constrains considered,
these devices are nevertheless required to adapt to the physical world and
perform necessary real-time processing.

Table 1. RIOT features [3]
Features RIOT-OS

Minimum RAM

Minimum ROM

C support

C++ support

Multi-threading

MCU without memory management unit

Modularity

Real-time

RIOT-OS: Firmware for Futuristic Internet of Things 879

Acknowledging all the requirements of IoT devices and the related
constrains, an IoT-operating system (OS) must be capable enough to
withstand such incompatible and varying hardware properties. RIOT-OS is a
solution to IoT devices spanning across low power to energy efficient
microcontroller units. RIOT-OS exhibits full support for IoT devices in terms
of minimum RAM, ROM requirement [4]. It also provides developer friendly
environment for C and C++ programmers. RIOT-OS micro-kernel supports
the core mechanisms such as multi-threading, priority-based scheduling
interrupt handling, and inter-process communication. It is accurately
synchronized with hardware to provide real-time execution of applications.
For a summarized information, Table 1 provides a brief overview of RIOT-
OS features. With all the features and requirements for IoT devices in check,
this paper focuses on RIOT-OS in terms of named data networking (NDN)
scheme [3]. Also, referred as content centric network (CCN), NDN is a data
name based networking scheme. The motivation behind NDN is to achieve
synchronism between Internet architecture and its usage. It means that not
all Internet services are sufficiently supported by the current built in
architecture. The idea of NDN resides within the ambitious information-
centric network (ICN) project which follows the content/information/data
centric approach [3]. The overall goal of data/content/information oriented
network is to redefine the current host-centric Internet architecture (TCP/IP)
into information-centric. It is clear enough that IoTs are expected to be
implemented extensively in future. Also, the corresponding OS and wireless
network are going to play an important role in its development and
application process. NDN-RIOT for IoT devices itself define a total overhaul
of present wireless technology into more convenient and less complex one.
The design goal of NDN-RIOT is: (i) to support the basic NDN-forwarding
mechanism, (ii) to support the current protocol regulations, (iii) NDN-RIOT-
OS must suit memory constrains of IoTs, and (iv) full support for CPU that
runs at a clock speed less than 100MHz [4]. The contribution of our work
introduces the RIOT-OS for IoTs, and presents the architecture for RIOT-
OS. Moreover, it analyzes the NDN-RIOT architecture-mechanism and

I. U. Rasool, Y. B. Zikria, A. Musaddiq, F. Amin and S. W. Kim 880

features with an NDN application. This paper discusses in Section 2 the
features of RIOT-OS for IoTs. Section 3 describes the basic mechanism of
NDN. Section 4 features NDN-RIOT architecture and example run of NDN
in RIOT. Finally, Section 5 concludes the paper.

2. RIOT: Architecture

Earlier, the OS for wireless sensors and for Internet hosts differed with
respect to available memory, energy efficiency, modularity of kernel, and
API access. RIOT-OS goal is to fulfill the varying requirements of IoTs that
require overall OS reliability and availability of corresponding C and C++
libraries for developers. RIOT offers the real multi-threading processing
inherited from FireKernel [4]. Thus, FireKernel contributes to the real-
time and modularity requirements of IoTs. It features zero-latency interrupt
handlers, and minimum context-switching times along with threading
priorities.

Moreover, every microcontroller unit has a particular scheduler which
wakes up the system at certain time instants. Schedulers refer to the timers
for such waking purpose. This process is called the timer tick. However,
there can be certain instants when devices are not required to perform tasks
and they are triggered by scheduler to wake up. To avoid this, RIOT
introduces a tickless scheduler which allows the device to switch to idle state
and enter deep-sleep mode thus increasing the energy efficiency [5]. Adding
to this, the devices can be interrupted in deep-sleep mode by external
interrupts or kernels only. Further, efficient energy output of an OS is
dependent on the degree of complexity of kernel processes. Further, kernel
functions depend upon the duration and occurrence of context-switching.
RIOT-OS mainly performs the thread switching by an interrupt. Therefore, it
is important to reduce the amount of thread switch-time-under-process. For
that instant, RIOT introduces minimized scheduler, which after finishing
the interrupt service routine does not require saving old thread-context. This
process significantly reduces task-switching processing time.

RIOT-OS: Firmware for Futuristic Internet of Things 881

3. Named Data Network

The NDN communication follows a specified pattern or a path to which
the data plays the catalyst role rather than concentrating on host-client
identities (IP-based). In NDN, the content or data is defined by a specific
name which regulates its recognition and retrieval by the destination
application. The NDN architecture constitutes of a consumer and producer.
The consumer sends a data-request in the form of an interest packet. Interest
packet has a data name as its prefix. The data packet is forwarded in the
network following the interest name and interest forwarding strategy. The
forwarding strategy is particularly based on the forwarding information base
(FIB). Every forwarding node has an FIB to make the calculative decisions
about the potential destinations from where data can be retrieved. The data-
destinations are actually the nodes that provide the requesting consumers
with requested data. The node that satisfies the consumer interest is referred
as provider. Meanwhile, during the forwarding process of interest packet,
each node in the routing path keeps the track of the interface from which the
interest arrived in its pending interest table (PIT). Also, each forwarder
maintains a temporary data cache called content store (CS). CS is used to
cache the data earlier sent to satisfy a specific interest. Furthermore, an
interest can find its requested data either at the real provider or in the CS of
any forwarder. Finally, when the interest is satisfied, the data follows the
same routing path as interest packet earlier recorded in the PIT of every
forwarder. Further, the data packet constitutes of a cryptographic signature
that allows the consumer to authenticate the content. The main emphasis is
not on the provider or node but the content or data produced by the provider.
Figure 1 represents the basic NDN networking scheme and forwarding
strategy.

I. U. Rasool, Y. B. Zikria, A. Musaddiq, F. Amin and S. W. Kim 882

Figure 1. Named data network forwarding scheme.

4. NDN-RIOT

(a) Aim

Aim of NDN-RIOT-OS is to fully support the named packet forwarding
procedure of NDN, as well as it must obey the present protocol regulations.
NDN is a futuristic technology and most probably will be implemented in
IoTs.

NDN-RIOT supports such devices with 10s of Kb of RAM (executional
data store), 100s of Kb of flash memory, and low power central processing
unit running at a clock speed of less than 100MHz. With such memory
constraints, the NDN-RIOT-OS must execute and support all core
mechanisms and functionalities of NDN such as FIB, PIT and CS.

(b) Architecture

RIOT-OS implements micro-kernel architecture as kernel threads.
Figure 2 shows that these threads represent network protocols: IPv6, UDP.
Inter-process communication (IPC) is responsible for the communication
between kernel threads. NDN-RIOT constitutes of threads: application,
NDN, network device driver [4]. When an application requires to send a
particular data, it forwards the packet to NDN layer via IPC. Further the
packet is processed and transferred to network device driver for transmission.

RIOT-OS: Firmware for Futuristic Internet of Things 883

In case of packet reception, it follows the reverse path till packet reaches
application layer. The above process occurs in the presence of an interrupt
handler, and other peripherals. RIOT-OS handles the memory constraints in
NDN-devices by storing the NDN packets in wire format throughout.

Figure 2. NDN-architecture and inter-process communication between
threads.

(c) Packet forwarding

The NDN communication follows a specified pattern or path to which
the data plays the catalyst role rather than concentrating on host-client
identities (IP-based). In NDN, the content or data is defined by a specific
name which regulates its recognition and retrieval by the destination
application. In NDN, every forwarding node has an FIB to make the
calculative decisions about the potential destinations from where data can
be retrieved. The data-destinations are actually the nodes that provide
the requesting consumers with requested data. The node that satisfies the
consumer interest is referred as provider. Meanwhile, during the forwarding
process of interest packet, each node in the routing path keeps the track of the
interface from which the interest arrived in its pending interest table (PIT).

I. U. Rasool, Y. B. Zikria, A. Musaddiq, F. Amin and S. W. Kim 884

Furthermore, each forwarder maintains a temporary data cache called content
store (CS). CS is used to cache the data earlier sent to satisfy a specific
interest. Therefore, an interest can find its requested data either at the real
provider or in the CS of any forwarder. Finally, when the interest is satisfied,
the data follows the same routing path as interest packet earlier recorded in
the PIT of every forwarder. Further, the data packet constitutes of a
cryptographic signature that allows the consumer authenticates the content.
The main emphasis is not on the provider or node but the content or data
produced by the provider. Figure 1 represents the basic NDN networking
scheme and forwarding strategy. In basic NDN-forwarding strategy, an
interest packet when received by any neighboring node performs the
following process. Firstly, it checks the availability of data in its own CS
following a lookup process. In case the data is found, it is dissipated back to
the consumer through same interface the interest arrived earlier. However, in
case of no data found, node performs the PIT lookup. During PIT lookup
process if a corresponding entry is found for the same data, then it discards
the interest and saves the incoming interface. Nevertheless in case of non-PIT
matchup, a PIT entry is created for the interest and is further forwarded to the
FIB. Consequently, FIB preforms calculative based decision to search for a
potential data-provider. Secondly, when interest finds a data match at a
certain provider, a data packet under same interest-name-prefix match is
transverse back. The data packet again follows the same interface/s on the
way back to consumer. Moreover, on the way back, each forwarder will
authenticate the data by checking the corresponding PIT entry earlier stored.
Further, when data reaches the original consumer, it runs a signature
validation test to confirm/authenticate the data received.

Example run

We run a simulatory example for NDN-RIOT scenario, where we create
five nodes to simulate basic NNDN working in RIOT. Figure 3 shows that
how tap interface feature of Linux allows the NDN-ping application to see
a raw network traffic. We assign tap 0 to consumer and tap 3 to producer

RIOT-OS: Firmware for Futuristic Internet of Things 885

nodes, respectively. Figure 4 shows that how consumer expresses an interest
in an NDN named format. Figure 5 shows the packet acknowledgement by
producer and replies back with data after a named prefix match. On the
reception of data by the consumer, it checks the data authentication after a
signature validation process. In this manner, RIOT is able to express the core
functionality of NDN network by basing communication on data name rather
host-centric (IP-based).

Figure 3. Node creation for scenario.

Figure 4. Consumer interest/data expressing/receiving.

I. U. Rasool, Y. B. Zikria, A. Musaddiq, F. Amin and S. W. Kim 886

Figure 5. Producer acknowledging interest and sending data packet.

5. Conclusion

The basic architecture of RIOT-OS for IoT devices is briefly discussed.
RIOT-OS provides memory, and energy efficient features as well as
modularity and real-time support for IoT devices. RIOT is also
programmable and provides developer with C and C++ libraries. Further,
RIOT-OS is studied in accordance with NDN, which is a futuristic wireless
network technology. NDN-RIOT provides an overhaul of concept of how
“internet of things” can work without any memory and energy constraints in
future. Further, the RIOT is compatible with the existing protocols (IPv6,
RPL) only contributes for future convenience. The architecture for FIB, CS
and PIT is a basic one implemented in RIOT due to memory constraints.
However, comparatively NDN works efficiently with respect to RIOT and
future work can include implementing full data names.

Acknowledgment

This research was supported in part by the MSIP (Ministry of
Science, ICT and Future Planning), Korea, under the ITRC (Information
Technology Research Center) support program (IITP-2016-R2718-16-0035)

RIOT-OS: Firmware for Futuristic Internet of Things 887

supervised by the IITP (National IT Industry Promotion Agency) and in
part by Basic Science Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Education (NRF-
2015R1D1A1A01058751).

References

 [1] L. Atzori, A. Iera and G. Morabito, The internet of things: a survey, Computer
Networks 54(15) (2010), 2787-2805.

 [2] A. Sehgal, V. Perelman, S. Kuryla and J. Schonwalder, Management of resource
constrained devices in the internet of things, IEEE Communications Magazine
50(12) (2012), 144-149.

 [3] W. Shang, A. Afanasyev and L. Zhang, The design and implementation of the
NDN protocol stack for RIOT-OS, NDN, Technical Report, NDN-0043, July 16,
2016.

 [4] E. Baccelli, O. Hahm, M. Gunes, M. Wahlisch and T. C. Schmidt, RIOT-OS:
towards an OS for the internet of things, 2013 IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), Apr. 14, 2013, IEEE,
pp. 79-80.

 [5] K. Roussel, Y. Q. Song and O. Zendra, RIOT-OS paves the way for
implementation of high-performance MAC protocols, Proceedings of the 4th
International Conference on Sensor Networks, ESEO, France, 2015.

