
IEEE SENSORS JOURNAL, VOL. 16, NO. 9, MAY 1, 2016 2865

TinyOS-New Trends, Comparative Views, and
Supported Sensing Applications: A Review

Muhammad Amjad, Muhammad Sharif, Muhammad Khalil Afzal, and Sung Won Kim

Abstract— The wireless sensor network (WSN) is an interest-
ing area for modern day research groups. Tiny sensor nodes
are deployed in a diversity of environments but with limited
resources. Scarce resources compel researchers to employ an
operating system that requires limited memory and minimum
power. Tiny operating system (TinyOS) is a widely used oper-
ating system for sensor nodes, which provides concurrency and
flexibility while adhering to the constraints of scarce resources.
Comparatively, TinyOS is considered to be the most robust,
innovative, energy-efficient, and widely used operating system
in sensor networks. This paper looks at the state-of-the-art
TinyOS and the different dimensions of its design paradigm,
programming model, execution model, scheduling algorithms,
concurrency, memory management, hardware support platforms,
and other features. The addition of different features in TinyOS
makes it the operating system of choice for WSNs. Sensing nodes
with TinyOS seem to show more flexibility in supporting diverse
types of sensing applications.

Index Terms— Wireless sensor networks, operating system,
sensor nodes, energy efficiency.

I. INTRODUCTION

SENSING nodes in wireless sensor networks (WSNs) are
smaller in size, compared to other nodes in conventional

networks. These nodes sense their environment, process the
sensed data and then transmit that data to their destination [1].
Among sensor nodes, mutual coordination and an exchange
of huge amounts of information can be witnessed. Rapid
progression in micro-electro-mechanical systems (MEMS)
has made it much easier to deploy sensor nodes in a wide
variety of situations, such as battlefields, habitat monitoring,
forecasting the weather, health, mechanics, transportation,
underwater sensing, ecological sensing and other military
applications [2]–[5]. The sensors, being very small in size,
have a limited battery life and resources. These limitations
are taken into consideration when designing communications
models, network topologies, various algorithms and operating
systems (OSs) for tiny sensing nodes [6].

Manuscript received October 29, 2015; accepted January 8, 2016. Date
of publication January 20, 2016; date of current version March 16, 2016.
This work was supported by the Basic Science Research Program within the
Ministry of Education through the National Research Foundation of Korea
under Grant NRF-2015R1D1A1A01058751. The associate editor coordi-
nating the review of this paper and approving it for publication was
Dr. Amitava Chatterjee. (Corresponding author: Sung Won Kim.)

M. Amjad, M. Sharif, and M. K. Afzal are with the Department of
Computer Science, COMSATS Institute of Information Technology,
Islamabad 47040, Pakistan (e-mail: amjadbhutta0706@gmail.com;
muhammadsharifmalik@yahoo.com; khalil_78_pk@yahoo.com).

S. W. Kim is with the Department of Information and Communication
Engineering, Yeungnam University, Gyeongsan 38541, Korea (e-mail:
swon@yu.ac.kr).

Digital Object Identifier 10.1109/JSEN.2016.2519924

WSN researchers have help with different coding
parameters and various languages in providing an OS for
the proper functioning of sensing nodes [7], [8]. Different
operating systems are now in place for sensor nodes, but Tiny
Operating System (TinyOS) is acknowledged as the most
suitable one to operate in a resource-starved network like
a WSN. Tiny sensing motes operate in a variety of fields.
These nodes are equipped with even more limited power
resources. Replacement of batteries incurs serious overhead.
Therefore, one requirement is that an energy-efficient OS must
be designed for these sensing nodes. TinyOS is especially
designed for low power sensing motes. It was first developed
as a research project, but is now acknowledged as an open
OS for sensing motes [9]. There are four main requirements
that compelled researchers to come out with novel, flexible
and concurrent versions of TinyOS for sensing motes.

1) Limited Resources: Sensing motes with limited
resources and smaller sizes have very limited physical
and logical resources to carry out their sensing
operations. A processor of usually 1-MIPS (million
instructions per second) with very small memory is used
in these tiny sensing motes. New advances in sensing
technology are made by taking into consideration these
requirements.

2) Reactive Concurrency: Sensing motes sense the data
and then process that data. During processing, some
type of data aggregation or compression is performed.
After processing, data are transferred to other nodes or
a base station (BS). From the BS, the data are utilized
for further analysis. For all these operations, it is a
requirement for the OS of the sensing nodes to be
highly concurrent. Reactive concurrency enables the OS
to handle real-time tasks for the sensing operation.

3) Low Power: Sensing motes are installed in various
locations. Their replacement is not an easy task.
Therefore, changing or charging the batteries incurs
serious overhead. For sensing motes to operate
untethered, a continuous power supply is mandatory.
Therefore, TinyOS was designed by taking into con-
sideration the limited power of sensing motes. TinyOS
is not only an energy-efficient OS; it also helps other
sensing applications to conserve energy in their sensing
operations.

4) Flexibility: It is necessary for the OS of sensing motes
to be flexible enough to support novel and diverse
sensing applications. TinyOS supports modularity and
a large number of hardware platforms.

1558-1748 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

2866 IEEE SENSORS JOURNAL, VOL. 16, NO. 9, MAY 1, 2016

TinyOS was first developed in 2000 in University of
California, Berkeley. It was started as the research project and
was used only by the researchers. In late 2000, a systematic
architectural directions for TinyOS was proposed [186].
TinyOS version 0.6 was introduced in 2001, and addressed
certain limitations in its programming model. In January 2002,
a bootcamp was arranged for TinyOS, while the core work
group for TinyOS was formed in 2004. Version 2.0 and 2.0.2
were introduced in 2006 and 2007, respectively. Safe threads
were added in TinyOS in 2008. Version 2.1, and 2.1.2 became
available in 2010 and 2012. Currently, TinyOS development is
transformed to GitHub, where the researchers can contribute
to its development. Now, there are about 35,000 downloads
of this free available operating system per year [12].

A monolithic architecture, novel t-kernel integration,
efficient power management, concurrency handling and
supportive components for diverse types of communications
make TinyOS a stable and self-contained OS. Robust systems
were once categorized as difficult to write, but evolving
language extensions in TinyOS have made it an OS for
embedded systems. TinyOS has made its way into well-known
computing projects, such as Cisco’s smart grid systems and
Xen [11]–[13]. This paper encompasses the detailed features
of TinyOS, its architectural and component models, their
development, and the main advantages it added in making
sensing node operations more and more reliable, flexible
and robust. Our study has taken into consideration all
possible aspects of TinyOS, from the programming model
to its supported sensing applications. It is the first study of
TinyOS that shows new trends and its novel supportive sensing
applications. Table I defines the abbreviations used extensively
in the paper, while Table II shows a comparison of this study
and already existing surveys on TinyOS and other OSs
for WSNs.

The rest of the paper is organized as follows. Section II
describes the programming model of TinyOS, which consists
of concurrency and execution. Section III surveys the schedul-
ing algorithms used for TinyOS. Section IV and Section V
cover the memory and energy management techniques of
TinyOS. In Section VI, energy management by TinyOS,
especially in the communications process with reference to
communications protocols, is discussed. Section VII describes
the simulators of TinyOS. A detailed comparative view of
TinyOS with other OSs for WSNs is given in Section VIII.
Section IX looks at the TinyOS-supported hardware platforms.
Section X lists the TinyOS-supported sensing applications,
while in Section XI, limitations and modifications of TinyOS
are broadly discussed.

II. PROGRAMMING MODEL

Programming TinyOS for tiny sensing nodes has various
constraints. The scattered and distributed nature of nodes con-
fronts the programmer. Different programming models have
been adopted to provide an OS for sensing nodes. Choosing
a particular programming model mainly depends upon three
attributes of WSNs: first, the nature of the sensing nodes;
second, what tasks the nodes are going to perform within the
group; and third, the network type [14].

TABLE I

ABBREVIATIONS

An OS for sensing nodes should be more collaborative,
fault tolerant and futuristic. The programming model for
TinyOS follows in the footsteps of component-based pro-
gramming models. One of the dialectics of C, commonly
known as NesC, is behind the programming of the novel
TinyOS for WSNs. The main module of NesC consists of an
editor, a parser, a model generator, a simulator and a model
checker. These modules of the NesC architecure are shown
in Fig. 1 [15].

The whole programming model of TinyOS is a combina-
tion of different components [16]. These components, when
categorized, fall into three abstractions: commands, events
and tasks [17]. A command initiates a component to per-
form some type of operation, which is then narrated into
a request message. An event component displays output.

AMJAD et al.: TinyOS-NEW TRENDS, COMPARATIVE VIEWS, AND SUPPORTED SENSING APPLICATIONS: A REVIEW 2867

TABLE II

COMPARISON BETWEEN THIS STUDY AND AVAILABLE SURVEYS

Fig. 1. Architecture of NesC (adapted from [15]).

Communication between the components is achieved with
the help of tasks. Components are also provided with the
interfaces. These component interfaces fall into two classes.

1) Interfaces that the component uses.
2) Interfaces the component provides.
Interfaces also use a bidirectional feature for their operation.

In addition to these component-based interfaces, TinyOS has
other interfaces for its various operations [18].

Contracts [19] are now employed for the interfaces, which
are used again and again. Hence, the components that are
reused by the applications are now replaced by the interface
contracts [21]–[23]. Many hardware abstractions were also
added to TinyOS [24], [25]. Using NesC and then joining
the components is not an easy task in coding for TinyOS.
Linking models are apparently not the same for C and its
dialectics [26], [27]. Different design patterns have been intro-
duced for software to evolve a programming model for TinyOS
in NesC [28]. The programming model of TinyOS in NesC
mainly focuses on concurrency and execution of tasks. These
two features and their support in TinyOS are discussed below.

A. Concurrency Support

In NesC programs, components of user applications not
only interact with TinyOS code but also with one another.

2868 IEEE SENSORS JOURNAL, VOL. 16, NO. 9, MAY 1, 2016

This has been achieved with inclusion of concurrency
in TinyOS. TinyOS follows an event-driven concurrency
model [29], [30].

The event-driven concurrency model in TinyOS some-
times introduces certain complexities in the normal opera-
tion of sensing nodes. As sensing nodes have to operate
undeterred, blocking certain components of an application
can block the whole sensing operation. Race condition in
the NesC compiler has already been integrated to miti-
gate concurrency-related problems. Application programmers
now have multiple techniques for checking concurrency-
related errors, out of which a process algebra known as
communicating sequential processes (CSP) [31] is highly
used. Another method to achieve maximum concurrency with
scarce processing resources is an implementation of TinyOS
threads (TOSThreads). The TinyOS concurrent model fol-
lows a synchronous and asynchronous model of execution.
In TOSThreads, threads are categorized into application-level
threads and kernel-level threads. Kernel-level threads are
assigned with high priority and cannot be preempted by user-
level threads. User-level threads cannot interact with OS-level
threads, either synchronously or asynchronously [32], [33].

TOSThreads are used to change the conventional TinyOS
non-preemptive behavior to preemptive behavior. The addition
of these TOSThreads brings extra complexity to TinyOS. Due
to this complexity, the component-based programming model
with preemptive scheduling lost its efficiency. To address
this issue in TOSThreads, another preemptive technique has
been added; that approach is the TinyOS preemptive orig-
inal (TOS-PRO) approach. The main benefit of TOS-PRO
is enhanced concurrrency in TinyOS. This improvement in
concurrency results in system improvements, which finally
results in fast execution of real-time tasks [34].

Enhancing concurrency has been an interesting area in
WSN OS design. To improve concurrency, lightweight, thread-
like abstractions, called fibers in concurrency modeling, are
now also seen in TinyOS [35]. In recent developments, the
concurrency information of expected applications is obtained
before execution via Integrated Concurrency and Energy
Management (ICEM) in device drivers [36].

B. Execution Model

TinyOS written in NesC has an execution model that is sen-
sitive to interrupts. Different computational tasks are executed
non-preemptively and follow the pattern of run to completion.
However, the main hurdle in execution of such tasks is the
occurrence of interrupts in the execution of tasks [15]. TinyOS
supports different types of hardware platform in the WSN
domain. These different platforms introduce their own inter-
rupts relating to their hardware designs. Software interrupts
have little overhead in execution of tasks [37].

Tiny sensing nodes with limited processing capability have
to time-share a processor among applications, the OS and
different communications protocols. Better execution and fast
convergence in this case can be achieved when individual com-
ponents are virtually partitioned. An event-driven execution
model produces maximum concurrency that works within the

Fig. 2. TinyOS scheduler (adapted from [44]).

limited resources, like energy and memory. Introduction of
threads to gain more execution and concurrency also demands
more memory [38], [39]. Now researchers are finding ways
to predict memory and power demands by applications before
they make their way into real sensing networks [40]. Differ-
ent virtual machines are now in place to predict the future
demands of user applications and communications protocols
for memory and execution time. Application-specific virtual
machines (ASVM) can go to the extent of reprogramming
already deployed WSNs [41], [42]. Different visualizing toolk-
its for TinyOS have also been constructed to assist program-
mers. With these toolkits, execution time of different tasks can
be predicted. In [43], a toolkit for TinyOS 2.0 was developed
to predict the runnng time of different embedded applications.

III. SCHEDULING ALGORITHMS

TinyOS programmed in NesC is equipped with the basic
components of events and tasks. In the initial versions of
TinyOS, there was a single type of task. Therefore, a wide
variety of scheduling algorithms was not needed. A simple
scheduler was integrated to assist the single task dependent
TinyOS. A basic task scheduler for TinyOS was run to
complete the task scheduler. It was a non-preemptive task
scheduler. The basic TinyOS scheduler is shown in Fig. 2 [44].
This earlier form of task scheduler was first in, first
out (FIFO) [8], [10], [11], [17], [20], [44], [45]. Now, WSNs
have found their applications in multiple fields. Therefore, a
wide variety of tasks have to be handled by the OS. With the
increasing number of tasks, the number of scheduling algo-
rithms has also increased. FIFO is now not the only scheduling
parameter in TinyOS. Multiple scheduling techniques have
now been integrated [44].

A. Priority Scheduling

In this technique, tasks are given priority, and that priority
is based on their importance. Real-time and other network
packets are now given the highest priority to ensure quality of
service (QoS). TinyOS with priority scheduling is discussed
elsewhere [46]–[48].

AMJAD et al.: TinyOS-NEW TRENDS, COMPARATIVE VIEWS, AND SUPPORTED SENSING APPLICATIONS: A REVIEW 2869

B. Earliest Deadline First (EDF)

In this scheduling technique, real-time sensitive traffic is
scheduled. Tasks are now prioritized, depending on their
remaining execution times. TinyOS with EDF [44], [47], [48]
shows enormous responsiveness towards time-critical data.

C. Real-Time Scheduling (RTS)

Another scheduling algorithm to handle real-time tasks
and network packets is the real-time scheduling mechanism.
This method employs a pre-emptive technique to execute a
given task in TinyOS [49], [50]. Real-time tasks can also
be scheduled by classifying them into periodic and aperiodic
tasks. These periodic tasks, known as time-bounded tasks are
then executed by the periodic scheduler, and aperiodic tasks
can be scheduled with a time-unbound scheduler known as
the aperiodic scheduler. Response time for aperiodic tasks has
also improved many times over. In this category of real-time
scheduling, energy is conserved many times, as compared to
other scheduling techniques used in TinyOS [48], [51].

D. Deadline Scheduler (DS)

This is an enhanced version of FIFO scheduling. However,
deadline is a new parameter added to the TinyOS scheduling
technique. Incoming tasks are now categorized based on their
deadlines [47], [48].

E. Priority-Based Soft Real-Time Scheduling

Certain tasks take a lot of time in their execution. This
can lead to overloading. In this situation, real-time tasks are
not executed properly. To mitigate this problem, priority-based
soft real-time scheduling was introduced in TinyOS for smooth
execution of real-time tasks [47], [48], [50].

F. Job: A New TinyOS Based Task Scheduler

An earlier version of the TinyOS task scheduler was run
to completion, non-preemptive. This introduced a problem
for larger tasks because these tasks had to wait for a long
time, which reduces system responsiveness. This issue was
addressed with cooperative and multithreading multitasking.
Job is a task scheduler for TinyOS, which incorporates cooper-
ative and multithreading multitasking approaches for executing
the larger tasks in systems [52].

G. Adaptive Double-Ring Scheduling (ADRS)

In this TinyOS scheduling method, there are two types
of task cycle queue. One task cycle queue is given higher
priority than the other. Real-time tasks can also be executed
in ADRS, because they are placed in a task cycle queue
that has a higher priority. ADRS is simulated in the TinyOS-
based simulator (TOSSIM). The simulation results showed that
TinyOS using ADRS provides better performance [48].

H. Co-Routine Scheduling

Multitasking is incorporated into TinyOS with the help
of a co-routine scheduling mechanism. Tasks are labelled as
routine, and each routine has its own stack. This method of

having a separate execution stack is more similar to having
threads in execution [48].

With the growing number of supported sensing appli-
cations in TinyOS, scheduling techniques have also been
modified. Different routing techniques also introduced new
packet scheduling methods to facilitate better convergence
and QoS [53]. Scheduling the power in the network is also
endorsed as the main scheduling research domain [54]. Details
of the above-mentioned scheduling policies with their advan-
tages and limitations are given in Table III.

IV. MEMORY MANAGEMENT AND PROTECTION

WSNs consisting of tiny nodes have to operate with limited
resources. The available processing power and memory
are not enough. Hardware protection of memory is not
available in tiny nodes to safely manage the sensed and
processed data. Earlier versions of TinyOS only supported
static memory allocation due to limited available space [55].
However, gradual revisions, and new enhancements in
TinyOS, provide enhanced features like memory safety and
memory safety checks. TinyOS 2.0 introduced more memory
safety, compared to simple TinyOS 1.0 [56]. TinyOS 2.0 is
used as a basis for further enhancements to provide more
protection of memory. “Safe TinyOS” was developed with
a main function of providing memory safety to tiny nodes.
Various memory checks formed a red line for safe execution
of tasks. This red line prohibits bogus and unsafe programs
from executing and, in this way, “Safe TinyOS” provides
maximum memory safety for sensing nodes [57].

Untrusted extensions for TinyOS (UTOS) is another revi-
sion in TinyOS editions for providing more memory safety,
compared to “Safe TinyOS.” In UTOS, untrusted execution of
data is isolated first and then terminated. Simpler modifications
are required to transform TinyOS into UTOS. Migration
from simple TinyOS to UTOS gives more memory safety,
as depicted in Fig. 3 [58]. The size of the OS for WSNs
can also be minimized with the help of different program-
ming paradigms. The introduction of protothreads enabled OS
developers to write the code for WSN OSs with the fewest
possible lines [59]. This reduction in code length demands
less memory, which is the core demand for programming a
sensing-node OS.

There was also the introduction of UnStacked C in TinyOS.
In this approach, applications of a sensornet that support
TOSThreads can be modified in such a fashion that they can
easily be transformed into stackless threads during the building
process. The UnStacked C approach makes TinyOS memory-
efficient and conserves energy [60]. Dynamic TinyOS provides
the user with a dynamic auto-update feature in TinyOS and
its components, without interrupting the operations of sensing
nodes [61].

V. ENERGY MANAGEMENT IN TinyOS

Battery-operated tiny sensing nodes are widely distributed
to sense the required data. Replacing the batteries incurs
extra overhead on a resource-constrained network. Therefore,
every feature of WSNs is taken into consideration while

2870 IEEE SENSORS JOURNAL, VOL. 16, NO. 9, MAY 1, 2016

TABLE III

TinyOS SCHEDULING POLICIES: AN OVERVIEW

designing them [62]. Different power-saving techniques have
been introduced to conserve maximum power. Sensing nodes
in some cases are shut down when they are no longer needed
for sensing data. Power is dynamically distributed in the whole
sensing network [63]. Usually, energy conservation is focused
in three major operations of the sensing nodes: processing,
communications, and sensing [64], [65].

Different techniques have been incorporated in TinyOS to
achieve minimum power utilization. TinyOS with software
thread integration (TOSSTI) is a method in which energy is
conserved in TinyOS. By the integration of software threads,
TinyOS makes efficient use of idle time during transmission,
processing and sensing of data [66]. In TinyOS that supports
high-power listening (HPL), TinyOS estimates the overall
load of the sensing nodes and then dynamically allocates the
required energy to the sensing nodes [67]. This can only
be possible with accurate estimation of energy consumption
in the sensing nodes. Sensing nodes consume energy in a
variety of ways [68], [69]. TinyOS, in this case, is the most
efficient OS because it estimates the energy consumed by
the sensing nodes, by TinyOS itself, and by its components.
TinyOS supports various methods of estimating the energy
consumption for different applications. One of the methods is
the energy tracking system.

In this method, energy-tracking components are added
in the TinyOS programming model. These energy-tracking
components track the energy consumption of various
components in the sensing nodes. Energy tracking of the
processor, the transmission module and the sensing module is
done with the help of TinyOS. The energy-tracking method

is shown in Fig. 4 [70], [71]. Different energy conservation
techniques have been implemented using TinyOS. One of
the techniques, called energy-aware target tracking (EATT),
is used to track the energy consumption and was developed
only for TinyOS [72].

VI. TinyOS AND ENERGY-EFFICIENT COMMUNICATIONS

Sensor nodes in WSNs sense data and then transfer them
to the BS. This communication is designed to be energy-
efficient to save the maximum amount of energy in the
system. Signal propagation, reception, packet transmission,
idle and sleep behavior of sensing motes are modelled to be
energy-efficient [73]. The OS in this regard plays a crucial
role. TinyOS, with its advanced components, favors energy-
efficient communications. Different mechanisms are supported
by TinyOS to estimate the consumption of energy. Accurate
consumption of energy for communications helps to estimate
the network lifetime and the stability of the whole network.
TinyOSs supportive behavior for energy-efficient WSN com-
munications (with relevant references) is shown in Fig. 5.

A. TinyOS Support for Communications Protocols

TinyOS provides compatibility for energy-efficient pro-
tocols. A large number of communications protocols are
well-supported in TinyOS. Protocols at the medium access
control (MAC) layer, transport layer and network layer are
specifically designed to consume less power. TinyOS, being
the most widely used OS for WSNs, is so flexible that it
supports the maximum number of energy-efficient protocols.

AMJAD et al.: TinyOS-NEW TRENDS, COMPARATIVE VIEWS, AND SUPPORTED SENSING APPLICATIONS: A REVIEW 2871

Fig. 3. Transition of TinyOS from safe to untrusted extensions (adapted from
[58]).

Fig. 4. Energy-tracking technique by TinyOS (adapted from [71]).

1) TinyOS Support for Transport Layer Protocols: Protocols
for the transport layer have been designed to conserve energy
under the limited resources of WSNs. Protocols of the
transport layer are well-supported by TinyOS. TinyOS seems
to enhance the performance of protocols in the sensing
operation. A hybrid, dynamic, reliable protocol was designed
for the transport layer, and its performance was measured with
TinyOS [74]. Another widely used transport layer protocol
is the post-order based protocol. This protocol is suitable not
only for the transport layer but also for the routing layer. The
post-order based protocol is implemented in TinyOS, and
shows the best results with this event-driven OS [75].

2) TinyOS Support for Network Layer Protocols: Instead
of conventional routing protocols, energy-efficient rout-
ing protocols have been designed for WSNs. So WSN
researchers have developed robust and energy-saving routing
protocols [76]–[78]. TinyOS provides support for these routing
protocols to save the maximum amount of energy [79].

Opportunistic routing has been introduced in WSNs.
This routing approach seems to conserve more energy in
WSNs [80], [81]. A very specific TinyOS-based opportunistic
routing protocol, named the TinyOS opportunistic routing
protocol (TORP), was proposed to conserve energy. This
approach selects the forwarding nodes in a more efficient way
and then forwards data to nearby nodes, and hence, conserves
energy in the system. TORP has enhanced network lifetime,
scalability, throughput and energy efficiency, compared to
other conventional routing protocols [82]. Low-energy adap-
tive clustering hierarchy (LEACH) [83] is the network layer
protocol for WSNs. It is a conventional routing protocol for
WSNs. The LEACH protocol has been tested on TinyOS. The
implementation of LEACH under TinyOS shows that LEACH
performs better in conjunction with TinyOS [84]. The LEACH
protocol is extensively implemented on TinyOS. It also shows
better performance with the TOSSIM simulator. Other routing
protocols have also been derived from the LEACH proto-
col and have been implemented in TinyOS [85]. Routing
protocols for ad hoc networks show smooth operation with
TinyOS. Comparisons of energy efficiency for different routing
protocols are made by implementing them under TinyOS.
Location-aided routing (LAD) and destination sequence vector
routing (DSVR) were implemented using TinyOS. TinyOS
supports the energy-efficient communications of these routing
protocols [86]. Sensing nodes in WSNs share network traffic
load with other nodes in the network. Various load-balancing
routing approaches have been proposed for WSNs. A load
balancing routing scheme presented by Daabaj [87] enables
the sensor nodes to balance the load and provides an energy-
efficient routing scheme. In this approach, the load-balancing
routing algorithm forms a tree-like forwarding table and tracks
the packets. Power consumption in energy-balanced routing
protocols is measured in TinyOS with dynamic power scaling.
With its implementation in TinyOS, dynamic power scaling
provides optimal power usage during routing operations [88].
The sensor protocol for information via negotiation (SPIN)
is a data-centric routing protocol for WSNs. SPIN follows
the energy-efficient event-driven delivery model. This routing
protocol is implemented using TinyOS and shows the best
results in improved network life and stability [89].

3) TinyOS Support for MAC Layer Protocols: Different
energy-efficient MAC layer protocols have been designed and
tested with TinyOS. Carrier sense multiple access/collision
avoidance (CSMA/CA) is extensively used in WSNs. This
protocol gives optimal performance with TinyOS. Improved
versions of CSMA/CA were also tested on TinyOS-supported
simulators, such as TOSSIM and PowerTOSSIM [90]. B-MAC
is a well-known second layer protocol that is specifically
designed for TinyOS. This MAC layer protocol has a sleep
procedure to stabilize the network. Energy conservation in
the MAC layer enhances the overall energy of the sensing

2872 IEEE SENSORS JOURNAL, VOL. 16, NO. 9, MAY 1, 2016

Fig. 5. TinyOS-based energy efficient communications.

nodes [91]. Another protocol in the MAC layer in TinyOS is
TinyOS low-power listening (TinyOS LPL). This is an efficient
energy-saving MAC protocol designed only for TinyOS [92].
X-MAC works well with TinyOS for duty cycled WSNs.
In X-MAC, energy is conserved more by employing a shorter
preamble. This shorter length preamble makes it the protocol
of choice. It was tested with TinyOS, and TinyOS seems
to be more compatible with this new version of a MAC
protocol [93]. Different versions of MAC protocols introduced
compatibility issues. Each MAC layer protocol is suitable for
some specific application or set of applications. These issues
introduce the problem of compatibility between protocols.
This, in turn, badly affects communications between sensing
nodes. To overcome compatibility issues, a MultiMAC proto-
col stack was introduced in WSNs. This MultiMAC stack is
fully supported and developed under TinyOS. With the help
of this approach, interoperability problems at this layer are
resolved. The MultiMAC protocol stack initially comprised
three well-known MAC protocols: CSMA/CA, LPL-MAC and
TDMA MAC. This stack is more flexible and scalable, because
it can support other MAC layer protocols, as well [94].

4) Support for IP and IPv6: Sensing motes, as compared
to other network nodes, did not use the conventional
internet protocol (IP) addressing scheme. However, new
research has enabled tiny sensing motes to use both
IP and IPv6 [102], [103]. With the help of IP communications,
low-power sensing nodes using TinyOS can communicate
directly with conventional IP networks. Both the IETF
6LoWPAN and RoLL research groups have come out with a
new benchmark, which focuses on implementation of IPv6 in
WSNs with the help of TinyOS [104]–[106].

There are certain limitations regarding the use of IP in
WSNs. These limitations hindered the use of IP for WSNs.
Now various modifications have been introduced in WSNs

OSs architecture to make it suitable for IP. The main chal-
lenges faced by WSNs OSs for using IP are discussed as
follows [228].

• Large IP header overhead is considered not suitable for
tiny low power sensing nodes OS. Sensing nodes radio
communication module consumes much energy while
transmitting and receiving the IP packet. IP header packet
size is 20 bytes for IP and 40 bytes for IPv6. To address
this challenge, various header compression approaches
are used by the WSNs to use IP and IPv6. TinyOS
supports various header compression techniques to make
the implementation of IP on WSNs [102].

• Addressing scheme of conventional IP network relies on
global IP address that uses dynamic host configuration
protocol (DHCP) in case of IPv4, and stateless address
auto-configuration (SAA) in IPv6, which in turn, creates
large overhead for low bandwidth and energy scarce
sensing nodes. TinyOS seems to provide the compatibility
between the data-centric routing in WSNs and address
centric routing of IP networks [103].

• Compared to IP network, WSNs have very limited battery
life. The replacement of battery is not an option in many
cases such as battlefield implementation. IP consumes
larger bandwidth for convergence and controlling the net-
work topology compared to WSNs. Hence, various novel
energy efficient routing protocols have been designed sep-
arately for WSNs with less code size. TinyOS supports an
efficient energy tracking mechanism for implementation
of IP in WSNs.

While residing within these limitations, various approaches
have been adopted to introduce interoperability in the sensing
nodes architecture and transmission control protocol and the
internet protocol (TCP/IP) stack. Two approaches which are
adopted for compatibility are the proxy-based and the sensor

AMJAD et al.: TinyOS-NEW TRENDS, COMPARATIVE VIEWS, AND SUPPORTED SENSING APPLICATIONS: A REVIEW 2873

node stack-based [95]. With the introduction of internet of
things (IoT), the sensing nodes that are now termed as the
data producing nodes, use the sensor stack-based approach
for communication with the internet. TinyOS supports the
sensor stack-based approach by employing the efficient inlined
functions in its programming model. The optimization of
programming model of TinyOS gives the energy efficient
solution for this stack-based approach.

Interoperability of TCP/IP for sensing nodes was firsts
introduced in [229] by introducing the micro IP (uIP) and
lightweight IP (lwIP) TCP/IP stacks for small sensing motes.
These uIP and lwIP TCP/IP stacks are tested with TinyOS.
TinyOS provides energy efficient implementation of these
TCP/IP stacks on sensing nodes while using the MICAz
hardware platforms.

A WSNs application known as intrusion detection first used
the IP-based sensing nodes for its sensing operation [230].
In this application, embedded sensor board (ESB) was used
on Contiki operating system and later on TinyOS. Both the
contiki OS and TinyOS give the optimal compatibility for both
the address centric routing of TCP/IP protocol stack and data
centric routing protocols of WSNs.

In [231], the IPv6 and IPv4 have been compared for their
implementation in WSNs. Despite the 128 bit address space of
IPv6, IPv6 is more flexible and has advantages when it is used
for WSNs. SAA approach of IPv6 and larger address space to
cover large networks make it best fit for emerging WSNs for
IoT. TinyOS coding is edited with respect to SAA approach
of IPv6.

To make the IPv6 compatible for TinyOS-supported sensing
nodes, the 6LoWPAN working group (6LoWPAN WG) has
developed an intermediate layer to incorporate IPv6 into
802.15.4 [232]. The overhead created by IPv6 header is
minimized with the introduction of compression mechanis in
6LoWPAN. The header compression mechanism 1 and 01
(HC1 and HC01) are supported by TinyOS programming
model. In addition to compression, the fragmentation tech-
nique also divides the IPv6 packets into several 802.15.4
frames, hence makes the IPv6 suitable for low power tiny
sensing nodes.

In WSNs, various protocols communicate with one another
with the help of message passing. TinyOS supports active
message passing in message-oriented communications. These
active messages obtain the help of “Split Control” to manage
energy in the whole network [95]. TinyOS makes WSN
communications reliable and fault-tolerant by supporting
message-based communications. With the passage of time,
TinyOS has witnessed many developments in its structure to
make WSN communications energy-efficient.

B. TinyDB

In the communications process, sensing nodes using TinyOS
use features of TinyDB. With the help of TinyDB, sensing
motes extract useful information from the network. It is
actually the query-processing system that conserves the energy
in the system and made the programming task much easier.
To extract the information, low-level code does not have to

be written separately for TinyOS, because TinyDB with a
structured query language (SQL) type of interface provides
query processing. The following features were added with the
integration of TinyDB in TinyOS [96]–[99].

• Network Layout: TinyDB manages the whole network
topology. The whole communications network layout is
maintained in TinyDB.

• Efficient Query Handling: Time-critical and non-critical
data, as mentioned by Mayer et al. [100], can also be
provided to end users with TinyDB.

• Data Protection: Sensing motes sense data and then
transfer them to the BS [101]. In this transfer, data
integrity and protection under TinyOS is provided with
the help of TinyDB.

• Smooth Communications: Sensor network communica-
tions is more reliable and smoother with the help of
TinyDB.

C. Support of IEEE 802.15.4/ZigBee Protocol Stack

The IEEE 802.15.4/Zigbee protocol stack is now used by
sensing applications. WSNs with ZigBee applications are
gaining more and more importance. TinyOS is utilized in
various sensing applications with the integration of ZigBee.
MICAz platforms are considered more useful when using
ZigBee with TinyOS [107]–[109]. ZigBee was also tested on
different hardware platforms running TinyOS [110]. Porting
TinyOS from one platform to another platform with ZigBee
does not introduce many complexities, compared to other
protocol stacks [111].

D. TinyLTS

TinyLTS is an extension of TinyOS. Through the help of
TinyLTS, network-related logging and tracing can be achieved.
Through logging and tracing, network applications can be
monitored and analyzed without any other separate logging
tools. TinyLTS can get into the applications main components
and gives an idea of their behavior. TinyLTS can also separate
dynamic and static information at compile time [112].

E. TinyOS Implementation for Hybrid Networks

WSNs can be implemented in a wider variety of fields
than wired networks. These low-power sensing nodes cannot
perform high levels of computation for various applications,
such as in industry. So, wired support sensing nodes are
implemented for advanced sensing applications. These hybrid
networks of wireless and wired nodes have been simulated
under TinyOS. TinyOS seems to support energy-efficient com-
munications in these hybrid networks [113].

F. TinyOS Implementation for Heterogeneous Networks

Sensing nodes are different from one another in terms
of their energy levels, supported hardware platforms and
sensing operations. Such heterogeneous network conditions
can be produced with the help of the TiQ framework. TinyOS
provides a TiQ environment for operation of heterogeneous
networks. TinyOS appears to be the most reliable OS for
heterogeneous networks [114].

2874 IEEE SENSORS JOURNAL, VOL. 16, NO. 9, MAY 1, 2016

TABLE IV

COMPARISON OF TinyOS-BASED SIMULATORS

VII. SIMULATORS FOR TinyOS

Researchers can now simulate different sensing applications
and OSs with virtual environments. Real hardware imple-
mentation of new applications in distributed sensor nodes is
much more time-consuming and more expensive. Different
virtual environments have been created to simulate different
applications and OSs for WSNs [115]. TinyOS and its various
applications can also be simulated on a wide variety of
simulators. Instead of a TinyOS installation with real sensing
nodes, various experiments can be performed by running it on
simulators on a PC. A comparative view of different simulators
is given in Table IV. Different simulators that help TinyOS are
explained below.

A. TOSSIM

This is a widely accepted simulator for TinyOS and its
various applications. It analyzes TinyOS at a very basic level.
TOSSIM can find many bugs in TinyOS and its various
applications. Large numbers of nodes running TinyOS can be
simulated using it [116]–[118]. TOSSIM is used for many
applications to test their operational behavior. Some of the

widely used applications that utilize TOSSIM for testing are
given below.

• Different routing algorithms are first simulated using
TOSSIM. Multihop routing algorithms are usually simu-
lated on TOSSIM [119].

• Distributed binary consensus algorithms are extensively
used in WSNs for finding dead nodes [120]. TOSSIM
is widely used by these algorithms to check their oper-
ation [121]. TOSSIM also provides support for various
other algorithms [119], [177].

• Collection tree protocol (CTP) is an extensively used
routing protocol for WSNs. It is an energy-efficient
routing protocol for efficient data collection, processing
and transmission of processed data. TOSSIM is used in
simulations of CTP. CTP is highly compatible with this
simulation environment [122].

• Hopfield neural networks simulation is performed in
TOSSIM. TOSSIM, in this case, provides a parallel and
distributed computation environment for simulation of
neural networks [123].

• Heterogeneous and large-scale WSNs can be simulated
with the help of TOSSIM. It is the only TinyOS-based

AMJAD et al.: TinyOS-NEW TRENDS, COMPARATIVE VIEWS, AND SUPPORTED SENSING APPLICATIONS: A REVIEW 2875

simulator that provides simulations of heterogeneous net-
works. For this purpose, a simple if and then control
structure is proposed in TOSSIM [124].

• Time complexity, or the running time of applications,
can be assessed with the help of TOSSIM. TinyOS-based
applications can now be assessed for their execution time
to avoid any bottlenecks in systems. For this purpose, the
number of time periods is estimated and then the time
complexity of the application is assessed [125].

• Different visualizers have been added in TOSSIM. These
visualizers add not only graphical support to TOSSIM,
but provide simulation of real-time applications. Having
3D visualizers for real-time applications makes it the sim-
ulator of choice for TinyOS real-time applications [126].

TOSSIM is considered the de facto simulator for TinyOS
applications. Furthermore, TOSSIM has also undergone many
developmental changes, such as adding new RF models. With
these modifications, simulation of TinyOS on different hard-
ware platforms has now become more and more easy [129].

B. Power TOSSIM

Energy-scarce WSNs with TinyOS can be simulated to
predict accurate energy consumption in sensing nodes. Power
TOSSIM is an extension of TOSSIM for predicting power
demand for TinyOS applications [127], [128].

C. mTOSSIM

This is an advanced simulator for novel TinyOS support-
ive applications. In mTOSSIM, usually the battery life of
sensing nodes in relation to TinyOS applications is predicted.
Compared to PowerTOSSIM and TOSSIM, in mTOSSIM, the
sensing environment is taken into account, such as indoor
or outdoor. mTOSSIM employs an advanced radio model
in its operation of predicting the battery lifetime of sensing
motes [130].

D. Viptos

Viptos is a graphical simulator for TinyOS applications.
Viptos is a combination of two strong simulating tools, namely,
Ptolemy and TOSSIM. Viptos can simulate heterogeneous
sensor nodes running TinyOS. The main contribution of Viptos
is its ability to support graphical environments for simulation
of TinyOS applications [133].

E. QualNet

Sensor nodes running TinyOS on the MICA2 hardware
platform can be simulated using the QualNet simulator. This
simulator provides accuracy and scalability when using the
MICA2 hardware platform [136].

F. TOSSF

Simulator for Wireless Ad-Hoc Networks (SWAN) is a
well-known simulator for wireless ad hoc networks. TinyOS
scalable simulation framework (TOSSF) is an advanced
version of SWAN for simulating TinyOS, to gain more
accuracy and flexibility [139].

G. Avrora

AVR instructions can be simulated with the help of the
Avrora simulator. This is a TinyOS-based simulator. Hetero-
geneous networks can also be simulated with the help of
Avrora [118].

H. SmartSim

This is a TinyOS-supported simulator. SmartSim is more
closely related to TOSSIM. However, the main difference lies
in its graphical interface. SmartSim is a graphical simulator
that is used for simulating TinyOS-based applications [140].

I. EmTOS

EmTOS [141] is based on EmStar [142]. The wrapper
library of EmTOS, which is similar to that of TOSSIM,
enables TinyOS applications to run a simulation as a single
module. With the help of EmTOS, heterogeneous networks
can also be simulated using TinyOS features.

VIII. COMPARATIVE VIEW OF TinyOS
WITH OTHER SENSORS OS

TinyOS is a widely used OS for sensing nodes. Randomly
distributed sensing nodes use different hardware platforms. So,
a wide variety of OSs have been developed for tiny sensing
nodes [10]. Comparison of TinyOS with other OSs is based
on their different characteristics and performance. This section
discusses the comparative view of TinyOS based on its features
and performance.

A. Comparative View of TinyOS Based on Its Features

A comparative view of TinyOS against Contiki, LiteOS,
SOS, MANTIS, Nano-Rk, and RETOS OSs based on different
features is given in Table V. Brief details of each OS are given
as follows.

B. Contiki

The Contiki OS is discussed elsewhere [8], [10], [11], [20],
[92], [143]–[145] as an open source OS for tiny sensing
motes. Its multitasking kernel made it the OS for a wide
variety of sensing motes. This lightweight, portable OS has
traits of preemptive multithreading, proto-threads and virtual
network computing. Contiki also provides support for a wide
variety of communications protocols. Compared to TinyOS,
this OS has dynamic and modular support for its different
programming model components. The C language was used
in designing the Contiki OS, as opposed to NesC, which was
used in TinyOS. Now, the advanced version of Contiki 2.2.1
provides concurrency, ContikiSec for security and a Coffee file
system. Event-driven characteristics of Contiki and TinyOS
make them OSs of choice for sensing nodes. These enhanced
features of Contiki made it more similar to TinyOS. In contrast
to TinyOS, a managed memory allocator in Contiki provides
more efficient memory management than TinyOS. Compared
to TinyOS, Contiki OS has two types of events: asynchronous
events and synchronous events.

2876 IEEE SENSORS JOURNAL, VOL. 16, NO. 9, MAY 1, 2016

TABLE V

COMPARATIVE VIEW BETWEEN TinyOS, AND OTHER WSN OSs

C. LiteOS
LiteOS [8], [20], [146], [147] is the Unix-based OS for

sensing motes. This OS has gained much attention due to
its ability to support Unix hardware platforms. LiteC++
with class library support is the programming language of
this OS. Dynamic memory allocation and the modular com-
ponent mode of LiteOS make it the OS for Unix-based

hardware platforms. Wireless reprogramming capability,
a built-in hierarchical Unix-based file system, and a smaller
footprint are the distinguishing features of LiteOS. A new
version, LiteOS 1.0, has been introduced to make it more
responsive to real-time traffic. This new version, with the
help of a virtual battery, conserves a lot of energy in systems.
IRIS and MICAz are the well-known hardware platforms that

AMJAD et al.: TinyOS-NEW TRENDS, COMPARATIVE VIEWS, AND SUPPORTED SENSING APPLICATIONS: A REVIEW 2877

are supported by LiteOS. An event-based programming model,
multi-thread support, and networking support make it closer to
TinyOS, but compared to TinyOS, it does not support real-time
traffic and does not provide concurrency.

D. SOS

SOS, discussed in several studies [8], [11], [148], was
developed by Mobisys in 2005. The main motive behind its
development was to introduce the OS to a WSN environment
that can support multiple hardware platforms. SOS can support
MICA2, MICAz, Telos and many other hardware platforms.
Usually, Java-based simulators are employed for its testing
before installation. Various differences exist between SOS and
TinyOS. The main difference lies in the visibility or non-
visibility of components during compilation. Components of
TinyOS are not visible when they are compiled into binary
code, whereas components of SOS do not disappear after
compilation. Also, SOS does not provide a real-time guaran-
tee, concurrency, multi-thread support, a compact file system
and remote debugging. These features are well supported in
TinyOS. The new version of SOS is 2.0.1. This advanced
version supports a virtual battery and energy-efficient network
message passing, and it has a modular structure. SOS uses
dynamic memory management, just like TinyOS.

E. MANTIS

Event-driven TinyOS is quite different from the multi-
threaded MANTIS OS. MANTIS is quite predictable and is
used for a network that has to be idle for a long time [8], [10],
[11], [149], [150]. MANTIS was developed under the MONET
project of 2005, and the main purpose of its development
was to ensure enhanced multithreading in a WSN OS.
Binary semaphores and counting semaphores were introduced
in MANTIS to ensure concurrency, just like in TinyOS.
Compared to TinyOS, it supports dynamic memory allocation,
a modular component model, and an event-based programming
model. Wireless reprogramming, remote debugging, commu-
nications security and an improved file system are absent in
the MANTIS OS. It also supports a wide variety of hardware
platforms, just like TinyOS.

F. Nano-RK

In several studies [8], [11], [151], the main features of
Nano-RK and its characteristic differences compared to
TinyOS are discussed. It supports the time-sensitive appli-
cations of WSNs in more efficient ways, and Nano-RK was
developed for handling of real-time tasks. A more sensitive and
efficient task-scheduling technique has also been integrated
into this OS. Resources are reserved in this OS to ensure
timely and guaranteed delivery of network packets. Nano-RK
has more similarity to TinyOS in that it has the same real-
time handling of tasks, static memory management, monolithic
system model, multi-thread support, and concurrency control.
Compared to TinyOS, Nano-Rk does not have an efficient file
system, remote debugging, and communications security. The
current version of Nano-RK supports sockets, like abstractions
for network communications.

TABLE VI

REDUCTION IN CODE DUE TO INLINING AND ITS EFFECT
ON TinyOS PERFORMANCE (ADAPTED FROM [27])

TABLE VII

REDUCTION IN CPU CYCLES, BOUNDARY CROSSING OF 7 MODULES,
AND TIMER OVERHEAD DUE TO TinyOS CODE

OPTIMIZATION (ADAPTED FROM [27])

G. RETOS

RETOS [8], [152], [153] was developed under a project of
IPSN in 2007. Multi-threading for sensing motes is the main
contribution of this OS. User-mode and kernel-mode handling
of tasks is also incorporated in RETOS. RETOS supports
the design and development of various sensing applications
because it was used as a code checker for new sensing
applications that run on it. It is now widely used in network
communications due to the presence of a three-layer network
architecture module. A wireless reprogramming capability,
multi-threading, and dynamic memory allocation makes it
more similar to TinyOS, whereas remote debugging, a compact
file system and enhanced features for energy conservation
are not addressed in RETOS. The latest version of RETOS
is 1.4, which supports a wide variety of hardware platforms
and virtualization.

H. Comparative View of TinyOS Based on Its Performance

TinyOS developers employ various techniques and design
approaches in programming model of TinyOS to improve
its performance. By adopting the various approaches and
modifications in NesC code, a significant improvement in
various performance metrics have been witnessed. TinyOS
program size, random-access memory (RAM) usage, energy
consumption, application code length, and central processing
unit (CPU) utilization are the performance metrics that have
been discussed in literature for performance comparison of
TinyOS with other OSs [8]. The effects on performance
metrics with respect to different coding paradigms have been
discussed below.

1) Inlining in TinyOS Code: Inlining a function in NesC
code as discussed in [28] improves the performance of
TinyOS while minimizing various overheads such as code size,
complex components, and wiring overheads. CPU utilization
and energy consumption are minimized to a great extent by

2878 IEEE SENSORS JOURNAL, VOL. 16, NO. 9, MAY 1, 2016

TABLE VIII

PERFORMANCE IN ENERGY CONSERVATION ENHANCES DUE TO DYNAMIC UPDATES IN TinyOS (ADAPTED FROM [61])

inlining the code. Code is reduced by inlining a function with
the help of single call site. Multiple call sites can extend
the code which really affects the optimization of TinyOS.
Table VI shows the performance of TinyOS with respect to
CPU utilization when the inlining reduces the code of different
applications such as surge, mate, and TinyDB.

With the help of inlining, sensing tasks are made smaller
in size. Smaller sensing tasks are well supported in TinyOS
compared to other OSs of WSNs. For example, MANTIS
has 17.15% longer execution time for small task compared
to TinyOS. This improved performance of TinyOS is also
due to the efficient packet forwarding mechanism adopted by
NesC [225].

2) Dynamic TinyOS: Sensing nodes are installed in a loca-
tion where their replacements and their components update
during runtime incur serious overhead. TinyOS updates and
software exchanges cannot be done during sensing operations.
For OS updates and component exchanges, sensing operations
have to be shut down. This was a drawback of OSs for
WSNs, including TinyOS. However, dynamic TinyOS feature
in programming model of TinyOS lets developers update,
and even exchange, the TinyOS components and software
dynamically without interrupting the sensing operation. This
turns out to be more efficient for memory, and a more energy-
efficient approach for TinyOS applications [61]. The increase
in performance of TinyOS (saving factor) with respect to
energy while using TinyDB for various applications such as
sense, blink, and oscilloscope is given in Table VIII.

When compared with OSs of WSNs, TinyOS shows more
performance in conserving the energy of the network. For
example, with the node at the position (n = 8) in tree
and executing a sensing task of (ls = 1ms) size (where
n represents the position of any sensing node in a binary
tree, and ls is the duration for executing the task as defined
in [225]), TinyOS shows 7.6% improvement in energy saving
compared to MANTIS OS [225].

3) Incremental Programming of TinyOS Code: TinyOS
code has been edited to provide the incremental network
programming for WSNs. Unlike the dynamic programming
as discussed in previous subsection, developers now use an
algorithm named as Rsync in incremental programming. The
sensing motes now can transmit their modified code dur-
ing transmission without interrupting the sensing operation.

TABLE IX

TinyOS USES LESS MODULES AND LINES COMPARED TO APPLICATION

MODULES AND LINES (ADAPTED FROM [27])

With the use of Rsync algorithm, TinyOS shows 9.1%
improvement in performance compared to LiteOS for changing
the source code by implementing incremental programming in
multi-hop WSNs [146], [226].

4) Optimization of NesC Code: Cross-components in NesC
code are optimized by imposing the restrictions on component
model to perform the static analysis. Call-graph for any appli-
cation is constructed by NesC that excludes the unreachable
code and hence improves the performance. This optimization
of TinyOS code results in reduction in memory usage [27] and
CPU cycles. Table VII shows the reduction in CPU cycles in
the timer event, while optimizing the code of TinyOS. A total
of 38% reduction in CPU cycles, 57% reduction in overhead
of boundary crossing of 7 modules, and 29% reduction in
overhead that is created by timer event can be achieved with
optimization of TinyOS code.

5) Component Model of TinyOS Code: Which component
of TinyOS code will handle which application, is decided by
the component model of TinyOS code. Usually, the TinyOS
code is divided into application code and the OS code. The OS
code which consists of scheduler and radio stack handles the
application code with the help of component model. Compo-
nent model efficiently uses the code and assigns minimum
OS code to execute each application. TinyOS source code
contains 108 code modules and 64 modules for configuration.
Every module has an average of 120 lines. It shows the
efficient component model of TinyOS, which carries smaller
code size. Table IX shows that the component model of
TinyOS assigns minimum possible code to each of three
applications run by TinyOS. This effective component model
makes TinyOS not only the memory efficient but also the

AMJAD et al.: TinyOS-NEW TRENDS, COMPARATIVE VIEWS, AND SUPPORTED SENSING APPLICATIONS: A REVIEW 2879

TABLE X

TinyOS-BASED SUPPORTED HARDWARE PLATFORMS

energy efficient, as less energy is consumed for execution
of applications [27]. Performance comparison with respect
to memory usage metric is made with MANTIS in [225].
An experimental application is executed on PIC16 [227]
processor while using TinyOS and MANTIS. TinyOS comes
out to be 4kB less in memory usage compared to MANTIS.
This reduction in memory usage is due to the reduction in
code performed by component model of TinyOS code.

IX. TinyOS SUPPORTED HARDWARE PLATFORMS

AND THEIR FIELD IMPLEMENTATION

WSNs consisting of tiny motes perform three distinguishing
tasks, compared to other conventional network nodes. These
nodes are to sense, process and then transmit data to other
connected nodes or to some other aggregating destination.
These nodes work in a flat topology and, sometimes, in a
clustered topology. These topological advances enable sensor
nodes to conserve more and more energy [158]–[160]. Highly
dense and resource-constrained networks of these sensing
motes require hardware platforms that meet their require-
ments [161]. Design of the OS plays a crucial role in the
sensing operation. TinyOS is considered to be more com-
patible with many hardware platforms that are designed for
WSNs [162]. A variety of hardware platforms are supported
by TinyOS. Different hardware platforms with their features
are presented in Table X. To port from one hardware platform
to another, TinyOS developers have come out with a hardware
abstraction architecture. TinyOS hardware abstractions can be

broadly classified into three layers [25], [163], [164]. These
layers are as follows.

1) Hardware Interface Layer (HIL):
This comprises hardware-independent components,
interfaces and events.

2) Hardware Presentation Layer (HPL):
This is close to the hardware layer. Components in this
layer are not picked by applications but are used by
hardware in some particular tasks.

3) Hardware Adaptation Layer (HAL):
This layer favors hardware functionality, and is closer
to the HPL.

Different layers within different hardware abstractions
of hardware platforms are shown in Fig. 6 and Fig. 7.
Hardware abstractions clearly show that certain applications
are hardware-independent and others are hardware-dependent
on different hardware platforms running TinyOS. Below
are some hardware platforms that are supported by
TinyOS.

• MICA is a platform that supports TinyOS. MICA, which
is a very small hardware structure, usually in inches,
can be used in multihop routing, and is a widely used
platform [165]. Some other advanced versions of MICA
are now deployed in health and other fields. These new
releases of MICA enhance the use of TinyOS in different
dimensions.

• MICA2-based platform extensions are available and use
TinyOS [166]. MICA2 is the primary TinyOS design and

2880 IEEE SENSORS JOURNAL, VOL. 16, NO. 9, MAY 1, 2016

Fig. 6. Platform-independent applications (adapted from [163]).

Fig. 7. Platform-dependent applications (adapted from [163]).

development platform. It supports almost all the TinyOS-
supported sensing applications.

• MICAz [8], [125], [157], [162] hardware platforms
enable TinyOS to support the IEEE 802.15.4 standard
and other higher-layer ZigBee standards.

• Telos [8], [20], [157], [162] is the hardware platform
that is designed for power conservation. Telos works well
with TinyOS and saves power, which enhances network
lifetime. It also supports the IEEE 802.15.4 standard.
Usually, a 1.8V operation is supported in Telos.

• Rene [162] is the hardware-dependent hardware platform
that runs TinyOS. Rene motes are generally employed in
the medical sciences [168].

• Intel-Mote2 [8], [162] is the Linux-based TinyOS plat-
form, which is very useful for many sensing applications.
The main feature of this platform is that it can also be
used for non-TinyOS-based sensing motes.

• BT Node [162] is the TinyOS-supported hardware plat-
form that is especially designed for cellular phones sup-
porting sensing applications that run TinyOS. Also, this
hardware facilitates multihop communications.

• Stargate [32], [162] is the most energy-efficient hardware
platform, newly developed for sensing motes. It supports
serial connections to sensor networks.

TABLE XI

TinyOS AND OTHER OSs AND THEIR FIELD IMPLEMENTATIONS
(ADAPTED FROM [20])

A. TinyBench

In WSNs, there is no standardized approach for evaluating
hardware platforms of sensing motes. Hardware platforms
are selected based on their supported applications and other
features. A standardized benchmark procedure is missing for
categorizing hardware platforms. However, TinyOS developers
have come out with a new TinyOS-based benchmark for hard-
ware platforms of sensing motes. This benchmark is named
TinyBench. This is a single-node standardized benchmark
based on TinyOS applications [170].

Sensing nodes are employed in a variety of fields. Different
OSs are used in different sensing mechanisms. Some OSs are
more responsive to a particular environment where others do
not perform well. TinyOS is employed in a variety of fields to
enhance sensing operations. An overview of TinyOS versus
other OSs with their implementations in different fields is
given in Table XI [20]. Fig. 8 [20] shows an analysis of usage
of OSs in WSNs. TinyOS is more widely deployed than any
other OS. More than 60 percent of the sensing fields employ
TinyOS due to its flexibility in the architecture.

AMJAD et al.: TinyOS-NEW TRENDS, COMPARATIVE VIEWS, AND SUPPORTED SENSING APPLICATIONS: A REVIEW 2881

TABLE XII

TinyOS SUPPORTED SENSING APPLICATIONS

Fig. 8. Usage of different OSs (adapted from [20]).

X. TinyOS AND ITS SUPPORTED SENSING APPLICATIONS

TinyOS is an open OS for WSNs. Component-based
TinyOS is a widely used OS, compared to other OSs in WSNs.
TinyOS supports many sensing applications. Table XII shows
the various TinyOS supported sensing applications and rele-
vant references. Some of the widely used sensing applications
that TinyOS supports are discussed below.

A. TinyOS for Water-Monitoring Applications

Water monitoring has gained a lot of attention in the sensing
world. Water levels are measured to keep levels of water flow
optimal. Water distribution networks are now monitored with
the aid of sensing motes, which has resulted in increased
efficiency of water distribution systems. Water waste is now
kept to a minimum with the help of sensor nodes [171].
TinyOS supports many water monitoring applications. Water
is remotely monitored with the help of TinyOS-supported
applications that involve monitoring of both water quality and
quantity. For remote water quantity monitoring, flooding rout-
ing protocols have been developed. Water quality sensors are
employed to perform real-time monitoring for water contami-
nants [172]. Water quantity is measured with the help of smart
water meters. These smart meters use ZigBee or M-Bus plat-
forms. M-Bus implementations using TinyOS are very useful
for water meter reading applications. TinyOS shows support
for a wide variety of water-monitoring applications [173].
Underwater applications, such as seismic monitoring, are
also very well supported by TinyOS. Underwater commu-
nications protocols, especially routing protocols, work well
with TinyOS [174], [175]. Other communications networks,

such as software-defined networks, also employ TinyOS for
underwater communications [176].

B. TinyOS Support for Medical Applications

WSNs are now widely utilized in various medical appli-
cations. With the implementation of sensors in the medical
field, WSNs have gained a lot of attention. Different medical
applications are now provided by WSNs [178], [179]. TinyOS
seems to be the perfect OS for different biological sensing
applications. Neural interfaces with TinyOS help to capture
nerve signals during an electroencephalogram (EEG) [180].
Brain neural signals are sensed by TinyOS-based sensing
motes. There are applications that not only sense neural
signals but also provide neural recording [181], [182]. A new
NesC TinyOS model has been proposed for distributed and
parallel computation of neural networks. This new model
includes initialization of a neural network, and relaxation
and convergence of neural computation [183]. Many of the
TinyOS-based sensing motes use the MICAz platform for
accurate measuring of signals [166]. TinyOS is also the OS of
choice for electrocardiogram (ECG) monitoring. This specially
designed TinyOS-based ECG monitor uses the 868 MHz ISM
frequency band [184].

C. TinyOS Supported Management Systems for WSNs

Sensing nodes are equipped with limited resources. If the
whole sensing and communications operation is not properly
managed, then it will result in considerable degradation of the
whole network. Network lifetime decreases, and earlier death
of nodes happens in the network. So systematic management
of the network is required for WSNs [185]–[187]. Different
management methods in WSNs are employed to efficiently
utilize network resources. DISON, supported by TinyOS, is a
generic management system for sensor nodes. The manage-
ment job is done by one of the nodes in the network, and
then the job is taken over by another node after a certain time
period. This saves the energy of nodes in the network [188].
TinyOS is an efficient OS that conserves power in the sys-
tem by properly managing energy [36], [63], [189]. Limited
resources of sensor nodes results in poor QoS. However,
TinyOS provides better QoS management with limited network
resources [190]. 6LoWPAN mobility management is handled
very efficiently with the help of TinyOS. This open source
OS manages the mobility of IP-based WSNs and enhances

2882 IEEE SENSORS JOURNAL, VOL. 16, NO. 9, MAY 1, 2016

throughput of the whole network. [191]. WSN management
can also be achieved with implementation of the IEEE 1451
standard. The introduction of a transducer for efficient trans-
mission of information under the IEEE 1451 standard, and
further implementation of this standard in TinyOS, provides
reliable network management for sensing motes [192].

D. TinyOS Supportive Applications for Detecting
Security Threats in WSNs

Sensing nodes are randomly distributed. Location of these
nodes is far away from the BS. Tiny motes sense data and then
forward them to the BS, which is located at some distance.
In this transmission, sensing node data can undergo various
attacks. Data integrity and authenticity is lost when WSNs
come under these attacks. Various classifications of attack have
been discussed in the literature on sensing nodes [193]–[195].
Studies of different attacks have been performed on TinyOS.
TinyOS minimizes threats of many attacks, and hence,
it comes out to be a more secure and reliable OS for sensing
nodes. Wireless injection attacks, denial of service attacks and
man-in-the-middle attacks have been studied on TinyOS to
minimize the effect of these attacks [196].

E. TinyOS-Based Environment Monitoring Applications

Environmental awareness has compelled researchers to
come out with environmentally friendly tools. Environment
degrading factors are monitored regularly. WSNs provide
environment monitoring to save the environment from
different degradation factors. Carbon emissions and glacier
monitoring are tackled well by sensing motes [4], [197]–[199].
Many TinyOS-based environment monitoring applications
have been developed to consistently monitor the environment.
Greenhouse gases, glaciers, and global-warming monitoring
applications are developed and tested with TinyOS. TinyOS,
in these cases, comes out to be more efficient and reliable than
any other OS for WSNs [200], [201]. WiseNet is a specially
designed TinyOS-based wireless network for sensors. Wisenet
is designed for monitoring the environment. Environmental
factors such as light, temperature and humidity can be sensed
well with TinyOS-based WiseNet. WiseNet maintains a
database. Sensing nodes sense and forward data to servers,
from where the data are taken for further analysis [202].
CC2430 sensing nodes implemented with TinyOS can also
be used for measuring temperature and for monitoring
switchgear assemblies. The switchgear assemblies encounter
voltage changes. So TinyOS enables these nodes to detect
voltage fluctuations and temperature very precisely [203].

F. TinyOS-Based Agricultural Applications

Now, WSNs have found their way into agriculture.
Agricultural productivity can be increased many times over
with the help of sensing nodes. The effect of weather on
crops, of water levels on crops, the effects of fertilizers, and
initial seed growth can be monitored with the help of sensing
motes [204]–[206]. TinyOS-based applications have been
developed that can be implemented on farms. TinyOS-based

motes have been widely used for monitoring agricultural
productivity [207].

G. TinyOS-Based Solar Power Generation
Monitoring Applications

Renewable energy resources have gained a lot of attention
in the modern energy-scarce world. These resources must
be utilized with the utmost care to make them available
for a longer period of time. Sensor networks are usually
employed for monitoring these resources. Solar energy gener-
ation based on photovoltaic cells can also use TinyOS. TinyOS
in these applications precisely monitors the whole generation
process [208], [209].

H. TinyOS-Based Habitat Monitoring Applications

TinyOS is widely deployed in monitoring habitats. Habitat
monitoring is an important application of WSNs. Through
habitat monitoring, sensing nodes collect data related to
residential areas and other biological habitats [210], [211].
TinyOS-based applications can be used for monitoring local
harmonics. Through monitoring local harmonics, electricity
issues can be resolved very efficiently [212]. Physical system
monitoring applications, such as cyber physical system moni-
toring, have also gained attention. For this purpose, the IP flow
information export (IPFIX) protocol was introduced for phys-
ical systems. This protocol has been implemented in TinyOS
and was named TinyIPFIX. This is the provision of IoT
applications, and TinyOS supports this combination of sensors
and IoT implementation [213]. A more efficient TinyOS-based
localization system was introduced [214]. This TinyOS-based
application is an energy-efficient localization system, which
uses an accelerometer. Nodes request the location of people,
frequently and infrequently, depending upon whether people
are running or standing still. Usually, TinyOS-based TelosB
sensing-node platforms are employed in these operations.

I. TinyOS Implementations on FPGA Systems

A field programmable gate array (FPGA) is an integrated
circuit that provides the customer with facility of config-
uration, so customers can configure these chips according
to their own demands. FPGA systems are now used in
WSNs [215], [216]. TinyOS is the only OS that has been
made so flexible that it can easily be implemented on an
FPGA system. Implementations of TinyOS on FPGA systems
require few modifications in the code of TinyOS. TinyOS
also seems to be very energy-efficient when ported to FPGA
systems [217], [218].

J. TinyOS Support for SANETs

Sensor actuator networks (SANETs) have gained entry into
many fields. SANETs are applied in agriculture, industry and
in medical fields. SANETs can be employed for specific
applications. For these purposes, TinyOS is adjusted to make
it specific for that one field. TinyOS also supports Service-
Oriented SANETs (SOSANETs). A new design of TinyOS,
named TinySOA, is employed for this purpose [219].

AMJAD et al.: TinyOS-NEW TRENDS, COMPARATIVE VIEWS, AND SUPPORTED SENSING APPLICATIONS: A REVIEW 2883

XI. TinyOS LIMITATIONS AND MODIFICATIONS

TinyOS is a widely accepted OS for sensing nodes.
However, it also faces many limitations. Certain limitations
are discussed below.

A. Limitations of TinyOS

TinyOS is a widely used OS for WSNs. It has attracted
many researchers and is being employed in many sensing
motes. However, that does not mean that TinyOS supports
all application tasks. There are certain limitations that TinyOS
faces during the execution of tasks. Improper execution of
tasks can lead to burdens and loads on the processor, which
in turn, leads to inefficiency of the system [46]. Following are
certain limitations faced by TinyOS.

1) Abnormal tasks in the job queue are not efficiently
handled in TinyOS. Sometimes, abnormal tasks can
hinder the execution of follow-up tasks. This can lead
to extra burdens and loads on the processor [50].

2) TinyOS cannot handle a high frequency of local tasks.
When the frequency of local tasks increases, it can lead
to loss of other tasks.

3) Baud rate is highly affected when the execution of some
tasks takes a lot of time, compared to other tasks. In this
way, the execution of real tasks is affected. TinyOS
cannot properly handle these situations [46].

4) TinyOS applications are considered difficult to construct,
debug and handle [43].

5) While TinyOS performs well with static applications,
TinyOS does not provide good performance for dynamic
applications. Also, complex applications are not well
supported in TinyOS [220].
Most of the limitations are addressed with certain exten-
sions and modifications in the programming structure
of TinyOS. TinyOSs advanced versions and various
extensions are given below.

B. TinyOS Advanced Versions and Extensions

With the growing demand for TinyOS, many new features
were added. Many requirements for sensing nodes were not
addressed in TinyOS when it was first developed. So users
demanded that certain modifications and enhancements be
incorporated.

1) TinyOS 2.0: The programming model of TinyOS 1.x
was reconfigured and redesigned for TinyOS 2.0. Version 1.x
encountered certain limitations. These limitations were
addressed with enhanced features in 2.x, but this also
introduced certain compatibility issues in TinyOS and its
supported applications. TinyOS 2.0 advanced features are
given below [221].

• Hardware abstractions were added in TinyOS 2.0. These
hardware abstractions were named the hardware abstrac-
tion architecture, which can be further subdivided into
three layers. This architecture enables TinyOS 2.0 to
support a larger number of hardware platforms.

• In addition to a non-preemptive FIFO task scheduler
in 1.x, TinyOS 2.0 has come up with a different

scheduling approach. TinyOS enables programmers and
developers to introduce a scheduler of their choice.
Normally, in TinyOS 2.0, every task has its own reserved
slot in the task queue.

• TinyOS 2.0 has an advanced and improved boot sequence.
The StdControl interface of 1.x was partitioned into Init
and StdControl interfaces in TinyOS 2.0. These two
interfaces make the boot sequence more responsive by
supporting start and stop commands.

• TinyOS 2.0 is written in the NesC 1.2 programming lan-
guage. The programming model of TinyOS 2.0 is made
in such a way that its components support virtualization
in more reliable way.

• TinyOS 2.0 provides plenty of timer interfaces. Timers
are an important feature for sensing motes. So, TinyOS
2.0 is considered more responsive, due to having plenty
of timers.

• Provision of a message_t buffer in TinyOS 2.0 makes
it more effective in sensing operations. There is plenty
of space in this type of buffer, so it can handle a large
number of packets.

• TinyOS 2.0 also provides efficient energy conservation
methods. Usually, the power control mechanism of the
microcontroller and the power control method of the
device makes it more suitable for tiny sensing motes.

2) TinyWifi (Extension of TinyOS): TinyWifi is character-
ized as a Linux-based TinyOS. Sensor nodes and other sensing
applications that are Linux-based can directly be implemented
with the help of TinyWifi.This has saved developers time
in further re-implementation of Linux-based sensing nodes.
With the provision of TinyWifi, Linux-based PCs and other
hand-held devices can be implemented on it. The primary
purpose of TinyWifi is to use IEEE 802.11 communication
protocols [163], [222]–[224].

XII. CONCLUSIONS

In this paper, we present the most widely used OS for
WSNs, TinyOS. We have encompassed the main features
of TinyOS. Contributions of this paper are multiple. This
survey has shown not only the contemporary state of the
art for TinyOS, but also the different developmental phases
and revisions it has undergone. Its event-driven concurrency
model, simple programming layout in NesC, and faster
execution make it the OS of choice for tiny sensing nodes.
We have shown that energy efficiency in TinyOS and the
best scheduling algorithms, like real-time scheduling and
priority scheduling, have made TinyOS operate the best in
resource-constrained sensing environments. This paper has
also pointed out that TinyOS code is very simple and short
and takes less memory, compared to other conventional OSs.
Memory management and protection with the help of TinyOS
is simple and more novel. Less memory requirements for
TinyOS installations and its applications has made it the OS
for sensor nodes. TinyOS is so flexible that it provides support
for the majority of energy-efficient routing protocols. Different
simulators for TinyOS were also discussed in our research
paper. A comparative view of TinyOS with other renowned

2884 IEEE SENSORS JOURNAL, VOL. 16, NO. 9, MAY 1, 2016

OSs for WSNs shows that TinyOS supports more features
compared to other OSs for WSNs. TinyOSs support for a wide
range of sensing applications, such as habitat monitoring and
medical applications, has made it the OS of choice for WSNs.
By going through the different features of TinyOS, it is clear
that TinyOS is the OS for sensing networks that provides more
accuracy and flexibility for sensing node applications to run.

REFERENCES

[1] A. Bharathidasan and V. A. S. Ponduru, “Sensor networks: An
overview,” Dept. Comput. Sci., Univ. California, Davis, CA, USA,
Tech. Rep., 2002. [Online]. Available: http://www.csun.edu/~andrzej/
COMP529-S05/papers/sensorNetworksSurvey.pdf

[2] C.-Y. Chong and S. P. Kumar, “Sensor networks: Evolution, oppor-
tunities, and challenges,” Proc. IEEE, vol. 91, no. 8, pp. 1247–1256,
Aug. 2003.

[3] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci,
“A survey of sensor network applications,” IEEE Commun. Mag.,
vol. 40, no. 8, pp. 102–114, Aug. 2002.

[4] D. Estrin, L. Girod, G. Pottie, and M. Srivastava, “Instrumenting
the world with wireless sensor networks,” in Proc. IEEE Int. Conf.
Acoustics, Speech, Signal Process. (ICASSP), vol. 4, May 2001,
pp. 2033–2036.

[5] K. Martinez, J. K. Hart, and R. Ong, “Environmental sensor networks,”
Computer, vol. 37, no. 8, pp. 50–56, 2004.

[6] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wire-
less sensor networks: A survey,” Comput. Netw., vol. 38, no. 4,
pp. 393–422, 2002.

[7] C. B. Margi et al., “Impact of operating systems on wireless sensor
networks (security) applications and testbeds,” in Proc. 19th Int. Conf.
Comput. Commun. Netw. (ICCCN), 2010, pp. 1–6.

[8] W. Dong, C. Chen, X. Liu, and J. Bu, “Providing OS support for
wireless sensor networks: Challenges and approaches,” IEEE Commun.
Surveys Tuts., vol. 12, no. 4, pp. 519–530, Nov. 2010.

[9] P. A. Levis, “TinyOS: An open operating system for wireless sensor
networks (invited seminar),” in Proc. 7th Int. Conf. Mobile Data
Manage. (MDM), 2006, p. 63.

[10] M. O. Farooq, S. Aziz, and A. B. Dogar, “Operating systems for
wireless sensor networks: A survey,” in Future Generation Information
Technology. Berlin, Germany: Springer, 2010, pp. 616–631.

[11] A. M. V. Reddy, A. V. U. Phani Kumar, D. Janakiram, and G. A. Kumar,
“Wireless sensor network operating systems: A survey,” Int. J. Sensor
Netw., vol. 5, no. 4, pp. 236–255, 2009.

[12] P. Levis, “Experiences from a decade of TinyOS development,” in Proc.
10th USENIX Conf. OS Design Implement. (OSDI), 2012, pp. 207–220.

[13] L. Gu and J. A. Stankovic, “t-kernel: Providing reliable OS support
to wireless sensor networks,” in Proc. 4th Int. Conf. Embedded Netw.
Sensor Syst., 2006, pp. 1–14.

[14] R. Sugihara and R. K. Gupta, “Programming models for sensor
networks: A survey,” ACM Trans. Sensor Netw., vol. 4, no. 2, 2008,
Art. ID 8.

[15] M. Zheng, J. Sun, Y. Liu, J. S. Dong, and Y. Gu, “Towards a model
checker for NesC and wireless sensor networks,” in Formal Methods
and Software Engineering. Berlin, Germany: Springer-Verlag, 2011,
pp. 372–387.

[16] D. Bucur and M. Kwiatkowska, “On software verification for sensor
nodes,” J. Syst. Softw., vol. 84, no. 10, pp. 1693–1707, 2011.

[17] S. Raman, “TinyOS—An operating system for tiny embedded net-
worked sensors,” presented at the Adv. Oper. Syst. Course, 2002.

[18] R. Gao, H. Zhou, and G. Su, “Structure of wireless sensors network
based on TinyOS,” in Proc. Int. Conf. Control, Autom. Syst. Eng.
(CASE), Jul. 2011, pp. 1–4.

[19] W. Archer, P. Levis, and J. Regehr, “Interface contracts for TinyOS,”
in Proc. 6th Int. Conf. Inf. Process. Sensor Netw., 2007, pp. 158–165.

[20] G. Strazdins, A. Elsts, K. Nesenbergs, and L. Selavo, “Wireless sensor
network operating system design rules based on real-world deployment
survey,” J. Sens. Actuator Netw., vol. 2, no. 3, pp. 509–556, 2013.

[21] P. Levis et al., “TinyOS: An operating system for sensor networks,” in
Ambient Intelligence. Berlin, Germany: Springer, 2005, pp. 115–148.

[22] L. Mottola and G. P. Picco, “Programming wireless sensor networks:
Fundamental concepts and state of the art,” ACM Comput. Surv.,
vol. 43, no. 3, 2011, Art. ID 19.

[23] D. Gay, P. Levis, D. Culler, and E. Brewer. (2009). nesC 1.3 Language
Reference Manual. [Online]. Available: http://nescc.sourceforge.ne

[24] V. Handziski, J. Polastre, J.-H. Hauer, and C. Sharp, “Flexible hardware
abstraction of the TI MSP430 microcontroller in TinyOS,” in Proc. 2nd
Int. Conf. Embedded Netw. Sensor Syst., 2004, pp. 277–278.

[25] V. Handziski, J. Polastre, J. Hauer, C. Sharp, A. Wolisz, and D. Culler,
“Flexible hardware abstraction for wireless sensor networks,” in Proc.
2nd Eur. Workshop Wireless Sensor Netw., 2005, pp. 145–157.

[26] P. Levis. (2006). TinyOS Programming. [Online]. Available:
http://www.tinyos.net/tinyos-2.x/doc/pdf/tinyos-programming.pdf

[27] D. Gay, P. Levis, R. Von Behren, M. Welsh, E. Brewer, and D. Culler,
“The nesC language: A holistic approach to networked embedded
systems,” ACM SIGPLAN Notices, vol. 38, no. 5, pp. 1–11, 2003.

[28] D. Gay, P. Levis, and D. Culler, “Software design patterns for TinyOS,”
ACM SIGPLAN Notices, vol. 40, no. 7, pp. 40–49, 2005.

[29] P. Levis et al., “The emergence of networking abstractions and tech-
niques in TinyOS,” in Proc. NSDI, 2004, p. 1.

[30] S. Iyengar, N. Parameshwaran, V. Phoha, N. Balakrishnan, and
C. Okoye, “Tiny operating system (TinyOS),” in Fundamen-
tals of Sensor Network Programming: Applications and Technol-
ogy, vol. 1. New York, NY, USA: Wiley, 2011, pp. 92–97.
DOI: 10.1002/9780470890158.ch5

[31] A. I. McInnes, “Using CSP to model and analyze TinyOS applications,”
in Proc. 16th Annu. IEEE Int. Conf. Workshop Eng. Comput. Based
Syst. (ECBS), Apr. 2009, pp. 79–88.

[32] K. Klues et al., “TOSThreads: Thread-safe and non-invasive preemp-
tion in TinyOS,” in Proc. SenSys, 2009, pp. 127–140.

[33] D. Bucur and M. Kwiatkowska, “Towards software verification for
TinyOS applications,” in Proc. 9th ACM/IEEE Int. Conf. Inf. Process.
Sensor Netw. (IPSN), 2009, pp. 400–401.

[34] P. Lindgren, H. Makitaavola, J. Eriksson, and J. Eliasson, “Leveraging
TinyOS for integration in process automation and control systems,”
in Proc. 38th Annu. Conf. IEEE Ind. Electron. Soc. (IECON), 2012,
pp. 5779–5785.

[35] M. Welsh and G. Mainland, “Programming sensor networks using
abstract regions,” in Proc. NSDI, 2004, p. 3.

[36] K. Klues et al., “Integrating concurrency control and energy manage-
ment in device drivers,” in ACM SIGOPS OS Rev., vol. 41, no. 6,
pp. 251–264, 2007.

[37] J. Hill and D. Culler, “A wireless embedded sensor architecture for
system-level optimization,” UC Berkeley, Berkeley, CA, USA, Tech.
Rep., 2002. [Online]. Available: http://www.cs.berkeley.edu/~culler/
cs252-s02/papers/MICA_ARCH.pdf

[38] J. Hill, “System architecture for wireless sensor networks,”
Ph.D. dissertation, Dept. Comput. Sci., Univ. California, Berkeley,
Berkeley, CA, USA, 2003.

[39] P. Levis. (2002). TinyOS: Getting Started. [Online]. Available:
http://www3.nd.edu/~nest/benders_nest/doc/tos-developer.pdf

[40] M. H. Alizai, O. Landsiedel, and K. Wehrle, “Modeling execution
time and energy consumption in sensor node simulation,” PIK-Praxis
Informationsverarbeitung Kommunikation, vol. 32, no. 2, pp. 127–132,
2009.

[41] P. Levis, D. Gay, and D. Culler, “Active sensor networks,” in
Proc. 2nd Conf. Symp. Netw. Syst. Design Implement., vol. 2, 2005,
pp. 343–356.

[42] N. Kothari, T. Millstein, and R. Govindan, “Deriving state machines
from TinyOS programs using symbolic execution,” in Proc. Int. Conf.
Inf. Process. Sensor Netw. (IPSN), Apr. 2008, pp. 271–282.

[43] A. R. Dalton, S. K. Wahba, S. Dandamudi, and J. O. Hallstrom,
“Visualizing the runtime behavior of embedded network systems:
A toolkit for TinyOS,” Sci. Comput. Program., vol. 74, no. 7,
pp. 446–469, 2009.

[44] V. Borges, O. Raikar, V. Desai, and P. Dalvi, “A comparative study
of TinyOS scheduling strategies and future scope,” in Proc. Int. Conf.
Comput. Sci. Eng., Apr. 2012, pp. 83–87.

[45] P. Levis and C. Sharp, Schedulers and Tasks, document TEP 106, 2011.
[46] V. Subramonian, H.-M. Huang, S. Datar, and C. Lu, “Priority schedul-

ing in TinyOS—A case study,” Dept. Comput. Sci., Washington Univ.,
St. Louis, MO, USA, Tech. Rep. WUCSE-2003-74, 2003.

[47] T. Lei, X.-M. Zhao, and F. Hui, “A TinyOS scheduling strategy and its
implementation,” in Proc. IEEE 3rd Int. Conf. Commun. Softw. Netw.,
May 2011, pp. 216–219.

[48] M. Yu, S. J. Xiahou, and X. Y. Li, “A survey of studying on task
scheduling mechanism for TinyOS,” in Proc. 4th Int. Conf. Wireless
Commun., Netw. Mobile Comput. (WiCOM), Oct. 2008, pp. 1–4.

[49] K. Atefi, M. Sadeghi, and A. Atefi, “Real-time scheduling strategy for
wireless sensor networks O.S,” Int. J. Distrib. Parallel Syst. vol. 2,
no. 6, pp. 63–78, 2011.

AMJAD et al.: TinyOS-NEW TRENDS, COMPARATIVE VIEWS, AND SUPPORTED SENSING APPLICATIONS: A REVIEW 2885

[50] Y. Zhao, Q. Wang, W. Wang, D. Jiang, and Y. Liu, “Research on the
priority-based soft real-time task scheduling in TinyOS,” in Proc. Int.
Conf. Inf. Technol. Comput. Sci. (ITCS), vol. 1, Jul. 2009, pp. 562–565.

[51] S. Tak, H. Kim, and T. Kim, “A study on real-time scheduling for
low-power sensor node platforms,” in Proc. IEEE 12th Int. Conf.
Comput. Inf. Technol. (CIT), Oct. 2012, pp. 169–176.

[52] M. Khezri, M. A. Sarram, and F. Adibniya, “Simplifying concurrent
programming of networked embedded systems,” in Proc. Int. Symp.
Parallel Distrib. Process. Appl. (ISPA), Dec. 2008, pp. 993–998.

[53] M. Chen, V. C. M. Leung, S. Mao, and M. Li, “Cross-layer and path
priority scheduling based real-time video communications over wireless
sensor networks,” in Proc. IEEE Veh. Technol. Conf. (VTC Spring),
May 2008, pp. 2873–2877.

[54] B. Hohlt and E. Brewer, “Network power scheduling for TinyOS
applications,” in Distributed Computing in Sensor Systems. Berlin,
Germany: Springer-Verlag, 2006, pp. 443–462.

[55] J. L. Hill, “Electronic access control, tracking and paging system,”
U.S. Patent 7 367 497, May 6, 2008.

[56] T. Alliance, “TinyOS 2.1: Adding threads and memory protection to
TinyOS,” in Proc. 6th ACM Conf. Embedded Netw. Sensor Syst., 2008,
pp. 413–414.

[57] N. Cooprider, W. Archer, E. Eide, D. Gay, and J. Regehr, “Efficient
memory safety for TinyOS,” in Proc. 5th Int. Conf. Embedded Netw.
Sensor Syst., 2007, pp. 205–218.

[58] J. Regehr, N. Cooprider, W. Archer, and E. Eide, “ Memory safety and
untrusted extensions for TinyOS,” School Comput., Univ. Utah, Salt
Lake City, UT, USA, Tech. Rep. UUCS–06–007, 2006.

[59] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali, “Protothreads:
Simplifying event-driven programming of memory-constrained embed-
ded systems,” in Proc. 4th Int. Conf. Embedded Netw. Sensor Syst.,
2006, pp. 29–42.

[60] W. P. McCartney and N. Sridhar, “Stackless preemptive multi-threading
for TinyOS,” in Proc. Int. Conf. Distrib. Comput. Sensor Syst.
Workshops (DCOSS), 2011, pp. 1–8.

[61] W. Munawar, M. H. Alizai, O. Landsiedel, and K. Wehrle, “Dynamic
TinyOS: Modular and transparent incremental code-updates for sensor
networks,” in Proc. IEEE Int. Conf. Commun. (ICC), May 2010,
pp. 1–6.

[62] R. Min et al., “Low-power wireless sensor networks,” in Proc. 14th
Int. Conf. VLSI Design, 2001, pp. 205–210.

[63] A. Sinha and A. Chandrakasan, “Dynamic power management in
wireless sensor networks,” IEEE Design Test Comput., vol. 18, no. 2,
pp. 62–74, Mar./Apr. 2001.

[64] N. Akilandeswari, B. Santhi, and B. Baranidharan, “A survey on energy
conservation techniques in wireless sensor networks,” J. Agricult. Biol.
Sci., vol. 8, no. 4, pp. 265–269, 2013.

[65] G. Anastasi, M. Conti, M. Di Francesco, and A. Passarella, “Energy
conservation in wireless sensor networks: A survey,” Ad Hoc Netw.,
vol. 7, no. 3, pp. 537–568, 2009.

[66] Z. D. Purvis and A. G. Dean, “TOSSTI: Saving time and energy in
TinyOS with software thread integration,” in Proc. IEEE Real-Time
Embedded Technol. Appl. Symp. (RTAS), Apr. 2008, pp. 354–363.

[67] O. Landsiedel, K. Wehrle, and S. Götz, “Accurate prediction of power
consumption in sensor networks,” in Proc. 2nd Workshop Embedded
Netw. Sensors, May 2005, pp. 37–44.

[68] M. N. Halgamuge, M. Zukerman, K. Ramamohanarao, and H. L. Vu,
“An estimation of sensor energy consumption,” Prog. Electromagn.
Res. B, vol. 12, pp. 259–295, 2009.

[69] S.-F. Li, R. Sutton, and J. Rabaey, “Low power operating system
for heterogeneous wireless communication system,” in Compilers and
Operating Systems for Low Power. New York, NY, USA: Springer,
2003, pp. 1–16.

[70] S. Abbate, M. Avvenuti, D. Cesarini, and A. Vecchio, “Estimation of
energy consumption for TinyOS 2.x-based applications,” Proc. Comput.
Sci., vol. 10, pp. 1166–1171, Dec. 2012.

[71] S. Abbate, M. Avvenuti, A. Biondi, and A. Vecchio, “Estimation of
energy consumption in wireless sensor networks using TinyOS 2.x,”
in Proc. IEEE Consum. Commun. Netw. Conf. (CCNC), Jan. 2011,
pp. 842–843.

[72] S. K. Sarna and M. Zaveri, “EATT: Energy aware target tracking for
wireless sensor networks using TinyOS,” in Proc. 3rd IEEE Int. Conf.
Comput. Sci. Inf. Technol. (ICCSIT), vol. 1, Jul. 2010, pp. 187–191.

[73] B. Dezfouli, M. Radi, S. A. Razak, T. Hwee-Pink, and K. A. Bakar,
“Modeling low-power wireless communications,” J. Netw. Comput.
Appl. vol. 51, pp. 102–126, May 2014.

[74] B. Sharma and T. C. Aseri, “A hybrid and dynamic reliable transport
protocol for wireless sensor networks,” Comput. Elect. Eng., vol. 48,
pp. 298–311, Nov. 2015.

[75] S. Shekhar, R. Mishra, R. K. Ghosh, and R. K. Shyamasundar, “Post-
order based routing & transport protocol for wireless sensor networks,”
Pervasive Mobile Comput., vol. 11, pp. 229–243, Apr. 2014.

[76] H. S. Kamath, “Energy efficient routing protocol for wireless sensor
networks,” Int. J. Adv. Comput. Res., vol. 3, no. 10, pp. 95–100,
Jun. 2013.

[77] N. Pantazis, S. A. Nikolidakis, and D. D. Vergados, “Energy-efficient
routing protocols in wireless sensor networks: A survey,” IEEE Com-
mun. Surveys Tutorials, vol. 15, no. 2, pp. 551–591, 2013.

[78] A. Balamurugan, “An energy efficient fitness based routing protocol in
wireless sensor networks,” ICTACT J. Commun. Technol., vol. 5, no. 1,
pp. 894–899, 2014.

[79] K. Akkaya and M. Younis, “A survey on routing protocols for wireless
sensor networks,” Ad Hoc Netw., vol. 3, no. 3, pp. 325–349, 2005.

[80] H. Zhu and M. Li, “Opportunistic routing protocols,” in Studies on
Urban Vehicular Ad-Hoc Networks. New York, NY, USA: Springer,
2013, pp. 41–74.

[81] S. Biswas and R. Morris, “Opportunistic routing in multi-hop wireless
networks,” ACM SIGCOMM Comput. Commun. Rev., vol. 34, no. 1,
pp. 69–74, 2004.

[82] J. Carnley, B. Sun, and S. K. Makki, “TORP: TinyOS opportunistic
routing protocol for wireless sensor networks,” in Proc. IEEE Consum.
Commun. Netw. Conf. (CCNC), Jan. 2011, pp. 111–115.

[83] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-
efficient communication protocol for wireless microsensor networks,”
in Proc. IEEE 33rd Annu. Hawaii Int. Conf. Syst. Sci., Jan. 2000,
pp. 1–10.

[84] C. Hou, K. W. Tang, and E. Noel, “Implementation and analysis of the
LEACH protocol on the TinyOS platform,” in Proc. IEEE Int. Conf.
ICT Converg. (ICTC), Oct. 2013, pp. 918–923.

[85] Y. Liang, “Study of protocol for wireless sensor network based on
TinyOS,” in Proc. IEEE Int. Conf. Comput. Design Appl. (ICCDA),
vol. 2, Jun. 2010, pp. V2-602–V2-605.

[86] S. Khan, S. Basharat, M. S. H. Khiyal, and S. A. Khan, “Investigating
energy consumption of localized and non localized ad hoc routing pro-
tocols in TinyOS,” in Proc. IEEE Multitopic Conf. (INMIC), Dec. 2006,
pp. 355–358.

[87] K. Daabaj, “Load-balanced routing scheme for TinyOS-based wireless
sensor networks,” in Proc. IEEE Int. Conf. Wireless Inf. Technol.
Syst. (ICWITS), Aug./Sep. 2010, pp. 1–4.

[88] W. Wang, J.-H. Youn, and H. R. Sharif, “The implementation of
an energy balanced routing protocol with dynamic power scaling
in TinyOS,” in Proc. IEEE Int. Conf. Sensor Netw., Ubiquitous,
Trustworthy Comput., vol. 2, Jun. 2006, pp. 262–267.

[89] Z. Rehena, K. Kumar, S. Roy, and N. Mukherjee, “SPIN implementa-
tion in TinyOS environment using nesC,” in Proc. Int. Conf. Comput.
Commun. Netw. Technol. (ICCCNT), Jul. 2010, pp. 1–6.

[90] M. Bertocco, G. Gamba, A. Sona, and S. Vitturi, “Performance mea-
surements of CSMA/CA-based wireless sensor networks for industrial
applications,” in Proc. IEEE Instrum. Meas. Technol. Conf. (IMTC),
pp. 1–6, May 2007.

[91] I. Demirkol, C. Ersoy, and F. Alagoz, “MAC protocols for wireless
sensor networks: A survey,” IEEE Commun. Mag., vol. 44, no. 4,
pp. 115–121, Apr. 2006.

[92] J. Ko, N. Tsiftes, A. Dunkels, and A. Terzis, “Pragmatic low-
power interoperability: ContikiMAC vs TinyOS LPL,” in Proc. 9th
Annu. IEEE Commun. Soc. Conf. Sensor, Mesh Ad Hoc Commun.
Netw. (SECON), Jun. 2012, pp. 94–96.

[93] M. Buettner, G. V. Yee, E. Anderson, and R. Han, “X-MAC: A short
preamble MAC protocol for duty-cycled wireless sensor networks,” in
Proc. 4th Int. Conf. Embedded Netw. Sensor Syst., 2006, pp. 307–320.

[94] D. van den Akker and C. Blondia, “MultiMAC: A multiple MAC
network stack architecture for TinyOS,” in Proc. IEEE 21st Int. Conf.
Comput. Commun. Netw. (ICCCN), Jul./Aug. 2012, pp. 1–5.

[95] P. Levis. (2007). Packet Protocols, TEP Core Working Group. [Online].
Available: http://www.tinyos.net/tinyos-2.x/doc/html/tep116.html

[96] S. Madden, J. Hellerstein, and W. Hong, “TinyDB: In-network query
processing in tinyos,” Intel Res., Tech. Rep. IRB-TR-02-014, Oct. 2002.

[97] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong,
“TinyDB: An acquisitional query processing system for sensor net-
works,” ACM Trans. Database Syst., vol. 30, no. 1, pp. 122–173,
2005.

2886 IEEE SENSORS JOURNAL, VOL. 16, NO. 9, MAY 1, 2016

[98] P. Di Felice, M. Ianni, and L. Pomante, “A spatial extension of
TinyDB for wireless sensor networks,” in Proc. IEEE Symp. Comput.
Commun. (ISCC), Jul. 2008, pp. 1076–1082.

[99] K. Mayer, K. Taylor, and A. N. U. Campus, “TinyDB by remote,”
in Proc. World Conf. Integr. Design Process Tech., Austin, TX, USA,
2003, pp. 3–6.

[100] A. Manjeshwar and D. P. Agrawal, “APTEEN: A hybrid protocol for
efficient routing and comprehensive information retrieval in wireless
sensor networks,” in Proc. 16th Int. Parallel Distrib. Process. Symp.,
vol. 2, 2002, p. 0195b.

[101] M. M. Afsar, and M.-H. Tayarani-N, “Clustering in sensor networks:
A literature survey,” J. Netw. Comput. Appl., vol. 46, pp. 198–226,
Nov. 2014.

[102] J. J. P. C. Rodrigues and P. A. C. S. Neves, “A survey on IP-based
wireless sensor network solutions,” Int. J. Commun. Syst., vol. 23, no. 8,
pp. 963–981, 2010.

[103] S. S. Bhunia, D. K. Sikder, S. Roy, and N. Mukherjee, “A comparative
study on routing schemes of IP based wireless sensor network,” in
Proc. 9th Int. Conf. Wireless Opt. Commun. Netw. (WOCN), Sep. 2012,
pp. 1–5.

[104] J. Ko, S. Dawson-Haggerty, O. Gnawali, D. Culler, and A. Terzis,
“Evaluating the performance of RPL and 6LoWPAN in TinyOS,” in
Proc. Workshop Extending Internet Low Power Lossy Netw. (IP+SN),
2011, pp. 1–6.

[105] L. B. Saad, C. Chauvenet, and B. Tourancheau, “IPv6 (Internet protocol
version 6) heterogeneous networking infrastructure for energy efficient
building,” Energy, vol. 44, no. 1, pp. 447–457, 2012.

[106] V. Kumar, G. Oikonomou, T. Tryfonas, D. Page, and I. Phillips,
“Digital investigations for IPv6-based wireless sensor networks,” Digit.
Investigation, vol. 11, pp. S66–S75, Aug. 2014.

[107] A. Cunha, A. Koubaa, R. Severino, and M. Alves, “Open-ZB: An open-
source implementation of the IEEE 802.15.4/ZigBee protocol stack on
TinyOS,” in Proc. IEEE Int. Conf. Mobile Adhoc Sensor Syst. (MASS),
Oct. 2007, pp. 1–12.

[108] P. Baronti, P. Pillai, V. W. C. Chook, S. Chessa, A. Gotta, and Y. F. Hu,
“Wireless sensor networks: A survey on the state of the art and the
802.15.4 and ZigBee standards,” Comput. Commun., vol. 30, no. 7,
pp. 1655–1695, 2007.

[109] S. C. Ergen. (Sep. 10, 2004). ZigBee/IEEE 802.15.4 Summary, UC
Berkeley. [Online]. Available: http://www.eecs.berkeley.edu/csinem/
academic/publications/zigbee.pdf

[110] A. Clemotte, E. A. Vargas, and S. L. Toral, “A Zigbee target system
running TinyOS,” in Proc. 15th Int. Power Electron. Motion Control
Conf. (EPE/PEMC), Sep. 2012, pp. LS4e.5-1–LS4e.5-5.

[111] M. M. R. Mozumdar, F. Gregoretti, L. Lavagno, and L. Vanzago,
“Porting application between wireless sensor network software plat-
forms: TinyOS, MANTIS and ZigBee,” in Proc. IEEE Int. Conf. Emerg.
Technol. Factory Autom. (ETFA), Sep. 2008, pp. 1145–1148.

[112] R. Sauter, O. Saukh, O. Frietsch, and P. J. Marrón, “TinyLTS: Efficient
network-wide logging and tracing system for TinyOS,” in Proc. IEEE
INFOCOM, Apr. 2011, pp. 2033–2041.

[113] A. Anastasopoulos, D. Tsitsipis, S. Giannoulis, and S. Koubias, “Imple-
mentation and evaluation of a hybrid network utilizing TinyOS-based
systems and Ethernet,” in Proc. IEEE Conf. Emerg. Technol. Factory
Autom. (ETFA), Sep. 2007, pp. 441–447.

[114] Y.-T. Wang and R. Bagrodia, “Scalable emulation of TinyOS applica-
tions in heterogeneous network scenarios,” in Proc. IEEE 6th Int. Conf.
Mobile Adhoc Sensor Syst. (MASS), Oct. 2009, pp. 140–149.

[115] B. Musznicki and P. Zwierzykowski, “Survey of simulators for wireless
sensor networks,” Int. J. Grid Distrib. Comput., vol. 5, no. 3, pp. 23–50,
2012.

[116] P. Levis and N. Lee, “TOSSIM: A simulator for TinyOS net-
works,”Comput. Sci. Division, Univ. California Berkeley, Berkeley,
CA, USA, Tech. Rep., 2003, vol. 17.

[117] P. Levis, N. Lee, M. Welsh, and D. Culler, “TOSSIM: Accurate and
scalable simulation of entire TinyOS applications,” in Proc. 1st Int.
Conf. Embedded Netw. Sensor Syst., 2003, pp. 126–137.

[118] L. Zhao, C. Xiao-Yan, C. Meng-Xiao, and Z. Wei, “The design and
implement of automated transfer based on TinyOS,” in Proc. 3rd
IEEE Int. Symp. Microw., Antenna, Propag. EMC Technol. Wireless
Commun., Oct. 2009, pp. 748–750.

[119] S. A. Notani, “Performance simulation of multihop routing algorithms
for ad-hoc wireless sensor networks using TOSSIM,” in Proc. 10th Int.
Conf. Adv. Commun. Technol. (ICACT), vol. 1. Feb. 2008, pp. 508–513.

[120] S. Kar and J. M. F. Moura, “Distributed consensus algorithms in sensor
networks: Quantized data and random link failures,” IEEE Trans. Signal
Process., vol. 58, no. 3, pp. 1383–1400, Mar. 2010.

[121] A. Abdaoui and T. M. El-Fouly, “TOSSIM and distributed binary
consensus algorithm in wireless sensor networks,” J. Netw. Comput.
Appl., vol. 41, pp. 451–458, May 2014.

[122] R. Nath, “A TOSSIM based implementation and analysis of collection
tree protocol in wireless sensor networks,” in Proc. IEEE Int. Conf.
Commun. Signal Process. (ICCSP), Apr. 2013, pp. 484–488.

[123] J. Li and G. Serpen, “TOSSIM simulation of wireless sensor network
serving as hardware platform for Hopfield neural net configured for
max independent set,” Procedia Comput. Sci., vol. 6, pp. 408–412,
Dec. 2011.

[124] J. Li and G. Serpen, “Simulating heterogeneous and larger-scale
wireless sensor networks with TOSSIM TinyOS emulator,” Procedia
Comput. Sci., vol. 12, pp. 374–379, Dec. 2012.

[125] G. Serpen and J. Li, “Assessing time complexity of applications
for TinyOS-Mica wireless sensor networks in TOSSIM emulator,”
Procedia Comput. Sci., vol. 12, pp. 380–385, Dec. 2012.

[126] A. Gupta and S. Roy, “Design and implementation of visualizers for
TinyOS,” Procedia Technol., vol. 10, pp. 409–416, Dec. 2013.

[127] V. Shnayder, M. Hempstead, B. Chen, and H. M. Welsh, “Powertossim:
Efficient power simulation for TinyOS applications,” in Proc. ACM
SenSys Sensor Netw., Los Angeles, CA, USA, 2003.

[128] M. Safaei, A. S. H. Ismail, and A. S. H. Ismail, “Visualization, data
analyzing and energy usage analysis in wireless sensor network based
on TinyOs and PowerTossimZ,” Int. J. Comput. Commun. Netw., vol. 1,
no. 1, 2011.

[129] C. Suh, J.-E. Joung, and Y.-B. Ko, “New RF models of the TinyOS
simulator for IEEE 802.15.4 standard,” in Proc. IEEE Wireless
Commun. Netw. Conf. (WCNC), Mar. 2007, pp. 2236–2240.

[130] J. M. Mora-Merchan, D. F. Larios, J. Barbancho, F. J. Molina,
J. L. Sevillano, and C. León, “mTOSSIM: A simulator that estimates
battery lifetime in wireless sensor networks,” Simul. Model. Pract.
Theory, vol. 31, pp. 39–51, Feb. 2013.

[131] W. Dron, S. Duquennoy, T. Voigt, K. Hachicha, and P. Garda,
“An emulation-based method for lifetime estimation of wireless sen-
sor networks,” in Proc. IEEE Int. Conf. Distrib. Comput. Sensor
Syst. (DCOSS), May 2014, pp. 241–248.

[132] A. Pughat and V. Sharma, “A review on stochastic approach for
dynamic power management in wireless sensor networks,” Human-
Centric Comput. Inf. Sci., vol. 5, no. 1, pp. 1–14, 2015.

[133] E. Cheong, E. A. Lee, and Y. Zhao, “Viptos: A graphical develop-
ment and simulation environment for TinyOS-based wireless sensor
networks,” in Proc. SenSys, vol. 5, 2005, p. 302.

[134] G. Teng, K. Zheng, and W. Dong, “A survey of available tools for
developing wireless sensor networks,” in Proc. IEEE 3rd Int. Conf.
Syst. Netw. Commun. (ICSNC), Oct. 2008, pp. 139–144.

[135] H. Taylor, “Multihop routing simulation of TinyOS-based wireless
sensor networks in Viptos,” Dept. Elect. Comput. Eng., Univ. Ver-
mont, Burlington, VT, USA, Tech. Rep., 2006. [Online]. Available:
https://chess.eecs.berkeley.edu/superb/projects/taylor_paper_viptos.pdf

[136] M. Varshney, D. Xu, M. Srivastava, and R. Bagrodia, “sQualNet:
A scalable simulation and emulation environment for sensor networks,”
in Proc. Int. Conf. Inf. Process. Sensor Netw., New York, NY, USA,
2007, p. 24.

[137] C. P. Singh, O. P. Vyas, and M. K. Tiwari, “A survey of simulation in
sensor networks,” in Proc. IEEE Int. Conf. Comput. Intell. Modelling
Control Autom., Dec. 2008, pp. 867–872.

[138] V. Rajendran, K. Obraczka, and J. J. Garcia-Luna-Aceves, “Energy-
efficient, collision-free medium access control for wireless sensor
networks,” Wireless Netw., vol. 12, no. 1, pp. 63–78, 2006.

[139] L. F. Perrone and D. M. Nicol, “A scalable simulator for TinyOS
applications,” in Proc. Winter IEEE Simulation Conf., vol. 1, Dec. 2002,
pp. 679–687.

[140] M. Safaei and A. S. H. Ismail, “SmartSim: Graphical sensor net-
work simulation based on TinyOS and TOSSIM,” in Proc. IEEE
3rd Int. Conf. Intell. Syst., Modelling Simulation (ISMS), Feb. 2012,
pp. 611–615.

[141] L. Girod et al., “A system for simulation, emulation, and deployment
of heterogeneous sensor networks,” in Proc. 2nd Int. Conf. Embedded
Netw. Sensor Syst., 2004, pp. 201–213.

[142] L. G. J. E. A. Cerpa and T. S. N. R. D. Estrin, “EmStar: A software
environment for developing and deploying wireless sensor networks,”
in Proc. USENIX Annu. Tech. Conf., General Track, 2004, pp. 283–296.

[143] T. Reusing, “Comparison of operating systems tinyos and contiki,”
Sens. Nodes-Oper., Netw. Appl., vol. 7, 2012. DOI: 10.2313/NET-2012-
08-2_02

AMJAD et al.: TinyOS-NEW TRENDS, COMPARATIVE VIEWS, AND SUPPORTED SENSING APPLICATIONS: A REVIEW 2887

[144] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki—A lightweight and
flexible operating system for tiny networked sensors,” in Proc. 29th
Annu. IEEE Int. Conf. Local Comput. Netw., Nov. 2004, pp. 455–462.

[145] G. Oikonomou and I. Phillips, “Experiences from porting the Contiki
operating system to a popular hardware platform,” in Proc. IEEE Int.
Conf. Distrib. Comput. Sensor Syst. Workshops (DCOSS), Jun. 2011,
pp. 1–6.

[146] Q. Cao, T. Abdelzaher, J. Stankovic, and T. He, “The liteOS operating
system: Towards Unix-like abstractions for wireless sensor networks,”
in Proc. IEEE Int. Conf. Inf. Process. Sensor Netw. (IPSN), Apr. 2008,
pp. 233–244.

[147] Q. Cao and T. F. Abdelzaher, “LiteOS: A lightweight operating system
for C++ software development in sensor networks,” in Proc. IEEE 4th
Int. Conf. Embedded Netw. Sensor Syst., Oct./Nov. 2006, pp. 361–362.

[148] C.-C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava,
“A dynamic operating system for sensor nodes,” in Proc. ACM
MobiSys, 2005, pp. 163–176.

[149] S. Bhatti et al., “MANTIS OS: An embedded multithreaded operating
system for wireless micro sensor platforms,” Mobile Netw. Appl.,
vol. 10, no. 4, pp. 563–579, 2005.

[150] H. Abrach et al., “MANTIS: System support for multimodal networks
of in-situ sensors,” in Proc. 2nd ACM Int. Conf. Wireless Sensor Netw.
Appl., 2003, pp. 50–59.

[151] A. Eswaran, A. Rowe, and R. Rajkumar, “Nano-RK: An energy-aware
resource-centric RTOS for sensor networks,” in Proc. IEEE RTSS,
Dec. 2005, pp. 256–265.

[152] H. Cha et al., “RETOS: Resilient, expandable, and threaded operating
system for wireless sensor networks,” in Proc. ACM/IEEE IPSN,
Apr. 2007, pp. 148–157.

[153] H. Cha et al., “The RETOS operating system: Kernel, tools and
applications,” in Proc. 6th Int. Conf. Inf. Process. Sensor Netw., 2007,
pp. 559–560.

[154] C. Duffy, U. Roedig, J. Herbert, and C. Sreenan, “An experimental
comparison of event driven and multi-threaded sensor node operating
systems,” in Proc. 5th Annu. IEEE Int. Conf. Pervasive Comput.
Commun. Workshops (PerCom Workshops), Mar. 2007, pp. 267–271.

[155] S. Park, J. W. Kim, K.-Y. Shin, and D. Kim, “A nano operating system
for wireless sensor networks,” in Proc. 8th Int. Conf. Adv. Commun.
Technol. (ICACT), vol. 1, Feb. 2006, pp. 1–4.

[156] T. V. Chien, H. N. Chan, and T. N. Huu, “A comparative study on
operating system for wireless sensor networks,” in Proc. IEEE Int.
Conf. Adv. Comput. Sci. Inf. Syst. (ICACSIS), Dec. 2011, pp. 73–78.

[157] M. O. Farooq and T. Kunz, “Operating systems for wireless sensor
networks: A survey,” Sensors, vol. 11, no. 6, pp. 5900–5930, 2011.

[158] D. Kumar, T. C. Aseri, and R. B. Patel, “EEHC: Energy efficient
heterogeneous clustered scheme for wireless sensor networks,” Comput.
Commun., vol. 32, no. 4, pp. 662–667, 2009.

[159] O. Younis, M. Krunz, and S. Ramasubramanian, “Node clustering
in wireless sensor networks: Recent developments and deployment
challenges,” IEEE Netw., vol. 20, no. 3, pp. 20–25, May/Jun. 2006.

[160] G. Smaragdakis, I. Matta, and A. Bestavros, “SEP: A stable election
protocol for clustered heterogeneous wireless sensor networks,” Dept.
Comput. Sci., Boston Univ., Boston, MA, USA, Tech. Rep. 2004-022,
2004.

[161] A.-S. Tonneau, N. Mitton, and J. Vandaele, “How to choose an
experimentation platform for wireless sensor networks? A survey on
static and mobile wireless sensor network experimentation facilities,”
Ad Hoc Netw., vol. 30, pp. 115–127, Jul. 2015.

[162] J. Hill, M. Horton, R. Kling, and L. Krishnamurthy, “The platforms
enabling wireless sensor networks,” Commun. ACM, vol. 47, no. 6,
pp. 41–46, Jun. 2004.

[163] B. Kirchen, M. H. Alizai, I. K. Wehrle, and I. S. Kowalewski, “Tiny-
Wifi: Enabling Linux platform support in TinyOS,” Ph.D. dissertation,
Chair Commun. Distributed Syst., RWTH Aachen Univ., Aachen,
Germany, 2010.

[164] V. Handziski et al. (Feb. 22, 2007). Hardware Abstraction Archi-
tecture. [Online]. Available: http://www.tinyos.net/tinyos-2.x/doc/tep2,
accessed 2012.

[165] J. L. Hill and D. E. Culler, “Mica: A wireless platform for deeply
embedded networks,” IEEE Micro, vol. 22, no. 6, pp. 12–24,
Nov./Dec. 2002.

[166] S. Farshchi, P. H. Nuyujukian, A. Pesterev, I. Mody, and J. W. Judy,
“A TinyOS-enabled MICA2-BasedWireless neural interface,” IEEE
Trans. Biomed. Eng., vol. 53, no. 7, pp. 1416–1424, Jul. 2006.

[167] J. Polastre, R. Szewczyk, and D. Culler, “Telos: Enabling ultra-low
power wireless research,” in Proc. 4th Int. Symp. Inf. Process. Sensor
Netw. (IPSN), Apr. 2005, pp. 364–369.

[168] J. R. Agre, L. P. Clare, G. J. Pottie, and N. P. Romanov, “Development
platform for self-organizing wireless sensor networks,” Proc. SPIE Int.
Soc. Opt. Eng., vol. 3713, pp. 257–268, Jul. 1999.

[169] T. Paczesny, T. Tajmajer, J. Domaszewicz, and A. Pruszkowski, “Prox-
yMotes: Linux-based TinyOS platform for non-TinyOS sensors and
actuators,” in Proc. IEEE 10th Int. Symp. Parallel Distrib. Process.
Appl. (ISPA), Jul. 2012, pp. 255–261.

[170] M. Hempstead, M. Welsh, and D. Brooks, “TinyBench: The case
for a standardized benchmark suite for TinyOS based wireless sensor
network devices,” in Proc. 29th Annu. IEEE Int. Conf. Local Comput.
Netw., Nov. 2004, pp. 585–586.

[171] M. Lin, Y. Wu, and I. Wassell, “Wireless sensor network: Water
distribution monitoring system,” in Proc. IEEE Radio Wireless Symp.,
Jan. 2008, pp. 775–778.

[172] W.-Y. Chung and J.-H. Yoo, “Remote water quality monitoring in wide
area,” Sens. Actuators B, Chem., vol. 217, pp. 51–57, Oct. 2015.

[173] A. Sikora, P. Digeser, M. Klemm, M. Tubolino, and R. Werner, “Model
based development of a TinyOS-based wireless M-bus implementa-
tion,” in Proc. IEEE 1st Int. Symp. Wireless Syst. (IDAACS-SWS),
Sep. 2012, pp. 91–94.

[174] J. Heidemann, W. Ye, J. Wills, A. Syed, and Y. Li, “Research
challenges and applications for underwater sensor networking,” in Proc.
IEEE Wireless Commun. Netw. Conf. (WCNC), vol. 1, Apr. 2006,
pp. 228–235.

[175] J. Heidemann, M. Stojanovic, and M. Zorzi, “Underwater sensor
networks: Applications, advances and challenges,” Philos. Trans. Roy.
Soc. London A, Math. Phys. Sci., vol. 370, no. 1958, pp. 158–175,
Jan. 2012.

[176] Y. Noh, D. Torres, and M. Gerla, “Software-defined underwater
acoustic networking platform and its applications,” Ad Hoc Netw.,
vol. 34, pp. 252–264, Nov. 2015.

[177] N. Al-Nakhala, R. Riley, and T. Elfouly, “Distributed algorithms in
wireless sensor networks: An approach for applying binary consensus
in a real testbed,” Comput. Netw., vol. 79, pp. 30–38, Mar. 2015.

[178] M. Britton, V. Shum, L. Sacks, and H. Haddadi, “A biologically-
inspired approach to designing wireless sensor networks,” in Proc. 2nd
Eur. Workshop Wireless Sensor Netw., Jan./Feb. 2005, pp. 256–266.

[179] K. Sohraby, D. Minoli, and T. Znati, Wireless Sensor Networks:
Technology, Protocols, and Applications. New York, NY, USA: Wiley,
2007.

[180] S. Farshchi, I. Mody, and J. W. Judy, “A TinyOS-based wireless
neural interface,” in Proc. 26th Annu. Int. Conf. IEEE Eng. Med. Biol.
Soc. (IEMBS), vol. 2, Sep. 2004, pp. 4334–4337.

[181] S. Farshchi, P. H. Nuyujukian, A. Pesterev, I. Mody, and J. W. Judy,
“A TinyOS-based wireless neural sensing, archiving, and hosting
system,” in Proc. 2nd Int. IEEE Conf. EMBS Neural Eng., Mar. 2005,
pp. 671–674.

[182] S. Farshchi, A. Pesterev, P. Nuyujukian, E. Guenterberg, I. Mody, and
J. W. Judy, “Embedded neural recording with TinyOS-based wireless-
enabled processor modules,” IEEE Trans. Neural Syst. Rehabil. Eng.,
vol. 18, no. 2, pp. 134–141, Apr. 2010.

[183] J. Li and G. Serpen, “nesC-TinyOS model for parallel and distrib-
uted computation of max independent set by Hopfield network on
wireless sensor network,” Procedia Comput. Sci., vol. 6, pp. 396–401,
Dec. 2011.

[184] W. Kiing-Ing, “A light-weighted, low-cost and wireless ECG mon-
itor design based on TinyOS operating system,” in Proc. 6th Int.
Special Topic Conf. Inf. Technol. Appl. Biomed. (ITAB), Nov. 2007,
pp. 165–168.

[185] G. Tolle and D. Culler, “Design of an application-cooperative man-
agement system for wireless sensor networks,” in Proc. EWSN, vol. 5,
Jan./Feb. 2005, pp. 121–132.

[186] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister,
“System architecture directions for networked sensors,” ACM SIGOPS
Oper. Syst. Rev., vol. 35, no. 11, pp. 93–104, Nov. 2000.

[187] W. Stallings, G. K. Paul, and M. M. Manna, Operating Systems:
Internals and Design Principles, vol. 3. Upper Saddle River, NJ, USA:
Prentice-Hall, 1998.

[188] T. M. Cao, B. Bellata, and M. Oliver, “Design of a generic manage-
ment system for wireless sensor networks,” Ad Hoc Netw., vol. 20,
pp. 16–35, Sep. 2014.

[189] S. Hu, Y. Yu, and L. Xie, “Comparing power management strategies
of Android and TinyOS,” in Proc. 3rd Pacific-Asia Conf. Circuits,
Commun. Syst. (PACCS), Jul. 2011, pp. 1–4.

[190] N. Peterson et al., “TinyOS-based quality of service management
in wireless sensor networks,” in Proc. 42nd Hawaii Int. Conf. Syst.
Sci. (HICSS), Jan. 2009, pp. 1–10.

2888 IEEE SENSORS JOURNAL, VOL. 16, NO. 9, MAY 1, 2016

[191] S. S. Bhunia, S. K. Das, S. Roy, and N. Mukherjee, “Mobility
management in IP based wireless sensor network using TinyOS,” in
Proc. 6th Int. Conf. Sens. Technol. (ICST), Dec. 2012, pp. 759–764.

[192] J. Guevara, E. Vargas, F. Brunetti, F. Barrero, and L. Aranda, “A frame-
work for WSN using TinyOS and the IEEE1451 standard,” in Proc.
IEEE Latin-Amer. Conf. Commun. (LATINCOM), Oct. 2011, pp. 1–5.

[193] T. Roosta, S. Shieh, and S. Sastry, “Taxonomy of security attacks in
sensor networks and countermeasures,” in Proc. 1st IEEE Int. Conf.
Syst. Integr. Rel. Improvements, vol. 25, 2006, p. 94.

[194] C. Karlof and D. Wagner, “Secure routing in wireless sensor net-
works: Attacks and countermeasures,” Ad Hoc Netw., vol. 1, nos. 2–3,
pp. 293–315, Sep. 2003.

[195] D. R. Raymond and S. F. Midkiff, “Denial-of-service in wireless sensor
networks: Attacks and defenses,” IEEE Pervasive Comput., vol. 7,
no. 1, pp. 74–81, Jan./Mar. 2008.

[196] X. Zhu and Y. Chen, “Research of wireless injection attacks based
on TinyOS,” in Proc. 3rd Int. Conf. Consum. Electron., Commun.
Netw. (CECNet), Nov. 2013, pp. 525–528.

[197] J. K. Hart and K. Martinez, “Environmental sensor networks: A
revolution in the earth system science?” Earth-Sci. Rev., vol. 78,
nos. 3–4, pp. 177–191, Oct. 2006.

[198] W.-S. Jang, W. M. Healy, and M. J. Skibniewski, “Wireless sensor
networks as part of a Web-based building environmental monitoring
system,” Autom. Construction, vol. 17, no. 6, pp. 729–736, Aug. 2008.

[199] S. N. Simić and S. Sastry, “Distributed environmental monitoring
using random sensor networks,” in Information Processing in Sensor
Networks. Berlin, Germany: Springer-Verlag, 2003, pp. 582–592.

[200] R. Gao, H. Zhou, and G. Su, “A wireless sensor network environment
monitoring system based on TinyOS,” in Proc. Int. Conf. Electron.
Optoelectron. (ICEOE), vol. 1, Jul. 2011, pp. V1-497–V1-501.

[201] M. Delamo, S. Felici-Castell, J. J. Pérez-Solano, and A. Foster,
“Designing an open source maintenance-free environmental monitoring
application for wireless sensor networks,” J. Syst. Softw., vol. 103,
pp. 238–247, May 2015.

[202] D. Patnode, J. Dunne, A. Malinowski, and D. Schertz, “WISENET—
TinyOS based wireless network of sensors,” in Proc. 29th Annu. Conf.
IEEE Ind. Electron. Soc. (IECON), vol. 3, Nov. 2003, pp. 2363–2368.

[203] C. Bin, J. Xinchao, Y. Shaomin, Y. Jianxu, Z. Xibin, and Z. Guowei,
“Application research on temperature WSN nodes in switchgear assem-
blies based on TinyOS and ZigBee,” in Proc. 4th Int. Conf. Electr.
Utility Deregulation Restruct. Power Technol. (DRPT), Jul. 2011,
pp. 535–538.

[204] N. Wang, N. Zhang, and M. Wang, “Wireless sensors in agriculture and
food industry—Recent development and future perspective,” Comput.
Electron. Agricult., vol. 50, no. 1, pp. 1–14, Jan. 2006.

[205] T. Wark et al., “Transforming agriculture through pervasive wireless
sensor networks,” IEEE Pervasive Comput., vol. 6, no. 2, pp. 50–57,
Apr./Jun. 2007.

[206] F. J. Pierce and T. V. Elliott, “Regional and on-farm wireless sensor
networks for agricultural systems in Eastern Washington,” Comput.
Electron. Agricult., vol. 61, no. 1, pp. 32–43, Apr. 2008.

[207] F. G. Montoya et al., “A monitoring system for intensive agriculture
based on mesh networks and the Android system,” Comput. Electron.
Agricult., vol. 99, pp. 14–20, Nov. 2013.

[208] Y. Jihua and W. Wang, “Research and design of solar photovoltaic
power generation monitoring system based on TinyOS,” in Proc. 9th
Int. Conf. Comput. Sci. Edu. (ICCSE), Aug. 2014, pp. 1020–1023.

[209] P. Jishen, L. Wenshuai, and L. Qiuxiang, “Research and design of
solar photovoltaic power generation wireless remote monitoring sys-
tem,” Comput. Meas. Control, vol. 20, no. 12, p. 30, 2012. DOI:
10.1109/ICCSE.2014.6926617

[210] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson,
“Wireless sensor networks for habitat monitoring,” in Proc. 1st ACM
Int. Workshop Wireless Sensor Netw. Appl., 2002, pp. 88–97.

[211] R. Szewczyk, E. Osterweil, J. Polastre, M. Hamilton, A. Mainwaring,
and D. Estrin, “Habitat monitoring with sensor networks,” Commun.
ACM, vol. 47, no. 6, pp. 34–40, Jun. 2004.

[212] J. A. Tarifa, J. M. Escano, M. A. Molina, and C. Bordons, “Local mea-
surement of harmonics through a sensor network based on TinyOS,”
in Proc. SICE Annu. Conf. (SICE), 2012, pp. 1029–1034.

[213] C. Schmitt, T. Kothmayr, B. Ertl, W. Hu, L. Braun, and
G. Carle, “TinyIPFIX: An efficient application protocol for data
exchange in cyber physical systems,” Comput. Commun., Jun. 2014.
DOI: 0.1016/j.comcom.2014.05.012

[214] L. Chen, R. Yan, and Z. Ma, “TinyOS-based localization system
design using accelerometer,” in Proc. 15th IEEE Int. Conf. Commun.
Technol. (ICCT), Nov. 2013, pp. 511–518.

[215] E. Monmasson and M. N. Cirstea, “FPGA design methodology for
industrial control systems—A review,” IEEE Trans. Ind. Electron.,
vol. 54, no. 4, pp. 1824–1842, Aug. 2007.

[216] B. Stelte, “Toward development of high secure sensor network nodes
using an FPGA-based architecture,” in Proc. 6th Int. Wireless Commun.
Mobile Comput. Conf., 2010, pp. 539–543.

[217] D.-H. T. That, A.-V. Dinh-Duc, and K. Phan-Dinh, “Implementation
of TinyOS on FPGA system,” in Proc. IEEE Region Conf. TENCON,
Nov. 2010, pp. 1456–1459.

[218] I. Park, H. Shin, J. Park, E. Jung, and D. Har, “Improvement of
TINYOS implementation for small memory FPGA system,” in Proc.
XIII-IBERCHIP Workshop IWS, 2007. [Online]. Available: http://
www.iberchip.net/iberchip2007/articulos/2/a/poster/1–pleastop-Ieryung
%20Park-IMPROVEMENT_TINYOS_IMPLEMENTATION.pdf

[219] A. Rezgui and M. Eltoweissy, “Service-oriented sensor–actuator net-
works: Promises, challenges, and the road ahead,” Comput. Commun.,
vol. 30, no. 13, pp. 2627–2648, Sep. 2007.

[220] G. S. Ramachandran, S. Michiels, W. Joosen, D. Hughes, and B. Porter,
“Analysis of sensor network operating system performance throughout
the software life cycle,” in Proc. 12th IEEE Int. Symp. Netw. Comput.
Appl. (NCA), Aug. 2013, pp. 211–218.

[221] P. Levis. (2006). TinyOS 2.0 Overview. [Online]. Available:
http://www.tinyos.net/dist-2.0.0/tinyos-2.0.0/doc/html/overview.html

[222] M. H. Alizai, H. Wirtz, B. Kirchen, and K. Wehrle, “Portable wireless-
networking protocol evaluation,” J. Netw. Comput. Appl., vol. 36, no. 4,
pp. 1230–1242, Jul. 2013.

[223] M. H. Alizai, H. Wirtz, B. Kirchen, T. Vaegs, O. Gnawali, and
K. Wehrle, “TinyWiFi: Making network protocol evaluation portable
across multiple phy-link layers,” in Proc. 6th ACM Int. Workshop Wire-
less Netw. Testbeds, Experim. Eval. Characterization, 2011, pp. 19–26.

[224] M. H. Alizai, B. Kirchen, J. B. Link, H. Wirtz, and K. Wehrle, “TinyOS
meets wireless mesh networks,” in Proc. 8th ACM Conf. Embedded
Netw. Sensor Syst., 2010, pp. 429–430.

[225] C. Duffy, U. Roedig, J. Herbert, and C. J. Sreenan, “A performance
analysis of MANTIS and TinyOS,” Dept. Comput. Sci., University
College Cork, Ireland, Tech. Rep. CS-2006-27-11, 2006.

[226] J. Jeong and D. Culler, “Incremental network programming for wireless
sensors,” in Proc. 1st Annu. IEEE Commun. Soc. Conf. Sensor Ad Hoc
Commun. Netw. (SECON), Oct. 2004, pp. 25–33.

[227] C. Lynch and F. O’Reilly, “PIC-based TinyOS implementation,” in
Proc. 2nd Eur. Workshop Sensor Netw., Istanbul, Turkey, Feb. 2005,
pp. 378–385.

[228] A. Dunkels, J. Alonso, and T. Voigt, “Making TCP/IP viable for wire-
less sensor networks,” in Proc. Work-Prog. Session 1st Eur. Workshop
Wireless Sensor Netw. (EWSN), Berlin, Germany, 2004, p. 16.

[229] A. Dunkels, “Full TCP/IP for 8-bit architectures,” in Proc. 1st
ACM/Usenix Int. Conf. Mobile Syst., Appl. Services (MobiSys),
San Francisco, CA, USA, 2003, pp. 85–98.

[230] A. Dunkels, T. Voigt, N. Bergman, and M. Jönsson, “The design and
implementation of an IP-based sensor network for intrusion moni-
toring,” in Proc. Swedish Nat. Comput. Netw. Workshop, Karlstad,
Sweden, 2004, pp. 1–4.

[231] J. Sa Silva, R. Ruivo, T. Camilo, G. Pereira, and F. Boavida, “IP
in wireless sensor networks issues and lessons learnt,” in Proc. 3rd
Int. Conf. Commun. Syst. Softw. Middlew. Workshops (COMSWARE),
Bengaluru, India, Jan. 2008, pp. 496–502.

[232] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler, Transmis-
sion of IPv6 Packets Over IEEE 802.15.4 Networks. RFC-4944,
Internet Engineering Task Force, Sep. 2007. [Online]. Available:
http://tools.ietf.org/html/rfc4944

Muhammad Amjad received the B.S. degree in
telecommunication system from Bahauddin Zakariya
University Multan, Pakistan. He is currently pur-
suing the M.S. degree in computer science with
the COMSATS Institute of Information Technol-
ogy, Islamabad, Pakistan. He has also worked as a
Research Associate under the HEC Startup Grant.
His research interests include wireless sensor net-
works, wireless energy transfer, vehicular ad hoc
network, and electric vehicles. He is also a Reviewer
of the IEEE Communications Magazine (Elsevier),

Computers and Electrical Engineering Journal (Elsevier), Ad Hoc Networks,
the Journal of Network and Computer Applications, and Wireless Networks
Journal (Springer).

AMJAD et al.: TinyOS-NEW TRENDS, COMPARATIVE VIEWS, AND SUPPORTED SENSING APPLICATIONS: A REVIEW 2889

Muhammad Sharif received the Ph.D. degree from
the COMSATS Institute of Information Technol-
ogy, Wah Cantonment, Pakistan. He is currently an
Associate Professor with COMSATS. His area of
specialization is image processing. He has been in
the teaching field since 1995. He has more than
100 research publications in IF, SCI, and ISI journals
and in national and international conferences. Until
now, he has supervised 25 M.S. (CS) theses. He is
currently supervising five Ph.D. (CS) students and
CoSupervisor of five others. More than 200 under-

graduate students had already been passed out after successful completion of
their project work under his supervision. His research interests are image
processing, computer networks and security, and algorithms design and
analysis.

Muhammad Khalil Afzal received the B.S.
and M.S. degrees in computer science from the
COMSATS Institute of Information Technology,
Wah Campus, Wah Cantonment, Pakistan, in 2004
and 2007, respectively, and the Ph.D. degree from
the Department of Information and Communication
Engineering, Yeungnam University, Korea, in 2014.
He has served as a Lecturer at Bahauddin Zakariya
University, Multan, Pakistan, from 2008 to 2009,
and King Khalid University, Abha, Saudi Arabia,
from 2009 to 2011. He is currently an Assistant

Professor with the Department of Computer Science at COMSATS. His
research interest includes wireless sensor networks, ad hoc networks,
reliability in multicasting, and cooperative networks.

Sung Won Kim received the B.S. and M.S. degrees
from the Department of Control and Instrumenta-
tion Engineering, Seoul National University, Korea,
in 1990 and 1992, respectively, and the Ph.D. degree
from the School of Electrical Engineering and Com-
puter Sciences, Seoul National University, in 2002.
From 1992 to 2001, he was a Researcher with the
Research and Development Center, LG Electronics,
Korea. From 2001 to 2003, he was a Researcher with
the Research and Development Center, AL Tech,
Korea. From 2003 to 2005, he was a Post-Doctoral

Researcher with the Department of Electrical and Computer Engineering,
University of Florida, Gainesville, USA. In 2005, he joined the Depart-
ment of Information and Communication Engineering, Yeungnam University,
Gyeongsan, Korea, where he is currently a Professor. His research interests
include resource management, wireless networks, mobile networks, perfor-
mance evaluation, and embedded systems.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

