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Abstract The hyper-torus network based on a three-dimensional hypercube was intro-
duced recently. The hyper-torus QT (m, n) performs better than mesh type networks
with a similar number of nodes in terms of the network cost. In this paper, we prove
that if n is even, the bisection width of QT (m, n) is 6n, whereas it is 6n+2 if it is odd.
Second, we show that QT (m, n) contains a Hamiltonian cycle. In addition, its one-
to-all and all-to-all broadcasting algorithms are introduced. All of these broadcasting
algorithms are asymptotically optimal.

Keywords Interconnection network · Hyper-torus · Bisection width ·
Hamiltonian cycle · Broadcasting

1 Introduction

To enhance the performance of supercomputers within a large-scale parallel computing
system, many researchers have focused on areas, such as CPU development, intercon-
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nection network, data transfer methodology and algorithm development. To maximize
the performance of supercomputers, the underlying interconnection network plays a
pivotal role. Many topologies have been introduced as interconnection networks for
parallel computing systems, such as torus, hypercube and star graph.

An interconnection network consists of a set of processors, local memory and com-
munication links for data transmission between processors. Such an interconnection
network can be modeled as a graph G = (V, E). Each processor, Pi , is a component
of V , which is a set of nodes, and two processors, Pi and Pj , are connected via a
communication link (Pi , Pj ). When modeling an interconnection network as a graph,
a processor is considered as a node of V and a communication link is considered
as an edge of E . The number of nodes adjacent to node, Pi , is the degree of the
node.

Based on their topologies, most interconnection networks can be roughly classified
into three families: mesh family, hypercube family, and star graph family [1]. The
mesh family includes the torus [2], honeycomb mesh [3], diagonal mesh [4] and
hexagonal mesh [5]. The hypercube family includes cube-connected cycles, folded
hypercubes, twisted cubes, butterfly, etc. [6,7]. The star family includes the star graph,
and transposition graphs, etc. [1]. The mesh family, which is commonly used in the
VLSI circuit design area, is widely used and commercialized as various systems as it is
easy to extend its connection network. A low-dimensional mesh is easy to design and
useful in terms of algorithms; therefore, it is commonly used as a connection network
for parallel computers.

Recently, the hyper-torus network, which is based on the hypercube and whose
degree is fixed at 4, was introduced in [8]. The hyper-torus network performs better
than the mesh family of networks with a similar number of nodes in terms of the net-
work cost (defined as the product of its degree and diameter [8]). Comparisons among
the hyper-torus and other mesh/torus type of networks were provided in [8]. In addi-
tion to having a smaller network cost, the hyper-torus is highly scalable, symmetric,
and has a small diameter [8].

One of the metrics for evaluating interconnection networks is the bisection width
(to be defined later). It is an important parameter for processor communications [9].
It is also related to edge congestion in routing algorithms [10]. The decision version
of the problem of finding the bisection width is known to be NP-complete [11,12].
Ki et al. [8] analyzed the bisection width of the hyper-torus QT (m, n). However, it
only considered the case when n is even and did not prove that the analyzed bisec-
tion width is a minimum. This paper will prove that when m is even, the bisection
width of QT (m, n) is 6n whereas it is 6n + 2 if it is odd. Also, we will show that
QT (m, n) contains a Hamiltonian cycle. In addition, one-to-all and all-to-all broad-
casting algorithms of QT (m, n)will be introduced, and their broadcasting times will be
analyzed.

This paper is organized as follows. Section 2 gives the definition of QT (m, n) and
its fundamental characteristics. In Sect. 3, we analyze the bisection width of QT (m, n)

and Sect. 4 shows that QT (m, n) contains a Hamiltonian cycle. Section 5 introduces
one-to-all and all-to-all broadcasting algorithms and analyzes their running times.
Section 6 concludes the paper.
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2 Preliminaries

The hypercube is one of the well-known interconnection networks and it has excellent
characteristics. The three-dimensional hypercube Q3 is a network that consists of 8
nodes and 12 edges; its diameter and degree are 3 and it is both node symmetric and
edge symmetric.

Figure 1 shows a 3-dimensional hypercube Q3.
We denote the set of nodes for hypercube Q3 as V and its set of edges as E .

The definition of Q3 is as follows where % represents mod operation and Z8 =
{0, 1, 2, 3, 4, 5, 6, 7} a cyclic group of order 8 under addition modulo 8. In other
words, two nodes i and j , 0 ≤ i, j ≤ 7, are connected if their corresponding binary
representations differ in exactly one of the three positions.

Definition 1 V = {z|z ∈ Z8}

E = {(z1, z2)|z1 − z2 ≡ 1or z1 − z2 ≡ 2or z1 − z2 ≡ 4(%8)}

A recent study has proposed a hyper-torus network [8]. Basically, this network
combines an m by n torus with a 3-dimensional hypercube Q3 and is denoted as
QT (m, n). This notation is first used in [8] that proposed the network. Apparently,
Q represents the hypercube while T represents the torus, and QT (m, n) contains mn
basic modules each of which is a 3-dimensional hypercube Q3. Ki et al. [8] analyzed
the diameter and the bisection width of the hyper-torus network and proposed a simple
routing algorithm. The basic module address of the hyper-torus QT (m, n) (m, n ≥ 2)

is represented as (x, y) and its node address is (x, y, z). x represents X axis coordinate
of the basic module, y is Y axis coordinate of the basic module and z is the node
address in the basic module Q3. We will represent the node set of QT (m, n) as Vqt

and its edge set as Eqt . Therefore, the definition of the hyper-torus QT (m, n) is as
follows:

Definition 2 Vqt = {(x, y, z)0 ≤ x < m, 0 ≤ y < n, z ∈ Z8}
The edges of QT (m, n) consist of internal edges, Ein , and external edges, Eex .

An internal edge is an edge that connects the nodes in the same basic module Q3. An

Fig. 1 3-Dimensional
hypercube Q3
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Fig. 2 QT (3, 3)

external edge is an edge that links nodes that are within the different basic modules.
The definition of an external edge can be expressed as:

Definition 3 Eex = {
vertical edge: ((x, y, 1), (x, (y + 1)%n, 5)), ((x, y, 5), (x, (y − 1+ n)%n, 1))

horizontal edge: ((x, y, 7), ((x+1)%m, y, 3)), ((x, y, 3), ((x−1+m)%m, y, 7))

oblique line edge: ((x, y, 6), ((x + 1)%m, (y + 1)%n, 2)), ((x, y, 2), ((x − 1 +
m)%m, (y − 1+ n)%n, 6))

reverse oblique line edge: ((x, y, 0), ((x − 1 + m)%m, (y + 1)%n, 4)),

((x, y, 4), ((x + 1)%m, (y − 1+ n)%n, 0))}
Figure 2 shows QT (3, 3) with Q3 as a basic module. In Figs. 3, 4 and 5, the

oblique line edges and reverse oblique line edges are omitted.
It was shown in [8] that for QT (m, n), its diameter is 2 max(�m/2�, �n/2�) + 4

which is O(m + n).

3 The bisection width of QT (m, n)

The bisection width is the minimum number of edges that need to be removed to
segregate one connected network into two networks [9,13–16]. These two segregated
networks would have the same number of nodes or have one node difference with
each other. A smaller bisection width is less desirable than a larger bisection width,
because a small number of edge faults can disconnect the network. Although Ki et
al. [8] studied the bisection width when n is even, they did not prove that the result is
a minimum. Therefore, in this section we analyze the bisection width of QT (m, n).
Although the bisection width of QT (m, n) should be studied under both conditions,
m ≥ n and n ≥ m, this section only considers the m ≥ n condition because both
results from the two conditions are similar.

Theorem 1 The bisection width of QT (m, n) is 6n when m is even and 6n + 2 when
m is odd.

Proof We will prove two cases based on the condition of m; when m is odd and even.
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Fig. 3 Bisection width of
QT (6, 6)
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Fig. 4 Bisection width of QT (7, 7)

1. When m is even:
When removing the external edges that connect the basic modules (0, i) and (m−
1, i) and when removing external edges that connect basic modules (m

2 −1, i) and
(m

2 , i), the original network is broken into two networks with the same number
of nodes (0 ≤ i ≤ n − 1). The number of external edges that connect one basic
module in partition B and its adjacent basic module in partition A is 3 (oblique
line, horizontal, reverse oblique line edge). Because the number of such i’s is n, the
number of external edges that connect the basic modules (0, i) and (m−1, i) is 3n
and the number of external edges that connect basic modules (m

2 −1, i) and (m
2 , i)
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is 3n. Therefore, the bisection width that segregates the original network into two
networks of the same size is 6n. Figure 3 presents the bisection width of QT (6, 6).
The 3n external edges that connect the basic modules (0, i) and (m − 1, i) and
should be removed (0 ≤ i ≤ n − 1) are disregarded, and the remaining external
edges that should be removed are presented as arrows in Fig. 3. Consequently, the
bisection width of QT (6, 6) is 36.

2. When m is odd: the following two cases will be proven based on the condition of
n; when n is odd and even.

(a) When n is odd:
As the number of basic modules could be any odd number, the original network
can be divided into two groups by eliminating four edges that consist of the
basic module

(�m
2 �, �m

2 �
)
. Let a be a group that includes nodes 0, 1, 2 and

4, and b a group that contains nodes 4, 5, 6 and 7. This will be applied to
the remaining basic modules, except

(�m
2 �, � n

2 �
)
, in networks A and B as

follows. When i > � n
2 �, the basic module ( j, i) is contained in network A and

the basic module (k, i) is taken in network B
(
0 ≤ j ≤ �m

2 �, �m
2 � < k < m

)
.

When i ≤ � n
2 �, the basic module ( j ′, i) is contained in network A and the

basic module (k′, i) is going to network B
(
0 ≤ j < �m

2 �, �m
2 � ≤ k < m

)
.

Group a is included in network A and group b is included in network B. As
the number of edges that are to be removed to divide

(�m
2 �, � n

2 �
)

into groups
a and b is 4 (edges that connect 0 and 4, 1 and 5, 2 and 6 and 3 and 7),
the number of edges to be removed within

(�m
2 �, � n

2 �
)

is 4. The number of
edges to be removed within the module

(�m
2 � + 1, n − 1

)
, which is contained

in network B, is 2, and the number of edges that need to be removed within
module

(�m
2 � + 1, � n

2 � + 1
)

is 2. The number of edges to be removed within
module

(�m
2 � + 1, � n

2 �
)

is 1 and the number of edges to be removed within
module

(�m
2 � + 1, 0

)
is also 1. Within module

(�m
2 �, 0

)
, the number of edges

to be removed is 4 and the number of edges to be removed within the rest
basic modules is 3. Therefore, in this case, bisection width is 6n+ 2. Figure 4
shows the bisection width of QT (7, 7). The 3n external edges to-be-removed
that connect the basic modules (0, i) and (m− 1, i) are not presented in Fig. 4
(0 ≤ i ≤ n − 1). The should-be-removed edges that divide the network into
groups a and b are presented as dotted lines and other external edges that are
to be removed are presented as arrows. Figure 4 shows that the bisection width
of QT (7, 7) is 44.

(b) When n is even:
The network QT (m, n) is divided into two networks as follows. When i ≥ n

2 ,
the basic module ( j, i) and (k, i) is contained in network A and B, respectively,(
0 ≤ j ≤ m

2 , m
2 < k < n

)
. When i < n

2 , the basic module ( j ′, i) and (k′, i) is
included in network A and B, respectively,

(
0 ≤ j ′ ≤ m

2 , m
2 < k′ < n

)
. The

number of the to-be-removed edges within module
(m

2 + 1, n − 1
)

in network
B is 2 and the number of to-be-removed edges within

(m
2 + 1, n

2

)
is 2. The

number of edges to be removed within
(m

2 + 1, n
2 − 1

)
is 1 and the number

of edges to be removed within
(m

2 + 1, 0
)

is 1. The number of to-be-removed
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Fig. 5 Bisection width of
QT (7, 6)
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is 4 and the number of to-be-removed edges within the
other basic modules that connect networks A and B is 3. Therefore, in this case,
the bisection width is 6n+ 2. Figure 5 shows the bisection width of QT (7, 6).
The 3n external edges that connect basic modules (0, i) and (m− 1, i) are not
presented (0 ≤ i ≤ n − 1) and other external edges that should be removed
are presented as arrows. Figure 5 shows that the bisection width of QT (7, 6)

is 38.

Now, we will show that the bisection width just obtained is the minimum.
For Case 1, the easiest way to divide network QT (m, n) into networks A and B,

which contain the same number of nodes, is to divide QT (m, n) using the proposed
bisection width from Case 1, where m and n are even. In this case, the number of
removed edges per basic module is 3. If the number of removed edges within any
basic module is less than 3, QT (m, n) is not divided into networks A and B but is
connected as a single network from Fig. 3. This shows that the minimum number of
edges that need to be removed per basic module to divide QT (m, n) into two networks,
A and B, is 3. For that reason, the bisection width that is to divide QT (m, n) into two
networks is 6n, as proposed in Case 1.

For Case 2(b), the easiest way to divide QT (m, n) into two networks, A and B,
which include the same number of nodes, is to divide the network using the method
that Case 2(b) proposed (n is even and m is odd). As shown in Fig. 5, although the
number of should-be-removed edges is 3 per module when dividing the modules at Y
axis level, the number of should-be-removed edges increases by 1 for some modules
in the intersection column when dividing the modules as a grid format. The modules
that are divided as grid format are called grid modules. The external edges of the grid
modules that need to remove one additional edge in Fig. 5 are ((3, 2, 1), (3, 3, 5)) or
((3, 5, 1), (3, 0, 5)). Therefore, the bisection width decreases with decreasing number
of grid modules along the partition axis. The number of grid modules along the par-
tition axis that needs to divide QT (m, n) into two networks is always even. Because
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m is odd in Case 2(b), at least two grid modules are needed to divide QT (m, n).
As the number of should-be-removed external edges that are connected at Y axis
level is 6n and one more external edge within two grid modules should be deleted,
the proposed bisection width, 6n + 2, is the minimum. The methodology for prov-
ing that Case 2(a) is the minimum is similar to the case when n is even and m is
odd.

Now, we will consider a method to remove the edges that connect unit nodes
to divide QT (m, n). In Fig. 3, assume that node u = (2, 3, z1) in network A is
contained in network B and node v = (3, 1, z2) in network B is in network A. The
number of edges that need to be removed will be determined using two cases that are
dependent on the connection states of node u’s external edge. First, consider the case
that node u is connected to network B via external edge. In this case, three internal
edges that connect node u and the basic module, in which node u is contained, need
to be removed. Then, the two external edges that connect network B and the basic
module containing node u should be deleted. Second, consider the case that node
u is connected to network A via an external edge. In this case, it is important to
remove the three internal edges that connect node u and the basic module containing
node u. Then, the three external edges that connect network B and the basic module
containing node u should be deleted. Because the bisection width will gain a minimum
value when node u is connected to network B via an external edge and node v is
connected to network A via external edge, bisection with in this case is 3n + 3(n −
2) + 5 + 5 = 6n + 4, which is larger than the proposed bisection width in this
theorem.

To divide a connection network, QT (m, n), into two distinct connection networks,
A and B, the edge that connects the two unit nodes within a single basic module
is removed. In Fig. 3, assume that nodes u = (2, 3, z1) and u′ = (2, 3, z′1) within
connection network A are also within connection network B and nodes v = (3, 1, z2)

andv′ = (3, 1, z′2)within connection network B are also located in connection network
A. The number of edges that need to be removed will vary according to the connection
states between nodes u and u′ and the states between the two nodes, u and u′, and
connection network B. The case that the number of removable edges is a minimum
is that nodes u and u′ are adjacent and these two nodes are connected to connection
network B and its external edge. Therefore, the bisection width is 3n+3(n−2)+5+5 =
6n+4, which shows that it is larger than the bisection width obtained in this theorem.

Consider removing the edge that connects three unit nodes within a single basic
module to divide a connection network QT (m, n) into connection networks A and
B. Again, as shown in Fig. 3, assume that nodes u = (2, 3, z1), u′ = (2, 3, z′1) and
u∗ = (2, 3, z∗1) within connection network A are included in connection network
B and node v = (3, 1, z2) within connection network B is located in connection
network A. Then, the number of edges that should be removed will vary according
to the connection states among nodes u, u′ and u∗ and the connection states among
these three nodes and connection network B. The condition that minimizes the edges
that should be removed is that nodes u, u′ and u∗ are adjacent to each other and these
nodes are connected to connection network B and the external edge. Therefore, its
bisection width, 3n+3(n−2)+5+5 = 6n+4, is larger than the proposed bisection
width in this theorem.
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Fig. 6 Bisection width of
QT (6, 6) using diagonal
partition
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A method to remove the edge that connects four nodes within a basic module to
divide the connection network QT (m, n) into connection A and B is to make the
number of edges, which are to be removed using the proposed method in Case 2(a),
a minimum. Therefore, its bisection width, i.e. 3n + 3(n − 2) + 5 + 5 = 6n + 4, is
larger than that in this theorem.

According to the cases shown thus far, it was verified that the bisection width will
be minimized when the number of unit nodes, which are divided when dividing a
connection network and the number of grid modules, are smaller.

Now, consider the other partition problem. The partition such as Fig. 3 is called
vertical partition, the partition included grid module such as Fig. 5 is called grid
partition, and the partition such as Fig. 6 is called diagonal partition. In Fig. 6, white
node is the node in group A and black node is the node in group B, and external edges
that are to be removed are presented as arrows.

We proved that the bisection width of QT (m, n) using grid partition is larger than
that using vertical partition at the above proof. And we can show that the bisection
width of QT (m, n) using diagonal partition is larger than that using vertical partition
through a comparison between Figs. 3 and 6.

Therefore, the proposed bisection width is the minimum. 
�

4 Hamiltonian cycle of QT (m, n)

A Hamiltonian path in a connection network is a path that passes all the nodes within
the network only once. A Hamiltonian cycle is a cycle that traverses all the nodes
precisely once [17,18]. If there is a Hamiltonian path or Hamiltonian cycle in a
connection network, the network can be a pipeline that makes parallel processing
easy because it becomes a linear array or ring. Q3 is a connection network that has a
Hamiltonian cycle. In Property 1, several Hamiltonian paths within Q3 will be shown.
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Table 1 Hamiltonian cycle
algorithm in QT (m, n) (0, n − 1)− (1, n − 1)− · · · − (m − 2, n − 1)− (m − 1, n − 1)

−(0, n − 2)− (1, n − 2)− · · · − (m − 2, n − 2)− (m − 1, n − 2)

−(0, n − 3)− (1, n − 3)− · · · − (m − 2, n − 3)− (m − 1, n − 3)

− · · · − (0, 1)− (1, 1)− · · · − (m − 2, 1)− (m − 1, 1)

−(0, 0)− (1, 0)− · · · − (m − 2, 0)− (m − 1, 0)− (0, n − 1)

Fig. 7 Hamiltonian cycle in
QT (5, 5)
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Property 1 Some Hamiltonian paths in Q3 are as follows:
Case 1) 0 −→ 1 −→ 3 −→ 2 −→ 6 −→ 4 −→ 5 −→ 7
Case 2) 3 −→ 2 −→ 0 −→ 1 −→ 5 −→ 4 −→ 6 −→ 7
Case 3) 3 −→ 2 −→ 0 −→ 1 −→ 5 −→ 7 −→ 6 −→ 4

As the Hamiltonian paths in Q3 in Property 1 are shown, the following will show
that there is a Hamiltonian cycle among the basic modules of QT (m, n). The Hamil-
tonian cycle construction in QT (m, n) is given in Table 1.

In Property 1, establishing a Hamiltonian path for module (0, p) depends on case
1) and for module (m − 1, p) on case 3) (0 ≤ p ≤ n − 1). The remaining modules
depend on case 2) and the paths for modules (m− 1, q) and (0, q ′) are established by
the reversing oblique line edge (0 ≤ q ≤ n−1, q ′ = q−1, if q = 0 then q ′ = n−1).
Therefore, QT (m, n) contains a Hamiltonian cycle from the proposed Hamiltonian
cycle construction:

Theorem 2 QT (m, n) is Hamiltonian.

Figure 7 shows a Hamiltonian cycle in QT (5, 5).

5 Broadcasting in QT (m, n)

Broadcasting is a basic data communication method for interconnection networks
[19–24]. There are two types of broadcasting: one-to-all broadcasting and all-to-all
broadcasting. One-to-all type is to transmit a message from one node to all other nodes
and all-to-all type is to transmit a message from all the nodes that have messages to
other nodes. Single-port telecommunication is to transmit messages from one node that
contains the messages to one adjacent node only and all-port telecommunication is to
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transmit messages from one node to all adjacent nodes within a time of unit. The former
is called single link available (SLA) and the latter is multiple link available (MLA).
Since the diameter of the QT (m, n) is O(m+n), any broadcasting algorithm, whether
on the single-port or all-port model, has a lower bound of �(m + n). Broadcasting in
QT (m, n) can be done by the two cases—whether m ≥ n or n ≤ m; In this section,
we only consider the case when m ≥ n since the algorithm for the other case is
similar. The broadcasting time is measured in terms of the total number of hops (links)
required.

5.1 One-to-all broadcasting in QT (m, n)

One-to-all broadcasting for Q3, the basic module of QT (m, n), and its broadcasting
time were proved in [21].

Lemma 1 One-to-all broadcasting time for 3-dimensional hypercube, Q3, is 3 in both
SLA and MLA.

With the one-to-all broadcasting and its time for Q3, the basic module of QT (m, n),
proposed in [21,22], we will propose one-to-all broadcasting for QT (m, n). QT (m, n)

is node symmetric [8]. Therefore, we can assume that M0 is (� x
2 �, � y

2 �) in one-to-
all broadcasting algorithm. One-to-all broadcasting algorithm contains conditions as
follows where

M0: basic module that source nodes are within
M f : basic module where x = 0 or x = m − 1 or y = 0 or y = n − 1
M j : basic module that received messages (except M0 and M f )
ui = (x0, y0, z1): internal nodes of M0 (0 ≤ z1 ≤ 7, 0 ≤ i ≤ 7)

vi = (x, y, z1): internal nodes of M j (0 ≤ z1 ≤ 7, 0 ≤ i ≤ 7)

w0: a node that is connected via internal node v1 of M j and external edge(s) by
Condition 2
−→: message transfer from internal edge
⇒: message transfer from external edge

Condition 1 all the internal nodes of M0 will receive messages in the following order,
then execute 1st step of one-to-all broadcasting algorithm.

1. u0 = (x, y, z1) −→ u1 = (x, y, (z1 + 4)%8)

2. u0 = (x, y, z1) −→ u2 = (x, y, (z1 + 1)%8)

u1 = (x, y, (z1 + 4)%8) −→ u3 = (x, y, (z1 + 5)%8)

3. u0 = (x, y, z1) −→ u4 = (x, y, (z1 + 2)%8)

u1 = (x, y, (z1 + 4)%8) −→ u5 = (x, y, (z1 + 6)%8)

u2 = (x, y, (z1 + 1)%8) −→ u6 = (x, y, (z1 + 3)%8)

u3 = (x, y, (z1 + 5)%8) −→ u7 = (x, y, (z1 + 7)%8)

Condition 2 Except M0 and M f , modules that receive messages using one-to-all
broadcasting algorithm will transfer messages to all the nodes within the module in
the following order.
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Table 2 One-to-all broadcasting algorithm of QT (m, n)

[Step 1] the source module transfers messages to eight adjacent nodes using external edge(s)

[Step 2] modules that receive messages via vertical (horizontal, oblique line, reverse oblique

line) edges will transfer messages to adjacent modules that do not have messages via vertical

(horizontal, oblique line, reverse oblique line) edges

[Step 3] modules that receive messages via oblique line (reverse oblique line) edges will send

messages to adjacent modules that have no messages from vertical or horizontal edges

[Step 4] Until the messages reach to all the modules in QT (m, n), repeat Steps 2 and 3

1. v0 = (x, y, z1) −→ v1 = (x, y, (z1 + 4)%8)

2. v1 = (x, y, (z1 + 4)%8) ⇒ w0 = (x ′, y′, (z1 + 4)%8)

v0 = (x, y, z1) −→ v2 = (x, y, (z1 + 1)%8)

3. v0 = (x, y, z1) −→ v3 = (x, y, (z1 + 2)%8)

v1 = (x, y, (z1 + 4)%8) −→ v4 = (x, y, (z1 + 6)%8)

v2 = (x, y, (z1 + 1)%8) −→ v5 = (x, y, (z1 + 5)%8)

4. v2 = (x, y, (z1 + 1)%8) −→ v6 = (x, y, (z1 + 3)%8)

v5 = (x, y, (z1 − 3)%8) −→ v7 = (x, y, (z1 + 7)%8)

Condition 3 Modules that receive messages via oblique line or reverse oblique line
edges will transfer messages to adjacent modules that have no message from vertical
or horizontal edges after executing Condition 2. However, when there are no adjacent
modules to transfer from oblique line or reverse oblique line edges among module M f ,
it sends messages to all the nodes within the module as in Condition 1, then sends
messages to adjacent modules that do not have messages from vertical or horizontal
edges. Modules (1, 15) and (15, 1) in Fig. 10 are in this case.

Condition 4 After executing one-to-all broadcasting algorithm, all the nodes within
M f will get messages by Condition 1.

Table 2 shows one-to-all broadcasting algorithm of QT (m, n).
We will calculate the broadcasting time for the one-to-all broadcasting algorithm

using SLA.
Case 1) broadcasting time for modules that receive messages via vertical (horizon-

tal, oblique line, reverse oblique line) edges only:
From Lemma 1, broadcasting time for the inside of the source module is 3. From the
source module to the destination module, the maximum broadcasting time via vertical
(horizontal, oblique line, reverse oblique line) edges is �m

2 � − 1. For the broadcast-
ing from the source module to the destination module, the maximum broadcasting
time via internal edges of each module is �m

2 � − 2. From Lemma 1, broadcasting
time within the destination module is 3. Therefore, the total broadcasting time is
3+ �m

2 � − 1+ �m
2 � − 2+ 3 = 2�m

2 � + 3.

Case 2) broadcasting time of modules that receive messages using oblique line
(reverse oblique line) edges and vertical edges:
Broadcasting time within the source module is 3 from Lemma 1. The maximum
broadcasting time that transfers messages from the source module to the destination
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Fig. 8 Message transfer of the
basic module at step 3 using
SLA
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Fig. 9 Message transfer of the
basic module at Step 3 using
MLA
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module using oblique line (reverse oblique line) edges and vertical edges is �m
2 � − 1.

The maximum broadcasting time from the source module to the destination module
via internal edges of each module is �m

2 � + 1. From Lemma 1, broadcasting time
within the destination module is 3. Therefore, broadcasting time of this case is 3 +
�m

2 � − 1+ �m
2 � + 1+ 3 = 2�m

2 � + 6.

The reason that the broadcasting time of Case 2) is increased by 3 compared to that
of Case 1) is shown from Fig. 8. Figure 8 shows modules that receive messages via
oblique line edges, then transfer the messages to adjacent modules via vertical edges.
As shown in Fig. 8, to send messages to adjacent modules via vertical edges, Case
2) needs to utilize internal edges three times more than Case 1). In Fig. 8, (number)
illustrates broadcasting time of the inside of the module and • depicts the source node
that contains messages from the inside of the module.←− represents external edges.

One-to-all broadcasting algorithm using MLA utilizes the same algorithm for the
one-to-all broadcasting algorithm using SLA. Broadcasting time using MLA in Step 3
is smaller than that using SLA by 1, as shown in Figs. 8 and 9. Therefore, broadcasting
time from one-to-all broadcasting algorithm using MLA is 2�m

2 � + 5.

Theorem 3 Broadcasting time of QT (m, n) from one-to-all broadcasting algorithm
using SLA is 2�m

2 � + 6 and that of QT (m, n) from one-to-all broadcasting algorithm
using MLA is 2�m

2 � + 5.
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Fig. 10 One-to-all broadcasting of QT (16, 16) using SLA

Figure 10 shows one-to-all broadcasting mechanism of QT (16, 16) using SLA. We
do not present oblique line edges or reverse oblique line edges in this Figure. Numbers
in Fig. 10 represent broadcasting time for the messages to arrive at its destined cluster
and (number) depicts time that all the nodes in the cluster get the messages. And the
arrows illustrate processes for message transfer.

5.2 All-to-all broadcasting of QT (m, n)

Lemma 2 All-to-all broadcasting time of 3-dimensional hypercube Q3 using SLA is
5 and the broadcasting time of Q3 using MLA is 3.

Proof In Figure 4, we can see that there are two cycles that are represented as a and
b in Q3. Broadcasting mechanism using SLA is as follows. In parallel, both 4-cycles
a and b can do an all-to-all broadcasting in three time units. Now, each node on cycle
a has four messages from all four nodes on the cycle and the same can be said for
nodes on cycle b. In another step, all nodes on cycle b send their four messages to their
corresponding nodes on cycle a. In one more step, all nodes on cycle a send their four
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Table 3 All-to-all broadcasting algorithm of QT (m, n) using SLA

[Step 1] Send messages of all nodes within each module to all the other nodes within the

same basic module that composes QT (m, n)

[Step 2] Using internal edges and vertical edges, send messages to all the basic modules

on all the columns in QT (m, n):

(x, y, 7)− ((x + 1)%m, y, 3)− ((x + 1)%m, y, 7)− ((x + 2)%m, y, 3)

−((x + 2)%m, y, 7)− · · · ((x − 1+ m)%m, y, 3)− ((x − 1+ m)%m, y, 7)

[Step 3] Send messages from (x, y, 7) and (x, y, 3) to (x, y, 1) and (x, y, 5)

[Step 4] Using internal edges and horizontal edges, send messages to all the basic modules

on all the rows in QT (m, n):

(x, y, 1)− (x, (y + 1)%n, 5)− (x, (y + 1)%n, 1)− (x, (y + 2)%n, 5)

−(x, (y + 2)%n, 1)− · · · − (x, (y − 1+ n)%n, 5)− (x, (y − 1+ n)%n, 1)

[Step 5] Send messages of (x, y, 1) and (x, y, 5) within each basic module to all the other

nodes within the same basic module that composes QT (m, n)

messages to their corresponding nodes on cycle b so that now, all nodes in Q3 have
eight messages and the total time is 5.

Broadcasting mechanism using MLA is as follows. In the first step of broadcasting,
all the nodes in a and b cycles send messages to all the adjacent nodes. After this step
is repeated once, all the nodes within a and b cycles will have messages from all the
nodes within each cycle. In the second step, all the nodes in a cycle and all the nodes
in b cycle that are linked via edges will send and get messages each other. Therefore,
all-to-all broadcasting time in Q3 using MLA is 3. 
�

Table 3 shows all-to-all broadcasting algorithm of QT (m, n) using SLA (0 ≤ x ≤
m − 1, 0 ≤ y ≤ n − 1). In this algorithm, if x = 0 then x − 1 = m − 1 and y = 0
then y − 1 = n − 1.

All-to-all broadcasting time using SLA is as follows. [Step 1] is a process that sends
message of a node within each module to all the other nodes within the same basic
module that composes QT (m, n) and its broadcasting time is 5. [Step 2] is a process
that sends messages of (x, y, 7) and (x, y, 3) that are nodes of the basic module located
in all the columns within QT (m, n) and its broadcasting time is 2m − 2. [Step 3] is
a process that sends messages from (x, y, 7) and (x, y, 3) to (x, y, 1) and (x, y, 5)

and its broadcasting time is 1. [Step 4] is a process that sends messages of (x, y, 1)

and (x, y, 5) that are located in all the rows within QT (m, n) and its broadcasting
time is 2n − 2. [Step 5] is a process that sends the messages of (x, y, 1) and (x, y, 5)

within each basic module to all the other nodes within the same basic module and its
broadcasting time is 3. Therefore, all-to-all broadcasting time using SLA is 2m+2n+5.

Theorem 4 Broadcasting time of QT (m, n) from all-to-all broadcasting algorithm
using SLA is 2m + 2n + 5.

Table 4 shows all-to-all broadcasting algorithm of QT (m, n) using MLA (0 ≤
x ≤ m − 1, 0 ≤ y ≤ n − 1). In this algorithm, if x = 0 then x − 1 = m − 1 and
y = 0 then y − 1 = n − 1.
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Table 4 All-to-all broadcasting algorithm of QT (m, n) using MLA

[Step 1] Send messages of all nodes within each module to all the other nodes within the

same basic module that composes QT (m, n)

[Step 2] Using internal edges and horizontal edges, send messages to all the basic modules

on all the columns in QT (m, n):

1) m = even:

(x, y, 7)− ((x + 1)%m, y, 3)− ((x + 1)%m, y, 7)− ((x + 2)%m, y, 3)

−((x + 2)%m, y, 7)− · · · − ((x + m
2 )%m, y, 3)

and

(x, y, 3)− ((x − 1+ m)%m, y, 7)− ((x − 1+ m)%m, y, 3)− ((x − 2+ m)%m, y, 7)

−((x − 2+ m)%m, y, 3)− · · · − ((x + m
2 )%m, y, 7)

2) m = odd:

(x, y, 7)− ((x + 1)%m, y, 3)− ((x + 1)%m, y, 7)− ((x + 2)%m, y, 3)

−((x + 2)%m, y, 7)− · · · − ((x + �m
2 �)%m, y, 3)− ((x + �m

2 �)%m, y, 7)

and

(x, y, 3)− ((x − 1+ m)%m, y, 7)− ((x − 1+ m)%m, y, 3)− ((x − 2+ m)%m, y, 7)

−((x − 2+ m)%m, y, 3)− · · · − ((x + �m
2 �)%m, y, 7)− ((x + �m

2 �)%m, y, 3)

[Step 3] Send messages from (x, y, 7) and (x, y, 3) to (x, y, 1) and (x, y, 5)

[Step 4] Using internal edges and vertical edges, send messages to all the basic modules

on all the rows in QT (m, n):

1) n = even:

(x, y, 1)− (x, (y + 1)%n, 5)− (x, (y + 1)%n, 1)− (x, (y + 2)%n, 5)

−(x, (y + 2)%n, 1)− · · · − (x, (y + n
2 )%n, 5)

and

(x, y, 5)− (x, (y − 1+ n)%n, 1)− (x, (x, (y − 1+ n)%n, 5)− (x, (x, (y − 2+ n)%n, 1)

−(x, (x, (y − 2+ n)%n, 5)− · · · − (x, (y + n
2 )%n, 1).

2) m = odd:

(x, y, 1)− (x, (y + 1)%n, 5)− (x, (y + 1)%n, 1)− (x, (y + 2)%n, 5)−
(x, (y + 2)%n, 1)− · · · − (x, (y + � n

2 �)%n, 5)− (x, (y + � n
2 �)%n, 1)

and

(x, y, 5)− (x, (y − 1+ n)%n, 1)− (x, (y − 1+ n)%n, 5)− (x, (y − 2+ n)%n, 1)

−(x, (y − 2+ n)%n, 5)− · · · − (x, (y + � n
2 �)%n, 1)− (x, (y + � n

2 �)%n, 5)

[Step 5] Send messages of (x, y, 1) and (x, y, 5) within each basic module to all the other

nodes within the same basic module that composes QT (m, n)

All-to-all broadcasting time using MLA is as follows. [Step 1] is a process that
sends message of a node within each module to all the other nodes within the same
basic module that composes QT (m, n) and its broadcasting time is 3. [Step 2] is a
process that sends messages of (x, y, 7) and (x, y, 3) that are nodes of the basic module
located in all the columns within QT (m, n) and its broadcasting time is m−1. [Step 3]
is a process that sends messages from (x, y, 7) and (x, y, 3) to (x, y, 1) and (x, y, 5)

and its broadcasting time is 1. [Step 4] is a process that sends messages of (x, y, 1)
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and (x, y, 5) that are located in all the rows within QT (m, n) and its broadcasting
time is n − 1. [Step 5] is a process that sends the messages of (x, y, 1) and (x, y, 5)

within each basic module to all the other nodes within the same basic module and its
broadcasting time is 2. Therefore, all-to-all broadcasting time using MLA is m+n+4.

Theorem 5 Broadcasting time of QT (m, n) from all-to-all broadcasting algorithm
using MLA is m + n + 4.

In view of the �(m + n) lower bound, all of our broadcasting algorithms are
asymptotically optimal.

6 Conclusion

This paper reported an analysis of QT (m, n), which is an interconnection network that
performs better than a diagonal mesh, whose degree is a constant, torus, honeycomb
mesh, honeycomb torus and hexagonal torus in terms of the network cost and diameter.
First, we proved that the bisection width of QT (m, n) is 6n when m is even and 6n+2
when m is odd. In addition, we proposed an algorithm to construct a Hamiltonian cycle
in QT (m, n). We also suggested one-to-all and all-to-all broadcasting algorithms for
QT (m, n) and proved that broadcasting time of QT (m, n) by one-to-all broadcasting
algorithm using SLA is 2�m

2 � + 6 and that of QT (m, n) by one-to-all broadcasting
algorithm using MLA is 2�m

2 �+5. And we proved that broadcasting time of QT (m, n)

by all-to-all broadcasting algorithm using SLA is 2m + 2n + 5 and that of QT (m, n)

by all-to-all broadcasting algorithm using MLA is m + n + 4. From the analysis,
QT (m, n) network is one that fits the large-scale system for parallel processing.

Future research will be needed to consider embedding QT (m, n) to the existing
mesh family of networks. An optimal routing algorithm, fault tolerant routing algo-
rithm or parallel routing algorithm that allows the shortest path length will be valuable
topics for future research.
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