
Discrete Applied Mathematics 160 (2012) 2006–2014

Contents lists available at SciVerse ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

One-to-many node-disjoint paths of hyper-star networks
László Lipták a,∗, Eddie Cheng a, Jong-Seok Kim b, Sung Won Kim b

a Department of Mathematics and Statistics, Oakland University, Rochester, MI 48309, United States
b Department of Information and Communication Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 712-749, Republic of Korea

a r t i c l e i n f o

Article history:
Received 11 May 2011
Received in revised form 13 December 2011
Accepted 9 April 2012
Available online 4 May 2012

Keywords:
Interconnection network
Hyper-star
One-to-many node-disjoint path
Algorithms

a b s t r a c t

In practice, it is important to construct node-disjoint paths in networks, because they
can be used to increase the transmission rate and enhance the transmission reliability.
The hyper-star networks HS(2n, n) were introduced to be a competitive model for both
the hypercubes and the star graphs. In this paper, one-to-many node-disjoint paths are
constructed between a fixed node and n other nodes of HS(2n, n) such that each of these
paths has length at most 4 more than the shortest path to that node. Moreover, their
maximum length is not greater than the diameter + 2.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Advances in hardware technology, especially very-large-scale integration circuit technology, have made it possible to
build a large-scale multiprocessor system that contains thousands or even tens of thousands of processors. One crucial step
in designing a large-scale multiprocessor system is to determine the topology of the interconnection network (network
for short), because the system performance is significantly affected by the network topology. In recent decades, a number
of networks have been proposed in the literature [10,16]. A network is conveniently represented by a graph whose nodes
represent the processors of the network and whose edges represent the communication links of the network. Throughout
this paper, we use network and graph, processor and node, and link and edge, interchangeably.

Let G = (V , E) be a connected graph, where V and E represent the node set and edge set of G, respectively. The degree of
a node in G is the number of edges incident with it. If all nodes have the same degree d, then G is called regular. The distance
between two nodes u and v, denoted by dist(u, v), is the length of a shortest path between u and v. The diameter of G is
the maximum distance between any two nodes of G. The node connectivity of G is the minimal number of nodes in Gwhose
removal can cause G to become disconnected or trivial.

One of the most efficient interconnection networks is the hypercube [11]. Another family of regular graphs, the star
graphs [1], has been extensively studied. The hyper-star graphsHS(m, n)were introduced by Lee et al. [15] andKimet al. [13]
to become a new type of interconnection networks for competing with both the hypercubes and the star graphs. The hyper-
star network is a regular network onlywhenm = 2n. A result by Lee et al. [15] also showed that hyper-star graphs gave lower
network cost (measured by the product of degree and diameter) than hypercubes, folded hypercubes, and other variants.
Later on, stronger structural properties and some embedding schemes for hyper-star graphs were provided respectively
in [4,5] and in [12].

In practice, it is important to construct node-disjoint paths in networks, because they can be used to increase the
transmission rate and enhance the transmission reliability. Besides that, node-disjoint paths have applications in multipath

∗ Corresponding author. Tel.: +1 248 370 4054; fax: +1 248 370 4184.
E-mail address: liptak@oakland.edu (L. Lipták).

0166-218X/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2012.04.006

http://dx.doi.org/10.1016/j.dam.2012.04.006
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
mailto:liptak@oakland.edu
http://dx.doi.org/10.1016/j.dam.2012.04.006

L. Lipták et al. / Discrete Applied Mathematics 160 (2012) 2006–2014 2007

Fig. 1. HS(6, 3).

routing such as Rabin’s information dispersal algorithm [18], fault tolerance [6,7], and communication protocols [10]. There
are two paradigms for the study of node-disjoint paths in interconnection networks: the one-to-one routing that constructs
the maximum number of node-disjoint paths in the network between two given nodes, and the one-to-many routing that
constructs internally node-disjoint paths in the network from a given node to each of the nodes in a given set. One-to-one
node-disjoint paths in a variety of networks can be found in [7,9,10,13,14,17,19,20], while one-to-many node-disjoint paths
were examined for the hypercube in [2,8].

One-to-one node-disjoint paths in the hyper-star network HS(2n, n) have been studied by Kim et al. [13]. In this paper,
we propose an algorithm to construct one-to-many node-disjoint paths in HS(2n, n). Their maximum length will not be
greater than 2n + 1, which is at most 2 bigger than 2n − 1, the diameter of HS(2n, n).

The remainder of this paper is organized as follows. In Section 2,we introduceHS(2n, n) and some of its useful properties,
and in Section 3 we propose our algorithm to construct one-to-many internally node-disjoint paths in HS(2n, n) whose
maximum length will not be greater than 2n + 1. Finally, a conclusion is given in Section 4.

2. Preliminaries

The hyper-star graphHS(m, n) is an undirected graph consisting of
m

n


nodes, where each node is represented by a binary

string of m bits b1b2 · · · bi · · · bm such that the number of bits equal to 1 is n (i.e., |{i : 1 ≤ i ≤ m, bi = 1}| = n). Two nodes
are adjacent if and only if one can be obtained from the other by exchanging its first bit with a different bit (1 with 0, or 0
with 1) in another position. An edge connecting two nodes u and v is called an i-edge if it results from switching the first bit
of u with its ith bit. For example, in HS(6, 3), node 011001 is adjacent to node 110001 by a 3-edge. Clearly, every node in
HS(m, n) has degree n or m − n, and HS(m, n) is regular if and only ifm = 2n. Fig. 1 shows HS(6, 3).

Note that HS(2n, n) is isomorphic to the middle cube, the subgraph spanned by the nodes containing n or n − 1 1s in
the hypercube H2n−1 (delete the first bit of each node to get an isomorphism). Incidentally, many relatively easy results for
the hypercube are difficult to prove for the hyper-star. For example, a famous conjecture is that HS(2n, n) is Hamiltonian,
which is called the revolving door conjecture.

Let dist(u, v) be the distance from u = u1u2 · · · u2n to v = v1v2 · · · v2n. If R is the bit string obtained by applying the
bitwise Exclusive-OR operation to them, thus R = r1r2 · · · r2n, where ri = ui ⊕vi, then dist(u, v) =

2n
i=2 ri. For a node u, we

denote by [k1, k2, . . . , kt] the path obtained by starting from u, going to its neighbor using a k1-edge, going to its neighbor
using a k2-edge, etc., assuming that such an edge is actually present in the graph. For example, for u = 000111, the sequence
[4, 2, 6] represents the path 000111–100011–010011–110010 in HS(6, 3), but the sequence [4, 5, 6] does not represents
a path (or walk), since the second move is not allowed (it switches two 1s). Clearly, every path can be represented in such
a way, though not every sequence represents a path (or even a walk) for a given starting node. Notice that if k1, k2, . . . , kt
are all different, and [k1, k2, . . . , kt] represents a path from u to v, then we can permute the kis with even subscripts and
we can permute the kis with odd subscripts and still get a path from u to v of the same length (other permutations do not

2008 L. Lipták et al. / Discrete Applied Mathematics 160 (2012) 2006–2014

correspond to paths). Thus the same applies to shortest paths. Two paths are internally node disjoint if any common node on

the paths is an endpoint of both paths. We will use 0n1n to represent the node

n  
0 · · · 0

n  
1 · · · 1 in HS(2n, n).

We will need the following easy lemmas about the cycles in HS(2n, n).

Lemma 1 ([5]). The length of a shortest cycle in HS(2n, n) is 6.

Lemma 2. Let u and v be two nodes inHS(2n, n), and let P andQ be pathswith lengthρ ≥ 3 fromu to v, represented respectively
by the sequences [k1, k2, . . . , kρ] and [m1,m2, . . . ,mρ], where k1, k2, . . . , kρ are all different. There are no common internal
nodes on P and Q if and only if, for every 1 ≤ i < ρ , we have {k1, k2, . . . , ki} ≠ {m1,m2, . . . ,mi}.

Proof. Note that, since k1, . . . , kρ are all different, as we follow path P from u to v, these bits are flipped exactly once, so, in
order for Q to end at the same node, we must have {k1, . . . , kρ} = {m1, . . . ,mρ}. First, assume that there are no common
internal nodes on P and Q . Then, for 1 ≤ i < ρ, the subpaths represented by [k1, k2, . . . , ki] and [m1,m2, . . . ,mi] end at
different nodes, so we must have {k1, k2, . . . , ki} ≠ {m1,m2, . . . ,mi}.

For the other direction, assume that {k1, k2, . . . , ki} ≠ {m1,m2, . . . ,mi} for every 1 ≤ i < ρ. Assume that there is
a common internal node w on the two paths, and that the subpaths to w are respectively represented by [k1, k2, . . . , kj]
and [m1,m2, . . . ,mp], where j and p are both less than ρ. Since along the path represented by [k1, k2, . . . , kj] each
corresponding bit is flipped exactly once, and m1,m2, . . . ,mp are all different, we must have j = p and {k1, k2, . . . , kj} =

{m1,m2, . . . ,mj}. �

This lemma can be easily generalized for paths possibly ending at different nodes as follows.

Lemma 3. Let u, v, w be nodes in HS(2n, n) with v ≠ w, and let P and Q be paths from u to respectively v and w. Let P
and Q be represented respectively by the sequences [k1, k2, . . . , kρ] and [m1,m2, . . . ,mσ], where ρ, σ ≥ 3, and assume that
k1, k2, . . . , kρ are all different and m1,m2, . . . ,mσ are all different. There are no common internal nodes on P and Q if and only
if, for every 1 ≤ i ≤ min{ρ, σ }, we have {k1, k2, . . . , ki} ≠ {m1,m2, . . . ,mi}.

Proof. First, assume that there are no common internal nodes on P and Q . Then, for 1 ≤ i ≤ min{ρ, σ }, the subpaths
represented by [k1, k2, . . . , ki] and [m1,m2, . . . ,mi] end at different nodes (when i = ρ = σ , this follows from v ≠ w).
Since along each subpath each bit corresponding to an element of these sequences is flipped exactly once, we must have
{k1, k2, . . . , ki} ≠ {m1,m2, . . . ,mi}.

For the other direction, assume that {k1, k2, . . . , ki} ≠ {m1,m2, . . . ,mi} for every 1 ≤ i ≤ min{ρ, σ }. By contradiction,
assume that there is a common node z ≠ u on the two paths, and that the subpaths to z are respectively represented by
[k1, k2, . . . , kj] and [m1,m2, . . . ,mp], where j ≤ ρ and p ≤ σ . Since along the path represented by [k1, k2, . . . , kj] each
corresponding bit is flipped exactly once, and m1,m2, . . . ,mp are also all different, we must have j = p ≤ min{ρ, σ } and
{k1, k2, . . . , kj} = {m1,m2, . . . ,mj}, which is a contradiction. �

Remark. Lemma 3 can be generalized further for the case when the paths may contain repeated elements by noticing the
following: two paths from u represented by [k1, k2, . . . , kρ] and [m1,m2, . . . ,mσ] will end up at the same node if and only
if, for every number i, the number of occurrences of i in the two sequences have the same parity.

3. One-to-many node-disjoint paths in HS(2n, n)

In this section, we present our algorithm to find node-disjoint paths in HS(2n, n). We first introduce some notation that
will help us describe the paths. CRx(S)will denote the sequence obtained from the sequence S by rotating its elements to the
left x times. For example, if S = [1, 2, . . . , n], then CR0(S) = [1, 2, . . . , n], and CR3(S) = [4, 5, . . . , n, 1, 2, 3]. Assume that
P is a path connecting two nodes u and v in the hyper-star HS(2n, n) and that the sequence S represents P starting from u.
Pick the numbers in the odd positions from S to form S1 = [a1, a2, . . . , ap], and pick the ones in the even positions to form
S2 = [b1, b2, . . . , bq]. Given sequences S1 and S2 with p = q or p = q+ 1, S1 ⊗ S2 will represent the new sequence obtained
by alternately picking elements of S1 and S2 (finishing with the last element of S1 if p = q+ 1). For instance, if S1 = [5, 6, 7]
and S2 = [2, 3, 4], then S1 ⊗ S2 = [5, 2, 6, 3, 7, 4]. Clearly, using x = 0, 1, . . . , p − 1, we can get p different paths of the
form CRx(S1) ⊗ CRx(S2), and they will be internally node disjoint by Lemma 2.

Since HS(2n, n) is node symmetric (see [4]), we may fix node u = 0n1n, and let v = b1b2 · · · bi · · · b2n be another
node of HS(2n, n). Let the result of applying the bitwise Exclusive-OR function on these two nodes be the bitstring R =

r1r2 · · · ri · · · r2n (so ri = ui⊕bi), and let dist(u, v) = t . Let the set R1 consist of bit positions i such that ri = 1 and 2 ≤ i ≤ 2n,
so |R1

| = t . We divide the elements of R1 into the following two sequences: bit positions up to n are put intoH1, bit positions
that are at least n+1 are put intoH2, both in an increasing order (soH1 andH2 depend on v). Thus, if R1

= {i1, i2, . . . , it} such
that i1 < i2 < · · · < ig ≤ n < ig+1 < · · · < it , then H1 = [i1, i2, . . . , ig] and H2 = [ig+1, ig+2, . . . , it]. It is easy to see that
g =

t−1
2 if t is odd, while g =

t
2 if t is even. Similarly, let the set R0 consist of bit positions i such that ri = 0 and 2 ≤ i ≤ 2n.

We divide the elements of R0 into two sequences H3 and H4 the same way: bit positions up to n go into H3, and the rest go
into H4, both in an increasing order. Thus if R0

= {i1, i2, . . . , it ′} such that i1 < i2 < · · · < if ≤ n < if+1 < · · · < it ′ (where

L. Lipták et al. / Discrete Applied Mathematics 160 (2012) 2006–2014 2009

t ′ = 2n − 1 − t), then H3 = [i1, i2, . . . , if] and H4 = [if+1, if+2, . . . , it ′]. Again, it is easy to see that f =
t ′−1
2 if t ′ is odd,

while f =
t ′
2 if t ′ is even. Using the above notation, we can find ⌈

t
2⌉ paths of the form CRx(H2) ⊗ CRx(H1) from u to v. For

example, with n = 4 and v = 10110100, we get R1
= {3, 4, 5, 7, 8}, so H1 = [3, 4] and H2 = [5, 7, 8], while R0

= {2, 6},
so H3 = [2] and H4 = [6]. We can get ⌈

5
2⌉ = 3 internally node-disjoint paths from u to v of the form CRx(H2) ⊗ CRx(H1) by

using x = 0, 1, 2: [5, 3, 7, 4, 8], [7, 4, 8, 3, 5], and [8, 3, 5, 4, 7].
Since HS(2n, n) is n-connected (in fact, it has stronger properties; see [4,5,3]), we can construct n one-to-many

node-disjoint paths. Let the destination nodes be v1, . . . , vn; order them such that their distances are non-decreasing:
dist(u, v1) ≤ dist(u, v2) ≤ · · · ≤ dist(u, vn). We want to find a path Pk from u = 0n1n to vk for each k, k = 1, . . . , n.
Let the result of applying the bitwise Exclusive-OR function on the two nodes u and vk be the bitstring Rk = rk,1rk,2 · · · rk,2n
for k = 1, . . . , n.

We define two matrices, M1 and M2, as follows. The rows of M2 will be composed of the bits of the bitstrings RM2
k =

rk,n+1rk,n+2 · · · rk,2n for 1 ≤ k ≤ n, while the rows of M1 will be composed of the bits of the corresponding bitstrings
RM1
k = rk,2rk,3 · · · rk,n, 1 ≤ k ≤ n in the same order:

M1 =


r1,2 r1,3 · · · r1,n
r2,2 r2,3 · · · r2,n
...

. . .

rn,2 rn,3 · · · rn,n

 M2 =


r1,n+1 r1,n+2 · · · r1,2n
r2,n+1 r2,n+2 · · · r2,2n

...
. . .

rn,n+1 rn,n+2 · · · rn,2n


Next, we choose the first edge on each of the paths. Clearly, each of these edges must be an i-edge for some i > n,

because u = 0n1n. First, select as many 1s from M2 as possible with the restriction that we can select at most one 1 from
each row and from each column. This can be done by finding a maximum matching in an auxiliary bipartite graph whose
nodes correspond to the rows and columns of M2, and there is an edge between a row and a column if the corresponding
entry inM2 is 1. Then modify this selection so that the 1s are chosen for the nodes closest to u as follows. For every column
inwhich a 1 has been selected, check if it has a 1 above it in a row inwhich no 1 has been selected. If this happens, switch the
later 1 to the earlier 1. Repeat until no such 1 is found. Then, in each row where no bit has been selected yet, select the bit 0
in the first column in which no bit has been selected yet. Continue this way until exactly one bit (either 0 or 1) is selected in
each row and each column. For each k = 1, . . . , n, if the bit rk,j was selected, it will be indicated by rk,j, and then we choose
the first edge on Pk to be a j-edge. Since a maximum matching can be found in O(NM) time if the graph has N nodes and M
edges, this preliminary step can be done in O(n3) time.

Example 1. (Here and in later examples we will put a vertical bar in the middle of each string to make it easier to identify
H1, . . . ,H4.) Let n = 4, u = 0000|1111, and v1 = 1010|0011, v2 = 0110|0011, v3 = 0110|0101, and v4 = 1110|0001. So
R1 = 1010|1100, R2 = 0110|1100, R3 = 0110|1010, and R4 = 1110|1110. Therefore

M1 =

0 1 0
1 1 0
1 1 0
1 1 0

 , M2 =

1 1 0 0
1 1 0 0
1 0 1 0
1 1 1 0

 .

Assume that we first pick the maximum possible number of 1s as follows: r2,5, r3,7, r4,6 (note that columns ofM2 are labeled
with 5, . . . , 8), giving

M2 =


1 1 0 01 1 0 0
1 0 1 0
1 1 1 0

 .

There is a 1 above r2,5 in the first row, so we switch it to r1,5. After that there is a 1 above r4,6 in the second row (there is a 1
in the first row as well, but we already picked a 1 from that row), so we switch it to r2,6. This gives

M2 =


1 1 0 0
1 1 0 0
1 0 1 0
1 1 1 0

 .

Finally, choose a 0 in each row where no bit has been selected: r4,8, so
M2 =


1 1 0 0
1 1 0 0
1 0 1 0
1 1 1 0

 .

2010 L. Lipták et al. / Discrete Applied Mathematics 160 (2012) 2006–2014

Now, for each k = 1, . . . , n, we choose the path Pk from u to vk. The idea is to choose some preliminary paths in Stage 1,
then resolve any conflicts by using Stage 2 as follows.

Path Algorithm, Stage 1
Let Hk

1 , . . . , H
k
4 be the sets corresponding to vk, let the first edge chosen to be on Pk be a j-edge (so rk,j), and let x be the

number of left cyclic rotations needed to move j to be the first element in CRx(Hk
2) when rk,j = 1.

Case 1. If rk,j = 1, then let Pk = CRx(Hk
2) ⊗ Hk

1 .
Case 2. If rk,j = 0, and the distance from u to vk is even, then let Pk = [j,Hk

1 ⊗ Hk
2, j].

Case 3. If rk,j = 0, and the distance from u to vk is odd, then let Pk = [j, ik,Hk
2 ⊗Hk

1, j, ik], where ik is the first element in Hk
3 .

Note that in Case 3 Hk
3 cannot be empty, since that would imply that vk = 1n0n. But then Hk

2 = {n + 1, . . . , 2n}, so we
must have picked a bit that is 1, so vk should fall under Case 1. In addition, the distance from u to vk in this case is at most
2n − 3 (must be odd and strictly less than 2n − 1), so the maximum path length after Stage 1 is 2n + 1. So none of these
paths have length larger than diameter + 2 of HS(2n, n). Clearly Stage 1 can be done in O(n2) time (the total length of all
paths).

Stage 1 is not guaranteed to find internally node-disjoint paths, so we need to check whether there is a conflict, and
modify at least one of the paths when there is one. This is achieved in Stage 2 of the algorithm.

Path Algorithm, Stage 2
Step 1. Check if there are two paths Pβ = [p1, p2, . . . , pγ] and Qδ = [q1, q2, . . . , qη] with β ≠ δ such that rβ,p1 = rδ,q1 = 1
and the two paths have a common node which is not the endpoint of both paths. If there are such paths and Hβ

2 ≠ Hδ
2 , then

switch the chosen bits (rβ,q1 = rδ,p1 = 1) and redefine both paths according to Stage 1 of the algorithm (Pk = CRx(Hk
2)⊗Hk

1).
If Hβ

2 = Hδ
2 , then consider all nodes with this same H2 (and chosen bit 1), and redefine the paths as follows. For nodes with

an even distance to u, permute the corresponding sets Hk
1 in the paths such that, if we delete their last elements, then they

become all different, and they will be different from the sets H1 corresponding to nodes with this same H2 with an odd
distance from u.

Repeat Step 1 until no such pairs are found.
Step 2. Check if there are two paths Pβ = [p1, p2, . . . , pγ] and Qδ = [q1, q2, . . . , qη] with β ≠ δ and Hβ

2 = Hδ
2 such that

rβ,p1 = rδ,q1 = 0 and the two paths have a common internal node. If there are such paths, then consider all nodes with this
sameH2 (and chosen bit 0), and redefine the paths as follows. For nodes with an odd distance from u, choose ik fromHk

3 such
that the sets Hk

1 ∪ {ik} are all different, and they are all different from the sets H1 corresponding to nodes with the same H2
at an even distance from u. Redefine these paths according to Case 3 of Stage 1 using the new ik.

Repeat Step 2 until no such pairs are found.

Before we show that the algorithm will terminate in polynomial time and finish with internally node-disjoint paths, we
give a few examples to illustrate Stage 2.

Example 2. Let n = 4 and v1 = 0110|0101, v2 = 0110|0011, v3 = 1110|0001. Then H1
1 = H2

1 = H3
1 = {2, 3},H1

2 =

{5, 7},H2
2 = {5, 6},H3

2 = {5, 6, 7}, and letM2 with the chosen bits be

M2 =

1 0 1 0
1 1 0 0
1 1 1 0

 .

Stage 1 will assign the following paths: P1 = [5, 2, 7, 3], P2 = [6, 2, 5, 3], P3 = [7, 2, 5, 3, 6]. Step 1 of Stage 2 will find that
the third node is a common internal node on P1 and P3 since {5, 2, 7} = {7, 2, 5}. Their corresponding H2s are different, so
we switch their chosen bits to get

M2 =

1 0 1 0
1 1 0 01 1 1 0

 ,

and the paths are redefined as P1 = [7, 2, 5, 3], P2 = [6, 2, 5, 3], and P3 = [5, 2, 6, 3, 7]. Now the third node is a common
internal node on P2 and P3 since {6, 2, 5} = {5, 2, 6}. Their corresponding H2s are different, so we switch their chosen bits
to get

M2 =

1 0 1 01 1 0 0
1 1 1 0

 ,

and the paths are redefined as P1 = [7, 2, 5, 3], P2 = [5, 2, 6, 3], and P3 = [6, 2, 7, 3, 5]. Now the paths are internally
node-disjoint, and the algorithm terminates.

L. Lipták et al. / Discrete Applied Mathematics 160 (2012) 2006–2014 2011

Fig. 2. Example for Pβ and Qδ with a common node in HS(48, 24).

Example 3. Let n = 5 and v1 = 11100|00011, v2 = 01110|00011, v3 = 01101|00011. Then H1
1 = {2, 3}, H2

1 = {2, 3, 4},
H3

1 = {2, 3, 5}, H1
2 = H2

2 = H3
2 = {6, 7, 8}, and letM2 with the chosen bits be

M2 =

1 1 1 0 0
1 1 1 0 0
1 1 1 0 0

 .

Stage 1 will assign the following paths: P1 = [6, 2, 7, 3, 8], P2 = [7, 2, 8, 3, 6, 4], P3 = [8, 2, 6, 3, 7, 5]. Step 1 of Stage 2
will find that these paths have a common internal node (the last node of P1 is an internal node of P2 and P3), and these
nodes have the same H2. We permute the H1s of v2 and v3 (these nodes have even distance from u) so that excluding their
last elements will result in different sets which are also different from H1

1 . One possibility is to use CR2(H2
1) = [4, 2, 3] and

CR1(H3
1) = [3, 5, 2], since {2, 3}, {4, 2}, and {3, 5} are all different (we explain how to find these permutations in Theorem1).

Then P2 and P3 are redefined to get P1 = [6, 2, 7, 3, 8], P2 = [7, 4, 8, 2, 6, 3], P3 = [8, 3, 6, 5, 7, 2], making them internally
node disjoint, and the algorithm terminates.

Example 4. Let n = 6 and v1 = 010000|011111, v2 = 001000|101111, v3 = 000100|110111, v4 = 111000|000111,
v5 = 101100|000111, v6 = 011100|000111. Then H1

1 = {2}, H2
1 = {3}, H3

1 = {4}, H4
1 = {2, 3}, H5

1 = {3, 4}, H6
1 = {2, 3, 4},

H1
2 = {7}, H2

2 = {8}, H3
2 = {9}, H4

2 = H5
2 = H6

2 = {7, 8, 9}, and letM2 with the chosen bits be

M2 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0

 .

Stage 1 will assign the following paths using i4 = 4 and i5 = 2, since H4
3 = {4, 5, 6} and H5

3 = {2, 5, 6}: P1 = [7, 2],
P2 = [8, 3], P3 = [9, 4], P4 = [10, 4, 7, 2, 8, 3, 9, 10, 4], P5 = [11, 2, 7, 3, 8, 4, 9, 11, 2], P6 = [12, 2, 7, 3, 8, 4, 9, 12].
Step 2 of Stage 2 will find that paths P4, P5, and P6 have a common internal node (the last node of P6 is an internal node of
P4 and P5), and these nodes have the same H2. We change i4 and i5 (since v4 and v5 have odd distance from u) such that
adding these to the corresponding H1s will result in different sets which are also different from H6

1 . One possibility is to
use i4 = 5 and i5 = 6, since {2, 3, 5}, {3, 4, 6}, and {2, 3, 4} are all different (we explain how to find these elements in
Theorem 1). Then paths P4 and P5 are redefined to get P4 = [10, 5, 7, 2, 8, 3, 9, 10, 5], P5 = [11, 6, 7, 3, 8, 4, 9, 11, 6],
P6 = [12, 2, 7, 3, 8, 4, 9, 12], making the paths internally node disjoint, and the algorithm terminates.

Now we prove our main result.

Theorem 1. The Path Algorithm will finish in O(n5) time, and the resulting paths will be pairwise internally node-disjoint.

Proof. Since the preliminary step and Stage 1 can be done in O(n3) time, it is enough to show that each step of Stage 2 will
finish in O(n5) time, and that the resulting paths will be internally node disjoint.

Consider first Step 1 of Stage 2. By Lemma 3, we can easily check whether any two paths falling under this case have
a common node apart from u by checking initial subsequences of the sequences representing these paths. One pair of paths
can be checked in O(n) time, and since we have O(n2) pairs of paths, this can be done in O(n3) time. Now, assume that we
find two paths Pβ = [p1, p2, . . . , pγ] and Qδ = [q1, q2, . . . , qη] having a common node which is not the endpoint of both
paths. By Lemma 3, there must be an initial subsequence of the same length of P and Q containing the same numbers in
a different order. Thus there is an i ≤ min{γ , η} such that {p1, p2, . . . , pi} = {q1, q2, . . . , qi}. Consider only the elements of
these paths in H2 (i.e., with an odd subscript), and without loss of generality assume that p1 < q1. Let j be the largest odd
integer that is not bigger than i. Then we have {p1, p3, . . . , pj} = {q1, q3, . . . , qj} as well. Since q1 ∈ {p1, p3, . . . , pj}, there is
an odd index k such that pk = q1, and similarly p1 ∈ {q1, q3, . . . , qj} implies that there is an odd indexm such that qm = p1.
Then {p1, p3, . . . , pj} = {q1, q3, . . . , qj} implies that j ≥ k and j ≥ m. Since these paths are obtained by cyclically permuting

2012 L. Lipták et al. / Discrete Applied Mathematics 160 (2012) 2006–2014

the corresponding H2, we get that p1 < p3 < · · · < pk−2 < pk = q1, and we must have qm = p1, qm+2 = p3, . . . , qj = pk−2

(in particular, j − m = k − 3). Similarly, we get that q1 = pk, q3 = pk+2, . . . , qm−2 = pj. So this implies that Hβ

2 has no
elements between qj = pk−2 and pk, and Hδ

2 has no elements between pj = qm−2 and qm (betweenness is meant cyclically,
so, if qm−2 ≥ qm, then this means that Hδ

2 has no elements bigger than qm−2 and no elements less than qm). See Fig. 2 for an
example in HS(48, 24), where k = 7,m = 11, j = 15 (various pi and qi are indicated below or above the corresponding
value).

So, if Hβ

2 ≠ Hδ
2 , then either Hβ

2 has an element between qm−2 = pj and p1, or Hδ
2 has an element between pk−2 = qj

and q1 (33 in Hβ

2 and 42 in Hδ
2 in the above example). In either case, switching the chosen bits will make the redefined

paths to have no common internal nodes. Note that whenever we do a switch and Hβ

2 ≠ Hδ
2 , the number of cyclically

missing elements in Hβ

2 and in Hδ
2 after the corresponding last element and before the corresponding first element of

CRx(H
β

2) and CRx(Hδ
2) will go up (a missing element corresponds to a 0 in the matrix M2): originally, it is strictly less than

(p1 − pj − 1) + (q1 − qj − 1) (since Hβ

2 ≠ Hδ
2 , there is an element either in Hβ

2 after pj or in Hδ
2 after qj); after the switch,

it becomes (pk − pk−2 − 1) + (qm − qm−2 − 1) = (q1 − qj − 1) + (p1 − pj − 1), since Hβ

2 has no elements between pk−2

and pk, and Hδ
2 has no elements between qm−2 and qm (here again this is meant cyclically, so, if pj = qm−2 > qm = p1, then

we mean that Hδ
2 has no elements larger than qm−2 or smaller than qm, so p1 − pj − 1 is replaced by n + p1 − pj − 1, and

qm −qm−2 −1 is replaced by n+qm −qm−2 −1). In the above example, originally there is nomissing element inHβ

2 between
p17 = 33 and p1 = 34, and there is one missing element (43) in Hδ

2 between q17 = 42 and q1 = 44. After the switch, three
elements are missing from Hβ

2 between 41 and 44, and three elements are missing from Hδ
2 between 31 and 34.

Thus, if we add up the number of such missing elements for each node falling under Case 1 of Stage 2, this number
will increase after each switch, and is bounded from above by the number of zeros in matrix M2, so, after at most O(n2)
iterations this process must end, and the only remaining conflicts may occur for nodes with the same H2. Thus this part of
the algorithm can be done inO(n5) time. As another illustration, consider Example 2. Originally there is onemissing element:
CR0(H1

2) = [5, 7] is missing 8, but CR1(H2
2) = [6, 5] and CR2(H3

2) = [7, 5, 6] have nomissing element cyclically before their
first and after the last elements. After the first switch, we get two missing elements: CR1(H1

2) = [7, 5] is missing 6, and
CR0(H3

2) = [5, 6, 7] is missing 8. After the second switch, we get three missing elements: CR1(H1
2) = [7, 5] is missing 6,

CR0(H2
2) = [5, 6] is missing 7 and 8, and CR1(H3

2) = [6, 7, 5] has no missing element.
Now, consider all nodes vj1 , vj2 , . . . , vjk with the same corresponding H2 and chosen bit 1, and assume that among them

vj1 , . . . , vjm are of even distance from u (which is 2|H2|), and the others (k−m nodes) are of an odd distance from u (which is
2|H2|−1). From the argument above,we can see that between two such nodes the only conflict can occur after all elements of
H2 are encountered. For nodes vjm+1 , . . . , vjk , this means we reach the node, so the common node is not an internal node. So
we can only have a conflict between nodes vj1 , . . . , vjm or between a node from vj1 , . . . , vjm and a node from vjm+1 , . . . , vjk .
To get rid of all conflicts we need to permute the corresponding H1s for nodes vj1 , . . . , vjm such that excluding the last
elements they will be all different from each other and all H1s corresponding to vjm+1 , . . . , vjk (these could be the same).
To achieve that, construct a bipartite graph as follows. The left side will have nodes corresponding to nodes vj1 , . . . , vjm (m
nodes in total), and the right side will correspond to subsets of {2, . . . , n} that can be obtained by removing exactly one
element from each of H j1

1 , . . . ,H jm
1 in every possible way (at most m|H j1

1 | = O(n2) nodes). Connect each node on the left
to those subsets on the right that can be obtained by removing one element from the corresponding H1, but delete those
subsets that appear among the H1s corresponding to nodes vjm+1 , . . . , vjk . Since we chose a bit 1 for each of these nodes,
we have |H2| ≥ k, so the degree of each node on the left is at least m (|H1| = |H2| for these nodes, so there are at least
k edges originally, and we exclude at most k − m of them). Since there are only m nodes on the left side, Hall’s condition
will automatically be satisfied, since every nonempty subset of nodes on the left will have at leastm neighbors on the right,
so the graph has a matching saturating the left side. The degree of each node on the left is at most n, so the number of
edges in this bipartite graph is O(n2); thus a maximum matching can be found in O(n4) time. Now, permute H1 for each
node vj1 , . . . , vjm such that the excluded element in this matching becomes the last element. Since this may need to be done
only once for nodes with the same H2, this part can be done in O(n4) time. To illustrate this part of the algorithm, consider
Example 3. There is a conflict with the initial paths and the corresponding H2s are the same, so we construct an auxiliary
bipartite graph as follows. The left side has nodes {2, 3, 4} and {2, 3, 5} corresponding respectively to v2 and v3 (these nodes
have even distance from u), the right side has nodes {2, 3}, {2, 4}, {3, 4}, {2, 5}, {3, 5} (sets obtained from the left side by
deleting one element), and we have edges from {2, 3, 4} to {2, 3}, {2, 4}, {3, 4}, and from {2, 3, 5} to {2, 3}, {2, 5}, {3, 5} (to
the sets obtained by deleting one element). Finally, we delete node {2, 3} on the right side, since v1 has H1

1 = {2, 3}. This
leaves four nodes on the right and four edges overall. A matching saturating the left side can easily be found; the choice
of edges {2, 3, 4}–{2, 4} and {2, 3, 5}–{3, 5} leads to the solution in Example 3 (we permute the H1s such that the deleted
number becomes its last element, here 3 for v2 and 2 for v5).

Thus Step 1 will eliminate all conflicts between nodes falling under Case 1 of Stage 1 in O(n5) time.
Next consider the case when node vβ falls under Case 1 and node vδ falls under Case 2, and assume that the two

corresponding paths Pβ = [p1, p2, . . . , pγ] and Qδ = [q1, q2, . . . , qη] have a common internal node. Let this common
node correspond to the initial subsequences [p1, p2, . . . , pi] and [q1, q2, . . . , qj]. Then the definitions of these paths imply
that p1, p2, . . . , pγ are all different, q1 = qη , and q1, q2, . . . , qη−1 are all different. Thus, if the initial subsequences of these

L. Lipták et al. / Discrete Applied Mathematics 160 (2012) 2006–2014 2013

paths lead to the same node, then p1 must appear among q2, . . . , qη−1 (note that p1 ≠ q1 since the first edges on the paths
are chosen to be all different). If q1 also appears among p2, . . . , pγ , then switching the two chosen bits for vβ and vδ would
increase the number of 1s chosen, so this is not possible. Hence, no initial subsequence of Pβ switches bit q1, so the only way
the two paths end up at the same node is if j = η, so q1 is switched twice. Then by Lemma 3 (and the remark immediately
after that) we must have {p1, p2, . . . , pi} = {q2, . . . , qη−1}, so i = η − 2. If i = γ , then the only common nodes on the two
paths are their endpoints; otherwise dist(u, vβ) = γ > i = η − 2 = dist(u, vδ), so in the initial phase we would have
chosen bit q1 for node vδ rather than vβ , so this is not possible.

The next case is when both vβ and vδ fall under Case 2. Then p1 = pγ and q1 = qη , but p1, p2, . . . , pγ−1 are all different,
and q1, q2, . . . , qη−1 are all different. If p1 appears among q2, . . . , qη−1, then switching the two chosen bits for vβ and vδ

would increase the number of chosen 1s, so this is not possible. Similarly, q1 cannot appear among p2, . . . , pγ−1. Thus the
only way the two paths end up at the same node is if p1 is switched twice in the first path, and q1 is switched twice in the
second path; thus i = γ and j = η. But then again the only common nodes on the two paths are their endpoints, so there
are no internal common nodes on these paths, giving a contradiction. Thus after Step 1 there will be no conflict between
nodes falling under either Case 1 or 2.

Next, consider Step 2 of Stage 2. Clearly, we can check in O(n3) time if there is a conflict by checking initial subsequences
of the paths. If there is a conflict, we can find the corresponding iks as follows. Let the nodes vj1 , vj2 , . . . , vjk have the same
correspondingH2 and chosen bit 0, and assume that among them vj1 , . . . , vjm are of odd distance from u (which is 2|H2|−1),
and the others (k−m nodes) are of an even distance from u (which is 2|H2|). Construct an auxiliary bipartite graph as follows.
The left side will have nodes corresponding to nodes vj1 , . . . , vjm (m nodes in total), and the right side will correspond to
subsets of {2, . . . , n} that can be obtained by adding exactly one element from each of H j1

3 , . . . ,H jm
3 in every possible way

to the corresponding H1 (at most m|H j1
3 | = O(n2) nodes). Connect each node on the left to those subsets on the right that

can be obtained be adding one element from the corresponding H3, but exclude those subsets that appear among the H1s
corresponding to nodes vim+1 , . . . , vik . Since the 1s inH2 for these nodes were not chosen, there are at least |H2| other nodes,
so k ≤ n− |H2|. Since |H1| = |H2| − 1 for nodes vj1 , . . . , vjm , we get |H1| ≤ n− 1− k, so the original degree of each of these
nodes will be at least |H3| = (n − 1) − |H1| ≥ (n − 1) − (n − 1 − k) = k, and, after excluding possibly k − m of these, the
degreewill be at leastm. Since there arem nodes on the left, again Hall’s conditionwill automatically be satisfied. The degree
of each node on the left is at most n, so the number of edges in this bipartite graph is O(n2), thus a matching saturating the
left side can be found in O(n4) time, and the numbers ik for Case 3 can be chosen accordingly. Since a maximum matching
needs to be found at most once for nodes with the same H2, this part can be done in O(n4) time.

To illustrate this part of the algorithm, consider Example 4. There is a conflict with the initial paths and the
corresponding H2s are the same, so we construct an auxiliary bipartite graph as follows. The left side has nodes {2, 3}
and {3, 4}, corresponding respectively to v4 and v5 (these nodes have odd distance from u), the right side has nodes
{2, 3, 4}, {2, 3, 5}, {2, 3, 6}, {3, 4, 5}, {3, 4, 6} (sets obtained from the left side by adding one element), and we have edges
from {2, 3} to {2, 3, 4}, {2, 3, 5}, {2, 3, 6}, and from {3, 4} to {2, 3, 4}, {3, 4, 5}, {3, 4, 6} (to the sets obtained by adding one
element). Finally, we delete node {2, 3, 4} on the right side, since v6 has H1

1 = {2, 3, 4}. This leaves four nodes on the
right and four edges overall. A matching saturating the left side can easily be found; the choice of edges {2, 3}–{2, 3, 5} and
{3, 4}–{3, 4, 6} leads to the solution in Example 4 (the added element is used as ik; here, i4 = 5 and i5 = 6).

Now, consider the remaining cases, when at least one of vβ and vδ falls under in Case 3 in Stage 1. Without loss of
generality, we may assume that vδ falls under Case 3, so q1, q2, . . . , qη−2 are all different, q1 = qη−1, and q2 = qη .
Again, assume that the corresponding paths Pβ = [p1, p2, . . . , pγ] and Qδ = [q1, q2, . . . , qη] have a common internal
node corresponding to the initial subsequences [p1, p2, . . . , pi] and [q1, q2, . . . , qj]. We will consider cases depending on
which cases vβ falls under in Stage 1. First, assume that vβ falls under Case 1, so p1, p2, . . . , pγ are all different. Thus
p1 must appear among q2, . . . , qη−2 for the paths to have a common node. If q1 also appear among p2, . . . , pγ , then
switching the two chosen bits for vβ and vδ would increase the number of 1s chosen, so this is not possible. Hence no
initial subsequence of path Pβ switches bit q1, so the only way to have a common node is if q1 is switched twice, so j = η−1
or j = η. By Lemma 3 (and the remark immediately after that), we must have i = j − 2 or i = j − 4; thus in both cases
dist(u, vβ) = γ ≥ i ≥ j − 4 = dist(u, vδ). If dist(u, vβ) > dist(u, vδ), then in the initial phase we would have chosen bit q1
for node vδ rather than vβ , so dist(u, vβ) = dist(u, vδ), which implies that i = γ and j = η, so there is no common internal
node on the two paths, which is a contradiction.

If vβ falls under Case 2, then p1 = pγ , and p1, p2, . . . , pγ−1 are all different. If either p1 occurs among q3, . . . , qη−2, or q1
occurs among p2, . . . , pγ−1, then switching the two chosen bits increases the number of chosen 1s, so this is not possible.
So for the paths to have a common node, both p1 and q1 must be switched twice, so i = γ , and j = η − 1 or j = η. If j = η,
then the paths only have their endpoints in common, so j = η − 1. This implies that Hβ

2 = Hδ
2 and Hβ

1 = Hδ
1 ∪ {q2}, which is

not possible, since q2 is chosen in Step 2 of Stage 2 such that Hδ
1 ∪ {q2} is different from the set H1 of every other node with

the same H2.
Finally, if vβ falls under Case 3, then p1, p2, . . . , pγ−2 are all different, p1 = pγ−1, and p2 = pγ . Again, neither p1 nor q1

can occur in the other path, otherwise switching the chosen bits increases the number of chosen 1s. Thus the only way for
the paths to have a common node is if both bits are switched twice, so i = γ −1 or i = γ , and j = η−1 or j = η. This leaves
four possibilities. If i = γ and j = η, then the common node on the paths is their common endpoint. If i = γ and j = η − 1,
then one of the paths leads to a node of even distance from u, and the other of an odd distance, which is impossible. The case

2014 L. Lipták et al. / Discrete Applied Mathematics 160 (2012) 2006–2014

i = γ − 1 and j = η is impossible for the same reason. This leaves i = γ − 1 and j = η − 1, which implies that Hβ

2 = Hδ
2

and Hβ

1 ∪ {p2} = Hδ
1 ∪ {q2}, which is not possible, since p2 and q2 are chosen in Step 2 of Stage 2 such that Hβ

1 ∪ {p2} and
Hδ

1 ∪ {q2} are different. This is a contradiction. Since each step can be done in O(n5) time, the proof is finished. �

Note that, for node vi falling under Case 1 of Stage 1, the path we obtain is a shortest path; for nodes falling under Case 2,
the path has length dist(u, vi)+2, while, for nodes falling under Case 3, the path has length dist(u, vi)+4. So themaximum
length of the path obtained by the algorithm is 2n + 1, when rk,j = 0 and dist(u, vi) = 2n − 3.

Remark. Every path obtained will be a shortest path if and only if we can choose bit 1 from M2 for every node in the
beginning, that is, there is a maximummatching in the corresponding auxiliary graph.

4. Conclusion

In this paper,wehave provided an algorithm to construct one-to-many internally node-disjoint paths inHS(2n, n) in time
polynomial in n. We note that the corresponding disjoint one-to-many shortest paths routing problem for the hypercube is
solved in [8]. Interestingly, its algorithm also involves finding a perfect matching. On the other hand, this is not surprising,
since HS(2n, n) is a subgraph of the hypercube. We would like to point out that the algorithm given here is much more
involved than the one given in [8]. So here is another example of it being more difficult to prove properties for HS(2n, n)
than for the hypercube (just like the Hamiltonian problem). In [8], a necessary and sufficient condition is given for each of
the n paths to be shortest. Here, we gave a corresponding condition in the Remark at the end of the previous section.

Acknowledgments

We would like to thank the anonymous referees for their helpful comments, which greatly improved this paper.

References

[1] S.B. Akers, D. Harel, B. Krishnamurthy, The star graph: an attractive alternative to the n-cube, in: Proceedings of the 1987 International Conference on
Parallel Processing, 1987, pp. 393–400.

[2] E. Cheng, S. Gao, K. Qiu, Z. Shen, On disjoint shortest paths routing on the hypercube, in: D.-Z. Du, X. Hu, P.M. Pardalos (Eds.), Proceedings of the 3rd
Annual International Conference on Combinatorial Optimization and Applications, in: Lecture Notes in Computer Science, vol. 5573, Springer-Verlag,
2009, pp. 375–383.

[3] E. Cheng, P. Hu, R. Jia, L. Lipták, Matching preclusion and conditional matching preclusion for bipartite interconnection networks II: Cayley graphs
generated by transposition trees and hyper-stars, Networks (2011), in press (http://dx.doi.org/10.1002/net.20441).

[4] E. Cheng, L. Lipták, Structural properties of hyper-stars, Ars Combinatoria 80 (2006) 65–73.
[5] E. Cheng, M. Shah, A strong structural theorem for hyper-stars, Congressus Numerantium 179 (2006) 181–191.
[6] D.R. Duh, G.H. Chen, Topological properties of WK-recursive networks, Journal of Parallel and Distributed Computing 23 (3) (1994) 468–474.
[7] J.S. Fu, Longest fault-free paths in hypercubes with vertex faults, Information Sciences 176 (7) (2006) 759–771.
[8] S. Gao, B. Novick, K. Qiu, From Hall’s matching theorem to optimal routing on hypercubes, Journal of Combinatorial Theory (Series B) 74 (2) (1998)

291–301.
[9] Q.P. Gu, S.T. Peng, An efficient algorithm for the k-pairwise disjoint paths problem in hypercubes, Journal of Parallel and Distributed Computing 60

(6) (2000) 764–774.
[10] D.F. Hsu, On container width and length in graphs, groups, and networks, IEICE Transactions on Fundamentals of Electronics, Communications and

Computer Sciences E77-A (4) (1994) 668–680.
[11] S.L. Johnson, C.T. Ho, Optimal broadcasting and personalized communication in hypercubes, IEEE Transactions on Computers 38 (9) (1989) 1249–1268.
[12] J.-S. Kim, E. Cheng, L. Lipták, H.-O. Lee, Embedding hypercubes, rings and odd graphs into hyper-stars, International Journal of Computer Mathematics

86 (5) (2009) 771–778.
[13] J.-S. Kim, E. Oh, H.-O. Lee, Y.-N. Heo, Topological and communication aspects of hyper-star graphs, in: Proceedings of the 18th International Symposium

on Computer and Information Sciences, in: LNCS, vol. 2869, 2003, pp. 51–58.
[14] C.N. Lai, G.H. Chen, Strong Rabin numbers of folded hypercubes, Theoretical Computer Science 341 (1–3) (2005) 196–215.
[15] H.-O. Lee, J.-S. Kim, E. Oh, H.-S. Lim, Hyper-star graph: a new interconnection network improving the network cost of hypercube, in: Proceedings of

EurAsia ICT: Information and Communication Technology, in: LNCS, vol. 2510, 2002, pp. 858–865.
[16] T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes, Morgan Kaufman, San Mateo, CA, 1992.
[17] T.-C. Lin, D.-R. Duh, Constructing vertex-disjoint paths in (n, k)-star graphs, Information Sciences 178 (2008) 788–801.
[18] M.O. Rabin, Efficient dispersal of information for security, load balancing, and fault tolerance, Journal of the ACM 36 (2) (1989) 335–348.
[19] Y. Saad, M.H. Schultz, Topological properties of hypercubes, IEEE Transactions on Computers 37 (7) (1988) 867–872.
[20] R.-Y. Wu, G.-H. Chen, Y.-L. Kuo, G.J. Chang, Node-disjoint paths in hierarchical hypercube networks, Information Sciences 177 (2007) 4200–4207.

http://dx.doi.org/10.1002/net.20441

	One-to-many node-disjoint paths of hyper-star networks
	Introduction
	Preliminaries
	One-to-many node-disjoint paths in HS (2n, n)
	Conclusion
	Acknowledgments
	References

