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Abstract In practice it is important to construct node-disjoint paths in networks,
because they can be used to increase the transmission rate and enhance the trans-
mission reliability. The folded hyper-star networks FHS(2n,n) were introduced to be
a competitive model to both hypercubes and star graphs. They are bipartite and node-
symmetric, though not edge-symmetric, and have diameter n. In this paper we con-
struct a maximum number of node-disjoint paths between every two distinct nodes
of FHS(2n,n) and show that its fault diameter is n + 2 for n ≥ 4. We also suggest
a one-to-all broadcasting algorithm of FHS(2n,n) under the all-port model.

Keywords Interconnection network · Folded hyper-star · Node-disjoint path · Fault
diameter · Bipartite network · Node-symmetry

1 Introduction

Advances in hardware technology, especially in VLSI circuit technology, have made
it possible to build a large-scale multiprocessor system that contains thousands or
even tens of thousands of processors. One crucial step in designing a large-scale
multiprocessor system is to determine the topology of the interconnection network
(network for short), because the system performance is significantly affected by the
network topology. In recent decades, a number of networks were proposed in the
literature [12, 18]. A network is conveniently represented by a graph whose nodes
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represent the processors of the network and whose edges represent the communica-
tion links of the network. Throughout this paper, we use network and graph, processor
and node, and link and edge, interchangeably.

Let G = (V ,E) be a connected graph, where V and E represent the node set
and edge set of G, respectively. The degree of a node in G is the number of edges
incident with it. If all nodes have the same degree d , then G is called regular. The
distance between two nodes u and v, denoted by dist(u, v), is the length of a shortest
path between u and v. The diameter of G is the maximum distance between any
two nodes of G. The node-connectivity of G is the minimum number of nodes in G

whose removal causes G to become disconnected or trivial. G is said to be node-
symmetric if for any two nodes u and v, there exists an automorphism of the graph
G that maps u into v. In other words, G has the same shape when viewed from any
node. The definition is similar for edge-symmetric. The fault diameter of G is the
maximum diameter resulting from the deletion of any set of fewer nodes than the
node-connectivity of G.

One of the most efficient interconnection networks is the hypercube [13]. Another
family of regular graphs, the star graphs [1], has been extensively studied. As an
application, in [2, 3] reconfigurable interconnection networks were introduced that
provide all good properties of the hypercube and at the same time offer more scala-
bility. The hyper-star graphs HS(m,n) were introduced by Lee et al. [17] and Kim et
al. [14] to become a new type of interconnection networks competing with both hy-
percubes and star graphs. The hyper-star network is a regular network when m = 2n.
Inspired by the idea of El-Amawy and Latifi [9] who proposed the so-called folded
hypercubes to strengthen the structure of hypercubes, a variation of hyper-star graphs
was introduced in [17] as follows: The folded hyper-star FHS(2n,n) is constructed
from HS(2n,n) by adding edges to connect pairs of nodes whose binary strings are
complement to each other (and thus having largest distance in the hyper-star). A result
in [17] also showed that hyper-star and folded hyper-star graphs gave lower network
cost (measured by the product of degree and diameter) than hypercubes, folded hy-
percubes, and other variants. Later on, more strong structural properties and some
embedding schemes for hypercubes and hyper-star graphs were provided in [5, 6]
and [15, 25], respectively.

In practice it is important to construct node-disjoint paths in networks, because
they can be used to increase the transmission rate and enhance the transmission reli-
ability. Besides that, node-disjoint paths have applications in multipath routing (such
as Rabin’s information dispersal algorithm [20], fault tolerance [8, 10, 22], distance
distribution of nodes [4, 7, 23], and communication protocols [12]). Node-disjoint
paths can be found in the literature for a variety of networks [10–12, 16, 19, 21, 24].

Broadcasting is the problem of disseminating a piece of information, owned by
a certain node called the originator, to all other nodes [13]. This is one of the prim-
itives of communication in parallel processing. Hence, inefficient broadcasting can
be a bottleneck in the performance of multiprocessor networks. Broadcasting algo-
rithms can be implemented in either a one-port or an all-port model. Under the one-
port model, a node can transmit information along at most one incident edge and can
simultaneously receive information along at most one incident edge. Under the all-
port model, all incident edges of a node can be used simultaneously for information
transmission and reception.
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In this paper we construct a maximum number of node-disjoint paths between
every two distinct nodes of the folded hyper-star networks. The remainder of this
paper is organized as follows: In Sect. 2 we introduce FHS(2n,n) and present some
useful properties such as node-symmetry. In Sect. 3 we construct n + 1 node-disjoint
paths in FHS(2n,n) between any two nodes and use them to prove that the fault
diameter of FHS(2n,n) is n+ 2 for n ≥ 4. In Sect. 4 we show a broadcasting scheme
of FHS(2n,n). Finally, a conclusion is given in the last section.

2 Preliminaries

The hyper-star graph HS(m,n) is an undirected graph consisting of
(
m
n

)
nodes, where

each node is represented by a binary string of m bits b1b2 · · ·bi · · ·bm such that ex-
actly n bits are 1. Two nodes are adjacent if and only if one can be obtained from
the other by exchanging the first symbol with a different symbol (1 with 0, or 0
with 1) in another position. The edge connecting two nodes u and v differing in
their first and ith bits is called an i-edge. Clearly every node in HS(m,n) has degree
n or m − n, and HS(m,n) is regular if and only if m = 2n. The folded hyper-star
FHS(2n,n) is constructed from HS(2n,n) by adding edges to connect pairs of nodes
whose binary strings are complement to each other. These edges are called c-edges.
Let V 1

n and V 0
n be the set of nodes that start with 1 and 0 in FHS(2n,n), respec-

tively. Let dist(u, v) be the distance from u = u1u2 · · ·u2n to v = v1v2 · · ·v2n. Let
r be the bit string obtained by applying the bitwise Exclusive-OR (denoted by ⊕)
operation to u and v, so r = r1r2 · · · r2n, where ri = ui ⊕ vi . It is easy to see that
dist(u, v) = min{∑2n

i=2 ri ,2n − ∑2n
i=2 ri}.

For 2 ≤ i ≤ 2n, let σi denote the operation of switching the first and ith bits
of a string, and let σc denote the operation of switching all bits. For example,
σ3(011100) = 110100 and σc(011100) = 100011. Note that v-σi(v) is an edge of
FHS(2n,n) if only if the first and ith bits are different in v. For a node u, we
will use [k1, k2, . . . , kt ] to denote the path formed by the nodes obtained by ap-
plying the operations σk1, σk2, . . . , σkt successively to u. Clearly every path can
be represented in such a way, though not every sequence represents a path. For
example, for u = 000111, [4,2,6] represents the path 000111–100011–010011–
110010, [5,3, c] represents 000111–100101–001101–110010, while [c,5,3] repre-
sents 000111–111000–011010–110010 in FHS(6,3). On the other hand, [4,6,2]
does not represent a path. Notice that if k1, k2, . . . , kt are all different integers, and
[k1, k2, . . . , kt ] represents a path from u to v, then we can permute the ki ’s with even
indices, and we can permute the ki ’s with odd indices and still get path from u to v

of the same length (other permutations do not correspond to paths). Similarly, if c is
among the ki ’s, then first remove c, permute the remaining numbers in even positions
and permute the remaining numbers in odd positions, and then insert c back into the
sequence anywhere to get another path from u to v of the same length. The same

applies to shortest paths. We will abbreviate the node

n
︷ ︸︸ ︷
0 . . .0

n
︷ ︸︸ ︷
1 . . .1 in FHS(2n,n) as

0n1n. Figure 1 shows FHS(6,3).
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Fig. 1 FHS(6,3)

The following lemmas describe the cycles in FHS(2n,n).

Lemma 1 Let u and v be two nodes in FHS(2n,n), and let P and Q be two
walks with length ρ ≥ 3 from u to v represented by [a1, . . . , aρ] and [b1, . . . , bρ],
respectively. Assume that a1, . . . , aρ are all different, b1, . . . , bρ is a permutation
of a1, . . . , aρ , neither sequence contains c, and the numbers in odd positions in
a1, . . . , aρ form some cyclically permuted version of the numbers in the odd posi-
tions in b1, . . . , bρ . In addition, if ρ is even, assume that aρ �= bρ . Then P and Q are
paths, and connecting them constitutes an even cycle of length 2ρ.

Proof Since c is not among the numbers representing the paths, and a1, . . . , aρ are all
different, both P and Q are paths, and joining them creates a closed walk. Suppose
that there is a common node w �= u,v on the two paths. Then if the paths from u to w

are represented by the subsequences [a1, . . . , ai] and [b1, . . . , bj ] for some i, j < ρ,
and k appears in one of the subsequences but not in the other, then the kth bit of the
last node would be different of the two subpaths, so they cannot both end at w. Thus
a1, . . . , ai must be a permutation of b1, . . . , bj , hence i = j . Since the numbers in
odd positions in a1, . . . , aρ form a cyclically permuted version of that of b1, . . . , bρ ,
the sequence a1, . . . , ai can only be a permutation of b1, . . . , bi if both contain all
elements in odd positions. When ρ is odd, this implies i = ρ, but then w = v. Fi-
nally, if ρ is even, we must have i = ρ − 1, but then by our assumption aρ �= bρ ,
so a1, . . . , aρ−1 is not a permutation of b1, . . . , bρ−1, a contradiction. Therefore P

and Q are internally node-disjoint, and connecting them constitutes an even cycle of
length 2ρ. �

Lemma 2 Let P be a walk in FHS(2n,n) containing exactly one i-edge for each
i = 2, . . . ,2n and exactly one c-edge. Then P is a cycle.
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Proof Let u be an arbitrary node in FHS(2n,n) on P . Since P contains exactly one
i-edge for i = 2, . . . ,2n and one c-edge, starting from u each bit is switched twice,
so P is closed. Clearly no subpath of P can be closed, so it is a cycle. �

We can easily generalize Lemma 1 for paths containing exactly one c-edge:

Lemma 3 Let u and v be two nodes in FHS(2n,n), and let P and Q be two walks
with length 2 ≤ ρ ≤ 2n − 1 from u to v represented by [a1, . . . , aρ] and [b1, . . . , bρ],
respectively. Assume that a1, . . . , aρ are all different, b1, . . . , bρ is a permutation of
a1, . . . , aρ , aρ �= bρ , both sequences contain exactly one c, but c is not the first ele-
ment of both sequences, and when c is deleted from both sequences, the remaining
numbers in odd positions in the first sequence form some cyclically permuted version
of the remaining numbers in the odd positions in the second sequence. In addition, if
ρ is odd, and c appears among the last two elements in both sequences, assume that
the last elements of the sequences after c is deleted are different. Then connecting P

and Q constitutes an even cycle of length 2ρ.

Proof Since a1, . . . , aρ are all different, after removing c there are ρ − 1 ≤ 2n − 2
elements left, so at least one integer m such that 2 ≤ m ≤ 2n is missing from them.
Thus for every nonempty subsequence of a1, . . . , aρ , if it contains c, then it flips
the mth bit exactly once, otherwise every bit corresponding to any element of this
subsequence is flipped exactly once, so the corresponding walk cannot be closed.
Thus both P and Q are paths, and joining them creates a closed walk. Suppose that
there is a common node w �= u,v on the two paths. Then if the paths from u to w

are represented by the subsequences [a1, . . . , ai] and [b1, . . . , bj ] for some i, j < ρ,
and k appears in one of the subsequences but not in the other, then the kth bit of
the last node would be different of the two subpaths, so they cannot both end at w.
Thus a1, . . . , ai must be a permutation of b1, . . . , bj , hence i = j , and c must appear
in both or neither. Since c is not the first element in both sequences, we get i > 1,
so each subsequence contains the first element different from c of the corresponding
sequence. Since the numbers in odd positions in a1, . . . , aρ after deleting c form
a cyclically permuted version of that of b1, . . . , bρ after deleting c, the sequence
a1, . . . , ai can only be a permutation of b1, . . . , bi if both contain all elements in odd
positions in a1, . . . , aρ after deleting c. Thus there can be at most two elements not
contained in the subsequence, c and the last element in an even position when ρ is
odd. When ρ is even, this implies i = ρ − 1, hence c is the last element of both
sequences, contradicting our assumption. Finally, if ρ is odd, we must have i = ρ − 2
or i = ρ −1. When i = ρ −2, this implies that the last two elements of the sequences
are the same (one of which is c), so after deleting c, the last elements are the same, a
contradiction. When i = ρ − 1, we get that aρ = bρ , again a contradiction. Therefore
P and Q are internally node-disjoint, and connecting them constitutes an even cycle
of length 2ρ. �

Note that Lemmas 1 and 3 are not strongest possible; one can easily find a neces-
sary and sufficient condition for two sequences containing the same elements to form
a cycle together. However, their statements would be more complicated, and for our
purposes, the stated versions suffice.
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Theorem 1 FHS(2n,n) is a bipartite graph that is node-symmetric but not edge-
symmetric.

Proof Clearly nodes starting with 0 form one side of the bipartition, and nodes start-
ing with 1 form the other.

Let φi,j denote the operation of exchanging the ith and j th bits of a string for 2 ≤
i < j ≤ 2n. It is easy to check that φi,j and σc are automorphisms of FHS(2n,n) for
all 2 ≤ i < j ≤ 2n, and it is obvious that using compositions of these automorphisms,
we can map any node to any node, thus FHS(2n,n) is node-symmetric.

FHS(2n,n) is clearly not edge-symmetric since any c-edge is part of many 4-
cycles of the form [c, i, c, i], but any i-edge is contained in only one 4-cycle for
2 ≤ i ≤ 2n. Using the automorphisms above, one can easily show that there are two
equivalence classes on the edges. �

3 Node-disjoint paths in FHS(2n,n)

It is well known that the hyper-star HS(2n,n) has node-connectivity of n, and in [6] it
was shown that adding any perfect matching that only connects nodes whose distance
is at least 3 will increase the connectivity by 1. Thus in particular, FHS(2n,n) has
node-connectivity of n+ 1. In this section we construct a maximum number of node-
disjoint paths in FHS(2n,n) between any two nodes and show that its fault diameter
is n + 2 for n ≥ 4.

Given a sequence S, we will use CRx(S) to denote the sequence obtained from S

by rotating its elements left x times. For example, if S = 〈1,2, . . . , n〉, then CR0(S) =
〈1,2, . . . , n〉 and CR3(S) = 〈4,5, . . . , n,1,2,3〉. Given sequences S1 and S2 with
p = q or p = q +1, S1 ⊗S2 will represent the new sequence obtained when we alter-
nately pick elements of S1 and S2 (finishing with an element of S1 in case p = q +1).
For instance, if S1 = 〈5,6,7〉 and S2 = 〈2,3,4〉, then S1 ⊗ S2 = 〈5,2,6,3,7,4〉. The
number of different sequences of the form CRx(S1) ⊗ CRx(S2) is |S1| if S1 and S2

has the same number of elements. When S1 has one more element than S2, we can
get more sequences, since with k = |S1|, the sequence CR0(S1) ⊗ CR0(S2) is differ-
ent from CRk(S1) ⊗ CRk(S2). For example, if S1 = 〈5,6,7〉 and S2 = 〈2,3〉, then
CR0(S1) ⊗ CR0(S2) = 〈5,2,6,3,7〉 and CR3(S1) ⊗ CR3(S2) = 〈5,3,6,2,7〉. How-
ever, these “new” sequences only differ from previous ones in that the numbers in
the even positions are cyclically permuted. c 	 S1 ⊗ S2 will represent the new per-
mutation in which c is added in S1 ⊗ S2 at the beginning. As we have seen before, if
c is part of a sequence representing a path in FHS(2n,n), we can move it anywhere
in the sequence and still get a path. However, we will only need the ones where c is
either in the first or in the last two positions. So let S1 ⊗ c 	 S2 represent the permu-
tation obtained by adding c to S1 ⊗S2 in the penultimate position, and let S1 ⊗S2 	 c

represent the permutation obtained by adding c to S1 ⊗ S2 in the last position. For
instance, if S1 = 〈5,6,7〉 and S2 = 〈2,3,4〉, then c 	 S1 ⊗ S2 = 〈c,5,2,6,3,7,4〉,
S1 ⊗ S2 	 c = 〈5,2,6,3,7,4, c〉, and S1 ⊗ c 	 S2 = 〈5,2,6,3,7, c,4〉. We will use
c • S1 ⊗ S2 to denote any or all of c 	 S1 ⊗ S2, S1 ⊗ S2 	 c, and S1 ⊗ c 	 S2.
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Since FHS(2n,n) is node-symmetric, we may fix u = 0n1n, and let v =
b1b2 · · ·b2n be an arbitrary node of FHS(2n,n). Let the result of applying the bit-
wise Exclusive-OR function on these two nodes be the bitstring r = r1r2 · · · ri · · · r2n

(ri = ui ⊕ bi ), and let t = ∑2n
i=2 ri . The set R1, consisting of bit positions i

such that ri = 1 and 2 ≤ i ≤ 2n, is divided into the following two sequences:
Bit positions between 2 and n are put in H1, bit positions that are at least n + 1
are put into H2, both in an increasing order. Thus if R1 = {i1, i2, . . . , it } such
that 2 ≤ i1 < i2 < · · · < ig ≤ n < ig+1 < · · · < it , then H1 = 〈i1, i2, . . . , ig〉 and
H2 = 〈ig+1, ig+2, . . . , it 〉. It is easy to see that g = t−1

2 if t is odd, while g = t
2 if

t is even. The set R0, consisting of bit positions i such that ri = 0 (2 ≤ i ≤ 2n) is
divided into the two sequences H3 and H4 the same way. Thus with t ′ = 2n − 1 − t ,
if R0 = {i1, i2, . . . , it ′ } such that 2 ≤ i1 < i2 < · · · < if ≤ n < if +1 < · · · < it ′ ,
then H3 = 〈i1, i2, . . . , if 〉 and H4 = 〈if +1, if +2, . . . , it ′ 〉. Again it is easy to see

that f = t ′−1
2 if t ′ is odd, while f = t ′

2 if t ′ is even. Hence |H2| ≥ |H1| and
|H4| ≥ |H3|. Using the above notation, we can find paths from u to v of the form
[CRx(H2) ⊗ CRx(H1)] and [c • CRy(H4) ⊗ CRy(H3)]. The lengths of these paths
are |H1 ∪ H2| and |H3 ∪ H4| + 1, respectively, and dist(u, v) is the smaller of the
two. We want to find as many internally node-disjoint paths among these as possible.
As we will see later, this will happen as long as the first nodes in the paths are all
different and the last nodes in the paths are all different. Among paths of the form
[CRx(H2) ⊗ CRx(H1)], we can have |H2| such paths, using x = 0, . . . , t − g − 1.
Among paths of the form [c • CRy(H4) ⊗ CRy(H3)], we can have |H4| such paths,
using y = 0, . . . , t ′ −f −1 with c always in the penultimate position. To get one more
path, for y = 0, we use c in the first and in the last position instead. For example, if
H3 = 〈2,3,4〉 and H4 = 〈5,6,7〉, the paths of the form [c•CRy(H4)⊗CRy(H3)] will
be 〈c,5,2,6,3,7,4〉, 〈5,2,6,3,7,4, c〉, 〈6,3,7,4,5, c,2〉, and 〈7,4,5,2,6, c,3〉.
And if H3 = 〈2,3〉 and H4 = 〈5,6,7〉, the paths of the form [c•CRy(H4)⊗CRy(H3)]
will be 〈c,5,2,6,3,7〉, 〈5,2,6,3,7, c〉, 〈6,3,7,2, c,5〉, and 〈7,2,5,3, c,6〉. It is
easy to see that the first elements of these paths are all different, and the last elements
are also different.

In the following lemmas we show that the paths defined this way are internally
node-disjoint.

Lemma 4 The paths of the form [CRx(H2) ⊗ CRx(H1)] from u to v are pairwise
internally node-disjoint.

Proof Fix 0 ≤ k < l ≤ t − g − 1. If t is even, then the sequence CRl (H2) ⊗ CRl (H1)

is a cyclically permuted version of CRk(H2)⊗CRk(H1). If t is odd, then the numbers
in the odd positions of the sequence CRl (H2) ⊗ CRl(H1) form a cyclically permuted
version of the numbers in the odd positions of CRk(H2) ⊗ CRk(H1). By Lemma 1 in
both cases, there is no common node in the two paths. �

Lemma 5 The paths of the form [c • CRy(H4) ⊗ CRy(H3)] from u to v are pairwise
internally node-disjoint.

Proof Fix 0 ≤ k < l ≤ t ′ − f − 1. When t ′ is odd, the numbers in the odd po-
sitions in CRk(H4) ⊗ CRk(H3) form a cyclically permuted version of the num-
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bers in the odd positions of CRl(H4) ⊗ CRl (H3). When t ′ is even, the numbers
in CRk(H4) ⊗ CRk(H3) form a cyclically permuted version of the numbers in
CRl (H4) ⊗ CRl(H3). By Lemma 3 in both cases, there is no common node in any
two such paths represented by the sequences when c is inserted as we described
above (first and last position for y = 0, penultimate position otherwise). �

Lemma 6 The paths of the form [CRx(H2) ⊗ CRx(H1)] and [c • CRy(H4) ⊗
CRy(H3)] from u to v are pairwise internally node-disjoint.

Proof If we pick two paths of the same form, then the claim immediately follows
from Lemmas 4 or 5. If the two paths are of different form, then they form a cycle by
Lemma 2. Therefore there is no common node in any two of these paths. �

Note that by this lemma we always have n + 1 internally node-disjoint paths be-
tween any two nodes in FHS(2n,n), so it is maximally connected.

Since FHS(4,2) is just K3,3, if we delete two nodes in it, the remaining graph is
either K1,3 or K2,2, both of which has diameter 2, so its fault diameter is 2. Therefore,
we will prove the following about the fault diameter of FHS(2n,n) for n ≥ 3:

Theorem 2 The fault diameter of FHS(2n,n) is n+2 when n ≥ 4. The fault diameter
of FHS(6,3) is 4.

Proof We need to find the maximum diameter of FHS(2n,n) after up to n nodes have
been deleted. Let two nodes be u = 0n1n and v = v1v2 · · ·v2n in FHS(2n,n). The idea
of the proof is as follows: We construct n + 1 paths from u to v, each with length at
most n + 2 in FHS(2n,n), and show that they are node-disjoint. The construction
will depend on the distance of v from u. Since FHS(2n,n) is node-symmetric, this
will give us the bound of n + 2 on the maximum diameter of FHS(2n,n) after the
deletion of up to n nodes. Then we show how to delete n nodes to get a diameter of
exactly n + 2, showing that the fault diameter is n + 2.

Define the sequences H1, . . . ,H4 as before. To construct the paths, we consider
the following cases depending on the distance of u and v:

Case 1. dist(u, v) is odd.
Case 1.1. dist(u, v) = n:
Then n is odd, and we must have |H1 ∪H2| = n and |H3 ∪H4| = n−1 with |H2| =

n+1
2 and |H4| = n−1

2 , so we can get n+1
2 paths of the form [CRx(H2) ⊗ CRx(H1)],

and we can get n−1
2 + 1 paths of the form [c • CRy(H4) ⊗ CRy(H3)]. Thus we get

n + 1 paths in total, and the length of each of these paths is dist(u, v) = n. All these
paths are node-disjoint by Lemma 6.

Case 1.2. dist(u, v) = n − 1 = |H1 ∪ H2|:
Then n is even, and we must have |H3 ∪H4| = n with |H2| = |H4| = n

2 , so we can
get n

2 + 1 paths of the form [c • CRy(H4) ⊗ CRy(H3)] having length n + 1, and we
can get n

2 paths of the form [CRx(H2) ⊗ CRx(H1)] having length n − 1. Again all
these paths are node-disjoint by Lemma 6.

Case 1.3 dist(u, v) = n − 1 = |H3 ∪ H4| + 1:
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Then n is even, and we must have |H1 ∪ H2| = n + 1 with |H2| = n+2
2 and |H4| =

n−2
2 , so we can get n+2

2 paths of the form [CRx(H2)⊗ CRx(H1)] having length n+ 1
and n−2

2 + 1 paths of the form [c • CRy(H4) ⊗ CRy(H3)] having length n − 1. Again
all these paths are node-disjoint by Lemma 6.

Case 1.4. dist(u, v) = |H3 ∪ H4| + 1 ≤ n − 2:

Then we must have |H3| = |H4| = dist(u,v)−1
2 and |H1 ∪H2| = 2n−dist(u, v) with

|H2| = n− dist(u,v)−1
2 , so we can get dist(u,v)−1

2 + 1 paths of the form [c • CRy(H4)⊗
CRy(H3)] having length dist(u, v), and we can get n − dist(u,v)−1

2 paths of the form
[α, c 	 H3 ⊗ H4, α] having length dist(u, v) + 2, where α ranges over the elements
of H2. Since the αth bit of the nodes along the path [α, c 	 H4 ⊗ H3, α] is different
from the αth bit of the nodes in any of the other paths, these paths are node-disjoint.
The length of the longest path among these paths is dist(u, v) + 2 ≤ n < n + 2.

Case 1.5. dist(u, v) = |H1 ∪ H2| ≤ n − 2:
Then we must have |H2| = dist(u,v)+1

2 and |H3 ∪ H4| = 2n − dist(u, v) − 1 with

|H4| = n − dist(u,v)+1
2 , so we can get dist(u,v)+1

2 paths of the form [CRx(H2) ⊗
CRx(H1)] having length dist(u, v), one path of the form [c,H2 ⊗H1, c] having length
dist(u, v)+2 and n− dist(u,v)+1

2 paths of the form [β,γ,H2 ⊗H1, β, γ ] having length
dist(u, v) + 4, where β ranges over the elements of H4, and γ ranges over the ele-
ments of H3 so that each element appears in exactly one such path. (For example, we
can take β to be the first element of CRy(H4) and γ to be the first element of CRy(H3)

for y = 0,1, . . . , t ′ − f − 1.) Clearly, paths of the form [CRx(H2) ⊗ CRx(H1)] and
[c,H2 ⊗ H1, c] are node-disjoint. Since both β and γ appear in exactly one of the
paths, paths of the form [β,γ,H2 ⊗ H1, β, γ ] are node-disjoint, and they are also
node-disjoint to paths of the form [CRx(H2)⊗CRx(H1)] and [c,H2 ⊗H1, c]. Clearly
the length of the longest path among these paths is dist(u, v) + 4 ≤ n + 2.

Case 2. dist(u, v) is even.
Case 2.1. dist(u, v) = n:
Then n is even, and we must have |H1 ∪ H2| = n and |H3 ∪ H4| = n − 1 with

|H2| = |H4| = n
2 , so we can get n

2 paths of the form [CRx(H2) ⊗ CRx(H1)] and
n
2 + 1 paths of the form [c • CRy(H4) ⊗ CRy(H3)]. These paths are node-disjoint by
Lemma 6, and their lengths are dist(u, v) = n.

Case 2.2. dist(u, v) = |H3 ∪ H4| + 1 = n − 1:
Then n is odd, and we must have |H1 ∪ H2| = n + 1 with |H2| = n+1

2 and |H4| =
n−1

2 , so we can get n−1
2 +1 paths of the form [c•CRy(H4)⊗CRy(H3)] having length

n − 1 and n+1
2 paths of the form [CRx(H2) ⊗ CRx(H1)] having length n + 1. These

paths are again node-disjoint by Lemma 6.
Case 2.3. dist(u, v) = |H1 ∪ H2| = n − 1:
Then n is odd, and we must have |H2| = n−1

2 and |H3 ∪H4| = n with |H4| = n+1
2 ,

so we can get n−1
2 paths of the form [CRx(H2) ⊗ CRx(H1)] having length n − 1 and

n+1
2 +1 paths of the form [c•CRy(H4)⊗CRy(H3)] having length n+1. These paths

are again node-disjoint by Lemma 6.
Case 2.4. dist(u, v) = |H3 ∪ H4| + 1 ≤ n − 2:
Then we must have |H4| = dist(u,v)

2 and |H1 ∪ H2| = 2n − dist(u, v) with |H1| =
|H2| = n − dist(u,v)

2 , so we can get dist(u,v)
2 + 1 paths of the form [c • CRy(H4) ⊗
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CRy(H3)] having length dist(u, v) and n − dist(u,v)
2 paths of the form [β,γ, c 	 H3 ⊗

H4, β, γ ] having length dist(u, v)+4, where β ranges over the elements of H2, and γ

ranges over the elements of H1 so that each element appears in exactly one such path.
Paths of the form [c •CRy(H4)⊗CRy(H3)] are node-disjoint by Lemma 5, and since
both β and γ appear in exactly one of the paths of the form [β,γ, c 	H3 ⊗H4, β, γ ],
they are also node-disjoint, and they are also node-disjoint to the other paths. Clearly
the length of the longest path among these paths is dist(u, v) + 4 ≤ n + 2.

Case 2.5. dist(u, v) = |H1 ∪ H2| ≤ n − 2:

Then we must have |H2| = dist(u,v)
2 and |H3 ∪ H4| = 2n − dist(u, v) − 1 with

|H4| = n − dist(u,v)
2 , so we can get dist(u,v)

2 paths of the form [CRx(H2) ⊗ CRx(H1)]
having length dist(u, v), one path of the form [c,H2 ⊗ H1, c] having length
dist(u, v) + 2, and n − dist(u,v)

2 paths of the form [α,H1 ⊗ H2, α] having length
dist(u, v) + 2, where α ranges over the elements of H4. Since each α appears in
exactly one path, these paths are all node-disjoint, and the length of the longest path
among them is dist(u, v) + 2 ≤ n < n + 2.

Now we know that the fault diameter of FHS(2n,n) is at most n + 2. To show
that it is n + 2, we need to specify which n nodes to delete to get the diameter to
become n + 2. Let n ≥ 4. First assume that n is odd, so n ≥ 5. Pick a node v such
that dist(u, v) = n − 2 ≥ 3 corresponding to Case 1.5. Delete nodes σi(u) and σi(v)

for all i ∈ H2 and node σc(v), altogether 2|H2| + 1 = dist(u, v) + 2 = n nodes, to
get graph G (note that u and v have not been deleted). Now for any path from u to v

in G, the last edge must be a j -edge for some j ∈ H3 since all other edges incident to
v have been removed. Since |H3 ∪ H4| = n + 1, all shortest paths from u to σj (v) in
FHS(2n,n) (having length n−1) are of the form [S1 ⊗S2], where S1 is a permutation
of H2, and S2 is a permutation of H1 ∪ {j}, so they must all start with an i-edge for
some i ∈ H2. Since all these edges have been removed, and FHS(2n,n) is bipartite,
the shortest path from u to σj (v) has length at least n + 1 in G, so the distance from
u to v in G is at least n + 2. When n is even, the argument is similar: pick a node v

such that dist(u, v) = n−2 ≥ 2 corresponding to Case 2.4, and delete all nodes σi(u)

and σi(v) for all i ∈ H4 and nodes σc(u) and σc(v), altogether 2|H4| + 2 = n nodes,
to get graph G. Then for any path from u to v in G, the last edge must be a j -edge
for some j ∈ H1, and all shortest paths from u to σj (v) are obtained by inserting c

into [S1 ⊗ S2], where S1 is a permutation of H4, and S2 is a permutation of H3 ∪ {j}.
Thus every such shortest path must start with an i-edge for some i ∈ H4, but none of
them are available in G.

Hence the fault diameter of FHS(2n,n) is n+ 2 when n ≥ 4. For n = 3, the above
example fails, since if dist(u, v) = n − 2 = 1, then u and v are neighbors, so their
distance will still be 1 after deleting any nodes other than u and v. From the other
cases we can see that the fault diameter of FHS(6,3) is at most n+1 = 4, and deleting
node 100011 in FHS(6,3) will give a graph of diameter 4, so the fault diameter of
FHS(6,3) is 4. �

4 One-to-all broadcasting of FHS(2n,n)

In [14], the one-to-all broadcasting algorithm of HS(2n,n) under the one-port model
was introduced. We can find a one-to-all broadcasting algorithm of FHS(2n,n) under
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the one-port model using the algorithm of HS(2n,n). Now we propose the one-to-all
broadcasting algorithm of HS(2n,n) and FHS(2n,n) under the all-port model. A lay-
ered graph consists of nodes in l + 1 layers, which are numbered L0 to Ll , such that
each node is in one of the layers, and each edge connects nodes in consecutive layers.
Many multiprocessor networks can be represented as layered graphs, for example,
the hypercube. HS(2n,n) and FHS(2n,n) can also be represented as layered graphs
as follows: A node u is chosen to be the only node in layer L0, and for every other
node v, if dist(u, v) = k, then node v is put in layer Lk . Then HS(2n,n) has lay-
ers from L0 to L2n−1, and every edge connects nodes in consecutive layers. And
FHS(2n,n) has layers from L0 to Ln, and every edge connects nodes in consecutive
layers (e.g., to get the representation of FHS(6,3) from Fig. 1, the bottom vertex
111000 is put to layer L1, while the three vertices above it are put to layer L2). Using
the concept of the layered graph, we mention the one-to-all broadcasting algorithm
of under HS(2n,n) all-port model:

Let node u in Lk hold the message M , k = 0. Then all of the nodes in Lk send M

to all nodes in Lk+1, then set k := k + 1. This operation is performed repeatedly until
k + 1 = 2n − 1.

This scheme takes 2n − 1 time, which is optimal, since the diameter of HS(2n,n)

is 2n − 1 [17]. We can find that the one-to-all broadcasting algorithm of FHS(2n,n)

under all-port model similar to the algorithm of HS(2n,n). The one-to-all broadcast-
ing time of FHS(2n,n) under all-port model is n, which is optimal, since the diameter
of FHS(2n,n) is n [17].

5 Conclusion

The folded hyper-star networks FHS(2n,n) were introduced to be a competitive
model to both the hypercubes and the star graphs. Some basic parameters of
FHS(2n,n) were provided including size, degree, diameter, shortest path routing
scheme, etc. In this paper, we analyzed some more good properties of FHS(2n,n). We
proved that FHS(2n,n) is node-symmetric, constructed maximum number of node-
disjoint paths in FHS(2n,n) between any two nodes, and used that to show that the
fault diameter of FHS(2n,n) is n + 2 for n ≥ 4. Also, we suggested a one-to-all
broadcasting algorithm of HS(2n,n) and FHS(2n,n) under the all-port model.
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