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Comments on “A Class of Fault-Tolerant
Multiprocessor Networks”

Jong-Seok Kim, Hyeong-Ok Lee, and Sung Won Kim

Abstract—A. Ghafoor presented node-disjoint paths of even
networks using Figs. 4, 5, 6,and 7 (Ghafoor, IEEE Trans. Relia-
bility, vol. 38, no. 1, pp. 5–15). However, the paper contains errors
which cause confusion. We show that the node-disjoint paths, and
Theorem 4 (Ghafoor, IEEE Trans. Reliability, vol. 38, no. 1, pp.
5–15), are not correct. We propose advanced node-disjoint paths,
and prove that the fault diameter of even networks is � �. This
is optimal.

Index Terms—Even networks, fault diameter, interconnection
networks, node-disjoint paths.

NOTATION

� an interconnection network

���� the connectivity of �

�� an even network

� the degree of ��
��� the number of �

�, � arbitrary nodes in ��
�� complementary node of node �

��� the Hamming distance between two binary codewords,
� and �, the number of positions at which these
codewords differ

	�� the graphical distance between two nodes, � and �,
�������
 �� � � � ����

� an edge connecting two nodes � and �, where ��� is
�� � �

����� the set of positions in the codewords associated with
nodes � and �, such that if � has bit value 
, then �
has bit value � �

 � 	 

 ��

�� an operator which, when it operates on a codeword �,
yields the codeword �, with which � has the 
th bit
�	 �� complemented

���� an operator �� with � � �����
�� a path �� in [5]

�� the shortest path between �, and � in Fig. 1, when
	�� 	 ��� 	 
�
�, � � � � �, � 	 	����

�� the shortest path between �, and � in Fig. 2, when
	�� 	 ��� 	 ���, � � � � �, � 	 �	�� � ����

�� the shortest path between �, and � in Fig. 3, when
	�� �	 ��� 	 
�
�, � � � � �, � 	 �	����� � �
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�� The shortest path between �, and � in Fig 4, when
	�� �	 ��� 	 ���, � � � � � , � 	 �	�� � ����

�� an alternate path between �, and � in Fig. 5, when
	�� 	 ��� 	 
�
�, � � � � �, � 	 �� � � �

�� an alternate path between �, and � in Fig 6, when
	�� 	 ��� 	 ���, � � � � �, � 	 �� �� �

�� an alternate path between �, and � in Fig. 7, when
	�� �	 ��� 	 
�
�, � � � � �, � 	 �� �

 � an alternate path between �, and � in Fig. 8, when
	�� �	 ��� 	 ���, � � ! � �, ! 	 �� � � �

" a path of �� in reverse order in Fig. 1

" � a path of �� in reverse order in Fig. 4

I. INTRODUCTION

In massive multicomputer systems, the interconnection net-
work plays a crucial role in issues such as communication per-
formance, hardware cost, potentialities for efficient applications,
and fault tolerance capabilities. The concept of node-disjoint
paths arose naturally from the study of routing, reliability, fault
tolerance, and communication protocols in multicomputer sys-
tems. A set of paths is said to be node-disjoint if no node ex-
cept the source node and the destination node appears in more
than one path. In this paper, node-disjoint paths are composed of
the shortest paths, and alternate paths. A path is a sequence of
connected nodes. The shortest path is a path of length 	�� be-
tween � and � in node-disjoint paths; and the alternate path is
any path among paths that are node-disjoint paths, but not the
shortest path. For a node �, we denote by �� � �� � � � � � ��
a path obtained by applying operators ��
 ��
 � � � 
 �� to �. It is
important to have node-disjoint paths between any two nodes
in an interconnection network to speed up the transfer of large
amounts of data, and provide alternative routes in cases of node,
and/or link failures. Therefore, it is important that each node-dis-
joint path operates correctly. A common notion of fault tolerance
in interconnection networks is based on the connectivity of the
network. Fault-tolerance is the property that enables a network
to continue operating properly in the event of the failure of (or
one or more faults within) some of its components. The con-
nectivity (or node-connectivity) of � is the smallest number of
nodes whose removal disconnects �. In an interconnection net-
work with connectivity of ����, the network is guaranteed to
remain connected even if ���� � � node processors fail. How-
ever, while the connectivity of such a network is still preserved,
the network diameter may increase significantly. The diameter
of � is the distance between the two nodes which are furthest
from each other. A good measure to judge this fault tolerance as-
pect of the network is fault diameter. The concept of fault diam-
eter was first proposed by Krishnamoorthy & Krishnamurthy [8].
The fault diameter of � is the maximum length of the shortest
paths between all two fault-free nodes when there are ���� � �
or less faulty nodes. The fault diameters of many well-known
networks have been determined by several researchers [1]–[4],
[7], [8], [10], [11]. In [5], Ghafoor introduced even network ��
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Fig. 1. The shortest paths, when � � � � ����, � � � ��.

to model fault-tolerant multiprocessor networks. Even networks
are interconnection networks such that each node has the same
number of edges, �, and the number of nodes is ����

���
. �� with

� � � has the set of binary codewords of length �� � � with
��� � ��� � � as its node set. The degree of �� is �, and the di-
ameter of �� is � � �. The degree of � is the number of edges
meeting at �. Two nodes are adjacent iff the Hamming distance
between the two nodes is 1 or ��� �. Several important proper-
ties including node-disjoint paths of �� have been analyzed [5],
[6], [9]. By introducing node-disjoint paths, the fault diameter of
�� can be ��� �� � �		
, or ��� �� � ���

. In this comment,
we show that the node-disjoint paths, and Theorem 4 proposed
in [5], are incorrect. We propose a correct version of node-dis-
joint paths, and prove that the fault diameter of even networks
is �� �. This result is optimal, and will result in more accurate,
safer information delivery in ��.

II. ERRORS OF NODE-DISJOINT PATHS IN [5]

Ghafoor proposed node-disjoint paths of �� using Figs. 4, 5,
6, 7 in [5], and proved the length of node-disjoint paths as follows
[5].

Theorem 4 of [5]: The number of node-disjoint paths between
any two nodes �, � � �� is the maximum possible, and is equal
to �. The lengths of such paths are

Case a) ��� is even: There are ����� paths of length ���.
The remaining paths are of equal length, which is ��� � �.
Case b) ��� is odd: There are ���� � �
�� paths of length
���. There is one alternate path of length ��� � �. The
remaining paths are of equal length, which is ��� � �.

There are several errors related to this theorem.
1) � � �� (in reverse order)-�, in Fig. 5 in [5] is incorrect.

Some nodes included in this path are not the nodes of
��. Note that the number of codewords that compose
the nodes is ��� �� ��� � �. The author showed an ex-
ample of node-disjoint paths in Fig. 3 in [5]. The path,
� � �� (in reverse order)-�, on the example in Fig.

Fig. 2. The shortest paths, when � � � � ���, � � �� 	 
���.

Fig. 3. The shortest paths, when � �� � � ����, � � �� ��� 	 
.

3 in [5] is � � ����������� � ����������� ��� �

������������ ��� ��
 � ����������� ��� ��

������������ ��� ��
 � ����������� ��� ��

������������ ��� �
 � �. However, the two nodes
11101000000 (by ��), 11100100000 (by ��) in this path
are not the nodes of �� because the number of codewords
that compose those two nodes is ��� � ��� � �.

2) Common nodes exist on ��� in Fig. 6 in [5], and the path,
� � ��� � � in Fig. 7 in [5].

Authorized licensed use limited to: YEUNGNAM UNIVERSITY. Downloaded on September 1, 2009 at 10:33 from IEEE Xplore.  Restrictions apply. 



498 IEEE TRANSACTIONS ON RELIABILITY, VOL. 58, NO. 3, SEPTEMBER 2009

Fig. 4. The shortest paths, when � �� � � ���, � � �� � ����.

Fig. 5. Alternate paths, when � � � � �	�
, � � �� �� �.

Let � � �������������, and � � �������������. Then,
���: 0000001111111-0000001111110-1111110000001-
1111100000001, � � ��� � �: 0000001111111-
1111110000000-1111110000001-0000001111110-
0000011111110-1111100000001. Common nodes are
0000001111110, 1111110000001. Therefore, ���, and
� � ��� � � are not node-disjoint paths.

3) Some of the figures do not clearly present all node-disjoint
paths. Fig. 4 in [5] shows paths for��� � ��� � ���� when
we remove the sentence “replace with �, ��� �� ���”. Fig.
5 in [5] shows alternate paths for ��� � ��� � ����, but it
is in error (see the first item). Figs. 6, and 7 in [5] have the
error given in our second item.

4) Theorem 4 in [5] is incorrect.
Case i) Let � � �������������, and
� � �������������.Then��� � 	 
� �����. By case a)
of Theorem 4, there is 1 path of length 2, when��� � 	.

Fig. 6. Alternate paths, when � � � � ���, � � �� �� 	.

Fig. 7. Alternate paths, when � �� � � �	�
, 
 � � � �.

However, there are two paths of length ��� � 	:
0000001111111-1111110000000-1111111000000,
0000001111111-0000000111111-1111111000000.
Case ii) Let � � �������������, and � �
�������������. Then ��� � � 
� �

�. By case
b) of Theorem 4, there are 1 path of length 1, 1 path of
length 3, and 5 paths of length 5. However, there is no
path of length 3, because the path � � � � � in Fig. 7
in [5] does not exist.

III. ADVANCED NODE-DISJOINT PATHS AND FAULT DIAMETER

We propose advanced node-disjoint paths, and prove that the
fault diameter of �� is � � �. Even networks possess numerous
symmetry properties including node, and edge symmetry [5]. �
is said to be node-symmetric if, for any two nodes �, and �, there
exists an automorphism of � that maps � into �. In other words,
� has the same shape as viewed from any node. We write a node
���

� � � � �

���

� � � � � in �� as ��������. Because �� is node-symmetric,
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Fig. 8. Alternate paths, when � �� � � ���, � � �� � � �.

� � ��������. Advanced node-disjoint paths of �� �� � �� are
shown in Fig. 1 through Fig. 8.

We show that the paths we proposed are node-disjoint using
Lemmas 1, 2, and 3.

Lemma 1: All of the paths �� �� � � � �� in Fig. 1 are
node-disjoint.

Proof: Because �� is node-symmetric, let two given nodes
be � � ��������, and �. As shown in Fig. 1, these paths are per-
muted sequences of the operators �� from � to � �� � 	 � ���.
In these paths, operators of the same type, say �������, appear at
the odd levels, while the others appear at the even levels. These
paths are of the shortest possible length, because the selection
of the operators �� in each path is consistent with the shortest
path routing algorithm. Consider two paths in Fig. 1, say ��,
and ��, where �� is some 	th cyclically permuted version of
��. Suppose there is a common node 
 ��� �� �� in two paths.
Then, the selection of the operators �� from � to 
 in two paths
must be the same. However, this is impossible because �� is
some 	th cyclically permuted version of ��. Therefore, there is
no common node 
 ��� �� �� in the two paths, and both ��, and
�� are node-disjoint. Similarly, it can be proven that all of the
paths in Figs. 2, 3, and 4 are node-disjoint.

Lemma 2: All of the paths �� �� � 
 � �� in Fig. 5 are
node-disjoint. In addition, ��, and ���� are node-disjoint.

Proof: Because ������� �� � 	 � ��, and � are unique, all of
the paths in Fig. 5 are node-disjoint. Similarly, all of the paths in
Figs. 6, 7, and 8 are node-disjoint.

Lemma 3: �� �� � � � ��, and �� �� � 
 � � � �� are
node-disjoint.

Proof: Let ������� � � be a path from � to �� in ��. �� is
a neighbor node of � by �������. Then, ������� � � , and �� � �������
are node-disjoint by Lemma 1. Connecting ������� � � , and �� �

������� constitutes a cycle. Therefore, ��, and ������� � � � �������
are node-disjoint. Also, ��, and � � �� � � are node-disjoint.
Similarly, we can know that all paths in Fig. 2 and Fig. 6, Fig. 3
and Fig. 7, Fig. 4 and Fig. 8 are node-disjoint within their paired
sets.

Lemma 4: An arbitrary sequence of distinct operators �� �� �
	 � ��� �� is joined to � in ��, and constitutes a cycle.

Proof: Let � be an arbitrary node in ��. An arbitrary node
� is connected to its complementary node 	� by a path proposed
of distinct operators �� �� � 	 � ��� ��. And 	� is connected to
� by �. Hence, the proof is completed.

We can easily check that the fault diameter of �� is 3. There-
fore, we will prove the fault diameter of ��, � � 
. The fault
diameter of �� we proposed is in the next theorem.

Theorem 1: The fault diameter of �� � �� � �� � 
�. This is
optimal.

Proof: Because �� is node-symmetric, let two given nodes
be � � ��������, and � in ��.
Case 1) �	
 � ���
.

Case 1.1) �	
 � �� �: There are �	
�� paths of
the form ��, and � � ��	
��� paths of the form
�� of length �	
 �� ����.�� �� � � � ��, and
�� �� � 
 � ���� are node-disjoint by lemma
4. This means that the paths have optimal length.
Case 1.2) �	
 � �� � � � �	
 � � � �: There
are �	
�� paths of the form ��, and �� ��	
���
paths of the form �� of length �	
 � �. ��

has optimal length. �� �� � � � � � ��, and
�� �� � 
 � �� are node-disjoint by lemma
4. �� is a bipartite graph [9], so it cannot con-
tain an odd cycle. By lemma 4, if �� is joined
to ��, it constitutes a cycle. The length of ��

cannot be �	
 � �. Therefore, the length of ��

is �	
 � � �� ����; this means that �� has op-
timal length.
Case 1.3) �	
 � ��� ���	
: There are �	
��
paths of length �	
. The remaining paths are of
equal length, which is�	
�
 according to Fig. 3,
and Fig. 7. �� has optimal length; because the
length of �� �� � 
 � �� is greater than the
length of ��, the length of �� is not �	
. ��

is a bipartite graph, so it cannot contain an odd
cycle. By Lemma 3, if �� is joined to ��, it con-
stitutes a cycle. The length of the alternate path
cannot be �	
��, and �	
��. Suppose an alter-
nate path is ������������

��
����. Then, according

to the proof of Lemma 3, the path ������� � ��,
and the path �� � ������� from � shall lead to
the same node. However, this is impossible, be-
cause it cannot use the operators �������, �, and
������� from � continuously. So, the length of ��

is not �	
��. According to the proof of Lemma
3, the path ������� � ������� � ��, and the path
����

��
������

��
���� from � lead to the same node.

So, ��, and �� from � lead to the same node �.
Therefore, the length of �� is �	
�
 �� ����;
this means that �� has optimal length.
Case 1.4) �	
 � �	
: There are �	
�� paths
of length �	
. The remaining paths are of equal
length, which is �	
 �� according to Fig. 1, and
Fig. 5. �� has optimal length; because the length
of �� �� � 
 � � � �� is greater than the
length of ��, the length of �� is not �	
. �� is a
bipartite graph, so it cannot contain an odd cycle.
By Lemma 3, if�� is joined to��, it constitutes
a cycle. The length of �� cannot be �	
 � �.
Therefore, the length of �� is �	
�� �� ����;
this means that �� has optimal length.

Case 2) �	
 � ���.
Case 2.1) �	
 � � � �: There are ��	
 � ����
paths of the form ��, and � � ���	
 � �����
paths of the form �� of length �	
 �� � � ��.
�� �� � � � ��, and �� �� � 
 � � � �� are
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node-disjoint by Lemma 4. This means that the
paths have optimal length.
Case 2.2) ��� � �� � � � ��� � � � �: There
are ���� � ���� paths of the form ��, and � �
����� � ����� paths of the form �� of length
��� � �. �� has optimal length. �� �� � � �
� ���, and �� �� � 	 � 
� are node-disjoint by
Lemma 4. By Lemma 4, if �� is joined to ��,
it constitutes a cycle. �� is a bipartite graph, so
it cannot contain an odd cycle. The length of ��

cannot be �����. Therefore, the length of�� is
����� �� ����; this means that�� has optimal
length.
Case 2.3) ��� � ��� � �� �: There are ���� �
���� paths of the form ��, and �� �����������
paths of the form �� of length ��� � �. �� has
optimal length. �� �� � � � 
�, and �� �� �
	 � � � �� are node-disjoint by Lemma 4. By
Lemma 4, if �� is joined to ��, it constitutes a
cycle.�� is a bipartite graph, so it cannot contain
an odd cycle. The length of �� cannot be�����.
Therefore, the length of �� is ����� �� ����;
this means that �� has optimal length.
Case 2.4) ��� � ��� �����: There are ���� �
���� paths of length ���. The remaining paths
are of equal length, which is ����� according to
Fig. 4, and Fig. 8. �� has optimal length; because
the length of 
� �� � 	 � �� is greater than
the length of ��, the length of 
� is not ���.
�� is a bipartite graph, so it cannot contain an
odd cycle. By Lemma 3, if �� is joined to 
�,
it constitutes a cycle. The length of the alternate
path cannot be ��� � �. Therefore, the length of

� is ��� � � �� � � ��; this means that the
alternate path has optimal length.
Case 2.5) ��� � ���: There are ���� � ����
paths of length ���, and one alternate path,
����, of length ��� � �. The remaining paths
are of equal length, which is ����� according to
Fig. 2, and Fig. 6.�� has optimal length; because
the length of �� �� � 	 � ���� is greater than
the length of ��, the length of �� is not ���.
�� is a bipartite graph, so it cannot contain an
odd cycle. By Lemma 3, if �� is joined to ��,
it constitutes a cycle. The length of the alternate
path cannot be ��� � �, and ��� � �. So, the
length of ���� is �����. It is optimal. Suppose
an alternate path is ������������

��
���� �� � � � ��.

Then, according to the proof of Lemma 3, the
path ������� � ��, and the path �� � ������� from
� shall lead to the same node. However, this is
impossible, because it cannot use the operators
�������, and ���	��� from � continuously. So, the
length of �� is not ��� � �. According to the
proof of Lemma 3, the path ������� � ���
��� � ��,
and the path �� � ���
��� � ������� from � lead to
the same node. So, ��, and �� from � lead to
the same node �. Therefore, the length of �� is
����� �� ����; this means that�� has optimal
length.

The fault diameter derived in this paper is better than the pre-
viously known bound.
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