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Abstract: Geographic wireless sensor networks use position information for greedy 

routing. Greedy routing works well in dense networks, whereas in sparse networks it may 

fail and require a recovery algorithm. Recovery algorithms help the packet to get out of the 

communication void. However, these algorithms are generally costly for resource 

constrained position-based wireless sensor networks (WSNs). In this paper, we propose a 

void avoidance algorithm (VAA), a novel idea based on upgrading virtual distance. VAA 

allows wireless sensor nodes to remove all stuck nodes by transforming the routing graph 

and forwarding packets using only greedy routing. In VAA, the stuck node upgrades 

distance unless it finds a next hop node that is closer to the destination than it is. VAA 

guarantees packet delivery if there is a topologically valid path. Further, it is completely 

distributed, immediately responds to node failure or topology changes and does not require 

planarization of the network. NS-2 is used to evaluate the performance and correctness of 

VAA and we compare its performance to other protocols. Simulations show our proposed 

algorithm consumes less energy, has an efficient path and substantially less  

control overheads. 
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1. Introduction  

Geographic routing, also called position-based routing, geo-routing, location-based routing, or 

directional routing, was originally proposed for packet radio networks in the 1980s [1-2]. Geographic 

routing exploits position information instead of topological connectivity information to move data 

packets to gradually approach and eventually reach the intended destination. Geographic routing 

eliminates some of the limitations of topology-based routing by using the physical position of the 

participating nodes as additional information. Each node determines its own position through low 

energy consumable and low cost GPS or similar positioning services [3-5]. 

Geographic routing does not require the establishment or maintenance of routes. The localized 

operation and the state-less feature of geographic routing make it simple and scalable. A new paradigm 

of geographic routing called geocasting [6], which supports delivery of packets to all the nodes in a 

given geographic region, made this field more interesting. 

Geographic routing for WSNs has been attracting research interest. Most of the existing geographic 

routing protocols use greedy routing to forward packets from source to destination. Greedy routing is a 

simple, efficient and scalable strategy for geographic WSNs. Since greedy routing makes pure local 

decisions, it requires only a simple beaconing protocol. Thus, it consumes considerably less bandwidth 

than protocols that distribute state globally throughout the network. It is robust under topological 

changes, because a node can make correct forwarding decisions without requiring up-to-date state of 

nodes beyond a single hop. Due to their low processing and memory cost, greedy routing is efficient in 

resource constrained WSNs. In greedy routing, a source node selects a neighboring node that is closest 

(with respect to Euclidian distance) to the destination as the next hop, until the destination is reached. 

Similarly, each intermediate node selects a next hop node closest to the destination until the packet 

reaches the destination. The position of the packet destination is carried in the header of the packet so 

that intermediate nodes can learn the packet’s destination.  

Figure 1. Greedy forwarding. 

 

 

In Figure 1, the arrow shows the radius of the radio range of sensor S. Whenever S has a packet for 

the base station (BS), it forwards the packet to n, as its next hop node, because the distance between n 

and BS is less than any other of neighbor of S to BS. This greedy forwarding process repeats until the 

packet reaches BS.  

Greedy forwarding performs well in dense networks, whereas in sparse networks it does not 

perform well due to communication voids. A communication void is a state where all neighbor nodes 

are further away from the destination than the node holding the current packet. The node where the 
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packet gets stuck is called a stuck node, or void node. The packet tarries at the stuck node that has no 

neighbor closer to the destination than itself. In this situation, packets have to be discarded by the 

stuck node, when only a greedy forwarding strategy is used, even though a topologically valid path to 

the destination node may still exist. A communication void is often called a routing hole, dead end or 

void. In Figure 2, node ni is a node holding the current packet and BS is the destination. Node ni does 

not have a node, within its forwarding area (a), closer to the BS than ni itself. Let R be the maximum 

transmission range of BS and Li be the distance to the BS from node ni. Assuming that all the sensors 

are homogeneous with the transmission range r, the forwarding area for node ni depends on the 

distance to the BS (Li) from node ni. When L is extremely larger then r, the forwarding area (ai)  ½πr2. 

On the other hand, if the BS is very close to the node i.e. Lr, then the forwarding area (ai) is smaller 
than ai. i.e. ai < ai and can be written as the area of the asymmetric lens 22212
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where, d is a triangular height. The forwarding area for any node in the network is in between ai to ai. 

A node is a stuck node if there is no node in its forwarding area which is based on Li. Node ni is a 

stuck node in Figure 2. We discuss more about stuck nodes in later sections. 

 

Figure 2. Forwarding area of a sensor in sensor networks, stuck node and void. 

 

 

The packet should be forwarded to the closest backward node, if no nodes are available in the 

forward direction to counter this problem. This may cause looping, circumvented when packets are 

forwarded only toward the destination with positive progress (i.e. reducing distance).  

Although a dense deployment of sensor nodes can reduce the chances a void in the network, it is 

still possible for some packets to encounter voids, induced by obstacles, unreliable sensors, weak 

sensor batteries, sensors destroyed due to natural calamities or disasters, etc. For example, sensors that 

are deployed to monitor wild habitats could be destroyed if a forest fire broke out. Thus, to acquire 

data from the remaining sensors, until the defunct sensors are replaced, it is imperative to design a void 

handling technique for geographic routing in an effective and efficient manner. 

The communication void problem in greedy forwarding is an important issue in geographical 

routing. Many protocols have been proposed in the literature to avoid communication voids. Most 

existing position-based routing protocols have two modes: (a) greedy forwarding mode and (b) 

recovery mode. If a sender cannot locate a next-hop node that has positive progress toward the packet 
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destination, it switches to recovery mode and attempts to route the packet around the void. Current 

solutions to this problem are inadequate, as they memorize the path or they cannot find considerably 

shorter paths.  

The key contribution of this paper is to design a communication void-free geographic routing for 

WSNs. Several routing algorithms exist in the literature [7-18,20,21,29-31]. Most of the existing 

solutions that switch to recovery mode after encountering the communication void have too much 

routing overheads and consume more energy. After implementing our algorithm, the network becomes 

communication void-free if there exists a valid route to the destination. It is not necessary to enter a 

void handling mode. The proposed method does not recover from a dead end, but restricts entry to the 

dead end.  

The remainder of this paper is organized as follows. Section 2 overviews prior related literature. In 

Section 3, we describe our proposed algorithm. In Section 4, we compare the performance of our 

proposed algorithm to other methods. In Section 5, we summarize the work in this paper and describe 

possible future research that builds upon this study.  

2. Related work 

Routing protocols for position-based wireless sensor networks are presented in the literature. One-

hop flooding [7], partial hop-by-hop routing in Geographic Routing Algorithm (GRA) [8], and Partial 

Source Routing (PSR) in On-demand Geographic Forwarding (OGF) [9] protocols are based on 

flooding techniques. These flooding-based geographic routing algorithms exploit the simplest 

communications techniques in a network, i.e. flooding, to locate a stuck data packet and get around a 

void. Most of these protocols guarantee packet delivery for connected graphs [7].  

Figure 3. Perimeter mode in GPSR in a closed 

void. 

Figure 4. Perimeter mode in GPSR in an 

open void. 
 

 

 

 

 

Some of these protocols execute full flooding, a technique to send a stuck packet to all network 

nodes. Flooding is inefficient in terms of resource utilization. Some efficient full flooding algorithms 

[10] and some restricted flooding mechanisms have been proposed in the literature to minimize the 

occurrence of void nodes by controlling the range of flooding [27]. However, they still cost too much 

to handle voids. 
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Graph-based routing algorithms exploit the properties of planar graphs. Some examples are convex 

face routing [11], original face routing [12], the Face-2 algorithm [13], Other Face Routing (OFR) and 

Other Adaptive Face Routing (OAFR) in GOAFR [14], and GOAFR+ [15,28]. Some complete void 

handling techniques in geographic routing protocols include perimeter routing in Greedy Perimeter 

Stateless Routing (GPSR) [16], Request-Response (RR) in Beacon-Less Routing (BLR) [17], and 

bypass in Priority-based Stateless Geo-Routing (PSGR) [18]. Theoretically, it has been shown that a 

planar-graph-based technique guarantees packet delivery [19], because planar graph traversal ensures 

the discovery of a path if a topologically valid path exists. 

Perimeter routing is the complete void handling technique in GPSR [16]. Perimeter routing consists 

of a planar traversal algorithm, a distributed planarization algorithm and some other protocol 

optimizations. In GPSR, a planar sub-graph of the original graph is computed during a preprocessing 

phase using the Relative Neighborhood Graph (RNG) planarization technique or the Gabriel Graph 

(GG) planarization technique. When a packet becomes stuck at a void node in greedy forwarding, 

perimeter routing is enabled and the planar traversal algorithm, similar to Face-2 routing [13], is used 

to walk the stuck packet around the void. The right hand rule is used to walk around the perimeter. The 

header of a stuck packet carries information, such as the position of the void node, the position of the 

last intersection that caused a face change, and the first edge traversed on the current face. Such 

information helps each node make routing decisions locally.  

Although GPSR is an accepted stateless location-based routing protocol that guarantees packet 

delivery if there is a topologically valid path, the detours along the perimeter of its perimeter mode 

may produce long paths. Planarization in GPSR requires more computational complexity. In GPSR, 

nodes on the face of the holes may overcrowd due to traffic concentration that may lead to drastic 

throughput degradation. Excessive energy consumption of void boundary nodes may enlarge the void. 

Further, GPSR works well in the closed void, but it cannot perform well in an open void. Closed and 

open are two types of communication void. The closed void is surrounded by sensors, whereas there is 

an open space to one side in the open void. Figures 3 and 4 illustrate the perimeter mode routing path 

followed by GPSR in the closed void and open void cases. As shown in Figure 3, a packet travels up to 

the stuck node (node 4) using greedy forwarding and switches to perimeter mode and travels along the 

destination using the right hand rule. When it reaches a node that is closer to the destination (i.e. node 

11) than the stuck node, it switches back to greedy forwarding. Straight arrows indicate greedy 

forwarding and curved arrows indicate perimeter mode routing. The open void case is illustrated in 

Figure 4. After the packet encounters a void, GPSR switches to perimeter mode (node 4) and travels 

back to the source node. It continues perimeter routing until it reaches node 11 that is closer to the 

destination than the stuck node (node 4). Once back at node 11, it switches to greedy forwarding.  

The right hand rule is inefficiently aggregates data from the sensor to BS. Our algorithm avoids 

voids without the use of the right-hand rule.  

The Distance Upgrading Algorithm (DUA) [20] is a void handling technique that exploits a cost-

based idea to handle voids. Similar to the Partial-partition Avoiding Geographic Routing–Mobile  

(PAGER-M) [21], a packet flows from a node with a higher cost to one with a lower cost. To avoid 

voids, DUA virtually increases the distance of stuck nodes to the BS such that it can avoid 

communication voids beforehand.  
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Figure 5. DUA fails in some scenarios. 
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A cost, which may be equal to its Euclidean distance to the destination, is assigned to each node in 

the network. The stuck node increases its cost to a value greater than its Euclidian distance to the 

destination, so that the packet can finally be directed by the high-cost-to-low-cost rule [22] along 

efficient paths to evade the void.  

DUA proves that, after upgrading the distance, all the routing link directions reverse towards BS. 

The design parameter defined in DUA is greater than the cost of the farthest node from BS. If the 

source node upgrades distance by twice the design parameter, it reverses all the links. However, this is 

true if only one or two concave type stuck nodes are considered. If there are more than two concave 

type stuck nodes, DUA cannot perform well. A concave node is defined in Section 3. Figure 5 

illustrates where DUA breaks down. In Figures 5(h) and 5(j), nodes become a stuck node after 

upgrading the distance by twice the constant.  

Distance upgrading by the design parameter in DUA upgrades and downgrades the distance for all 

nodes along the route from the stuck node to the source node whenever any node becomes a stuck 

node. This is inefficient for small and many other topological voids. Further, it may select an 

inefficient route after upgrading the distance, because it increases the cost extensively, such that the 

packet has to piggyback the location information. Distance downgrading is also required to adjust the 

distance. This increases the routing overheads in two ways. First, packets carry the node information 

where it upgraded the distance. Second, BS has to broadcast the control message to downgrade  

the distance.  

It is intuitive that cost-based techniques guarantee packet delivery in connected graphs. Inspired 

from that, we propose the Void Avoidance Algorithm (VAA) that is better than DUA. In VAA, the 

stuck node only upgrades the distance and downgrading is not required. There is no need to piggyback 

the coordinate where the virtual distance upgrade is initialized. The primary focus of our proposed 

algorithm is to virtually increase the distance to the BS by stuck nodes to turn themselves into non-

stuck nodes, to eliminate communication voids. Finally, it forwards packets from sensors to BS along 

efficient routes using greedy routing. After implementing VAA, no node remains a stuck node in the 

network, if there is at least one route to the destination. Thus, it is completely distributed, immediately 

responds to node failure or topology changes, does not require planarizing the network, and incurs 

substantially less overhead. 

3. Void Avoidance Algorithm (VAA) 

We propose VAA to design a void-free topology for position-based WSNs. The basic idea in our 

algorithm is to remove all stuck nodes by transforming the routing graph and make a void-free 

topology. Our algorithm constructs a sink tree from the sensors to BS. Initially a BS broadcasts a hello 

message, and the reverse broadcast tree is used by the sensors to route packets to the BS. Periodic 

broadcast of hello message is necessary to maintain the sink tree, because wireless links are dynamic 

in nature and appear/disappear all the time.  
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Figure 6. Distance cost. 

 

 

Considering that a packet has to detour around a void from a sensor to a BS, the effective distance 

between the sensor and the BS is greater than the Euclidian distance. By appropriately upgrading the 

distances of some sensors, we can direct the packets along the efficient routes towards the BS. We 

design this algorithm considering real world scenarios, such that if there is no route available to 

progress to the destination, the algorithm looks behind for a better path and detours intelligently. We 

handle it creating some virtually ordered distance factors as a cost.  

3.1. Assumption 

We assume that a number of sensor nodes are randomly deployed on an unobstructed roughly plane 

sensing field with a BS. Sensor nodes participating in the network are aware of the coordinates of their 

geolocation either from a GPS device or from other means [3-5]. As shown in Figure 2, all sensor 

nodes within communication range r of a node n are considered as neighbors of n and have 

bidirectional links with node n. The IEEE 802.11 MAC [23] sends link-level acknowledgements for all 

unicast packets. Neighbors can communicate directly with each other. The entire sensor nodes know 

their respective neighbors’ geolocation via neighbor discovery protocol. All sensor nodes are static in 

location. Data packets are sent from sensor to BS. In VAA, each sensor maintains the cost and 

forwards the packet according to the high-cost-to-low-cost rule. Cost depicts distance from the BS to 

the sensor, so we call that cost is distance cost (DC).  

3.2. Distance Cost (DC) 

DC from each sensor node to the BS is defined as (TDk, …, …, TD2, TD1, VD). VD is virtual 

distance, initially set to Euclidian distance (ED) from the node to the BS. TD1 … TDk are tag distances 

and initially set to NULL. These tag distances help void nodes turn into non-void nodes, if the nodes 

remain void after upgrading VD.  

A study that characterized the impact of routing holes on geographic routing shows that the 

majority of voids can be circumvented in four hops or less [24]. Considering this fact from [24], we 

design DC as a three-tuple (TD2, TD1, VD) that can construct void-free topology. In most cases, two 

TD fields are sufficient to create void-free topology. Our simulation results in random topology with 

various average node degree, as in Figure 23, shows the number of upgrades required to circumvent 

voids. However, it can be increased based on network size. Figure 6 illustrates the DC. Figure 6 (a) 
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shows the TDs and VD’s positions. In Figure 6 (b) node n0, n1 and n2 have NULL value for TD1 and 

TD2 and ED value for VD. Figure 6 (c) shows the DC with values.  

The precedence of DC is in lexicographic order. Our algorithm upgrades stuck nodes’ ED 

temporally that is called VD. It restores the ED if any node finds itself as a non-stuck node.  

3.3. Six Basic Functions of VAA 

Our algorithm performs six basic functions:  

(i) Sends hello message from the BS to advertise its geolocation  

(ii) Sends and receives neighbors’ information (neighbor discovery protocol)  

(iii) Virtual distance upgrading algorithm  

(iv) Tag-distance upgrading algorithm  

(v) Finally, after upgrading distance, any sensor can forward a packet using greedy 

forwarding as per the DC. 

(vi) If any new node appears in the void area and makes possible to communicate 

without virtual distance, then it allows to redirect in the original state and 

communicate using greedy forwarding. 

3.4. Algorithm Description  

Let F(n) be the set of neighbors of node n. When node n is initialized, it exchanges its location 

information with its neighbors F(n) using neighbor discovery protocol. It also receives the hello 

message from the BS and calculates the ED. After receiving the information of neighbors, node n 

compares DC among neighbors F(n) and then sets logical directional links to the next hop node that is 

closer to the BS than itself.  

As shown in Figure 7, node n has an incoming link from node n1 and an outgoing link to node n2 

according to the DC. If DC(ni) < DC(n), it is said to be an outgoing link, otherwise it is an incoming 

link. A logical link (ni, n) means ni  F(n). The constructed routing graph is acyclic, because all 

routing graphs made by the logical links are acyclic [20]. 

Figure 7. Logical directions. 
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If a node does not have an outgoing link, that node is a stuck node. As shown in Figure 8, node C 

and D are stuck nodes. Let L(n) be neighbor nodes of node n, closer to the BS than node n. Node n is a 

stuck node if L(n) = . L(n) can be defined as: 

L(n) = {ni | DC (ni) < DC (n), for all ni  F(n)}.    (1) 

A node is a non-stuck node if L(n) ≠ . Each stuck node falls under one of the following 

categories: 

3.4.1. Concave Node  

A node having more than one neighbor, but no one is closer to the BS than itself. Node C in Figure 

8 is a concave node. Concave node V(n) can be defined as: 

V(n) = {n | F(n) > 1, L(n) = }.      (2) 

 

3.4.2. Dead End Node  

A node having no more than one neighbor node and the neighbor is not closer to the destination 

than it is. Node D in the Figure 8 is a dead end node. Dead end node D(n) can be defined as: 

D(n) = {n | |F(n)| = 1, L(n) = }.      (3) 

 

Figure 9. Upgrading virtual distance by concave node. 

 

 

3.5. Virtual Distance Upgrading Algorithm  

When node n becomes a concave node, it checks the neighbor table and compares its DC 

lexicographically. If no neighbor has initialized TD value yet (i.e. TD1 = NULL and TD2 = NULL) 

then it selects the highest VD/ED of neighbor and increases its VD just under that of the maximum VD 

of the neighbor. In Figure 9 (a), node n is a concave node. Neighbor nodes n1 and n2 have not 

initialized their TD yet. So, node n upgrades its VD by 69 i.e. maximum VD among neighbors F(n) – 1 

(can be written as MaxVD(F(n))-1). After upgrading VD, node n has a L(n) (i.e. n2L(n)) so it sets the 

outgoing link to node n2. Now, node n is not concave node. 

3.6. Tag Distance Upgrading Algorithm  

If the node is still a concave node after upgrading its VD and/or cannot upgrade its VD further (the 

condition of VD(n) = MaxVD(F(n)) -1), it upgrades its TD1 to MaxTD1(F(n))-1, i.e it chooses the 

value just under that of maximum TD1 of neighbors. If no neighbor has a TD1 value greater than 
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NULL, it changes its TD1 value from NULL to 0 and reverses the link (remember that NULL is 

smaller than any numerical value in our algorithm).  

Figure 10. Virtual and tag distance upgrading by dead end node. 

 

Figure 10 illustrates the TD upgrading methods. In Figure 10(a), node n is a D(n) node so TD1 sets 

its value from NULL to 0. Node n2 is a V(n) in Figure 10 (c), so it upgrades its VD to just under that of 

node n1’s VD, i.e. 69. After upgrading VD from 50 to 69, node n2 is still V(n), so it upgrades its TD1 as 

the maximum TD1 of neighbors TD1 – 1; i.e. TD1 of node n -1 and reverses the link direction. Finally, 

node n and n2 are no longer stuck nodes.  

Figure 11. Route by GPSR. Figure 12. Route after implementing VAA. 
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n finds itself as a dead end node, it changes its TD value from NULL to 0, reverses links and sends 

update information to neighbors. As shown in Figure 11, GPSR starts perimeter routing after 

encountering a stuck node and follows the long route towards BS using the right hand rule. VAA 

replaces the right hand rule and forms the network topology shown in Figure 12. 

3.7. Algorithm Implementation 

We implement VAA subdividing it into two major subroutines. These algorithm subdivisions run at 

each sensor node. They are Wake_Up() and Receive_Distance_ Cost_of_Neighbor(). Wake_Up() 

algorithm executes after node boots up or when the set of neighbors changes. Receive_ 

Distance_Cost_of_Neighbor() is invoked when any node receives DC from the neighbor nodes. The 

distributed computation terminates when there is no more notification message. Message loss may 

mean some dead ends are not removed. This can be handled by neighbors periodically exchanging 

their distances and by an unremoved dead end executing algorithms to restart the process.  

Table 1. Notations. 

F(X) Entire set of nodes 
L(x) Neighbor of node x closer to the BS than x 
F(x) Neighbors of node x 

VD(x) Virtual distance of node x initially set to the Euclidian distance to BS 
TD1(x)/TD2(x) Tag distances of node x, initially set to NULL 

DC(x) Distance cost of node x. i.e. (TD2, TD1, VD/ED) 
 Assignment operator 

ED(x) Euclidean distance from node x to BS 

 

Table 1 states the notation used in the pseudocode of Figure 13 and Figure 14. Figure 13 is the 

pseudocode for VAA and Figure 14 that of some other main subroutines used in VAA. 

Figure 13. VAA Pseudocode. 

1. while active do (for F(X)) 
x.Wake_Up() 
 if L(x) = 0 then 
  while yF(x), DC(y) > DC(x) then 
     /*while y exists in the neighbor list of x and DC(y)>DC(x)*/ 
   VD(x)  maxNeighborDistance(F(x)) – 1 
     /*assign a VD field of DC(x) by maxNeighborDistance(F(x))-1*/ 
  recompute L(x)  
  if L(x) = 0 then 
      /*if still stuck after upgrading VD(x) (i.e. if DC (y) > DC(x) then)*/ 
   if yF(x), TD1(y)  0 
     /*if neighbors’ TD1 field is NOT-NULL*/ 
     /**if neighbors’ TD2 field is NULL**/ 
    TD1(x)  minNeighborTagDistance1(F(x)) – 1 
     /*assign TD1 field of DC(x) by minNeighborTagDistance1(F(x)) – 1*/ 
   else 
      /*if TD1 of  F(x) = = NULL*/ 
    TD1(x)  0 
      /*assign TD1 field of DC(x) by 0*/ 
  recompute L(x)  
 notify the neighborhood of the upgraded distance DC(x) 
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Figure 13. Cont. 

2. x.Receive_Distance_Cost_of_Neighbor(y) 
 if receive beacon(DC) from a neighbor y then  
  refresh the neighbor set F(x) by updating the cost of y; 
  if L(x) = 0 then 
    /*if DC(x)  minimum cost of neighbor set F(x) */ 
    /**if VD(x) != maxNeighborDistance(F(x))+1; -- i.e. VD already NOT upgraded **/ 
   VD(x)  maxNeighborDistance(F(x)) – 1 
     /*assign a VD field of DC(x) by maxNeighborDistance(F(x))-1*/ 
     /**if possible. In the last node if not possible, then break**/ 
  recompute L(x) 
  if L(x) = 0 then 
      /*if still stuck after upgrading VD(x) (i.e. if DC (y) > DC(x) then)*/ 
     /**if neighbors’ TD2 field is NULL**/ 
   if TD1(y)  0 
     /*if neighbors’ TD1 field is NOT-NULL*/ 
    TD1(x)  minNeighborTagDistance1(F(x)) – 1 
     /*assign TD1 field of DC(x) by minNeighborTagDistance1(F(x)) – 1*/ 
   else 
      /*if TD1 of  F(x) = = NULL*/ 
    TD1(x)  0 
      /*assign TD1 field of DC(x) by 0*/ 

  recompute L(x)  
 
  if L(x) = 0 then 
     /*if still stuck after upgrading TD1(x) (i.e. if DC (y) > DC(x) then)*/ 
   if TD2(y)  0 
     /*if neighbors’ TD2 field is NOT-NULL*/ 
    TD2(x)  minNeighborTagDistance2(F(x)) – 1 
     /*assign TD2 field of DC(x) by minNeighborTagDistance1(F(x)) – 1*/ 
   else 
      /*if TD2 of  F(x) = = NULL*/ 
    TD2(x)  0 
      /*assign TD2 field of DC(x) by 0*/ 
  recompute L(x) 

 notify the neighborhood of the upgraded distance DC(x) 
 

 

Figure 14. Other subroutines used in VAA. 

 

 

Other subroutines support the main subroutines. minNeighborDistance() calculates the distance of a 

neighbor having minimum VD/ED to BS. maxNeighborDistance() computes distance of a neighbor 

having maximum VD/ED to BS. minNeighborTagDistance() computes TD of a neighbor having 

minimum TD.  

4. Evaluation 

This chapter shows the result of simulating different scenarios to evaluate VAA performance. We 

simulate the algorithm on a variety of static wireless sensor network environments. We simulate GPSR 

and DUA to compare the performance of VAA to previous work in wireless routing. We selected those 

Some other subroutines are:  
 
3. x.minNeighborDistance(){ 

return distance_of_a_neighbor_having_minimum_virtual/Euclidean_Distance_to_BS 
} 

4. x.maxNeighborDistance(){ 
 return distance_of_a_neighbor_having_maximum_virtual/Euclidean _Distance_to_BS 
} 

5. x.minNeighborTagDistance1(){ 
 return tagDistance_of_a_neighbor_having_minimum_tagDistance1 
} 

6. x.minNeighborTagDistance2(){ 
 return tagDistance_of_a_neighbor_having_minimum_tagDistance2 

} 
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two routing protocols since GPSR is an accepted stateless location-based routing protocol and our 

work is closer to DUA in that it replaces the existing right hand rule to avoid communication voids.  

4.1 Simulation Environment 

In the present work, we use the event driven simulator ns-2 [25] for our simulations. The network 

consists of 100 nodes for predefined confined in a 500  600 m2 area. Transmission range of each node 

is assumed 40 m. The simulation runs for 500 seconds. BS is located near the middle-left at (0, 300). 

We simulate three CBR flows originating from randomly chosen nodes across the network. Each flow 

sends 32 byte packets at 256 bps.  

We generate and evaluate different possible random and predefined scenarios for simulation. The 

key performance measures are path length, energy consumption and routing overhead. The results 

presented here are the average values taken from multiple simulation results. We use Gabriel  

Graph (GG) for our simulation with beacon interval of 5 seconds. The other simulation parameters are 

given in Table 2.  

We draw a virtual line from source to destination and divide the area into two sides, namely L side 

and R side. Different possible scenarios are generated and visualized using Network Animator  

(NAM) [26].  

Table 2. Simulation parameters. 

Simulator NS-2 version 2.29 
Simulation area 500 x 600m2 
Number of nodes 100 (predefined scenario) 
Initial energy 1,000 J 
Transmitting energy 0.06 J 
Receiving energy 0.042 J 
Idle power 0.02 w 
Transmission radio range 40 m 
Connection type UDP 
Duration 500 seconds 
Agent and application CBR over UDP 
MAC 802.11 
Link bandwidth 2 Mbps 
Antenna Omni Antenna 
Interface queue DropTail/PriQueue 
Mobility [0]m/s (static) 
Traffic model CBR over UDP 
Data packet size 32 byte 
Bacon interval  5 seconds 

4.2. Experimental Results 

When there is no void, VAA, GPSR and DUA have similar path length, because all of them carry 

out greedy routing in a void-free scenario.  
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VAA outperforms GPSR significantly in cases with an open void. GPSR follows an inefficient 

route if there is an open void on the R side as shown in Figure 15. The packet from the source node 0 

destined to the BS (node 24) travels upto node 7 (i.e., n0  n7, where “” indicates the sequence of 

nodes strictly monotonically increasing from ni, ni+1, …, …, ni+n) according to the greedy rule. Greedy 

forwarding fails in node 7, because node 7 is a void node. After that, it forwards packets according to 

the perimeter rule to the next face towards node 8 using the right hand rule. Then the packet travels on 

the respective face of n7-n6-n5-n8-n5-n4-n3-n2-n1-n0-n1-n2-n3-n9n24 nodes.  

Figure 15. 100 node topology with one communication void. 
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In Figure 16, the open void is in the L side. It is the reverse topology case of Figure 15 (in Figure 

15, open void is on the R side). In this topology, GPSR travels n0n7-n6-n5-n4-n3-n9n24. This is the 

best route GPSR can travel, however VAA travels n0-n1-n2-n3-n9n24 19 hops, still less than the route 

traveled by GPSR, 27 hops, since GPSR switches to recovery mode after encountering the 

communication void. However, VAA prevents entering the void and it detours from node 3 toward 

node 9 in Figure 16.  

Figure 16. Open void on L side. 

 
 

The graph in Figure 17 shows GPSR travels the longest path in the open void in R side case 

(scenario in Figure 15), more than in any other case. However, VAA and DUA travel a similar path 

(i.e. n0n3-n9 n24) in either case (i.e. open void in L side and R side) but GPSR travels the  

longer path. 
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Figure 17. Length of routing path when there is one open void. 
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In the case of a closed void, as in Figure 18, GPSR travels the longest route n0n7-n6-n5-n4-n3-

n9n24, 27 hops. However, DUA and VAA travel n0n6-n25n30-n21n24, only 16 hops. 

Figure 18. Closed void. 

 
 

Even in a best case scenario (i.e. flipping Figure 18 horizontally) in Figure 19, all three protocols 

take a similar path. Due to the nature of GPSR, packets go inside the void to node 7, and then come 

back thus n0n7-n6-n25n30-n21n24. DUA and VAA do not go inside the void so they detour from 

node 6, so the route is n0n6-n25n30-n21n24. This is still fewer hops than GPSR.  

Figure 19. Closed void (best case scenario). 

 
 

The average length of the routing path in VAA is similar in both cases of closed and open void. 

DUA may select an inefficient routing path, due to its nature, to upgrade virtual distance too high as 

described in section 2 (for details refer [20]). So, as shown in Figure 20, in the case of closed void, 

DUA follows a longer route than VAA. VAA travels the best route in either case. 
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Figure 20. Average length of routing path in different types of void. 
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VAA exchanges neighbor information via the Hello message of the neighbor discovery protocol 

including distance update information. Thus, there is no additional control overhead. Hello messages 

broadcast once in every five seconds. However, before sending the actual data packet, all nodes assure 

their next hop node to BS. For this, VAA takes less time than DUA. DUA takes significantly more 

time when there is more than one void. DUA also takes more time, because it upgrades virtual distance 

up to the source from the void node. Figure 21 shows control packet overhead before sending the 

actual data packets. The graph shows VAA has 40% less overhead than DUA where a void exists. 

There is no prior setup in GPSR so it does not have control packet overhead, before sending actual 

data packet, except for the neighbor discovery protocol.  

Figure 21. Control overhead (generated by routing) before sending data packets. 
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GPSR’s energy expenditure ratio is higher, because it follows a longer routing path than VAA. 

DUA follows a similar path, but in some cases of the closed void, it follows a longer path. DUA has a 

more control overhead (generated by routing) and in case of the topology changes, all nodes up to the 

destination have to change the virtual distance. Thus, more energy is consumed in DUA than VAA. 

Figure 22 shows the energy expenditure in different cases. Where voids exist, energy consumption is 

28% - 39% more in GPSR than VAA. However, DUA consumes 8% more energy where there are 

three voids. The ratio increases as the number of voids increases. Energy efficiency of VAA is due to 

its low control overhead and low path length, as shown previously.  
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Figure 22. Energy consumption. 
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Figure 23 shows the simulation in random scenarios for the average number of distance upgrade 

required to circumvent the voids. These outcomes are the average of 50 simulation results of the 

network consists of 350 nodes to 700 nodes confined in a 500  600 m2 area. In denser scenarios, 

when average node degree ((r2n)/A, where, n is the number of nodes within a node ni’s transmission 

range r and A is a total coverage area) is high, only a few upgrades are required. On the other hand, 

when the average node degree decreases there are more chances to be dead end nodes and concave 

nodes and it also requires more upgrades in virtual distance to circumvent voids. However, in any of 

the cases majority of the voids can be avoided within four upgrades or less. In average cases it requires 

only around three upgrades to circumvent.  

Figure 23. Average number of upgrades required to circumvent voids with different 

average node degree. 
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5. Conclusions and Future Work 

A new void avoidance algorithm for geo-routing that forms a void-free wireless sensor network is 

presented in this paper. Simulation results show that VAA can evade the communication voids with 

small routing overheads. VAA increases the distance and decides the next hop node via a cost function 

that has three tuples to give efficient resolution for the dead end or concave node. Energy consumption 

is low and it selects an efficient communication path. 

Our study is limited to static wireless position-based sensor networks. In the future, it can be 

extended to limited mobile or highly mobile wireless position-based sensor networks. Moreover, we 

simulated this algorithm only for a single BS. It can be extended to multiple BSs. We also left 

unresolved some important areas, such as efficient positioning, maximum utilization of resources, 

energy conservation and localization for the future research purpose. 
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