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Abstract

A. Ghafoor proposed Even networks as a class of fault-
tolerant multiprocessor networks in [8] and analyzed so
many useful properties include node-disjoint paths. By in-
troducing node-disjoint paths, fault diameter of Even net-
works can be d + 2 (d =odd) or d + 3 (d =even). How-
ever, the lengths of node-disjoint paths are not the shortest.
In this paper, we show that Even networks are node- and
edge- symmetric. We also propose the shortest lengths of
node-disjoint paths, and show that fault diameter of Even
networks is d + 1.

1. Introduction

One of the central problems in computer networks
research is to design network topologies that have good
properties. These properties can be grouped into two major
categories: better performance and lower cost. Cost usually
refers to the diameter and the number of the links, and
performance usually refers to fault tolerance, broadcast
time, or ease of routing schemes. The best performance
can be achieved when all nodes of a graph are connected to
all the rest, i.e in a complete graph. But this is practically
impossible and very costly. A compromise between cost
and performance should be done and that is why there is
research to desing networks with good structural character-
istics as well as near optimum performance.
Symmetry is an important feature for most graph models
used for interconnection networks. In a symmetric inter-
connection network, the load can be evenly distributed
through all nodes, reducing congestion problems. More-
over, symmetry makes the design of routing algorithms
easier because it allows routing between any two nodes
to be mapped to routing between an arbitrary node and a
specific node.

A common notion of fault tolerance in interconnection net-
works is based on the connectivity of the underlying graph.
In an interconnection network with node connectivity of n,
the graph is guaranteed to remain connected even if n − 1
node processors fail. However, while the connectivity of
such a network is still preserved, the network diameter
may increase significantly. A good measure to judge this
fault tolerance aspect of the network is the fault diameter.
The fault diameter of many well-known networks have
been determined by several researchers, see, for example,
[1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 15, 16]. The concept of
fault diameter was first proposed by Krishnamoorthy and
Krishnamurthy [10]. The fault diameter of an interconnec-
tion network G is the maximum length of the shortest paths
between all two fault-free nodes when there are k(G) − 1
or less faulty nodes, where k(G) is the connectivity of G.
The fault diameter of an r-regular graph with diameter of 3
or more and connectivity r is at least D+1 where D is the
diameter of G.
In [8], Ghafoor introduced even network Ed by a class of
fault-tolerant multiprocessor networks. In his study some
important properties such as maximal fault-tolerance, node
disjoint paths, routing algorithms during fault-free and
faulty conditions, and ease of self-diagnosis were analyzed
[8, 9]. He showed node-disjoint paths as follows:

Theorem 1 The number of node-disjoint paths between
any two nodes x, y ∈ Ed is the maximum possible and is
equal to d. The lengths of such paths are:
Case a) Lxy is even: There are Lxy

2 paths of length Lxy.
The remaining paths are of equal length, which is Lxy + 2.
Case b) Lxy is odd: There are (Lxy+1)

2 paths of length Lxy.
There is one alternate path of length Lxy+2. The remaining
paths are of length Lxy + 4.

By theorem 1, the lengths of node-disjoint paths are not
the shortest and the fault diameter of Ed is d+2 (d =odd) or
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d+3 (d =even). For example, let Lxy be 3 in E4. There are
2 paths of length 3, 1 path of length 5 and 1 path of length
7, and fault diameter of E4 is 7 (= d + 3) by theorem 1.
However, we can find 4 paths of length 3 in the above case
and reduce fault diameter of E4. An example will be shown
in section 3. In this paper, we show that Even networks are
node- and edge- symmetric. We also propose the shortest
lengths of node-disjoint paths and show that fault diameter
is d + 1.

2. Preliminaries

In [8], Ghafoor introduced even network Ed by a class
of fault-tolerant multiprocessor networks. Even networks
have some good properties such as maximal fault-tolerance,
simple routing alforithms, combinatorial structures using
hadamard matrix and semi-distributed fault-tolerant diag-
nostic algorithm. Even network Ed with d ≥ 2 has the set of
binary strings of length 2d−3 with |1| = |0|±1 as the node
set. The number of nodes in Ed is

(
2d−2
d−1

)
, degree of Ed is

d and its diameterD is d−1. Two nodes are adjacent if and
only if their Hamming distance is 1 or 2d−3. The Hamming
distance, denoted as Hxy, between two binary strings, x and
y, is the number of positions at which these strings differ. A
path in Ed is a sequence of connected nodes. The graphical
distance, denoted as Lxy (=min(Hxy, 2d−2−Hxy)), is the
length of the shortest path between two nodes x and y. An
edge connecting two nodes u and v is denoted as i-edge and
c-edge, where Hamming distance is 1 and 2d− 3. Nodes of
the Even network represented by a bit string s1s2...s2d−3

can be divided into two sets, S1
d and S0

d . S1
d is the set of

nodes such that |1| = |0| + 1 and S0
d is the set of nodes

such that |0| = |1| + 1. An arbitrary node u ∈ S1
d is only

connected a node v ∈ S0
d . Because the edge connects two

nodes in the case where Huv is 1 or 2d − 3. Thus, Ed is
a bipartite graph and has only an even length of cycles if

it contains cycles. We write a node

d−2︷ ︸︸ ︷
0 . . . 0

d−1︷ ︸︸ ︷
1 . . . 1 in Ed as

0d−21d−1. Fig. 1 shows an Even network E4.

3. Fault Diameter of Even Networks

A graph G is said to be node-symmetric if, for any two
nodes u and v, there exists an automorphism of the graph
G that maps u into v. In other words, G has the same shape
when viewed from any node.

Theorem 2 Even network Ed is node- and edge- symmet-
ric.

Proof Let u = s1s2...si...s2d−3, v = s1s2...s̄i...s2d−3,
v′ = s̄1s̄2...s̄i...s̄2d−3, w = s1s2...s̄i...s̄j ...s2d−3, w′ =

00011

00111

00110

01110

01100

11100

10100

10110

10010

10011

10001

10101

00101

01101

01001

11001

11000

11010

01010

01011

 

Figure 1. E4

s̄1s̄2...si...s̄j ...s̄2d−3.
Case 1) Ed is node-symmetric; We may assume that two
adjacent nodes are u and v (or v′). Let φ be the func-
tion that switches all (or some) 0s to 1s and vice versa
for every node in Ed. Then, φ(u) = s̄1s̄2...s̄i...s̄2d−3 and
φ(v) = s̄1s̄2...si...s̄2d−3 (or φ(v′) = s1s2...si...s2d−3). It
is easy to check that φ(u) and φ(v) (or φ(v′)) are adjacent.
Hence Ed is node-symmetric.
Case 2) Ed is edge-symmetric; We may assume that the two
adjacent edges are e1 = (u, v (or v′)) and e2 = (v, w)
(or (v′, w′)). Let ψ be the bijective function defined by
ψ(u) = w (or w′) for every node in Ed. Then it is easy to
check that ψ preserves the adjacency and maps the end-node
of e1 to the end-node of e2. Hence Ed is edge-symmetric.

Fault tolerance of a network is defined in terms of the
smallest width container in the network, where a container
is defined to be the set of node-disjoint paths between a pair
of nodes [14]. In order to find fault tolerance for Even net-
works and the width of their containers, let us define Puv

ij to
be the set of positions in the bitstrings associated with nodes
u and v, such that if u has bit value i, then v has bit value
j (i, j = 0, 1). Also, let Tk be an operator which, when
it operates on a bitstring u, yields the bitstring of a neigh-
boring node v, with which u has the kth bit complemented.
Furthermore, if the operator Tt has t ∈ P xy

ij , we will de-
note it as T ij

t . Equivalently we can also represent the edge
between two bitstrings having the kth bit complemented, as
Tk. Therefore, a path between any two nodes in the network
is representable as a sequence of Tk’s.
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Figure 2. T 10
s(i) ¯ T 01

t(j)

Consider the cyclic permutation of two sequences S1 =
(a1, a2, . . . , ap) and S2 = (b1, b2, . . . , bq) denoted by S1 ¯
S2. S1 ¯ S2 is the set of sequences obtained by merging
symbols in S1 and S2 alternately. If only one sequence is
permuted, say S2, then we write S1 ¯ S−2 . Also, If c is in-
cluded in S1¯S2 or S1¯S−2 , then it is denoted by c¦S1¯S2

and c ¦ S1 ¯ S−2 . Let two nodes be u = 0d−21d−1 and v in
Ed. Then fig. 2, 3, 4 and 5 show T 10

s(i)¯T 01
t(j), T

10
s(i)¯T 01−

t(j) ,
c ¦ T 11

s(i) ¯ T 00
t(j), c ¦ T 11

s(i) ¯ T 00−
t(j) (1 ≤ i, j ≤ a), respec-

tively. If Luv is even, then a = Luv

2 , else a = Luv+1
2 . We

denote each path in T 10
s(i) ¯ T 01

t(j), T 10
s(i) ¯ T 01−

t(j) as Bx, Dx

(1 ≤ x ≤ a) and each path in c¦T 11
s(i)¯T 00

t(j), c¦T 11
s(i)¯T 00−

t(j)

as Gx, Fx (0 ≤ x ≤ a). If Luv is 1, then G0 and F0 are the
same as G1 and F1, respectively, as c.

lemma 1 An arbitrary sequence proposed of Ti’s and Tc in
Ed constitutes a cycle (1 ≤ i ≤ 2d− 3).

Proof Let u be an arbitrary node in Ed. An arbitrary node u
is connected to its complementary node ū by Ti’s (1 ≤ i ≤
2d− 3). And ū is connected to u by Tc. Hence, the proof is
completed.

Theorem 3 All of the paths Bx (1 ≤ x ≤ a) in T 10
s(i)¯T 01

t(j)

are node-disjoint.

Proof Since Ed is node-symmetric, let two given nodes be
u = 0d−21d−1 and v. As shown in figure 2, these paths

10

)1(s
T

01

)1(t
T

10

)(as
T

01

)2(t
T

10

)2(s
T

01

)1( −at
T

.

.

.

. . .

10

)2(s
T

01

)1(t
T

10

)1(s
T

01

)2(t
T

10

)3(s
T

01

)1( −at
T

.

.

.

10

)3(s
T

01

)1(t
T

10

)2(s
T

01

)2(t
T

10

)4(s
T

01

)1( −at
T

.

.

.

. . .

10

)(as
T

01

)1(t
T

10

)1( −as
T

01

)2(t
T

10

)1(s
T

01

)1( −at
T

.

.

.

u

. . .

v

D1

D2 D3

Da

Figure 3. T 10
s(i) ¯ T 01−

t(j)
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Figure 5. c ¦ T 11
s(i) ¯ T 00−

t(j)

are permuted sequences of the operators Ti’s from u to v.
In these paths, operators of the same type, say T 10

s(i), appear
at the odd levels, while the others appear at the even levels.
These paths are of the shortest possible length, because the
selection of the operators Ti’s in each path is consistent with
the shortest path routing algorithm. Consider two paths in
fig. 2, say B1 and Bi, where Bi is some ith cyclically per-
muted version of B1. Suppose there is a common node w
(6= u, v) in two paths. Then, the selection of the operators
Ti’s from u to w in two paths must be the same. However,
this is impossible, because Bi is some ith cyclically per-
muted version of B1. Therefore, there is no common node
w (6= u, v) in two paths. So, both B1 and Bi are node-
disjoint. Similarly, it can be proven that all of the paths in
fig. 3, 4 and 5 are node-disjoint.

By lemma 1 and theorem 3, All of the paths in T 10
s(i) ¯

T 01
t(j) and in c¦T 11

s(i)¯T 00− are node-disjoint, and all of the
paths in T 10

s(i)¯T 01−
t(j) and in c¦T 11

s(i)¯T 00
t(j) are node-disjoint

too.
We can easily check that fault diameter of E3 is 3.

Therefore, we will prove fault diameter of Ed, d ≥ 4.

Theorem 4 Fault diameter of Ed = d + 1 (d ≥ 4).

Proof Since Ed is node-symmetric, let two given nodes be
u = 0d−21d−1 and v = v1v2 . . . vi . . . v2d−3 in Ed.

Case 1)Luv =odd; For x in this case, 1 ≤ x ≤ Luv+1
2 .

Case 1-1)Luv = Huv = D: There are Luv+1
2 paths of

the form Dx and d− Luv+1
2 paths of the form Gx of length

Luv . So, the length of the longest path is Luv = d− 1.
Case 1-2)Luv = 2d−2−Huv =D−1: There are Luv+1

2

paths of the form Gx and d − Luv+1
2 paths of the form Dx

of length Luv + 2. So, the length of the longest path is
Luv + 2 ≤ d.

Case 1-3)Luv = Huv =D−1: There are Luv+1
2 paths of

the form Dx and d− Luv+1
2 paths of the form Gx of length

Luv+2. So, the length of the longest path is Luv+2 ≤ d+1.
Case 1-4)Luv = 2d−2−Huv: There are Luv+1

2 paths of
the form Gx and d− Luv+1

2 paths of the form T 10
s(h), P, T 10

s(h)

of length Luv + 2 (1 ≤ h ≤ d − Luv+1
2 ). P is the path of

G0 in reverse order. So, the length of the longest path is
Luv + 2 ≤ d− 1.

Case 1-5)Luv = Huv: There are Luv+1
2 paths

of the form Dx and 1 path of the form c,D1, c of
length Luv + 2 and d − 1 − Luv+1

2 paths of the
form T 11

s(h), T
00
t(h), D1, T

11
s(h), T

00
t(h) of length Luv + 4

(1 ≤ h ≤ d − 1 − Luv+1
2 ). So, the length of the longest

path is Luv + 4 ≤ d + 1.

Case 2)Luv =even; For x in this case, 1 ≤ x ≤ Luv

2 .
Case 2-1)Luv = Huv = D: There are Luv

2 paths of the
form Bx and d− Luv+1

2 paths of the form Fx of length Luv .
So, the length of the longest path is Luv= d− 1.

Case 2-2)Luv = 2d − 2 −Huv = D−1: There are Luv

2

paths of the form Fx and d − Luv

2 paths of the form Bx

of length Luv + 2. So, the length of the longest path is
Luv + 2 ≤ d.

Case 2-3)Luv = 2d − 2 − Huv: There are Luv

2

paths of the form Fx and d − Luv

2 paths of the form
T 10

s(h), T
01
t(h), F1, T

10
s(h), T

01
t(h) of length Luv + 4 (1 ≤ h ≤

d − Luv

2 ). So, the length of the longest path is Luv + 4 ≤
d + 1.

Case 2-4)Luv = Huv: There are Luv

2 paths of the form
Bx and 1 path of the form c,B1, c of lenth Luv + 2 and
d − 1 − Luv

2 paths of the form T 11
s(h), P, T 11

s(h) of length
Luv + 2 (1 ≤ h ≤ d − 1 − Luv

2 ). P is the path of B1

in reverse order. So, the length of the longest path is
Luv + 2 ≤ d− 1.

All of the paths are node-disjoint, because all of the
symbols T 10

s(h), T
01
t(h), T

11
s(h), T

00
t(h) are unique and lemma

1 and theorem 3. Hence Fault diameter of Ed = d + 1
(d ≥ 4). Also, these paths are the shortest paths. Because
the shortest path distance is Luv , the alternate paths must
be of length greater than Luv . Ed is a bipartite graph and it
cannot contain an odd cycle. So, the next path distance is
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Luv + 2 or Luv + 4. In the case of 1-5, 2-3, the reason that
the length of the alternate paths is Luv + 4 is first operator
in D1, F1 is T 10

s(1), T 11
s(1).

For the comparison of theorem 1 and theorem 4, we show
two examples. One is Luv = 3 in E5, and the other is
Luv = 5 in E6.

Example 1) Let u = 0001111, v = 1001001 in E5, then
the Hamming distance Huv is 3, and Luv = Huv = 3.

Case 1) according to theorem 1 : there must exist 5
node-disjoint paths between nodes u and v, 2 paths of
length of 3, 1 path of length of 5 and 2 paths of length
of 7. In order to find these paths the sets Puv̄

11 = {5, 6},
Puv̄

00 = {1}, Puv̄
10 = {4, 7} and Puv̄

01 = {2, 3} are needed.
Using these sets and theorem 4, the sequences of operators
and the paths are as follows:

length of 3 : 0001111
T5− 0001011

T1− 1001011
T6− 1001001

length of 3 : 0001111
T6− 0001101

T1− 1001101
T5− 1001001

length of 5 : 0001111
c− 1110000

T5− 1110100
T1− 0110100

T6− 0110110
c− 1001001

length of 7 : 0001111
T4− 0000111

T2− 0100111
T5− 0100011

T1− 1100011
T6− 1100001

T4− 1101001
T2− 1001001

length of 7 : 0001111
T7− 0001110

T3− 0011110
T5− 0011010

T1− 1011010
T6− 1011000

T7− 1011001
T3− 1001001

Case 2) according to case 1-3 in theorem 4 : there
must exist 5 node-disjoint paths between nodes u and v, 2
paths of length of 3 and 3 paths of length of 5. In order
to find these paths the sets Puv

11 = {4, 7}, Puv
00 = {2, 3},

Puv
10 = {5, 6} and Puv

01 = {1} are needed. Using these sets
and theorem 4, the sequences of operators and the paths are
as follows:

D1 : 0001111
T5− 0001011

T1− 1001011
T6− 1001001

D2 : 0001111
T6− 0001101

T1− 1001101
T5− 1001001

G1 : 0001111
c− 1110000

T4− 1111000
T2− 1011000

T7− 1011001
T3− 1001001

G2 : 0001111
T4− 0000111

T2− 0100111
T7− 0100110

T3− 0110110
c− 1001001

G3 : 0001111
T7− 0001110

T3− 0011110
T4− 0010110

c− 1101001
T2− 1001001

Example 2) Let u = 000011111, v = 100101010 in E6,
then the Hamming distance Huv is 5, and Luv = Huv =
2d− 2−Hxy = 5.

Case 1) according to theorem 1 : there must exist 6
node-disjoint paths between nodes u and v, 3 paths of

length of 5, 1 path of length of 7 and 2 paths of length of
9. In order to find these paths the sets Puv̄

11 = {5, 7, 9},
Puv̄

00 = {1, 4}, Puv̄
10 = {6, 8} and Puv̄

01 = {2, 3} are needed.
Using these sets and theorem 4, the sequences of operators
and the paths are as follows:

length of 5 : 000011111
T5− 000001111

T1− 100001111
T9− 100001110

T4− 100101110
T7− 100101010

length of 5 : 000011111
T7− 000011011

T4− 000111011
T5− 000101011

T1− 100101011
T9− 100101010

length of 5 : 000011111
T9− 000011110

T1− 100011110
T7− 100011010

T4− 100111010
T5− 100101010

length of 7 : 000011111
c− 111100000

T5− 111110000
T1− 011110000

T9− 011110001
T4− 011010001

T7− 011010101
c− 100101010

length of 9 : 000011111
T6− 000010111

T2− 010010111
T5−

010000111
T1− 110000111

T9− 110000110
T4− 110100110

T7− 1101100010
T6− 110101010

T2− 100101010

length of 9 : 000011111
T8− 000011101

T3− 001011101
T5−

001001101
T1− 101001101

T9− 101001100
T4− 101101100

T7− 101101000
T8− 101101010

T3− 100101010

Case 2) according to case 1-1 in theorem 4 : there
must exist 6 node-disjoint paths between nodes u and v,
6 paths of length of 5. In order to find these paths the
sets Puv

11 = {6, 8}, Puv
00 = {2, 3}, Puv

10 = {5, 7, 9} and
Puv

01 = {1, 4} are needed. Using these sets and theorem 4,
the sequences of operators and the paths are as follows:

D1 : 000011111
T5− 000001111

T1− 100001111
T7−

100001011
T4− 100101011

T9− 100101010

D2 : 000011111
T7− 000011011

T1− 100011011
T9−

100011010
T4− 100111010

T5− 100101010

D3 : 000011111
T9− 000011110

T1− 100011110
T5−

100001110
T4− 100101110

T7− 100101010

G1 : 000011111
c− 111100000

T6− 111101000
T2−

101101000
T8− 101101010

T3− 100101010

G2 : 000011111
T6− 000010111

T2− 010010111
T8−

010010101
T3− 011010101

c− 100101010

G3 : 000011111
T8− 000011101

T3− 001011101
T6−

001010101
c− 110101010

T2− 100101010
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By theorem 1, the sets of node-disjoint paths in the above
examples are the paths that have the longest length in E5

and E6. This means that the fault diameters of each E5 and
E6 are each 7 and 9 according to theorem 1. However, those
node-disjoint paths obtained by theorem 4 in the examples
are not the paths that have the longest length of E5 and E6.
This implies that the longest node-disjoint paths in E5 and
E6 are the paths obtained by the case 2-3 and the case 1-5
in theorem 4; therefore each fault diameter of E5 and E6 is
each 6 and 7. In conclusion, it is clear that the fault diameter
of Ed obtained by theorem 4 is better than that obtained by
theorem 1.

4. Conclusion

In this paper, we showed that Ed is node- and edge- sym-
metric. Further studies on the other properties of Ed such as
its Hamiltonicity would be interesting. We also proved the
shortest lengths of node-disjoint paths of Ed and showed
that fault diameter of Ed is d + 1. It has been shown that
node-disjoint paths and fault diameter derived in this paper
are better than the previously known bound.
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