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Abstract - In this paper, we establish topological
relationships among Folded hypercube FQ,, Even
graph E, and Odd graph O, via embedding. FQ,
can be embedded into E,,, and O,., with
dilation 2 and congestion 1. And E, can be
embedded into FQ,;_ 4 with dilation 1 and into O,
with dilation 2 and congestion 1. Also Oy can be
embedded into E;,, and FQ,,_, with dilation 2

and congestion 1.
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1 Introduction

Study of the propertiess of an
interconnection network is an important part of the

study of any parallel processing or distributed -

system. The hypercube is widely wused and
well-known interconnection model since it possesses
many attractive properties - low diameter, relatively
small degree, recursive structure, etc. One of the
biggest reasons for the popularity of the hypercube
is its ability to efficiently embed many parallel
architectures[1, 3, 8, 10, 12]. Consequently, Several
attempts have been made to generalize and
specialize  hypercubes. For  instance, Folded

hypercube[4], Even network[5], Odd graph[2]. In
this paper,r we establish embedding relationships
among these three networks with dilation and
congestion.

In interconnection networks, the problem of

simulating one network by another is modelled as a
graph embedding problem. Let G be a graph, its
node set, edge set and set of path in G will be
denoted by V(G)E(G) and P(G), respectively. An
embedding (7,p) of G(V,E) into a graph
G'(V',E’) is an injective mapping of nodes of
V(G) into the nodes of V'(G’') and edges of
E(G) into the paths of P(G'), ie, ¥: VoV’
and p: E— P(G'). We refer to G as the guest
graph and G’ as the host graph. Important
measures of quality of an embedding are dilation
and congestion. The dilation is the length of the
longest path of G’ corresponding to an edge of G,
the congestion is the largest number of edges of G
whose images contain the same edge of G’. There
are several reasons why such an embedding is
important[13]. Graph embedding results have many
important applications in parallel processing. They
provide the theoretical foundation for studying the
problem of matching the communication structure of
a task to the communication support of a parallel
system and, also, for studying the problem of
evaluating the relative performance of two
interconnection networks. Most of them consider the
embedding in which the size of the guest network
is equal to or less than the size of the host
network. ) ,
In the next section, we introduce the definition of
Folded hypercube FQ,, Even graph E;, and Odd
graph O,. In section 3,we show embedding results,
and we present a conclusion.
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2 Preliminaries

A binary string x of length » will be

written as T1Ty T Ty, where
z;€{0,1},1 < i< n,z; is said to be the ith bit,
the complement of x; will be denoted by

z_,~= 1—=xi. Let s and ¢ be two binary strings. The
Hamming distance between s and ¢ is the number
of bits that they differ.

The n-dimensional folded hypercube F(@), proposed
first by El-Amawy and Latifi[4]. The number of
nodes in FQ, is 2n, degree of FQ, is n + 1 and
each node with a distinct binary string is
ZyTy -+ Z,. Two nodes in FQ, are adjacent if and
only if Hamming distance is 1 or n. An edge
connecting two nodes u# and v is denoted i-edge,
where Hamming distance is 1. And an edge
connecting two nodes a and b is denoted c-edge,

where Hamming distance is ». It has diameter 5

about half the diameter of hypercube[4], and FQOn is
a bipartite graph if and only if » is odd[14]. The
study of the folded hypercube has recently attracted
the attention of many researchers[9, 11, 14]. Fig. 1
shows a Folded hypercube FQ;.
In [5], Ghafoor introduced even graph E, by a
class of fault-tolerant multiprocessor networks. It
was analyzed some important properties such as
maximal fault-tolerance, node and edge symmetry,
node disjoint paths, routing algorithms during
fault-free and faulty conditions, and ease of
self-diagnosis[5, 6]. The number of nodes in E, is
(2k—2
k-1
- 1. Each node with a distinct binary string is
T1Ty -+ Top_3{I0=111%1).I1t is the number of r.
Two nodes in E, are adjacent if and only if
Hamming

), degree of E, is k and its diameter is k

distance is 1 or 2k - 3. An edge connecting two
nodes # and v is denoted i-edge, where Hamming
distance is 1. And an edge connecting two nodes a
and b is denoted c-edge, where Hamming distance
is 2k - 3. Fig. 2 shows a Even graph F,.

The class of Odd graphs was introduced by [2] in
the context of graph theory. [7] pointed out their
potential as interconnection networks and they
discussed various properties. Odd graph O, with 4
= 2 has the set of binary strings of length 24 - 1
with exactly d 1's as the node set. The number of
de_l), degree of O, is d and
its diameter is d - 1. Two nodes are adjacent if and
only if they differ in all but one position; in other
words, two nodes are adjacent if and only if their
Hamming distance is 2d - 2. An edge connecting
two nodes u and v is denoted i-edge, where
Hamming distance is 2d-2 Fig. 3 shows a Odd
graph O,.

nodes in O, is (
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3 Embedding

Let Vi and V,? be the set of nodes that
start with 1 and 0. Let S} be the set of nodes that

[1=10l+1 and S° be the sct of nodes that
lol=11]+1.

Theorem 1. Even graph E, is a bipartite graph.
Proof. Let s; and s, be two binary strings and
u= 5,08,(0 < |s;,8,| < 2k—4) ES? in E,. Then
u is connected u'=s;1s, or u"=s,ls, by the
of E;. As the know
u',u” €S}. Hence the proof is complete. []

definition result, we

Theorem 2. Folded hypercube F@, can be
embedded into Even graph E,,, with dilation 2
and congestion 1.

Proof. Let u=b.b,:-- b, be an arbitrary node in
FQ@, and Z=m be a complement node of
u. We use ¢ to denote the string obtained from
by deleting the leftmost bit. Throughout this proof,
we use s)52 to denote the concatenation of the two
binary strings s, and s For each node

wE V(FQ,), define ¥(u)=tu=by- bbb, b,.
Then ¥(u) is a binary string of length 2n - 1,
lol= 111+ 1. Hence ¥: V(FQ,)— V(E,,,) is a
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mapping. Now consider the edges of FQ,. Let
e€ E(FQ,). We have three cases.

Case 1. The edge e is c-edge Let the two
adjacent nodes be w,v= u. Then we may assume
they are ¥(u)=tu and ¥(v)=tu where ¥(u)
and W(v) are binary strings of length 2n - 1.
Define p(e) to be the path of length 1: (tu— tu)
in E, ;.

Case 2. The two adjacent nodes by i-edge differ in
the first position : Let the two adjacent nodes be u
= 0t v = 1t Then we may assume they are
U(u)=t1t and W(v)=t0t. Define p(e) to be
the path of length 1: (t1t — t0t) in E,,,.

Case 3. The two adjacent nodes by i-edge are the
same in the first position : Let the two adjacent
nodes be u= zs,0s,,v= zs,1s, where x is 0 or
1, and Sy and Sy are binary
strings (0 < |s;,s5]<n—1). Then we may assume
they are ¥(u)= 5,0s,z5,1s, and
¥(v) = s,15,25,08,. Define p(e) to be the path
of length 2 :

(510857815 ,— 5,05,25,08,— 5,18,75,05,)

in E,,.

We know easily that the node s,0s,zs,0s, in
case 3 is not same the node W(u) or ¥(v) in case
1 and 2. Therefore, each path p(e) in above three
cases is edge-disjoint path. Hence the proof is
complete. [J

Theorem 3. Folded hypercube F¢, can be
embedded into Odd graph O,,; with dilation 2,
congestion 1.

Proof. Let uw=1bb,--- b, be an arbitrary node in
FQ, and u= b;by - b, be a complement node of
u. We use ¢ to denote the string obtained from u
by deleting the lefimost bit. Throughout this proof,
we use s;5,1 to denote the concatenation of the
three binary strings s;,s, and 1. For each node
uE€ V(FQ,), define

W(u)=uul= byby - bbb, - b,1. Then ¥(u) is
a binary string of length 2n+ 1,[1|= [0|+ 1. Hence
U: V(FQ,)—> V(0,,,) is a mapping. Now
consider the edges of FQ@,. Let e € E(FQ,). We
have three cases.

Case 1. The edge e is c-edge Let the two
adjacent nodes be u,v= u. Then we may assume
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they are ¥(u)=wuul and ¥(v)=uul where ¥(u)
and ¥(v) are binary strings of length 2n + 1.
Define p(e) to be the path of length
1: (uul—wuul) in O,,,.

Case 2. The two adjacent nodes by i-edge differ in
the first position : Let the two adjacent nodes be
u=0t, v=1¢t Then we may assume they are
w(u)=0t1t1 and ¥(v)= 1t0t1. Define p(e) to
be the path of length 1:(0t121— 1¢0¢t1) in
0n+ 1

Case 3. The two adjacent nodes by i-edge are the
same in the first position : Let the two adjacent
nodes be u=xs,0s,,v= zs,1s, where x is 0 or

1, and 51 and S2 are binary
strings (0 < [s;,8,/ < n—1). Then we may assume
they are U(u)= z5,08,25,15,1 and
¥(v)= zs,1s,x5,05,1. Define p(e) to be the
path of length
2: (z5,0s,75 15,1~ 25,15 25,15,0— z5,15,75,05,1) in
O,+1- We know easily that the node

z5,1s,25,15,0 in case 3 is not same the node
U{u) or W(v) in case 1 and case 2. Therefore,
each path p(e) in above three cases is edge-disjoint
path. Hence the proof is complete. []

Theorem 4. Even graph L, can be embedded into
(2k— 3)-dimensional Folded hypercube FQsy_ 5
with dilation 1.

Proof. FQ),;, 3 is a bipartite graph[14], and E; is a
bipartite graph by theorem

1. Let s; and s2 be two binary strings in
E,,0< |s;,8,|< k. Hence ¥: V(E,)— V(FQy_s)
is a mapping. Now consider the edges of E.

Let e€ E(E,). We have two cases.

Case 1. The edge e is a i-edge : Let the two
adjacent nodes be u = s,0s, and v= s;1sy in FE,.
Then we know ¥(u)=5,0s,, ¥(v)=s,1s,. Define
ple) to be the path of length 1: (s;0s,—s,1s,)
in FQy-3.

Case 2. The edge e is a c-edge : Let the two
“adjacent nodes be a=s,0s, and b= s,ls, in E,.
Then we know U(a)=s,0s,, W(b)=s,ls,.
Define p(e) to be the path of length
1: (s,0s,— s,1s,) in FQ,,_ ;. Hence the proof
is complete. []

Theorem 5. Even graph E; can be embedded into
Odd graph O, with dilation 2, congestion 1.

Proof. Let u=b;b, --- by;_5 be an arbitrary node in
E; and u= b;b, -~ by;_5 be a complement node of
u If uE V) , then ¥(u)=1u0 and If vE V] ,
then W(u)= Oul. Then ¥(u) is a binary string of
length 2d - 1, lol= [1]£1. Hence
V: V(E;)— V(0,) is a mapping. Now consider
the edges of E,;. Let e= E(E;). We have two
cases.

Case 1. The edge e is i-edge : Let the two adjacent

nodes be
u=s,18,,v=15,08,(0 < |s;,8,| < 2d—4). We
know L, is a bipartite graph by theorem 1, we

may assume uwEV) and vEV] . So
U(u)= 0s,1s,1, ¥(v)= 1s5,15,0. Define ple) to
be the path of length 1: (0s;1s,1— 15,15,0) in

O,.
Case 2. The edge e is c-edge Let the two
adjacent nodes be u= 5,0s,,

v=15,15,(0 < |s,,8,] < 2d—4). If uE V] and
vE V] , then ¥(u)= 15,15,0, ¥(v)= 0s,1s,1.
Define p(e) to be the path of Ilength
2: (15,15 ,0— 15,05,1— 0s,15,1) in O, If
uEV} and vEV] , then ¥(u)= 0s,0s,1,
U(v)= 15,05,0. Define p{e) to be the path of
length 2: (0s,0s,1 — 15 ;15,1 — 15,05,0) in O,.

We know easily that two nodes 1s,0s,1 and
15,15,1 in case 2 are not same the node ¥(u) or
W(v) in case 1. Therefore, each path p(e) in above

two cases is edge-disjoint path. Hence the proof is
complete. []

Theorem 6. Odd graph O, can be embedded into
Even graph E,.; with dilation 2, i:ongestion 1.

Proof. Let u=b;b, -+ by;_, be an arbitrary node in
O, and u= byby -+ by;_, be a complement node
of u. We use ¢ to denote the string obtained from wu
by deleting the leftmost bit. If wE.SY, then
U(u)= 0t and If uES], then ¥(u)= 0t. Then

W(u) is a binary string of length 2d - 1,

jol= 11+ 1. Hence ¥: V(O,)—> V(E;,,) is a
mapping. Now consider the edges of O, Let
e€ E(0,;). We have two cases.
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Case 1. The edge e is i-edge(2 < i< 2d—1) : Let
the two adjacent nodes be u= 0s,ls,,
v=15,15,(0 < |s1,s2| < 2d—3). Then we may
assume uE€S, and vES], so ¥(u)= 0sls,,
¥(v)= 0s,0s,. Define p(e) to be the path of
length 1: (0s;1s,— 0s,0s,) in E,,,.

Case 2. The edge e is i—edge(i=1): Let
u=1t,v=1%. Then ¥(u)= 0t,¥(v)=0t. Define
p(e) to be the path of length 2: (0t— 1¢t—0t) in
Ey1-

We know easily that 1¢# in case 2 is not same the
node W(u) or ¥{v) in case 1. Therefore, each path
ple) in above two cases is edge-disjoint path.
Hence the proof is complete. []

Theorem 7. Odd graph O,
Folded hypercube F@,,_,
congestion 1.

Proof. It is obvious by theorem 4 and theorem 6.

O

can be embedded into
with dilation 2 and

4 Conclusion

In this paper, we have investigated
embeddings among Folded hypercubes, Even graphs
and Odd graphs. We proved 7@, can be embedded
mto E ., and O,,, with dilation 2 and
congestion 1 and E; can be embedded into
FQ,,_ 5 with dilation 1 and into O, with dilation
2 and congestion 1, also O; can be embedded into
E;,,and FQ,, , with dilation 2 and congestion 1.
By studying the topological relationships among
them, we established the aptness of these graphs as
interconnection networks.
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