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Preface

We are living in an era where the Internet of Things (IoT) is becoming a global
platform for computation and the interaction between humans and machines while
at the same time performing several critical tasks.

Artificial intelligence and drones have been considered as a complementary
package towards realizing the emerging smart city paradigm in the IoT era. From
this perspective, it is essential to understand the role of these significant components
that will provide a comprehensive vision for the worldwide smart city project in the
near future. It is also essential to consider the emerging drones-based intelligent
applications for better lifestyle and more optimized solutions in our daily life.

The objective of this book is to provide an overview of existing smart city
applications while focusing on the issues/challenges facing the use of drones. The
main focus is on drone-based intelligence aspects that can help in realizing such
paradigm in an efficient way. Artificial Intelligent (AI) techniques and new emerging
technologies such as IoT accompanied by critical evaluation metrics, constraints
and open research issues are included for discussion. This conceptual book, which
is unique in the field, will assist researchers and professionals working in the area
to better assess the proposed smart city paradigms, which have already started to
appear in our societies.

Hope you enjoy it...

Nicosia Fadi Al-Turjman
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A Comprehensive Review on the Use
of AI in UAV Communications: Enabling
Technologies, Applications,
and Challenges

Fadi Al-Turjman and Hadi Zahmatkesh

1 Introduction

Artificial intelligence (AI) is being used to improve technologies because of its great
capability to deal with big data and complexity as well as speedy and high-accuracy
processing. There are different AI algorithms that can be employed in various
areas such as medicine, engineering, finance, and computing, to just name a few.
These algorithms include machine learning (ML), artificial neural network (ANN),
genetic algorithm (GA), particle swarm optimization (PSO), pattern recognition,
etc. Together with robotics which have the capability of self-organizing [1], self-
learning [2], and self-reproducing [3, 4], AI can be utilized to make machines
smarter, meaning that it provides the ability for the machines to do intellectual
tasks similar to what human beings can perform. In recent decades, robots have
been smart machines that utilize their AI abilities and smartness to perform
intellectual and smart tasks. Among all the robot-based infrastructures, unmanned
aerial vehicles (UAVs) are considered as one the most promising solutions regarding
the development of smart environments. UAVs are becoming more and more
popular due to their functionality, adaptability, availability, and low cost. They have
been successfully used in agriculture [5], security and surveillance [6], military
applications [7], and transportation [8], to just name a few. UAVs are small, compact,
and remotely operable and, therefore, have their specific uses. In recent years, UAVs
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are being used more and more for telecommunication applications [9, 10]. However,
due to the limitations of processing power and flying time, onboard processing for
intelligent telecommunication applications is a challenge.

In this chapter, the use of AI in UAV communications is comprehensively
discussed. Moreover, we overview the applications of UAV and discuss various
applied communication protocols and technologies in UAV-assisted IoT era. We
also introduce the communication architecture for the UAVs which specifies how
information is transmitted between a UAV and the ground BS or between UAVs.
In addition, we provide a summary of the design factors for utilizing AI in UAV
communications in order to ensure an efficient and reliable system and acceptable
quality of service (QoS). Finally, we discuss some open research issues associated
with AI-based UAV communications in the IoT environment.

The rest of this chapter is organized as follows. Section 2 discusses the applica-
tions of UAVs in the IoT era. Applied communication protocols and technologies for
UAV-assisted IoT systems are overviewed in Sect. 3. Communication architecture
for the UAVs in the IoT era and their various components are presented in Sect. 4
in order to help to understand its architecture and mechanism. Section 5 discusses
various design factors and requirements for the AI-based UAV communications
and provides several classification and image-based techniques that are used for
UAVs. Section 6 discusses some open research issue. Finally, Sect. 7 concludes
this chapter.

2 Applications

The use of UAVs is rapidly growing in several application domains including
intelligent transportation systems (ITSs), agriculture, wildlife preservation, disaster
control, security and surveillance, remote sensing and geology, healthcare, military,
education, and smart cities. These applications are briefly described in the following
subsections.

2.1 Intelligent Transportation Systems (ITSs)

The use of UAVs has recently opened up new opportunities for various applications
in ITSs such as automatic collection of traffic data [8]. In this regard, it is crucial
for many applications to detect vehicles and extract traffic patterns in an accurate
way. Unlike most of the conventional traffic monitoring devices which show traffic
conditions at fixed positions, some UAVs can cover a traffic network or a continuous
part of a road instead, so it requires less units to control a single section of a road
[11]. Moreover, UAVs, as an infrastructure with high mobility, can provide quick
evaluation and identification of accident locations where a number of static sensors
are located for emergency purposes [8, 12]. In addition, UAVs have lower operating
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cost compared to manned aircrafts, and can fly near to the ground, and, therefore,
can respond better in bad weathers [8].

2.2 Agriculture

In recent decades, the development of UAVs has provided opportunities for remote
sensing in agriculture. One of the most common applications of UAVs is precision
agriculture which is widely defined as a system in such a way that the management
process is done at the right time and the right place as well as with the right intensity
[13]. Moreover, due to the advantages of UAVs including ease of operation and high
flexibility, they can provide a way to extract phenotypic information of various crops
in farms quickly and precisely [5]. Agricultural UAVs are also important in areas
where ground-based systems have difficulties in performing farming operations
[14]. Although agricultural UAVs have revealed important advantages and features
in practice, their level of AI still requires to be optimized and enhanced in various
aspects such as data collection, management mechanisms, and safety factors [15].

2.3 Disaster Management

One of the most important use cases of UAVs is in emergencies such as disaster
management [16]. UAVs play an important role to reduce the negative effects of
disasters by providing necessary assistance to the rescue operations. They can have
access to disaster areas where it is impossible or unsafe for humans to gather
information for search and rescue in the disaster events. In addition to that, UAVs
can carry medical equipment to the damaged areas without human interventions
[17]. Moreover, UAVs, due to their flexibility and mobility, can be used as flying
base stations (BSs) to provide wireless coverage to the devices in disaster areas for
the purpose of rapid service recovery after the disasters [18].

2.4 Security and Surveillance

In the recent decade, UAVs have become an important technology to implement
security and surveillance system due to their reliability and effectiveness [6]. For
example, UAVs equipped with camera can be utilized in traffic surveillance to
monitor roads and collect traffic information in order to improve the road’s safety
[19]. This information is the basis for traffic control and management, as well as
transportation planning. Moreover, UAVs can fly in dangerous conditions such as
very bad weather conditions or evacuation conditions to obtain surveillance data in
real time [20].
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2.5 Remote Sensing and Geology

In recent years, UAVs have been increasingly used for agricultural remote sensing
due to their suitability and low cost as well as high operational efficiency [21]. For
example, high-throughput phenotypic platforms assisted with UAVs, using remote
sensing technology, can significantly make the collection of crop trait data easier.
They can be utilized to gather data on temperature, canopy reflectance, biomass
of maize, etc. [22, 23]. Moreover, UAVs equipped with global positioning system
(GPS) are able to provide georeferenced imagery in order to map a region with high
resolution [24]. It has been utilized more and more in small-scale remote sensing
tasks because of its high robustness, flexibility, and low cost under various weather
conditions [25].

2.6 Healthcare

UAVs are a revolutionary technology for the future of the healthcare sector by acting
as wireless relays (WRs) to enhance connectivity with ground wireless networks
[26]. They can collect and process information in real time by connecting the current
network infrastructures such as body area networks (BANs) with remote servers
and clouds. Moreover, UAVs can be utilized to pick up standard blood tests and
deliver routine test kits so that the workloads and travel time of medical staff will be
significantly reduced [27]. In addition, UAVs have been utilized to discover health
hazards such as radiation and prediction of cancer risk [28]. For example, in [29]
UAVs equipped with photogrammetry software with high resolution have been used
to precisely access and predict the risk of cancer in agricultural areas due to the high
level of copper concentrations.

2.7 Military

In the last decade, UAVs have attracted too much attention from both industry and
academia especially due to their importance and possibilities in military applications
[27]. UAVs improve accessibility and connectivity for military applications [30]. For
example, they can be armed with live video communication to weapons or ground
troops to protect the lives of military soldiers. Moreover, UAVs can be equipped with
gyrostabilized electro-optical and thermal infrared camera to be utilized by military
forces for the target acquisition and reconnaissance and surveillance-related tasks
[31]. Besides the payloads for military purposes, they are also suitable for civil
applications such as border security and search and rescue in emergencies.
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2.8 Smart Cities

UAVs are expected to be utilized for several applications in smart cities as the
number of flying UAVs is dramatically increasing [32]. They are estimated to
play an important role in smart cities in various applications such as agriculture,
transportation, and medical and environmental monitoring [33]. For example,
growing concerns related to air pollution as the largest environmental health risk
in large cities require the development of efficient technologies to control and
enhance air quality in smart cities [34]. In this regard, UAVs equipped with low-cost
microsensors can be used to provide several advantages for air pollution monitoring
in smart cities [35]. Other applications of UAVs for smart cities such as agriculture,
traffic monitoring, environmental monitoring, etc. have already been discussed
earlier in this section. These applications can provide cost-effective services to help
fulfill the goals of smart cities [36].

3 Applied Communication Protocols and Technologies

In the IoT era, communication technologies connect various smart objects together
to provide smart services. In UAV-assisted networks, the UAV nodes should
operate using low power while noisy and lossy communication links are present.
Examples of communication protocols used for the UAV-assisted networks in the
IoT environments are Wi-Fi, Long Term Evolution-Advanced (LTE-A), WiMAX,
ZigBee, Long Range Wide Area Network (LoRaWAN), and 5G.

Wi-Fi is one of the most common access networks for providing connectivity to
IoT devices within a range of up to 100 m [37, 38]. Two different modes of operation
called infrastructure mode and ad hoc mode are provided by all versions of Wi-Fi
communication technology (IEEE 802.11a/b/g/n/ac) which can be utilized for the
communication among UAVs and between a UAV and the ground BS. For example,
the study in [39] shows better performance of UAV-assisted IoT networks utilizing
IEEE 802.11ac in terms of throughput when compared to IEEE 802.11n. However,
it is required to conduct more research to better understand such a behavior. In
addition, most commercial UAVs are designed to be tested by Wi-Fi signals to
permit people to utilize their own smart device to control the UAV [40]. As the
sustainability of AI relies on the access to huge amount of data, it can grow more
quickly by building its intellectual capacity using data collection and analysis.
Moreover, Wi-Fi is one of the main Internet access technologies where mobile
users can rely on wireless services according to the contextual data such as location
services. Therefore, by the integration of AI and Wi-Fi technology, data from the
Wi-Fi can be sent to the cloud where it can be analyzed by the AI which in turn
provides reliable, predictable, and measurable wireless operations.

LTE is a technology which is based on Global System for Mobile communication
(GSM) and Universal Mobile Telecommunications System (UMTS) and used for
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high-speed data transfer between mobile devices [41]. LTE-A is the enhanced
version of the LTE which provides lower latencies and higher throughput as
well as improved coverage. Cellular infrastructure such as 4G LTE and LTE-A
can be utilized to design a monitoring architecture for streaming real-time video
surveillances from UAVs to a control center [42] in and around environments
consisting of several macro cells and small cells [43, 44]. Such an architecture may
result in timely action in the prevention of disaster and crime [42]. On the other
hand, AI is an enabler for cellular networks to deal with the 5G standardization
requirements [45]. For example, in [46], statistical regression and machine learning
algorithms are utilized to evaluate the problem of performance prediction in LTE
small cells. The results reveal that the AI-based learning approach can achieve very
high-performance gains.

WiMAX is another alternative technology for communication of IoT devices
in the UAV-based networks. Communicating devices on UAVs may use WiMAX
technology which is a standard based on IEEE 802.16e to increase the size of the
service area and the number of available communication channels among service
providers. WiMAX can provide data transmission and Voice over IP (VoIP) services
and guarantee the possibility of communication with people having a smart device
ready to receive emergency messages [47]. UAVs can be equipped with various
devices allowing them to take part in the network as nodes and to route the
traffic of the network properly. In addition, it is crucial to predict the traffic of
WiMAX networks in order to analyze its performance and provide better network
management. In this regard, AI-based approaches such as ANN can be utilized
to forecast the performance of the WiMAX network by using the minimum and
maximum number of online users [48].

ZigBee is a communication technology which is based on IEEE 802.15.4 and
provides low-power consumption and low data-rate communication. It was designed
for wireless sensors and controls allowing smart IoT devices to communicate within
a range of around 50 meters [49]. IEEE 802.15.4 can be used for the communication
between UAVs and fixed ground sensors where short-range communication is
required such as in smart agriculture and smart farming [50]. Moreover, the
combination of AI techniques and ZigBee technology can be utilized in various
applications and scenarios. For example, it can be used to enhance and optimize the
services offered by libraries [51].

LoRaWAN is a low-power, low bit-rate, and long-range wireless technology for
the IoT which is expected to overcome the connectivity problem of millions of smart
IoT devices in the next decade [52]. LoRaWAN can be used as the communication
protocol between UAVs and the ground BSs due to its advantages over other
communication technologies such as low-power consumption and long range [53].
LoRaWAN can be cost-effective with some AI techniques that do not necessitate lots
of parallel work between the nodes. Moreover, LoRaWAN can serve as an important
foundation for the AI machine learning [54], while AI would have various effects on
the operators such as in network architecture and big data analysis. In addition, AI-
based approaches such as ANNs can be integrated with LoRaWAN technology to
estimate its propagation [55] as they are less computationally demanding and more
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precise compared to deterministic and nondeterministic algorithms, respectively
[56].

5G is the next generation of wireless networks which is expected to provide
extremely low latency and high data rates as well as ubiquitous coverage for the
IoT smart devices [57]. The use of UAVs as flying objects in the next generation
of wireless networks has recently attracted too much attention from both academia
and industry [58]. One of the most promising solutions for 5G networks in terms
of energy efficiency and cost is flying platform [59]. For example, UAVs can be
integrated to act as drone BSs in order to improve coverage and connectivity [60],
or capacity [61], of the networks in 5G era. They offer the flexibility of integration
in fast cellular deployments and provide high data rate with low transmit power
because of their efficient line-of-sight (LoS) capabilities [59]. Therefore, 5G is
one of the most important communication technologies used for the UAV-assisted
networks in the IoT era. Moreover, in the UAV-assisted communications, AI-based
solutions can be proposed to address the security and privacy issues in 5G networks
[62, 63]. In addition, 5G networks and AI, when combined with UAV systems, can
communicate with the location of people, bicycles, and vehicles in real time and,
therefore, reduce the chance of collisions and accidents.

4 Communication Architectures

This section introduces the communication architecture for UAVs which specifies
how information is transmitted between a UAV and the ground BS or between
UAVs. The architecture can be classified into centralized vs. decentralized com-
munications.

In the centralized architecture as shown in Fig. 1, all UAVs are connected to
a central node called ground BS. In this architecture, UAVs are not connected to

Fig. 1 Centralized UAV
architecture
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each other directly. Instead, each UAV sends/receives command and control data
directly to/from the ground BS. In addition, the ground BS is responsible for the
communication between two UAVs. This results in a relatively long delay for the
information to be transmitted between two UAVs since the data has to be routed
through the ground BS. Moreover, UAVs in the centralized architecture require
to have advanced radio transmission devices with high transmission power since
the communications between UAVs and the ground BS are often long-distance
communication [64]. This is not suitable for small or medium UAVs because of
their size and payload restrictions. In addition, if the ground BS encounters failures,
the whole UAV network will be down. Therefore, the centralized architecture is not
a strong and robust architecture.

Unlike the centralized architecture, UAVs can directly or indirectly communicate
with each other without the help of the central node or the ground BS. The
decentralized communication architecture can be classified into three categories:
UAV ad hoc network, multigroup UAV network, and multilayer UAV ad hoc
network.

UAV Ad Hoc Network In a UAV ad hoc architecture as shown in Fig. 2, each UAV
takes part in data forwarding for other UAVs in the network. In this architecture,
only one UAV is connected to the ground BS and acts as a gateway to relay
information between the ground BS and other UAVs. This can significantly increase
the coverage area of the network. The gateway UAV requires one radio for the
communication with the ground BS and one for the communication with other
UAVs in the network. This architecture is more practical for medium- or small-
sized UAVs as the flying UAVs are relatively close to each other, and, therefore, the
radio transmission devices can be lightweight and low cost. However, all the UAVs

Fig. 2 UAV ad hoc network
architecture
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Fig. 3 Multigroup UAV
network architecture

need to have similar mobility patterns such as heading directions and speed in order
to ensure connectivity of the entire network. Therefore, this architecture is suitable
for a group of similar UAVs tasks such as continuing surveillance actions [65].

Multigroup UAV Network A multigroup UAV network is a combination of the
centralized architecture and UAV ad hoc network. As shown in Fig. 3, a group
of UAVs and its respective gateway UAV form a UAV ad hoc network which
is connected to the ground BS. The communication within the same group is
performed through the UAV ad hoc network discussed earlier in this section, and
the communication between two different groups is conducted through the gateway
UAV and the ground BS. Please note that this communication architecture is
appropriate when there are a large number of UAVs having different communication
and/or flight characteristics. However, this communication architecture is not still a
robust architecture because of its semi-centralized nature of communication.

Multilayer UAV Ad-Hoc Network Multilayer UAV ad hoc network consists of
multiple groups of heterogeneous UAVs as shown in Fig. 4. It is a communication
architecture where the gateway UAVs of different groups of UAV ad hoc networks
are connected to each other. Moreover, only one of the gateway UAVs is directly
connected to the ground BS which handles the communication for data that are
destined to the ground BS. The communication between two UAV groups is handled
by the gateway UAVs and does not need to be conducted through the ground BS.
This significantly reduces the communication and computation load in the ground
BS. The multilayer UAV ad hoc network is a robust architecture, as it does not have
a single point of failure.
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Fig. 4 Multilayer UAV ad hoc network architecture

4.1 UAV Components

In this section, various components of a UAV are discussed which help to understand
its architecture and mechanism to create an enabling environment in order to ensure
that resources and time are saved in the daily business engagements. We classify
these components into subcategories as primary and secondary. Primary compo-
nents are the most important components in designing the UAV, and secondary
components are those that are less important compared to the primary components
but still are significant in designing an efficient UAV.

4.1.1 Primary Components

Battery The battery is a part of the UAV that enables all the required actions and
reactions. Without the battery, the UAVs have no power to fly. Different UAVs have
different battery requirements. For example, small UAVs require smaller batteries
because of the limited power requirements. On the other hand, bigger UAVs need
bigger batteries with more capacities in order to provide power to all the functions
of the UAV. The pilot can monitor the performance of the battery using a monitor
on the UAV that provides the battery information.
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Camera Cameras are basically one of the main components of a UAV. They help
in taking images from above which provides an important use of the UAVs. Some
UAVs have built-in cameras, while for other UAVs, it is possible to attach various
camera types available in the market.

GPS Module GPS module is a very important component which is responsible to
provide latitude, longitude, and elevation points of the UAV. It helps the UAV to
fly longer distances and control specific places in the environment. It also helps to
return the UAV safe to the controller even if it loses the connection to the controller.

Flight Controller This is basically the motherboard of the UAV. Flight controller
is responsible for all the commands issued to the UAV. It interprets inputs from the
GPS module, receiver, and sensors. It is also responsible for the control of the UAV
and the regulation of motor speeds by the electronic speed controller. In addition,
flight controller controls the autopilot mode and other autonomous functions in the
UAV.

4.1.2 Secondary Components

Propellers The propellers are normally placed in front of the UAV and are different
in terms of size and material used in making them. Some of them are made of plastic,
which is suitable for smaller UAVs, but on the other hand, carbon fiber is used for
the manufacturing of the more expensive propellers. They are responsible for the
motion and direction of the UAV.

Solar Panel Due to the battery limitation of the UAVs, adding a lightweight and
renewable energy source such as solar panel can significantly improve the efficiency
and extend the flight time of the UAV. Moreover, it can eliminate the need to
recharge the battery of the UAV from a power grid. This can make the UAV ideal
for traveling in long distances without returning back to the ground.

Transceiver The transceiver is a unit responsible for transmission and reception
of the radio signals to/from the UAV. The transceiver uses a radio signal in
communication with the UAV during the flight. Each radio signal has a standard
code that helps to differentiate it with other signals in the air.

5 Applied AI

In this section, design factors and requirements of AI-based UAV communications
are comprehensively discussed. We also discuss various important features of the
AI-based models in UAV systems. Moreover, we investigate online vs. offline
processing of the UAV images.
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5.1 Design Factors and Requirements

Utilizing AI in UAV communications requires special attention to ensure that there
is an efficient and reliable system and acceptable quality of service (QoS). The
important design factors regarding the use of AI in UAV communications are briefly
discussed in this section. We divide these factors into two main categories: hard
design factors and soft design factors.

5.1.1 Hard Design Factors

The design factors of the AI-based UAV systems are addressed in this section from
the hardware perspectives. The hardware of the UAV affects the operability and
efficiency of the imaging process. The main hard design factors are as follows.

Power Supply and Physical Structure The power supply and the aerodynamics
of the UAV determine the airtime of the device. The power supply is an important
unit of the UAV as it acts as a power-generation and conditioning system. It takes
the electrical input and converts it to the required output. Moreover, the physical
structure of the UAV can significantly affect the speed and the battery lifetime of
the UAV. Therefore, it is important to use the UAV with appropriate power supply
and physical structure based on the specific requirements and applications in order
to improve the efficiency and operability of the entire system.

Motors and Control Mechanism The motors or rotators as well as the motor
controllers also determine the airtime and speed as well as the lift capacities of the
UAV. Depending on the application, different types of motors can be used in UAVs.
This ensures that the motor can provide sufficient output with energy effectiveness
in cases where it is required for the drones to have long-hour flights or to be used
for a very short time.

Sensors and Interfaces Various sensors (e.g., camera and temperature sensors),
actuators, and interfaces are required for online or offline image processing.
The sensors can sense various environmental parameters, and in case of any
abnormalities, a camera, which is connected to its specific interface, can take an
image, which can be processed online or offline. Therefore, it is important to utilize
the appropriate sensors and interfaces for the efficient image processing purposes.

Localization, Mapping, and Path Planning If the UAV is autonomous in nature,
it will have a built-in localization and mapping algorithm. Using various cameras
and sensors such as laser scanner, the position of the UAV can be estimated, and
the 2D/3D map of the environment can be constructed. The input data can be taken
from depth cameras. Moreover, the appropriate mapping will enhance the robustness
and accuracy of the localization [66]. In addition, mapping supports various basic
requirements of the autonomous navigation such as path planning and obstacle
avoidance.
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Communication System In order to transmit and receive data, there must be an
established communication system for the UAV. The employed sensors in UAVs
differ in terms of the used communication protocols. They can be categorized
into short-range wireless communication technologies such as ZigBee, Bluetooth,
and Wi-Fi and long-range low-power wide-area networks (LPWANs) including
LoRaWAN (low-power WAN protocol for the IoT), Narrowband IoT (NB-IoT),
Sigfox, and LTE-A. Therefore, communication system is an important design factor
in order to have an efficient and reliable UAV system with acceptable level of QoS.

5.1.2 Soft Design Factors

This category of the design factors considers software aspects of the UAV systems
as well as the processing of data obtained through the sensors using AI models.
Depending on the objectives for the UAV images (e.g., classification, object
detections, segmentation), several factors may be looked at when considering the
network architecture that has to be used. Several classification and image-based
techniques are used for UAVs. Some of these methods are discussed as follows, and
a summary is presented in Table 1.

Bayesian Networks Bayesian networks are probabilistic graphical models that use
Bayesian inference to calculate probabilities. Bayesian networks can be used for the
classification of images in aerial surveillances. For example, in [67], the authors
present an automatic vehicle detection mechanism for aerial surveillances using

Table 1 A summary of the image-based techniques used for UAVs using AI models

Ref. Algorithm Idea

[67] GA in fuzzy images Vehicle extraction
[68] ANN with multiple particle collision Determining UAV position estimation

alongside GPS
[85] CNN Species detection, image processing (counting

and tracking)
[86] Deep CNNs with SVM Species detection and image processing for

detecting and counting cars
[72] Graph-based K means clustering with

SLIC algorithm
Mangrove ecosystem classification

[73] K-means clustering with graph-cut
(KCG)

Aerial rice yield estimation

[74] Linear regression Estimating forest canopy fuels and structure
[78] Deep CNNs with naïve Bayes

preprocessing
Ship detection from high resolution UAV
images

[79] KNN, decision trees, extra tree, and
comparison of these methods

Classification of terrain images

[80] RF object-based image analysis Accurate and timely detection of weed
[81] GA in fuzzy images Vehicle extraction
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dynamic Bayesian networks in order to design a pixel-wise classification technique
for vehicle detection. Moreover, the relations among neighboring pixels in an area
are also maintained in the proposed method in the process of feature extraction.
Therefore, these features contain both pixel-level and region-level information. The
authors reveal the accuracy and adaptability of the proposed framework for detection
in different aerial images.

Artificial Neural Network (ANN) ANN is an interconnected group of nodes
which represent artificial neurons. It can be used for the edge detection process in an
image matching system using aerial images taken in flight time, as well as the aerial
geo-referenced images in order to estimate the position of UAV where the Global
Navigation Satellite System (GNSS) fails to respond [68]. ANN can be classified
into supervised, unsupervised, and reinforcement learning.

1. Supervised learning (SL): In this category, given a dataset of labeled data,
the network is trained to classify the data into the given labels. For example,
in [69], supervised learning is used to provide initial training data set for an
effective on-road vehicle recognition based on the image data obtained from the
UAVs as traffic data collection devices. Then, the proposed approach uses an
online learning- and tracking-based approach to enhance the precision of vehicle
recognizer.

2. Unsupervised learning (UL): In this category, given a dataset of unlabeled data,
the network groups similar data together through statistical analysis and outputs
them in clusters. For instance, in [70], an unsupervised learning algorithm is used
to evaluate and propose a practical technique for deployment of several UAVs.
This technique is not limited to a fixed set of positions and is based on the concept
of electrostatic forces to locate aerial BSs in a continued 3D space.

3. Reinforcement learning (RL): RL is the training of machine learning (ML)
models to make a sequence of decisions. In this algorithm, an AI agent is used
to learn about the environment and figures out which actions to perform in order
to produce maximum rewards. For example, the study in [71] presents a vision-
based landing supervision of UAVs using reinforcement learning algorithm to
generate appropriate commands for UAV landing in various situations.

K-Means Clustering K-means clustering is an unsupervised ML algorithm that
divides an image of N pixels into M clusters where the value of M is fixed [72].
The clusters provide a way to group the pixels, which is dependent on their values
in the image. For example, the study in [72] uses K-means clustering and simple
linear iterative clustering (SLIC) algorithms to segment the images taken from a
camera placed on a UAV from a mangrove ecosystem in Fiji. Similarly, the authors
in [73] propose an image processing method using K-means clustering and graph-
cut algorithms to segment the rice grain areas. The results of the experiments show
the accuracy of the proposed UAV image-based grain segmentation approach in
estimating rice yield.

Linear Regression (LR) Given a set of training examples, LR is an approach for
supervised learning that fits a linear function into a group of numeric input–output
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pairs. It is utilized to predict a quantitate response B from the predictor variable
A such that there is a relationship between A and B. The study in [74] shows the
possibility of using UAV images as a way to estimate the forest canopy structure
and fuels in a forest in the USA. The authors use simple LR models to test the
relationship between the field-measured variables and the UAV image derived. The
results indicate the accuracy of the proposed approach in estimating a number of
items such as canopy height, canopy cover, and tree density in the forest.

Naïve Bayes Classifier (NBC) The NBC is based on the Bayes probability theory
which can dynamically classify data based on its posterior probability and can
provide accurate performance [75]. It can be used in various fields for different
purposes such as classifying documents [76], detecting Internet intrusion [75],
and carrying out health surveillances [77]. Moreover, the study in [78] proposes
a method for ship detection using high-resolution images obtained from UAVs.
The authors use a deep neural network auto-encoder in order to extract features
automatically for the set of discrete NBC. The results reveal that the proposed
method outperforms the previous methods.

K-Nearest Neighbors This method of classification allows a single point of data
to find its nearest neighboring data cluster and assign that class to the data point. For
example, the study in [79] presents an approach to classify terrain images taken from
a UAV into five different types: car park, green zone, building, canal, and road. The
authors use K-nearest neighbor together with two other classifiers called decision
tree and extra tree. In order to cover the area of interest, the process stitches groups
of four images to form large field-of-view images. The images are then divided into
grids which are manually labeled as one of the mentioned terrain types.

Random Forest (RF) In AI, a decision tree is a tree where each node represents an
attribute, each link represents a decision, and each leaf represents an outcome. RF is
a group of classification trees where each decision tree uses a subset of variables
and training samples chosen by a bagging method, whereas other samples left
are utilized to test the effectiveness of the RF performance using cross-validation
techniques [80]. In [80], the authors propose an approach for vegetation mapping
based on UAV remote sensing using RF and texture analysis. An RF containing 200
trees is utilized to classify 2 selected UAV images in the area. The results reveal
that the UAV provides an ideal approach for urban vegetation mapping. Moreover,
RF performs better than the traditional maximum likelihood classifier in terms of
object-based image analysis.

Genetic Algorithm (GA) This evolutionary algorithm uses methods of population,
breeding/crossover, and mutation in order to find the global optimum solution in a
given data. For example, the study in [81] develops an approach to identify and
extract vehicles from UAV images. First, a segmentation algorithm based on fuzzy
c-partition is employed to segment the color UAV imagery. Then the GA is used to
cluster the color space data point in order to achieve the optimal color segmentation.
The obtained results show the effectiveness of the proposed approach in terms of
positional accuracy and visual effect.
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Deep Learning (DL) DL is a part of ML techniques based on ANNs. There
are different deep learning approaches such as convolutional neural networks
(CNNs) that have been used in various applications including object detection,
image classification, and recognition tasks. CNNs are broadly applied in image
classification due to their ability to handle large datasets with higher accuracy
compared to the traditional approaches [82]. Moreover, CNNs are able to implement
nonlinear decision functions [83] and can automatically learn characteristics from
the large datasets by using the organization of multilayers of neurons [84]. For
example, in [85] the authors propose a method using deep CNNs to count and
monitor animal species through video recording taken from UAVs. In addition, the
study in [86] presents a solution to the problem of counting and detecting cars
in UAV images. The authors use a deep CNN system as a feature extraction tool
and combine it with a linear support vector machine (SVM) to classify the area
under study into “no-car” and “car” areas. The results reveal the effectiveness of the
proposed approach in terms of accuracy and computational time.

Deep networks can be classified into generative and discriminative architectures.
Generative architecture as shown in Fig. 5 includes deep belief network (DBN),
deep Boltzmann machine (DBM), and deep autoencoder (DA). Moreover, dis-
criminative architecture can be classified into convolutional neural network (CNN)
and recurrent neural network (RNN). Simple descriptions of each architecture are
presented as follows.

Generative Architecture

• Deep belief network (DBN): This is a multilayer class of deep neural network
that has connections between the layers, but not between individual units in a
single layer. DBN can be used as a classifier for detecting and classifying the
micro UAVs to recognize the signature patterns produced by utilizing a Doppler
radar-based approach [87].

• Deep Boltzmann machine (DBM): DBM is an undirected version of the DBN.
In DBM, nonlinear hidden variables are structured in multiple connected layers

Fig. 5 Deep belief network (DBN), deep Boltzmann machine (DBM), and deep autoencoder (DA)
structures [90]
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such that variables in one layer can concurrently contribute to the states or
probabilities of variables in the next layer [88].

• Deep autoencoder (DA): A DA is a generative architecture composed of two
symmetrical DBNs that typically have four to five shallow layers. DA is a kind of
unsupervised learning algorithm that performs data self-recovery training based
on the value of the target input and output being equal. It reduces the loss function
by training to figure out a set of network parameters [89].

Discriminative Architecture

• Convolutional neural network (CNN): This is the most utilized feedforward
neural network architecture that uses a variation of multilayer perceptrons in
order to classify complex data. This DL approach can be used in various
applications such as image classification [82].

• Recurrent neural network (RNN): RNN is a type of network where the output
from the previous step is fed as input to the current step. It is useful for data
changing over time, equipped with a feedback loop mechanism. RNN proved
to provide more precise segmentation results by utilizing related data-dependent
characteristics automatically [91].

The combination of CNN and RNN can be applied to UAV images of various
applications such as in flooding areas for precise semantic segmentation of mean-
ingful object borders with end-to-end learning [91]. This in turn results in detection
of flood areas with high accuracy from a large UAV dataset.

5.2 Features

In this section, we discuss the most important features and criteria used to train AI
algorithms that are utilized in UAV communications.

In [92], the authors designed an intelligent proportional–integral–derivative
(PID) controller based on the radial basis function neural network (RBFNN) in
order to control the longitudinal attitude of a small UAV based on the complexity
and nonlinear features. RFBNN control algorithm is fast and easy to operate and
can approximate any nonlinear functions. Therefore, it can be easily utilized in
UAV flight control system. The study in [93] utilizes the application of RL to
the derivation of control rules for the flight control of a UAV. The authors use the
features of height and positions controllers for training the AI algorithm in the UAV
communications.

In [94], a support vector regression (SVR) approach is proposed for the adaptive
control of a UAV based on the input–output feedback linearization approach.
The approach is trained using the maximum tolerable error and the regularization
parameter. The results reveal the effectiveness of the proposed method compared to
other techniques such as neural network (NN) algorithm.
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The authors in [95] propose a nonlinear autopilot for quadrotor UAVs according
to the feedback linearization. It is then compared to an autopilot that has been
learned by RL using fitted value iteration concerning performance and design effort.
The study in [96] proposes a framework for combining RL and cooperative planner
techniques in order to improve the accuracy and policy of the cooperative planner
while reducing the sample complexity of the learner. In [97], the authors present a
mechanism based on extreme learning machine (ELM) for learning the stored digital
elevation information. This is performed to carry out an estimation or map building
for the navigation of UAVs without the need for GPS. The ELM training algorithm
is applied to significantly speed up the rate in a way that the network learns about
the previous available maps. The results show better mean square error performance
of the training algorithm compared to other approaches.

In [98], the authors propose an approach based on CNN to safely drive a UAV
in the streets of a city. Based on the features of complexity and processing time,
the model learns to move by considering the movement of bicycles and cars in the
city which follows the traffic rules. Moreover, the study in [99] describes a system
that navigates a small UAV autonomously through dense forest environments to
avoid collisions with trees. The approach teaches a controller that needs mapping of
camera images to a set of features which can be utilized by the training algorithm.
These features include optical flow, Radon transform statistics, and structure tensor
statistics.

The study in [100] proposes an ML-based system for weed mapping in precision
agriculture based on the images provided by UAVs. The study considers a broad
range of features such as geometrical, statistical, spatial, and texture based in order
to train the AI algorithms. A summary of the mentioned studies and their most
important features and criteria used to train AI algorithms in UAV communications
is presented in Table 2.

Table 2 A summary of the studies and the most important features and criteria used to train AI
algorithms in UAV communications

Ref. Algorithm Features Learning type

[92] RBFNN Complexity and nonlinearity Supervised learning
[93] Learning automata Height and positions controllers Reinforcement learning
[94] SVR Maximum tolerable error and

regularization parameter
Supervised learning

[95] Markov decision
process

Fitted value iteration Reinforcement learning

[96] CNAC, CSarsa Accuracy Reinforcement learning
[97] ELM Speed Supervised learning
[98] CNN Complexity and processing time Supervised learning
[99] Imitation learning Optical flow, radon transform

statistics, and structure tensor
statistics

Supervised learning

[100] Object-based image
analysis

Geometrical, statistical, spatial, and
texture-based features

Supervised learning
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5.3 Online Vs. Offline Classifications

Currently, the processing workflow of UAVs in most cases is based on the image
post-processing since the processing power of the UAVs is limited. The system takes
the UAV images and then processes them in a workstation. However, there are great
interests in using real-time image processing solutions which can be done by using
cloud computing [101, 102]. Cloud-based platforms can improve the availability of
data processing performance without investing on high-performance computers or
server infrastructure [103]. The processing techniques can be categorized to offline
vs. online processing techniques.

In offline processing, the approach processes the already recorded videos or
captured images by the UAVs. It is enabled by utilizing more complex and com-
putationally demanding algorithms and, therefore, provides better results compared
to real-time processing. Some of deep learning tools for offline image processing
on CPU are Neural Network Toolbox in MATLAB and OpenCV dnn module which
supports TensorFlow and Torch.

On the other hand, some applications such as traffic monitoring and target
tracking in military purposes require real-time processing and feedback from the
sensors for the UAV images. Some of the tools for online processing in graphics
processing unit (GPU) are OpenVX standard with Neural Network Extension and
OpenCL standard and Torch.

The study in [103] utilizes real-time data processing object detection from the
UAVs based on cloud computing for future anti-collision systems and georefer-
encing. The results reveal that the real-time data processing can be useful to track
changes precisely. Moreover, in [104], the authors developed an edge computing and
sensing system for the UAVs which is compatible with deep learning frameworks.
They also proposed a real-time localization and obstacle detection technique which
is used to control the UAVs locally without depending on the link to a ground BS.
The results show the autonomous navigation feature of the UAV by considering a
predefined path with the location error of less than 10%.

6 Open Issues

In spite of the rapid development that has been achieved and several research activ-
ities carried out in recent years regarding the use of AI in UAV communications,
there are still open issues and research challenges that need to be carefully taken
into consideration. Some of these research issues are outlined in this section.
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6.1 Wireless Challenges

One of the most challenging issues regarding the use of UAVs in IoT era is related
to wireless connectivity especially for the scenarios related to ITSs. For example,
UAVs can provide a fast report when an accident happens and can act as speed
cameras and flying units to monitor accidents, provide road safety, and control road
traffic. In this regard, UAVs can be equipped with different sensors to send various
types of data to other UAVs and vehicles. In such scenarios, each UAV can transmit a
specific part of the data to other vehicles instead of transmitting the whole data file.
This in turn results in lower power consumption and faster data transmission for
each UAV. In this regard, deep learning based on spectral clustering can be applied
to group the UAVs into various clusters for transmission of data based on the type
of sensors, and location of the UAVs, as well as the number and location of vehicles
in the network [62].

6.2 Security

In various applications of UAVs such as ITSs, a group of UAVs can perform the
necessary tasks better in comparison with a single UAV. However, the data sharing
among them can be prone to adversarial machine learning (AML) attacks in such
a way that an attacker can join the group and change the data which may result
in collisions as well as odd movements. In this regard, AI-based solutions such as
federated learning can be applied so that each UAV can receive the common task that
has to be performed by the UAV group from the BS and enhance the learning model
for accomplishing the necessary tasks according to the collected data. Therefore,
each UAV can summarize the changes in the learning model and share it with other
UAVs in the group [62]. This can help to mitigate the risk of AML.

6.3 UAV Autonomy

UAV autonomous operations are crucial for the development of various military
and civilian applications. They would enable safe navigation without (or with
little) human supervision. However, UAV systems have significant flight tolerance
restrictions which limit the weight, size, and power consumption of the payload
[105]. These restrictions limit the necessary capabilities for the UAV autonomous
operations. In addition, onboard processing is used for various UAV operations such
as when the available bandwidth is limited or when the huge amount of data have
to be transmitted. Therefore, it is crucial to carry out research in the design of
computing devices with low power consumption, especially GPUs.
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6.4 Deep Learning Challenges

Deep learning algorithms have been broadly applied within the architecture a UAV
system such as in feature extraction systems which require great computational
resources. It is still difficult to integrate these resources on onboard UAVs which
require off-board processing and great communication capabilities. In addition, in
most cases, the current computational resources available are not compatible with
online processing which in turn limits the applications where the reactive behaviors
are required [105]. Therefore, it is beneficial to perform research into the design of
more efficient deep learning architectures.

7 Conclusions

The integration of AI and UAVs is considered as one of the most promising solutions
regarding the development of smart environments as they can be utilized to enhance
technologies and to deal with complexity and big data, as well as to provide high
accurate and speedy processing. In this chapter, through a comprehensive investiga-
tion on the use of AI in UAV communications, we discussed the applications and
communication protocols of the UAV-assisted IoT systems and provided various
design factors and requirements which ensure an efficient and reliable system with
acceptable QoS. Moreover, we overviewed several classification and image-based
techniques that are used for UAV communications in the IoT era. Finally, we
outlined some open issues and research challenges that need to be carefully taken
into consideration in this area.
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UAVs Healthcare Applications,
Communication Protocols, Deployment
Strategies, and Security Challenges

Zaib Ullah, Fadi Al-Turjman, and Leonardo Mostarda

1 Introduction

The fast, potent, and dynamic maneuverability nature of UAVs has placed its
significance in many real world applications from military to civilian use. The
affordable manufacturing cost, evolution in UAVs energy harvesting mechanisms,
perfecting joint optimization issues of UAVs, e.g., trajectories, and data collection,
etc. and increasing payload capabilities have made it a potential and vital tool of
any society. The aforementioned evolving imperative features of UAV have led
to a surge in its use for commercial activities, and this growth is expected to
continue in the near future [1–4]. The UAV is making its place in the healthcare
industry, entertainment sectors, power lines and oil rigs monitoring, next-generation
telecommunication industry, forest monitoring, search and rescue operations, and
construction industry. The Third Generation Partnership Project (3GPP) is playing
a vital role in the smooth and steady social integration of UAVs. The primary
objectives of 3GPP are to establish strong and durable connections between UAVs
and cellular networks providing companies. The 3GPP has launched its study
item that focuses on various UAVs related issues ranging from existing UAVs
challenges, needs, possible opportunities, and its integration to LTE and next-
generation communication, e.g., 5G and beyond [3].
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In this chapter, we discuss the recent advances in UAVs application from a
healthcare perspective, development in UAVs communication protocols, the UAVs
deployment strategies and their impacts, and the UAVs performance from the
security perspective and finally we discuss existing challenges and future research
trends.

2 UAVs Application in Healthcare: A Brief Overview

In this section, we focus on the recent developments regarding UAVs application in
the healthcare industry. We also consider the UAVs role and proposed techniques in
improving the healthcare of livestock.

The authors in [5] have proposed UAVs utilization for body area networks
(BANs). They have designed an architecture to use UAVs for collecting data from
BANs efficiently and securely. In the proposed paradigm, a UAV simultaneously
interacts with many BANs using the concept of wake-up radio (WuR) communi-
cation. The performance of proposed architecture has been analyzed by throughput
and delay metrics in different proposed scenarios. The authors [6] have presented
various applications of UAVs in medical fields, challenges, and possible solutions.
UAVs played a significant role in healthcare activities during Haiti and Nepal
earthquakes in 2010 and 2015, respectively. In this regard, the National Aeronautics
and Space Administration (NASA) designed and tested UAV-based system to
transport necessary medical pieces of equipment in rural Virginia. The “Doctors
Without Borders” association employed UAVs for the transportation of tuberculosis
(TB) test samples to the far-off parts of the country. Likewise, in Malawi, the
UAVs are being used in eradication efforts of the human immunodeficiency virus
(HIV), a big threat to people lives in the country. Similarly, in Rwanda, blood
products and necessary medicines are transported by UAVs with the joint help
of GPS and Rwanda’s Telecommunication. In [7], the author has investigated
the types of medical supplies, suitable for transportation in urban areas. Their
findings suggest that lightweight, low volume, highly demanded, and least risky
medical goods should be transported through UAVs in an urban environment.
The authors in [8] have focused on UAV’s role and performance in the blood
delivery system. UAVs called Zipline have accomplished more than 4000 blood
supply missions and are currently delivering approximately 20% of Rwanda’s blood
supply to far-flung areas of the country. Similarly, another UAV company called
Matternet, operating in various cities of Swiss has flown 1800 blood supply and
pathology specimens missions. By equipping UAVs with temperature-controlled
compartments, its capacity of carrying temperature-sensitive medicines will be
achieved. In [9], the authors conducted a sort of survey to study the opinion of Swiss
people regarding UAV’s role in the healthcare sector. The analysis affirmed that
UAVs utilization for diagnosis purpose inside hospitals is of high concern while its
use for delivery and emergency purposes is supported by the patients and employees.
In [10], the authors proposed a technique based on a partially observable Markov
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decision process (POMDP). The primary idea is to design a UAV trajectory in such
a way that the zone with the highest number of victims should be highly prioritized.
The authors applied the proposed techniques to presume three different case studies
namely nuclear disaster at Fukushima, the South Sudan refugee camp, and tornado
destruction in Brazil. The proposed technique achieved successful coverage of the
affected zones within an auspicious time. In [11], the authors proposed a UAV-
based paradigm consisting of two models for patients with chronic diseases in rural
areas. In the first model, the set covering mechanism is used to find the optimum
number of UAVs center positions while the second model is based on a multi-depot
routing problem, dealing with cost-effective UAV selection for medicines delivery
and returning with patient blood samples and medical kit. The authors developed
a cost–benefit mechanism to analyze the performance of UAV-aided healthcare
services.

In [12], the authors proposed an idea of using UAVs to count and monitor by
scanning the area of livestock. Animal species are video recorded in a specific area
via UAVs and the attained number of images are analyzed for the track record
of the species. In [13], the authors have proposed an idea of how to monitor and
safeguard the health of livestock using agriculture UAVs surveillance. In this patent,
the authors have provided a very detailed discussion and precise techniques of
using UAVs to observe the livestock and identify their health conditions based
on their body’s thermal temperature. In the proposed idea, UAVs traverse over
feedlots, monitor and analyze the health of individual livestock based on core
body temperature, and pass the real-time information to control room for further
processing and actions.

3 UAVs Communication Protocols and Technologies

In this section, we discuss various communication protocols and recent efforts that
have attempted to establish the most reliable and stable communication between
UAV to UAV (U2U) and UAV to Ground nodes (U2G), etc.

The authors in [14] proposed an innovative protocol known as the Iterative Sub-
channel Allocation and Speed Optimization Algorithm (ISASOA). The objectives
of the proposed protocol are to establish communication links between UAV-
UAV (U2U)and UAV-Network(U2N) and maximizing the uplink sum-rate using
the joint optimization problem of subchannel allocation and UAV flying speed.
To efficiently solve the NP-hard problem, the authors divided the scenarios into
three sub problems, i.e., UAV speed, U2U, and U2N subchannel allocation. The
simulation results conclude that the proposed protocol performance is superior
to the benchmark greedy algorithm. In [15], Johnston et al. proposed a hybrid
MAC protocol based on features like contention and reservation. In this protocol,
contention over available channels takes place using CSMA protocol in a random-
access manner. Once an available channel is occupied, remaining users stop their
further attempts to acquire it for communication. This technique of reserving
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channels for communication improves throughput and delay over existing standard
MAC protocols. In [16], the authors proposed an idea of facilitating vehicles
traveling in the coverage zone of an airborne UAV. According to the proposed
technique, a traveling vehicle is first identified and its communication capabilities
are assessed based on its identity. An optional communication request is initiated
by the UAV to the aforementioned vehicle and the vehicle can accept or reject it.
Based on accepting UAV requests, UAVs can forward predetermined information
either from the surrounding vehicles or other relevant sources. In [17], the authors
proposed a medium access control (MAC) protocol for WSN-UAV, known as
Advanced Prioritized MAC(AP-MAC) to offer an efficient and high throughput
in a dense network environment. The performance of AP-MAC protocol has
been evaluated analytically using a 3-dimensional Markov chain and validated
by corresponding simulations. In [18], the authors proposed a joint optimization
approach based on deployed sensors wake-up schedule and UAV trajectory such
as to enhance the sensor’s energy efficiency and ensure a reliable UAV data
collection. The numerical results confirm the efficient performance of the proposed
technique. In [19], the authors proposed a delay-tolerant MAC protocol known as
UD-MAC for UAV networks. The UD-MAC protocol takes advantage of UAVs
returning towards the destination that are discovered through Control and Non-
Payload Communication (CNPC) links. The returning UAVs collect data from
UAVs along its returning trajectory. Simulation results show that the proposed
approach significantly improves channel access when compared with the existing
benchmark protocol. In [20], the authors proposed a radio frequency (RF) based
sensors wake-up approach for data transmission to airborne UAVs. The performance
efficiency of the proposed approach is experimentally evaluated and compared
with the traditional duty cycle based mechanism. The authors in [5] proposed a
technique to establish a wireless connection through IEEE 802.11n between two
devices such that the wireless access point is attached to the flying machines. The
authors conducted various experiments to analyze the efficiency of IEEE 802.11n
at 2.4 GHz and 5 GHz. The data rate based performance evaluation shows that the
proposed technique is slightly better at 5 GHz than at 2.4 GHz. In [21], the authors
designed an algorithm to enhance the data transmitting rate from sensor nodes to
UAV. The proposed optimal algorithm is based on dynamic programming and is
known as DPBA. According to this paradigm, the authors have jointly considered
the bandwidth allocation and energy assignment to enhance the entire transmission
rate while assuring the data rate of individual sensor nodes in respective time slots.
The simulation results based comparative performance of DPBA is superior to
benchmark protocol, i.e., ERAA (equal resource allocation algorithm). In [22], the
authors formulated a novel scheme to optimize the network energy consumption.
To maximize network throughput, a mechanism was devised to minimize redundant
data transmission. Sensor nodes are categorized into different clusters(frames)
inside a UAV coverage zone and assigned a priority level based on their locations.
Lower contention window values are assigned to high priority clusters to gather
maximum desired data while high contention window values are assigned to frames
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of least priority. This approach optimizes packet loss from sensor nodes and reduces
overall packet collision. The authors proposed a novel routing protocol based on the
preceding mechanism to minimize the distances between transmitting and receiving
nodes. The simulation results show that the shortest distance between the sender and
receiver leads to improved channel quality and energy efficiency.

4 UAVs Deployment Techniques

UAVs aerial deployment is one of the significant issues faced by UAV’s industrial
and academic experts to highly benefit from the immense potential of UAVs.
The random and deterministic (controlled) deployments are the two primary
approaches, adopted in UAVs deployment. In the following, we briefly explain
the aforementioned deployment strategies and their significance in area coverage,
network connectivity, and network lifetime.

4.1 UAVs Random Deployment

In this technique, UAVs are randomly deployed in an area of interest without fol-
lowing any sort of deployment protocol. Most often such kind of UAVs deployment
takes place in applications related to earthquakes affected zones, forest monitoring,
rescue operations, etc. to maximize the surveillance capabilities, irrespective of the
UAVs energy consumption.

4.2 UAVs Controlled Deployment

In this approach, UAVs are deployed in a given area according to some predefined
approach. The UAVs deployment could be uniform or precisely arranged in clusters
formations, depending on the nature of the application. The deterministic UAVs
deployment approach is highly useful in applications that need careful consider-
ations of UAVs coverage, optimum data collection from the ground nodes, high
energy efficiency, UAVs acting as aerial BSs and relay nodes, UAVs acting as
Jamming nodes, and taking part in covert communication. The deterministic UAVs
network deployment topology plays a significant role in various mission-critical
applications.

Coverage Area
Due to the fast and dynamic movements of UAV, its significance in area coverage is
highly regarded in many applications. To enhance the efficiency of UAVs in terms
of area coverage, different approaches have been investigated [23, 24]. For example,
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the authors in [24] investigate different altitude levels for UAV placement to offer
maximum radio coverage.

Network Connectivity
Network connectivity is a term widely used in WSNs and IoT to enable steady
data communication across various existing nodes in a network. The deterministic
deployment of UAVs plays an important role in network connectivity to maximize
data throughput, energy efficiency and avoid the energy hole problem in UAVs
networks.

Network Lifetime
Since airborne UAVs are supported by fixed-battery power and are prone to energy
efficiency issues that can prove fatal to mission-critical applications. Different
approaches including wireless power charging, protocols to optimize the use
of onboard resources, defined duty cycle based data collection, and trajectory
optimization, etc. are being used to develop the deterministic movements of UAVs
to enhance the UAVs network lifetime.

5 UAVs Security Aspects and Issues

UAV’s security from physical and communication perspectives is one of the most
significant aspects of UAVs’ industrial evolution. In the following, we discuss
numerous studies and attempts to improve the UAV’s security and efficiently handle
miscellaneous possible hindrances that affect its social integration.

In [25], the authors have considered two different use cases of UAVs, operating
as BS and an ordinary node while ensuring the security of data communication.
Further, they testify the security techniques at physical layers and validate their
performance through a numerical method. In [26], the authors proposed a complex
scenario where a UAV acting as BS (UAV-BS) can securely transmit data to many
receiving BS with the help of supporting jammer UAV, in the presence of a various
eavesdropper. The authors designed a non-convex optimization problem based on
UAVs trajectories and transmission power of UAV-B and UAV-J to improve the
average secrecy rate at receiving different BS. The proposed problem is solved using
a successive convex approximation mechanism and iterative algorithm. The results
of the proposed technique show significant performance in the given scenarios. In
[27], the authors have studied different issues related to UAV’s communication
from a physical layer security perspective. The UAVs LoS channels are prone to
malicious attacks from ground nodes due to their high altitude and similarly, UAVs
can also be used for malicious intentions, acting as jamming nodes for terrestrial
communication and eavesdroppers. To efficiently handle such kind of scenarios, the
authors have provided innovative solutions supported by a numerical explanation.

In [28], the authors studied the effect of congestion over the UAVs network and
proposed an innovative optimized fruit fly routing protocol (OFFRP) to efficiently



UAVs Healthcare Applications and Challenges 33

deal with such situations. The performance and effectiveness of the proposed
protocol are analyzed and compared with the existing benchmark protocols.

In [29], the author’s primary focus is to study possible security vulnerabilities
of UAVs and to provide viable countermeasures. For this purpose, they have
considered two UAVs namely, the Parrot Mambo FPV exposed to FTP service and
de-authentication intrusions and Eachine E010 is open to custom made controller
and radio frequency (RF) replay interruptions. This article outlines a detailed
discussion and possible countermeasures to nullify the preceding attacks over
UAV’s communication.

Ursula et al. [30] studied UAV’s communication from interference, handover,
mobility, and cyber-physical intrusions perspective. The primary mottoes of their
investigations are to address the security vulnerabilities and challenges during
UAVs assisted multimedia streaming and UAV-based transportation. The authors
proposed and validated the artificial neural network (ANN) based approach to
ensure safe and secure UAVs communication in real-time. In [31], the authors have
formulated a non-convex, joint optimization problem based on UAV’s trajectory
and transmission power of the legitimate node. In the proposed scenario, there exist
two-way communication, i.e., from UAV to ground node (U2G) and ground node
to UAV (G2U), subject to a potential eavesdropper on the ground. The objective
is to maximize the average secrecy rate of G2U and U2G communication during a
defined flight time of a UAV. The problem is efficiently solved by using successive
convex optimization and block coordinate descent techniques, and its comparative
performance to benchmark protocols are validated by the corresponding simulation
results.

The authors in [32] formulate a UAV’s covert communication scenario in a
restricted zone and provide a possible solution to materialize it. In the proposed
scenario, a UAV covertly transmits a message to Bob, a legitimate receiver while
trying to avoid the warden. To enhance the efficiency of covert communication, a
joint optimization problem of UAV’s trajectory and transmit power is proposed to
improve the average covert transmission rate from UAV to Bob. The problem is
solved by using a successive convex approximation algorithm and its significance is
verified by the comparative performance to existing benchmark techniques.

6 Challenges and Future Research Directions

There are many challenges in the evolution of UAVs and to become a constituent
entity of the society. In the following, we discuss different emerging issues and
challenges that affect the UAVs growth and in the next subsection, we focus on the
recently adopted research trends that try to improve the existing issues faced by the
UAVs industry.
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6.1 Challenges

• One of the primary and most significant issues is the security of the collected
data. Due to the lack of onboard high-level encryption mechanisms, the hackers
can access UAVs data and manipulate its contents. To safeguard the UAVs
collected data, various image optimization techniques like data fusion, stitching
of aerial images, etc. need to be implemented.

• The UAV’s regulations are in the evolution phase and some nations have not
even initiated to formulate UAVs legislations inside their countries. The absence
of UAVs regulation could be a potential threat to the civil aviation industry of any
country. The nations should initiate a user-friendly UAVs registration mechanism
to better facilitate UAVs evolution and avoid all possible threats.

• One of the main challenges that limit UAVs operations is its data processing and
long-range communication capabilities. Coping with the aforementioned issues
will enable UAVs beyond the line of sight (BLoS) movements and will contribute
to the steady growth of UAV-based industry.

• During UAVs surveillance, precise identification of many vehicles traveling at
the same time is also one of the challenges and various image processing based
efforts are underway to perfect it.

• The collision avoidance or the “enemy avoidance problem” is also one of the
real issues that restrict the true autonomous nature of UAVs. To equip UAVs with
absolute collision avoidance characteristics and realize UAV swarms, advanced
artificial intelligence (AI) and machine learning (ML) based techniques are
needed to be designed.

• The airborne UAVs identification and designing more robust and effective
mechanisms to counter malicious UAVs is one of the critical issues in the
evolving UAVs industry.

• With the passage of time, the number of UAVs adoption for recreational,
commercial, and surveillance purposes will exponentially increase, developing
UAV-based scalable networks would be need of time.

• The wind speed and harsh environment have a high impact on the movements
of airborne UAVs. An experimental study is needed to assess the precise impact
of preceding factors over UAVs flights and define standard limitations from the
UAVs weights and challenging environment perspectives.

• To enable high data throughput at IoT devices and enhance UAVs efficiency,
joint optimization of mutual locations of UAVs, intended IoT devices, and the
amount of caching data is needed. A study and measurement campaign of UAV
to UAV channel, UAV to the ground node and UAV control links during vertical
take-off and landing in harsh weather conditions, varying temperatures, and
in the presence of a smooth and uneven shaped structure is highly needed to
enable commercial and emergency UAVs operation. To ensure the data privacy
of airborne UAVs, use cases of blockchain technology should be investigated.
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6.2 Future Research Trends

• The AI, ML, and most importantly deep reinforcement learning (DRL) are
playing a significant role in the design of advanced, autonomous aerial BS.
Different AI, ML, and DRL based approaches are currently being investigated
to solve problems like joint optimization of UAVs trajectory and duty cycle
of deployed ground nodes, joint optimization UAVs battery capacity, sensing
processing and trajectory, and many UAV-based applications, e.g., precision
agriculture, vehicles tracking, covert communication, UAVs swarm optimization,
collision avoidance problem, etc.

• Millimeter-wave (mmWave) communication-based technology can be employed
in existing UAV networks to offer high data. However, the swift mobility of UAVs
causes various issues (e.g., fast variation in UAVs channel, frequent handovers,
mmWave blockage, etc.) that are currently under investigation to enable UAVs
for next generation communication.

7 Conclusion

We investigated ongoing, contemporary research accomplishments by the research
community in academia and industry. In this work, we offered recent developments
regarding UAVs applications in the healthcare industry that can improve the health
quality, particularly in the underdeveloped countries where the roads infrastructure
is weak. Further, we studied the newly developed communication protocols to make
UAVs communication links more stable and reliable, and UAVs deployment tech-
niques to enhance the coverage area, network connectivity, and network lifetime.
We offered an in-depth study of different issues and challenges regarding UAVs
security from covert communication, jamming, and physical threats perspectives.
Most importantly we provided an in-depth discussion of existing UAVs challenges
that affect the pace of UAVs evolution and recent research trends that try to improve
the preceding issues.
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Machine Learning Applications for
Internet of Flying Vehicles in Case
of Critical and Environmental Cases

Kamil Dimililer, Yoney Kirsal Ever, and Fadi Al-Turjman

1 Introduction

Owning to the fact that Internet of Things (IoT) has emerged as a significant
advancement for communication and mobile networks [1], it has converged tech-
nologies in terms of information processing, networking, and controlling intelligent
technologies [2].

Recently, researchers are increasingly interested in smart city behaviors, such as
pedestrian drivers and traffic, city resources, and environment known as Internet
of Vehicles (IoV) [3]. IoV is divided into two architectures known as vehicle
networking and intelligence. The networking consists of vehicular ad hoc net-
work (VANET), vehicle telematics, and mobile Internet. Intelligence refers to the
deep learning, cognitive computing, swarm computing, artificial intelligence, etc.,
whereas the integration of driver and vehicle together uses network technologies
[4]. Hence, IoV is a new paradigm focusing on the intelligent integration of humans,
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Fig. 1 IoV network architecture

vehicles, things, and environments. Figure 1 presents the general IoV architecture
discussed in literature.

With increasing number of vehicles being connected to IoT in smart environ-
ments, a need for better communications and interconnectivity among these vehicles
due to their mobility has emerged [5]. Within this context, unmanned aerial vehicles,
known as drones, have attracted a lot of attention where a new novel paradigm
known as Internet of Flying Vehicles (IoFV) becomes part of the IoV [6].

Due to the high mobility of drones or IoFV, they can be used to provide
many applications, such as military services, health and rescue operations, service
delivery, and pollution and disaster forecasting [6]. Although security and privacy
issues are concerned and limited number of suggestions are being made, popularity
and usage of IoFV have increased under the concept of open and integrated network
system IoV which is composed of multiple users, multiple vehicles, multiple
things, and multiple networks. This concept is highly manageable, controllable, and
operational [4]. General IoFV devices (drones where they are known as UAVs) and
applications are presented in Fig. 2.

IoV is the integration of humans and vehicles, where it interconnects humans
within and around the vehicles, intelligent systems on vehicles, and various cyber-
physical systems in virtual environments combining sensors, mobile devices, and
vehicles.

Machine learning is a popular scientific field that includes the application in
many multidisciplinary fields. In more than two decades, artificial intelligence (AI)
has evolved in humans’ daily lives in order to perform different problems [7].
Machine learning (ML) techniques, which are the part of AI, have been developed
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Fig. 2 Applications of drones

as problem-solving tool with capabilities of prediction, classification, and opti-
mization [7]. Within this concept, ML techniques are divided into supervised and
unsupervised algorithms. Although both supervised and unsupervised algorithms
have many different existing algorithms, back-propagation neural networks, support
vector machines, decision trees, support vector regression, long- and short-term
memory are the most preferred.

As stated above, the IoT provides an interconnection between various devices
as well as humans. Since IoT includes device-to-device, machine-to-machine, and
machine-to-people communications, many useful and different applications have
emerged. These applications include smart traffic monitoring, self-driving cars,
collection of data from smart healthcare devices, and many more. Therefore,
different intelligent algorithms have been applied in order to solve challenging
tasks [8].

Due to high mobility of drones, they can be used to provide a lot of applications;
however, there are many challenging issues to overcome. These challenging issues
comprise not only the technical issues, such as battery lifetime, but also regulation
issues that are associated with problems like security and privacy issues in both
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human and machine sides [6]. One of the ways to overcome technical challenges is
developing different ML algorithms which are suitable for drones.

In this chapter, recent developments in ML will be critically analyzed. A ML
algorithm will be suggested for IoFV, and limitations will be discussed as well.

As stated in [4], IoV can be defined as an integrated network which connects
people within and around vehicles, intelligent systems onboard vehicles, and
different communication infrastructures in urban environments. This research tries
to detect vehicles in images and videos. It deploys a dataset from Udacity in
order to train the developed machine learning algorithms. Support vector machine
(SVM) and decision tree (DT) algorithms have been developed for the detection and
tracking tasks.

The rest of the paper is designed as follows: Sect. 2 presents existing popular ML
algorithm in the literature as well as ML algorithms suggested for IoV and IoFV.
Section 3 explains detailed description of the proposed design and its evaluation
strategy. The conclusions and future works are summarized in Sect. 4.

2 Related Works

The Internet of Things (IoT) is a novel paradigm that interconnects various physical
devices where it enables connection between vehicles, buildings, and other items.
Internet of Vehicles (IoV) is used to make an interconnection between these items, as
well as vehicles and environments for data transfer between the networks. Internet
of Everything (IoE) is an enhanced version of IoT and IoV [8]. With increasing
demand for IoE, it changes conventional vehicular ad hoc networks (VANETs) to
flying ad hoc network (FANET) paradigm which enables new levels of applications.
New operating ML algorithms have been applied to enable the execution of more
dynamic solutions [9]. In this manner, IoV devices integrate intelligent technologies
such as deep learning, cognitive learning, and swarm computing by using network
communications [4]. As part of IoV, IoFV devices also adapt intelligent technologies
that IoV devices use.

Increasing developments in smart city and IoE paradigms have been made by
academic researchers and scientists interested in studying the behaviors of these
fields. In order to do deep research on these areas, researchers collect data and
process them with data mining and ML techniques for creating accurate frameworks
or models to design applications for these paradigms. Collection of data occurs
from sensors and cameras embedded in IoE devices [3]. In their research [3],
authors discussed different vehicular applications that use vehicle-to-vehicle (V2V)
and vehicle-to-infrastructure (V2I). Additionally, security and privacy challenges
in communications are also discussed. They argued that in order to create a public
open smart city and applications which leverage on it, it is required to develop better
infrastructure for security and privacy mechanisms.

Motlagh et al. [6] did an extensive and comprehensive research on UAVs, their
challenges, and related issues in terms of both physical architectural structure and



Machine Learning Applications for Internet of Flying Vehicles in Case. . . 43

security and privacy degradations. Their research addressed also the regulations and
standardization efforts for security challenges as well as public safety concerns.
A detailed overview on IoFV devices is presented, and data collection is studied.
Different communication technologies, especially new paradigms known as flying
ad hoc networks (FANETs) and data routing algorithms known as VANET, for
UAVs are presented [6].

Another research [4] discusses the technologies for IoV devices and introduces a
network framework for different applications, which are based on IoV Technologies.
In addition, they suggest feature aspects of IoV where known as IoFV. The
researchers have been studied to combine multidisciplinary fields in order to
improve and find more accurate, efficient, and effective technological solutions.
One of the popular and preferred study field is machine learning techniques on
smart environment solutions. In research [10], the authors tries to detect vehicles
in images and offline videos. They developed two machine learning algorithms,
support vector machine (SVM) and decision tree (DT), for detection and tracking
tasks by deploying a dataset from Udacity. The target of their research was to design
and develop a system which was able to detect and track the vehicles as well as
pedestrians considering images and offline videos.

Similar studies have been done in [11, 12], where two methods of vehicle
detection systems were proposed. These methods are known as sliding window and
local features methods. In the former one, input images with a number of windows
of different sizes are scanned and analyzed to detect the target, whereas the latter one
usually finds features of objects and tries to categorize these features into different
classes with different classification models.

As stated earlier, advancement aspects of IoFV devices or technology have been
deployed in literature and market recently. Therefore, there have been significant
studies in the literature providing survey studies for drones and addressing tech-
nological improvements, challenges, and issues especially in security and privacy,
communication architecture, and machine learning algorithm-based applications.

Considering the attempted studies in IoT, IoV, and IoFV, researchers have
reviewed drone technologies use cases, physical issues, collection of data, and
open issues and challenges in detail through different studies [6]. Similarly, another
study discussed drone-based applications especially forestry in [13]. Authors in [14]
provided a research on physical structure and mechanism of drones accordingly.
Moreover, another research is provided in [15], which discussed a detailed survey
for drones, their applications, challenges like security and privacy, and also current
limitations. Similar to [15], authors of other two studies [16, 17], presented and
provided very detailed survey study for drone characteristics, their applications,
their communication technologies, as well as the integration of drones with other
vehicles. Also, they mentioned existing security challenges and possible solutions
for them.

Last but not the least, a review study is presented in [18], regarding drone-based
medical applications. Also, possible limitations and challenges which appeared in
this area are also discussed.
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Although IoE and IoFV have many implementations in different applications,
they consist of various issues and challenges including big data, security and
privacy, mobility, and network connectivity [4, 5, 8]. The data transmission of
IoFVs is performed over public networks; however, because of their nature, network
topologies (ad hoc networks are preferred) change often [19]. Also, because of
their limited power, computation and storage characteristics create the following
challenges.

(a) Network connectivity: IoFV devices among themselves are usually communi-
cated with wireless networks. Therefore, it is required to improve broadcasting,
reduced latency, and transmission overhead while roaming from one cell to
another. Additionally, star, mesh topologies should be supported. Within this
context, it is crucial to keep all the nodes connected. Therefore, mobility is also
a challenge for the researchers and scientists [5, 8].

(b) Big data: Due to the large number of connected devices, and vehicles, a large
amount of data is processed. In these circumstances, an effective and efficient
platform should be generated between mobile cloud and IoFV structure.
Additionally, advance scalable ML algorithms are desired for processing the big
data [8]. In these circumstances. Reliability of the devices become important in
order to deal with correct data information.

(c) Security and privacy: Since IoFV involves with many different technologies,
services, users, and standards, data security is required. At the moment, their
network structure depends on open public network. Hence, common existing
security attacks, intrusions, and privacy leakages are majority of security and
privacy challenges [1, 19].

(d) Standardization: In general, there is no common standardization in terms of
communications between the vehicles, as well as the algorithms and platforms
existing for utilization of intelligent system used in drones. Efficient ML
algorithms should be suggested for routing schemes, low computation cost, and
big data processing [8].

3 Suggested Framework

In this chapter, some applications as well as some tools to create a model will be
studied. In this section, suggested framework will be discussed and analyzed in
detail. As stated in [6], IoFV’s applications are categorized into two as civilian and
military. The former one can be used in different purposes from rescue operations
to disaster events, such as fire or earthquake monitoring. Also, transportation of
medical supplies, traffic surveillance, and farming are popular usage areas of this
field [6].
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Discussing the expected wide usage of flying vehicles (FV), it is difficult to
introduce all possible scenarios and use cases. Therefore, in this section, some
possible applications and use cases will be suggested, and expected challenges will
be analyzed in details.

3.1 Severe Environmental Cases

Various natural or man-made disasters such as earthquakes, floods, and nuclear
power plant explosion cost significant assets or infrastructure damage and, more
importantly, living lives [1]. IoE devices especially IoFVs can help save lives and
provide accurate information for those who are in these effected disaster areas. In
this manner, a variety of tracking devices can be used or carried by rescue teams,
firefighters, police, or social community helpers [1, 2].

In case of any natural disaster, well-equipped IoFV devices may fly over that
region for assessing the damage and measure temperature, wind speed, or pollution
levels.

3.2 Accidents and Emergency Cases

Flying over a target area, UAVs may connect to each other to facilitate the
coordination and area surveillance. A real-time processing of the collected data is
required in order to identify the most impacted areas and to assess whether there are
any beings that need help. In case there are any, UAVs can deliver beverages, food,
and medicament to the persons in urgent need until the arrival of rescue teams.

3.3 Real-Time Traffic Management

Real-time traffic management technologies to enhance vehicular, pedestrian, and
passenger safety are of great interest for researchers and developers in order to avoid
severe, fatal situations as well as real-time road traffic information. The drones can
be used as sensors where they collect the data about road traffic conditions and in
case of any accident situations. In these kinds of situations, drones can capture the
image of the accident and use different ML algorithms to analyze and decide or
predict how critical the situation could be and make calls to hospitals, police, and
family members.
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3.4 Crowded Events Surveillance

In the last couple of decades, suicide bombers and terrorist attacks have increased
during large, important festivities and events such as Olympic games, concerts,
political demonstrations, Christmas celebrations, etc. During these kinds of events,
a huge number of security personnel or agents take part in order to monitor critical
public places like undergrounds, bus stops, as well as entrances of the stadiums.
However, intruders usually have a chance to divert security personnel within the
crowd and reach their destinations. Even sometimes, although these people are
detected, until the security reach their location, they can be diminished. If IoFV
devices which are equipped with image processing algorithms are preferred, photos
or videos of any suspicious person could be detected and tracked by security from a
centralized location.

3.5 Deployment Aspects

In IoFV deployments, two main methodologies are used for the placement: con-
trolled and random deployments. In random method, drones are deployed over
the desired region in a random manner that does not follow a certain arrange-
ment. Unlike random deployment, the controlled approach follows a deterministic
arrangement where the drones are deployed in a line or a cluster of drones. Con-
trolled deployment is essential for applications that require a certain arrangement
of drones. For instance, tracking and localization of vehicles passing through a
highway may require a controlled line topology. Controlled deployment can be
further categorized based on the role of the drone. First, in wireless networks,
drones can be used as relay nodes that connect data sources with destinations. This
type of drone deployment can be represented as base stations or access points that
help in increasing network reliability. Drones can be employed as relays in various
networking technologies such as cellular and next-generation 5G/6G networks
in order to restore the destroyed communication link. Moreover, drones can be
deployed as data collectors in various scenarios such as providing access to harsh
environments or tracking objects in rescue applications.

4 Conclusions and Future Works

When IoT became a novel paradigm as part of the Internet, IoV, IoE, and IoFV
have become indispensable platforms to interconnect vehicles, humans, and other
smart environments. They have attracted lots of attention of both researchers
and industrial applications. Especially, integration of intelligent systems for more
reliable, secure, and efficient IoFV systems have emerged due to the use of mobile
communications, cloud computing, and big data usage. In this paper, existing
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suggested IoFV solutions in the literature are critically studied. Also, existing
suggested ML algorithms are analyzed and studied. This paper proposes different
machine learning applications and framework for drones as well as limitations and
challenges, regarding the recent developments of IoV with artificial intelligence.
Furthermore, a new ML algorithm, its issues, and challenges on security and privacy
will be designed and evaluated in future works.
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Trends, Issues, and Challenges in the
Domain of IoT-Based Vehicular Cloud
Network

Arslan Musaddiq, Rashid Ali, Rojeena Bajracharya, Yazdan Ahmad Qadri,
Fadi Al-Turjman, and Sung Won Kim

1 Introduction

Due to the new era of the Internet of Things (IoT), the concept of the vehicular
ad hoc network (VANET) is evolving. VANET turns vehicles into wireless routers
or access points to provide connectivity to other vehicles. The vehicular nodes are
equipped with sensors that have computational, storage, and networking capabil-
ities. The vehicular network could be either inter-vehicle network, intra-vehicle
network, or vehicular mobile internet. The exchange information via vehicle-
to-vehicle (V2V) or vehicles-to-infrastructure (V2I) is helpful in assisting safe
navigation, traffic management, or early warning system. Hence, the vehicular
network is a large-scale distributed system for information exchange between
vehicles, roads, humans, and the Internet [1, 2].

The vehicles are equipped with numerous sensors, actuators, and communi-
cation devices. Thus, modern vehicles are capable of sensing the environment,
processing the sensed data, and transmitting the information forming an efficient

A. Musaddiq · Y. A. Qadri · S. W. Kim (�)
Department of Information and Communication Engineering, Yeungnam University,
Gyeongsan-si, South Korea
e-mail: arslan@ynu.ac.kr; yazdan@ynu.ac.kr; swon@yu.ac.kr

R. Ali
School of Intelligent Mechatronics Engineering, Sejong University, Seoul, South Korea
e-mail: rashidali@sejong.ac.kr

R. Bajracharya
Department of Information and Telecommunication Engineering, Incheon National University,
Incheon, South Korea
e-mail: rojeena@ynu.ac.kr

F. Al-Turjman
Artificial Intelligence Department, Near East University, Nicosia, Turkey

© Springer Nature Switzerland AG 2020
F. Al-Turjman (eds.), Unmanned Aerial Vehicles in Smart Cities,
Unmanned System Technologies, https://doi.org/10.1007/978-3-030-38712-9_4

49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-38712-9_4&domain=pdf
mailto:arslan@ynu.ac.kr
mailto:yazdan@ynu.ac.kr
mailto:swon@yu.ac.kr
mailto:rashidali@sejong.ac.kr
mailto:rojeena@ynu.ac.kr
https://doi.org/10.1007/978-3-030-38712-9_4


50 A. Musaddiq et al.

vehicular network. The information is exchanged with the help of various different
protocols such as Hypertext Transfer Protocol (HTTP), Transmission Control
Protocol/Internet Protocol (TCP/IP), and Wireless Application Protocol (WAP).
Due to the availability of communication infrastructure, many advance services
and applications have been developed for vehicle safety, vehicular communication,
and vehicle entertainment. With such a large scale and complex heterogeneous
vehicular network, various challenges arise. One such challenge is to handle
complex, IoT-based vehicular data using cloud computing. Similarly, addressing
the interoperability of systems to exchange the information and use the information
that has been exchanged is a challenging task [3, 4].

The automotive industry is focusing on utilizing the IPv6 to connect the IoT-
based vehicles to any cloud platform. Similarly, addressing communication issues
among heterogeneous devices is another challenging area. The intelligent transport
system consists of three-layered architecture, which includes a client layer, a
connection layer, and the cloud layer. The client layer provides information using
sensors inside and outside of vehicles, e.g., speed, position, collision detection,
forward and side obstacle, pollution information, tire pressure, oil pressure, and
proximity. The connection layer supports the communication model and transmits
the information to the cloud layer, which provides computational power, storage,
and analysis of the data [3]. The vehicular cloud consists of stationary and mobile
computing data centers or onboard computational devices. Standardization by cloud
developers and vehicle manufacturers is required to allow the various heterogeneous
operating systems [5], application programming interface, and radio-based devices
to work together. As a result, it could lead to an efficient vehicular network without
any additional cost.

With the advancement in the IoT-based vehicular network, it has attracted
many researchers for the development of road safety, comfort, and entertainment
applications for the drivers. Cloud computing services, on the other hand, also
gained popularity due to its ability to provide real-time computing, processing, and
data storage. Numerous researchers have proposed cloud computing models for the
implementation of an intelligent transport system (ITS) such as vehicular data cloud
services in the IoT environment [6].

The connected vehicles are moving toward integration with smart cities. The US
Department of Transportation (USDOT) and the Intelligent Transportation Systems
Joint Program Office (ITS JPO) are focusing on interoperability to allow devices,
vehicles, and systems to work together simultaneously [7]. The vehicular cloud
allows vehicles to share a different type of information such as road conditions,
weather updates, or traffic jams. The purpose of sharing this information is to
cope with accidents and collisions. IoT-based vehicular cloud network is helpful
for transportation safety by ensuring different vehicles to communicate without any
delay and hurdle. It brings further opportunities for vehicles to provide improved
performance and mobility support. Communication for the vehicular network is a
broad term, which could mean the communication at the devices level, operating
system level, or cloud level. IoT-based vehicular cloud network’s objective is to
provide several computational challenges by using real-time software services and
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platforms. In order to provide these services seamlessly, the integrated vehicular
cloud networks can play an essential role for the reliable, efficient, and synchronized
network [8].

IoT-based vehicular cloud network is becoming more aware of their surroundings
and environments. The connected vehicles containing numerous IoT devices,
computational and storage facilities, are an important component of ITS. Traditional
communication approaches are not meant to handle the complex vehicular network
for reliable and efficient communication. Machine learning is one of the major
branches of artificial intelligence that can build an intelligent system that can learn,
operate, and analyze a large amount of data by finding patterns and underlying
structures. In this way, it can bring self-learning, self-adaptive, and autonomous
decisions-making capabilities in the network. This chapter brings more attention to
this emerging research area to make vehicular networks more informed and data
driven.

Similarly, blockchain has proved to be an effective decentralized technology for
storage and security management. In this chapter, we discussed how blockchain
technology can be implemented in vehicular networking to establish the authenticity
of the generated information. Hence, the importance of IoT-based vehicular cloud
networks, currents trends, and issues and challenges motivated us to write this book
chapter.

2 Vehicular Cloud

The vehicular network is a particular case of mobile ad hoc network (MANET). The
only difference is the moving pattern. In the case of the vehicular network, the vehi-
cles follow a particular moving pattern or fixed path, unlike mobile ad hoc networks
(MANETs) in which nodes move randomly. Establishing efficient communication
between vehicles is the ultimate objective in VANET. The communications could
be done either via V2I, in which vehicles communicate via roadside units (RSUs),
or V2V eliminating the need for the third party or RSUs. Lastly, they could also
communicate via a cellular network. The vehicular communications require various
services, which include emergency management, roadway maintenance, processing,
storage, and computation. In order to acquire these services, cloud computing could
be adopted instead of investing in the infrastructure [8].

Cloud computing is a paradigm, which provides virtualized computing resources
as a service via the Internet. The concept of cloud computing is used for webmail,
storage, and web hosting services, which require the minimum management effort
and service provider interaction. In terms of the vehicular network, the onboard
computing resource of vehicles is integrated with the cloud. Vehicular cloud is
different from the traditional cloud in terms of its characteristics, mobility, and
agility. There are two types of vehicular clouds: (1) infrastructure-based vehicular
cloud (IVC) and (2) autonomous vehicular cloud (AVC). IVC is similar to a
traditional cloud platform in which vehicles access the services from roadside
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infrastructure via network communication, e.g., global positioning system (GPS) or
Google Maps. On the other hand, AVC slightly differs in terms of the way services
are provided. The vehicles themselves can be organized to form an autonomous
vehicular cloud in case of emergencies where roadside infrastructure is damaged
due to earthquakes or hurricanes [9].

The vehicular cloud is formed by interconnecting vehicles and RSU resources,
as shown in Fig. 1. The aim is to produce advanced vehicular services and resources
which an individual vehicle cannot make. The services in the vehicular cloud are
also slightly different from the ones in the conventional cloud. These services
include storage as a service (STaaS), network as a service (NaaS), and cooperation
as a service (CaaS). Compared to the traditional cloud, the vehicular cloud has
several distinguishing features such as mobility, autonomy, heterogeneity, and
agility. The services that vehicular cloud offers are nontrivial and complement to
the traditional cloud network [8].

Cloud computing and vehicular IoT network are also attractive due to their
economical advantages. Since it frees the vehicular manufacturers to invest in the
IoTcomputational resources, it also shifts the need to provide technical equipment,
optimization of hardware and software, energy efficiency, and performance flex-
ibility to the service providers. Similarly, the vehicles can communicate in more
distributed and dynamic manners. Cloud also acts as an intermediate layer between
the IoT-based vehicles, hiding all the necessary functionality and complexity [10].

3 IoT-Based Vehicular Cloud Computing and Application
Scenarios

The vehicular cloud computing consists of three layers of communication scenarios,
i.e., (1) an onboard layer, (2) communication layer, and (3) cloud computing layer.
In the onboard layer, the vehicle senses the environment and shares the sensed data
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with neighboring vehicles. The communication layer provides connectivity between
vehicles and the vehicular cloud via either V2V or V2I. The cloud computing layer
is further divided into the permanent cloud and temporary cloud.

The vehicular cloud, similar to the traditional cloud, provides three types of
services, i.e., (1) infrastructure as a service (IaaS), (2) software as a service (SaaS),
and (3) platform as a service (PaaS). The computational and storage facility is
provided by the IaaS. The complete taxonomy of vehicular network cloud service
models is shown in Fig. 2. The vehicles consist of a number of sensors that sense
the data to store in the storage facility. The vehicles can use their computational
capability to access the stored data [3]. In the case of PaaS, it provides development
tools hosted in the cloud. Similarly, SaaS offers various primary services that include
(1) NaaS, (2) STaaS, and (3) CaaS [8].

• Network as a service (NaaS): The main idea is to provide an Internet capability to
those vehicles which do not have Internet access while moving. The vehicle can
rent the essential Internet service from the other vehicles. The vehicle interested
in providing Internet access can advertise it among all the vehicles in the vicinity
and can act as an access point. The basic idea is to utilize the underutilized
Internet connection resources to access vehicular network applications.

• Storage as a service (STaaS): Similar to NaaS, some vehicles have extra storage
capabilities that can be shared among other vehicles. The storage can be rented
to the interesting vehicles in the same way as NaaS. One of the main issues is the
mobility of the vehicles, and thus the storage for the backup purpose cannot be
used for an extended period of time. To overcome this problem, a technique of
replication-based storage is proposed in which multiple copies of files are stored
in multiple storages. As a result, it increases the availability and reliability of
data. Hence, if vehicles leave the place, the copied version of the file can be
accessed.

• Cooperation as a service (CaaS): In the case of CaaS, the vehicles can cooperate
among themselves to share information, e.g., traffic jam warning, accident
information, road conditions, and parking availability. Consequently, a number
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of these services can be provided without the need for additional infrastructure.
A vehicle can obtain or provide certain services to form a CaaS with simple
publish/subscribe mechanism.

Based on the implementation services, various outcome application scenarios are
provided by the vehicular cloud network.

• Data storage application: The vehicles could form a cloud network to share the
abundant and underutilized computational resources with vast storage capacity.
Consider a parking space where hundreds of cars are parked for several hours a
day, e.g., airport, company, or university. The storage resources of these vehicles
can be exploited for better use. In this scenario, the entire parking space could
be used as a data center. Similarly, a local cloud could be formed instantly in
high traffic jam scenario to search for an alternative route. The data sensed by
vehicles are most relevant to the vehicular environment. Therefore, the sensed
data could be stored in the vehicles, which could be accessed instantaneously
and autonomously by other vehicles in the vicinity. Thus, it reduces the time and
computational capability to search and download the relevant information from
the Internet [11].

• Traffic management application: Vehicular cloud also provides new opportunities
to offer better traffic management. In this case, the real-time information related
to traffic congestion, road conditions, and accidents can be shared among
vehicles. The vehicles can use shared information to solve the congestion
autonomously. Another interesting scenario is the traffic signal management in
which vehicular clouds could be helpful to automate the street and traffic lights
[12].

• Surveillance application: The vehicles could participate in the surveillance of
roads and surroundings. Sensors on vehicles, specifically video camera, could be
used to assist in road and surroundings surveillance. The vehicles could report
suspicious activity via the cloud to the concerned organization. The surveillance
could be on demand or real time [13].

• Infotainment application: A variety of infotainment applications are suitable
to be used as SaaS. A user can subscribe to a number of applications such
as multimedia streaming, voice-over IP, online gaming, local information like
weather, and information about gas stations or restaurants.

The sheer number of vehicles on the road and their dynamically changing
position and density make IoT-based vehicular cloud networks challenging to
implement. The lack of proper infrastructure makes it challenging to implement
the aforementioned applications. Similarly, valid authentication and authorization
mechanism impacts data communication security. Additionally, the lack of proper
global standards, protocols, and benchmarks arises an interoperability issue. The
issues and challenges are explained in detail in Sect. 4.
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4 Challenges and Currents Issues in IoT-Based Vehicular
Cloud Network

Integrating IoT-based vehicles and cloud computing contains several challenges. In
this section, we are discussing the challenges and issues faced by a complex IoT-
based vehicular cloud network.

4.1 Application Programming Interfaces (APIs)

The vehicles must have the capability to transfer application components from one
cloud service to another cloud. The application programming interface (API) of
different cloud services are not standardized, and different cloud platforms use
different API. The API describes how to connect, configure, and interact with the
vehicular cloud. It also includes the method of how to save and retrieve the date
from a cloud. Moving from one cloud service to another typically involves a change
in the interface, which in turn brings a great interoperability challenge. The user
interface might not be identical for two different cloud services. However, they may
offer similar functionality to reduce the overall cost. The vehicle’s applications
produce a large amount of sensor data collected from the environment or from
neighboring vehicles. Thus, the vehicle cloud system provides a wide variety of
services. Thereby, managing this diverse system and components to ensure they
work together successfully is of paramount importance [14].

Various automobile manufacturers and government organizations are venturing
into the development of the vehicular network. Similarly, significant projects are
initiated at the industrial level, e.g., Daimler-Chrysler, Toyota, and BMW, for smart
vehicular communications [15]. Some of these prominent projects include DEMO
2000 by the Japan Automobile Research Institute (JSK), CarTALK2000 [16],
California Partners for Advanced Transit and Highways (California PATH) [17],
Chauffeur in EU [18], CAR 2 CAR Communication Consortium (C2CCC) [19],
FleetNet, and Advanced Driver Assistance Systems in Europe (ADA SE2) [20].
Vehicle manufacturers require cloud services to manage connected vehicles network
infrastructure. Several cloud service providers manage data centers and infrastruc-
ture to maintain and host the cloud services, e.g., Amazon Web Service (AWS)
connected vehicles [21], Microsoft Connected Vehicle Platform [22], Google Cloud
Platform [23], IBM Watson [24], Salesforce, and Oracle Cloud. Ford Motor
Company announced to provide their customers with a transportation mobility
cloud. The system would comprise cellular vehicle-to-everything technology as the
backbone for this platform, allowing the vehicle to communicate with other vehicles
or infrastructure. Ford is using Microsoft Azure Cloud Service to update the car’s
infotainment system, e.g., Ford Service Delivery Network is a cloud-based system to
update vehicle navigation and infotainment system. Similar to Ford, Toyota Motor
Corporation and Mercedes-Benz are also utilizing Microsoft Azure to manage the
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applications and services for connected vehicles. The Honda Motor Company and
BMW are leveraging IBM cloud to provide connected car platform. Volkswagen
Group opts to use an open-source cloud computing platform named OpenStack to
manage the connected vehicular cloud. The Hyundai Motor Company, on the other
hand, is working with Cisco to develop interconnected car services. Thus, portability
challenges grow in the complex interconnected environment.

4.2 Security and Privacy

Moving critical IoT applications in vehicles such as real-time telematics tracking,
vehicle location tracking, and mobile devices and vehicle integration require strong
cybersecurity. Some malware can disable a critical system in the vehicles. The attack
patterns could be firmware update manipulation, remote car execution, cross-site
scripting, or manipulation of critical communication channels. Data from different
sources require integration and optimization for smooth operation. The cloud system
is formatted differently and cannot share exchanged data and applications. Different
programming languages (Java, PHP) incur another problem. The authentication
mechanisms have to be agreed on clouds to enable accessing resources from other
platforms [25].

4.3 Performance and Reliability

The IoT-based vehicular cloud network consists of several levels, such as com-
munication, computational, and storage. Meeting the performance and reliability
requirements for each level is a challenging task. Particularly, in the case of mobil-
ity, data and services require a quick real-time response. Real-time applications
particularly require efficient and reliable support. Similarly, the management and
organization of storage by different cloud platforms are different. The functional
interface specified by the different cloud platforms to create, delete, update, and
retrieve must be interoperable. Application-level communication and remotely
accessing these applications across the vehicular cloud must have a standardized
mechanism [6].

At high speed, the vehicle’s communication is often unreliable. Moreover, when
the transmission data size is large, the cloud capabilities can help overcome some
of the problems by off-loading the heavy tasks and reducing the computational
burden. However, in the case of large-scale dense networks, the resources at the
cloud layer can also be insufficient, for example, storage capacity and computational
capability. One of the main challenges is to handle latency and connectivity issues
in a distributed large-scale IoT-based vehicular network [26].
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4.4 Big Data

IoT-based vehicular network is expected to generate a massive amount of data. Due
to the recent growth and development in IoT application for a vehicular network, it
is predicted that there will be 200 sensors per vehicle on future vehicles in 2020. In a
dense vehicular network, clouds will be unable to perform complex analysis on big
data. Particularly, the high-speed mobility of vehicles containing numerous sensors
calls for scalable computing resources. No proper solution exists to manage the big
data based on semantic features in the cloud [27].

4.5 Heterogeneity and Interoperability

IoT-based vehicular cloud network is widely heterogeneous in nature, i.e., operating
systems, platforms, radio-based application interfaces, and services. Interoperability
issues in cloud computing arise when different cloud service providers exchange
data and applications between each other. The problem is nonnegligible and includes
the following: the programming languages are not compatible, virtualization imple-
mentations are different, or the APIs are incompatible. There must be a capability
to retrieve vehicle data from the source cloud to the target cloud service [14].

4.6 Cloud-Layered Architecture and Service Models Issues
and Challenges

Cloud services are particularly grouped into three main categories: (a) SaaS, (b)
PaaS, and (c) IaaS. SaaS allows vehicles to access the various applications within
the cloud infrastructure. Companies provide several SaaS applications such as traffic
management, autonomous driving, road safety, and urban surveillance. SaaS is
the main component of IoT-based vehicular cloud networks. At SaaS level, the
issues arise among applications inside a single cloud when applications exchange
information and trigger operations across different SaaS environments or during
the migration of a cloud application from one cloud provider to another cloud
SaaS system. Similarly, connecting multiple cloud environments using a software
program to integrate data and application in a unified manner incurs another
challenge [28].

The major vehicular companies work toward smart cars, and, as a result, cloud
computing is growing exponentially. SaaS may include applications accessible over
a network such as the Internet, e.g., voice and video communications and gaming.
Different service providers offer different interfaces to access their services. Thus,
moving from one SaaS application to another application of similar functionalities
typical incurs a change in interface. Therefore, the vehicular cloud would need to
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employ a middleware or common standard to integrate different APIs. For example,
service-oriented architecture (SOA) offers common interfaces that aim to link the
various functional units in an application system.

The IBM SmartCloud and Microsoft Connected Vehicles Platform are significant
examples of the SaaS model. The SaaS platform for vehicles aims to provide
advanced navigation, predictive maintenance, improved in-car productivity, and
autonomous driving capabilities. Microsoft Cortana is one of the SaaS services.
Similarly, the IaaS cloud service mainly provides storage, networking infrastructure
(including firewalls and security), and data centers. With the IaaS, vehicles can run
an operating system and various software [29].

• Access mechanism: Cloud service providers need to allocate different services
to vehicles with different requirements. Defining the method of how service in
the cloud is accessed by the vehicles is necessary for the cloud management
framework, e.g., Microsoft Azure Active Directory Access Control Service
(ACS).

• Virtual machine: Virtual machines deliver the services as a complete software
stack. The features and functionality provided by a considerable number of
other cloud management frameworks must be able to move to different cloud
platforms.

• Storage: Management and organization of storage by different cloud platforms
are different. The functional interface specified by the different cloud platforms
to create, delete, update, and retrieve must be interoperable.

PaaS as a service model provides the computing platforms, e.g., operating
system, programming language execution environment, database, or web server. For
application migration purposes, the service provider must certify that the application
environment, e.g., database server or web server supported by the cloud service
provider, is compatible with the vehicle on-premises application environment.

Similarly, the application environment is based on open technologies to increase
the number of viable alternative cloud service providers that can facilitate migration
if a change in provider is warranted. PaaS mostly depends on the development
frameworks (e.g., PHP). The respective development community can better support
the integration among different PaaS clouds.

Cloud network in the context of the vehicular communication has some similar
requirements as traditional cloud, e.g., cloud authentication, cloud authorization,
the security features, programming interface, applications, deployment, and moni-
toring. Furthermore, it can be built by using open protocols, open APIs, semantic
repositories, domain-specific languages, standards, and layers of abstraction. Data
integration can reduce the complexity of data storage and structure. In the case of
the large data set, cloud methodologies such as collecting and maintaining large
data sets for storing and reusing the data are available [13]. At the cloud layer,
one of the main issues in big data analysis is that different systems have formatted
data differently and cannot exchange information [30, 31]. The vehicular network
data transmission, processing, and information gathering produce new challenges
to be addressed in a multi-cloud environment. There are many aspects that cloud



Trends, Issues, and Challenges in the Domain of IoT-Based Vehicular Cloud Network 59

service providers need to include to guarantee the trust and efficient service for the
portability, semantic interoperability, reliability, availability, and security [32].

To develop a practical and efficient IoT-based vehicular cloud network, many
additional research challenges need to be addressed, for example, incompatible
virtualization implementation and semantics. During the exchange of data and
applications between virtual machines (VMware, Xen, and KVM), the cloud
providers also use different modeling notations for showing the same feature. The
problem is in linking the data as there are missing parts to interconnect computing
clouds. It also must use HTTP and HTTPS to ensure security to allow applications
to communicate with each other. Similarly, the content management and archiving
system are required since vehicular systems may produce multimedia data.

5 Machine Learning for IoT-Based Vehicular Cloud Network

For IoT-based vehicular cloud networking issues, it is necessary to move from
traditional approaches of network design to a more intelligent data-driven learning-
based approach. To build an intelligent vehicular network to operate in a large-scale
dense environment with high-speed mobility, a machine learning framework repre-
sents an efficient tool. Machine learning has found many successful applications,
such as robotics, language, and image processing. To analyze data and recognize
patterns in a vehicular big data environment, machine learning can be useful in a
wide range of applications and efficient routing, e.g., traffic flow prediction, vehicle
path prediction, data storage, and traffic congestion control. It could make the
system more efficient, informed, and data driven for self-driving and location-based
services. In this section, we are discussing a machine learning-based framework to
address intelligent decision-making in IoT-based vehicular cloud networks.

Machine learning methods can widely be used for traffic load prediction using
historical data from onboard sensors, radars, cameras, GPS, or social media. The
authors in [33] utilize a deep learning algorithm to predict the traffic model. Deep
learning is a multilayered architecture to extract a number of features from a
set of data. The idea is to learn the generic traffic flow features and learn the
pattern greedily. The autoencoder is used to learn the features of traffic flow,
and it takes spatial and temporal correlations in the modeling to provide better
predictions. Similarly, a machine learning-assisted route selection (MARS) system
[34] is proposed to assist vehicle routing. The RSU units utilize machine learning
mechanisms to learn the traffic pattern and assist the vehicles in choosing a suitable
routing path. According to the authors in [35], a probabilistic graphical model,
Poisson regression trees (PRTs), is for LTE connectivity prediction and vehicular
traffic prediction. LTE connectivity prediction is used to measure the performance
of the communications system, and vehicular traffic prediction enhances the IoT-
based vehicular network performance.

Vehicle trajectory prediction to avoid collisions and accidents plays an essential
role in vehicular networking. The probabilistic trajectory prediction mechanism
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Fig. 3 Reinforcement learning in IoT-based vehicular cloud network

based on Gaussian mixture models is studied in [36]. The trajectories are learned
based on the previously observed trajectories, and then map the historical data to
future actions. With deep learning, the detailed traffic pattern, road structures, and
congestion can also be learned using historical data. A deep neural network and
recurrent neural network can be used for more accurate prediction results.

One of the most significant approaches for efficient IoT-based vehicular net-
work communication is reinforcement learning. In reinforcement learning for the
vehicular routing, a vehicle is a learner and a decision-maker about the routing
path (Fig. 3). There exist several factors that influence the decision of selecting
a particular path in a specific environment. The vehicle strives to achieve the
shortest or less congested path; thus, it iteratively learns the actions to pursue its
goal, adapting to various network conditions. The vehicles take some actions in
the current environment or state. This action can have either a positive or negative
influence on the system. The vehicular node receives some reward or feedback to
evaluate the effect of the action. The target of the vehicle is to find the optimal
policy to optimize the reward. Given a certain state, the optimal reward values
are discovered by pursuing an epsilon-greedy strategy, which is a multiarmed
bandit (MAB) technique. The MAB is an RL decision-making probability solving
technique to trade off exploration and exploitation. Exploitation means to choose
the best decision given current information, and exploration is to gather more
information. In reinforcement learning, there are α possible actions an IoT-based
vehicular node can take. With each action, the node receives a reward r, and the
ultimate goal is to find the optimal reward in a sequence of trails. Observing the
number states–action–reward (s, a, r) triplets, a vehicular node can create an optimal
policy π .
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The IoT-based vehicular cloud network is heterogeneous due to the different
performance goals and resource utilization. Reinforcement learning can play an
important role to make vehicular communication cooperate using the SDN con-
troller. The method based on a Nash bargaining solution where each agent tries to
achieve near-optimal performance can help to maximize the cumulative network
reward. The deep reinforcement learning algorithm can also be utilized to check the
path availability in a high-speed real-time environment. Queue learning-based ad
hoc On-Demand Distance Vector Routing (AODV) algorithm for vehicular network
routing can use dynamic link-state information and change in routing patterns.

6 Blockchain for IoT-Based Vehicular Cloud Network

The vehicular ad hoc networks (VANETs) are highly dynamic, and their network
conditions change within a small interval of time. A distributed VANET has nodes
in the form of vehicles that join and leave the network after small intervals. This
presents a unique set of challenges when disseminating information in such network
conditions [37].

Blockchain provides an eloquent solution for data exchange in decentralized
peer-to-peer networks when security and privacy are taken into consideration. A
blockchain can be implemented in a VANET to establish the authenticity of the
generated information. Blockchain for IoT-based vehicular cloud network is shown
in Fig. 4. Vehicles form the nodes or the building blocks of VANETs, and all the
nodes have access to the information stored in the blockchain. Therefore, the prove-
nance of the information should be established. In the proposed blockchain, the
events messages are analogous to the transactions of cryptocurrency blockchains.
The trustworthiness of these messages is established as they are stored in the public
blockchain. The use of a public blockchain enhances node trust and data integrity.

The scalability of the VANET is enhanced by implementing a geography-
based blockchain. This geographically divided blockchain provides relevant traffic
information in a specific geographical location. In the proposed system, a country
is considered as a geographical unit, and each country has a distinct blockchain.
Additionally, the scalability is greatly influenced by the “proof of work.” Consensus
mechanisms are selected based on the application. The selection of a suitable
consensus algorithm affects the latency of the system. The scalability and consensus
of the proposed system are based on “Proof of Location” (PoL). It is essentially a
location certificate authenticated when a node is connected to RSU. All the nodes
in the network that has high computational capability and trust participate in the
mining process. To confirm if a message is true, 15 confirmations are required from
the miners. The proposed system incorporates edge computing in the VANET in an
attempt to reduce the latency by off-loading the complex computational tasks to the
edge node.

Two types of messages are generated by the nodes, i.e., beacon and safety event
messages. The beacon messages are periodically generated and broadcasted. The
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beacon messages update the neighboring nodes about the general road and traffic
status. The safety event messages are generated only when anomalies are found,
i.e., accidents or traffic jams. Each anomaly is categorized with level 1 being
the most critical while level 3 as least critical. All the vehicles send the periodic
beacon messages from a specific location. The location of the nodes is established
by the location certificate that acts as a PoL. In each geographically independent
blockchain, the miners mine the new blocks based on the messages generated by
the nodes. After the blocks are confirmed, the newly minted blocks are added to the
national blockchain. The hashes of each block are chained sequentially to build
a blockchain containing the traffic and road information. The data being shared
publicly while upholding the security and privacy of data and nodes, respectively.

7 Conclusion

The modern vehicles are equipped with a number of sensors and actuators.
These IoT-based vehicles contain efficient communication devices and embedded
hardware. The IoT-based vehicles and its integration with cloud networks can
significantly improve the transportation system. In this chapter, we provide a
detailed analysis of all the challenges an IoT-based vehicular cloud network faces.
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In a vehicular network, different operating systems and radio-based devices are
required to exchange data among different vehicles. We provide the characteristics
of vehicular network and cloud computing and how it could increase the transporta-
tion system capabilities. We first explain the complex and heterogeneous nature
of the vehicular network and the fundamental challenge, trends, and issues such
as application programming interfaces (APIs), security and privacy, performance
and reliability, big data, heterogeneity and interoperability, and challenges related
to cloud-layered architecture and service models. In order for the vehicular cloud
to interoperate seamlessly, cloud service providers, the automotive industry, as
well as local and federal governing bodies must agree on rules, regulations, and
standardizations. We also point out that the main technical problems such as
incompatible programming languages (Java or PHP), incompatible virtualization
implementations (VMware, Xen, and KVM), and different modeling notations for
the same features incur the interoperability issues. This chapter further provided
how vehicular networks can combine various technologies and techniques such
as machine learning and blockchain to provide self-learning, self-configuration,
and efficient security mechanism. Machine learning can build a data-driven, more
informed, and self-learning capable intelligent vehicular network. Similarly, a
blockchain can be implemented in a vehicular network to establish the authenticity
of the generated information.
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Detection and Identification of Vehicles
from High-Resolution Aerial Images
Using Deep Learning Approaches
with the Tuned Parameters
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Muhammad Usman Ghani Khan, and Razi Iqbal

1 Introduction

Intelligent transportation system (ITS) is an advanced information and telecommu-
nication system for the people on roads and vehicles. It is an integrated application
of advanced technologies such as electronics, computers, communications, and
advanced sensors. Travelers are provided with important information while improv-
ing the safety and efficiency of the transportation system using these applications.
ITS is also helpful to solve the social problems caused by roads. In the area of ITS
and smart city, extraction of automatic vehicle information became the dominant
part for the past few years. This vehicle information includes vehicle detection,
vehicle license plate detection and recognition, vehicle color recognition, vehicle
type recognition (car, van, truck), etc. Researchers have also been working on
the efficient and secure information transfer generated by the ITS [1, 2]. Vehicle
information is very useful in the fields of video surveillance and applications of
smart city for the sake of the security and safety of people. The ITS is very beneficial
for existing transportation system as it can be used for reducing the pollution
and making the traffic safe. These domains include intelligent vehicular system,
intelligent highways, and autonomous intelligent driver system. The research on the
automatic vehicle detection and classification by using unmanned aerial vehicles
(UAVs) has a huge impact on the development of the autonomous and the intelligent
transport system. The applications of surveillance using UAVs has a very vast range
in daily life such as automatic toll tax charging in the highways, statistics about
traffic flow, and autonomous parking system. In the past, one of the major methods
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for the vehicle classification is to lay down the sensors under the roads; after specific
time intervals, data from the sensors were collected, which were later used for
classification purpose. But after the advancement in the computer vision algorithms,
the accuracy related to the detection and classification tasks has been increased to
a great extent. Due to these reasons, computer vision and latest machine learning
techniques have also been utilized in the area of ITS.

Unmanned aerial vehicles (UAVs) have gained a lot of popularity in almost
every field of life. The applications of the UAVs include the surveillance of
border area between the countries, monitoring of the fire detection, surveillance
of the prohibited areas, vigilance of forest for natural and manmade disaster, and
inspection of traffic and the infrastructure. UAVs are basically based on the sensors,
built-in processors, and the intelligence which help them to make the autonomous
decisions. Basically, the UAVs are the integration of the altitude, position, and the
velocity control parameters in order to achieve the fully autonomy. UAVs have
also a huge impact on the image processing and the computer vision fields. It can
be used as a surveillance tool which can automatically detect any suspicious and
abnormal activity from protest, procession, concerts, and any other public place. The
advantages of utilizing the UAVs includes the low cost; portability; compactness;
environmental friendliness; fast, easy, and on-demand acquisition of the images; as
well as the videos. In traffic management system, one of the major works is the
car detection and the classification. Surveillance using UAVs has many implications
like estimation of vehicles in the particular area, parking management system, traffic
signal controlling system, etc. The accuracies of the classification and the detection
of specific objects from the videos and the images gained tremendous boom after
the deep learning [3].

In this paper, we have proposed the vehicle classification system by applying
the deep learning techniques. The dataset is generated with the help of UAVs. The
dataset contains the images with the two different heights, set by us. The first
one is from the aerial view. This dataset is used to detect the car wherever it is
present on the particular frame of the video. In the second type of the dataset,
we have generated the dataset by flying the UAVs at the fixed length of 10–12 ft.
Our proposed algorithm is based on the Fast R-CNN approach. We have detected
and classified the different types of Pakistani-made cars. The proposed algorithm is
trained on the six different classes which are Honda City, Mehran, Corolla, Cultus,
Wagon R, and Vitz. The proposed system will be able to detect and recognize
the vehicles in real time. Moreover, the proposed system has also the practical
implications of generating the statistical report. These reports depict how many
vehicles along with its types were entered into the particular area, where the UAVs
are moved for surveillance. All these statistical analyses are generated on the offline
videos. Once the video is recorded for the particular time stamp, then it is passed to
the developed system, which will generate the statistical report. The system diagram
is shown in Fig. 1.
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Fig. 1 System diagram

This chapter makes the following contributions into the research community:

1. We have used the state-of-the-art computer vision and machine learning tech-
niques for vehicle detection and classification.

2. Fast R-CNN which is latest in deep learning have been utilized in proposed
solution.

3. Generation and the annotation of the dataset related to the Pakistan-made
vehicles with the help of the UAVs.

2 Literature Survey

From the past few decades, various methods have been purposed for vehicle-type
classification. They have been successfully applied on the smart cities as well as
the highly secured areas like military zones, etc. Currently, most of the existing
approaches in the literature are based on the acoustics signal [4], radar signal
[5], ultrasonic signal [6], infrared thermal signal [7], magnet signal [8], 3D LiDar
signal, and [9] image and video signal. During the recent few years, vehicle clas-
sification and detection are mainly based on the machine vision approaches. These
approaches used the traditional image processing techniques for this purpose such
as scale-invariant feature transform (SIFT), speeded-up robust features (SURF), and
histogram of oriented gradients (HOG). These features are then combined with
support vector machine for classification purpose. Sarfraz et al. [10] extract the
shape characteristics of the vehicle’s frontal area. They named these characteristics
as local energy-based shape histogram (LESH). They claimed that their features are
invariant to color, shape, and illumination factors. These characteristics are further
passed to the Bayes prior model for classification purpose. But the drawback of this
methodology is that it only works well on the frontal images of the vehicle.

This problem has been solved by Ramnath et al. [11] by classifying the car
into model and its name by taking consideration the different views of the vehicle.
They extract the 3D curves of the vehicle’s images based on the silhouette-based
visual hulls. These 3D curves are matched with 2D image, based on the 3D view
alignment technique for the classification purpose. Their proposed work did not
perform well on the constrains like light and illumination factors and also needs
large number of calculations. Chang et al. [12] proposed a real-time vision-based
vehicle detection and classification system. They have utilized the AdaBoost of
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different strong classifiers, instead of using the single classifier for vehicle detection
and classification system. The main drawback of this approach is that it requires the
huge time for computation on a traditional computer vision approach. Alonso et al.
[13] proposed the multidimensional classification method for the detection of the
vehicles on the roads. Kazemi et al. [14] utilized the three different algorithms for
feature extraction. These algorithms include Fourier transform, wavelet transform,
and curvelet transform. They have used the K-mean clustering algorithm for
classification of five different types of vehicles. The curvelet features have achieved
the best result on the K-mean classifier. Chen et al. [15] proposed an algorithm for
vehicle detection, tracking, and classification system from the input stream coming
from the closed-circuit television (CCTV). The vehicle has been detected using
the Kalman filter. Then they extract the features from the vehicle silhouette and
histogram-oriented gradient (HOG) features. These features are then trained on the
support vector machine (SVM) for classification purpose.

Wen et al. [16] used the Haar-like feature pool on the grayscale image to detect
the vehicle appearance and then apply the AdaBoost to enhance the performance
of the algorithm. Arrspide et al. [17] analyzed the different algorithms for vehicle
verification and found on the base of the experiments that the classifier based
on the Gabor and HOG achieved the best results as compared to principle com-
ponent analysis on vehicle classification. Mishra et al. [18] detected the vehicle
by extracting Haar, scale-invariant features transform (SIFT) features and then
designing a multiple kernel classifier using k nearest neighbor to classify the vehicle
into the four categories. Tourani et al. [19] combined different image processing
techniques which include object detection, Kalman filter, frame detection, and
frame differentiation for classification of vehicle detection. The above described
approaches have utilized the traditional computer vision and machine learning
approaches. Although these approaches achieved good accuracy, they have some
limitations. First, extracted handcrafted features are limited, so they are unable to
extract the rich information from the image. Second, they require lot of computation
and only performs good for the specific scene and background environments.
Currently, the major focus of the researchers for the vision-related task is on
deep learning. The main reason behind the boom of deep learning is due to high
achievable accuracy on the vision-related task [20]. Moreover, the availability of the
large dataset and the computation power is also the major factor. Zhang et al. [21]
proposed an algorithm for vehicle classification system based on the convolution
neural network. Their proposed architecture is based on the two folds. The first
fold used the pretrained model which confirms the presence and the absence of the
car. The second fold is used for the classification of the car. They have used large-
scale car dataset and achieved 79% accuracy on the validation of data. The main
drawback of this approach is that it does not perform well on the detection of the
vehicle. Dong et al. [22] proposed the semi-supervised convolution neural network
architecture for vehicle classification system. They have utilized the Laplacian filters
to get the filters of the network for the large amount of the unlabeled data. They have
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utilized the BIT-Vehicle dataset which contains the images for the frontal images of
the vehicle.

Sheng et al. [23] apply the different neural network architectures for the vehicle
detection and classification purpose. They have achieved the best accuracy of
86.78% on the ResNet-101 architecture. He et al. [24] proposed a convolution neural
network for vehicle detection and classification. They claimed that they achieved
good results onto the convolution features as compared to the handcrafted features.
Wang et al. [25] proposed an algorithm for vehicle detection and classification based
on 2D deep belief network. The input to their proposed model is the second-order
plane of the image. They have retained the discriminative information to increase
the accuracy of the vehicle detection. Yi et al. [26] used the pretrained AlexNet
architecture for detecting whether the particular patch of the image contains the
vehicle or not by using the wide area motion imagery analysis. Li et al. [9] presented
the 3D range scan data into 2D data map points. These 2D data points are further
passed to the 2D convolution neural network for the classification of the vehicle
and predicting the bounding box simultaneously. They claimed that they achieved
the state-of-the-art results on the KITTI dataset. Recently, the research has also been
taken on the detection of the vehicles from the images taken from the drone cameras.
Ammour et al. [27] have utilized the images using the UAVs to detect and count the
number of cars in a particular image. They have utilized the auxiliary classifier with
the linear support vector machine to classify the regions where the car is present.
Radovic et al. [28] detect the vehicles from the UAV’s images using the YOLO
object detection framework. Recently, object detection and classification based on
the convolution neural network have achieved state-of-the-art results [29].

In 2013, Sermanet et al. [30] first used the convolution neural network for
object detection, classification, and localization. They claimed to achieve the very
competitive results on the classification and detection task. Up till now, several
techniques for object detection based on the convolution neural network have been
utilized. These techniques include R-CNN [31], Fast R-CNN [32], YOLO [33], SSD
[34, 35], and R-FCN [36].

From all the above described literature, we have concluded that the work on
vehicle detection and classification on the UAVs images is very limited. Most
of the work done, on the vehicle detection and classification using the UAVs
images till now, utilized the traditional approaches and failed to achieve state-of-
the-art results. In this paper, we have utilized the latest deep learning technique
for object detection and classification. In our proposed algorithm, we have utilized
the Fast R-CNN technique for the detection and the classification of different
types of vehicles on which our proposed architecture is trained. The proposed
methodology is capable of dealing the above described limitations like color,
angle, illumination, etc. and achieved the state-of-the-art results on the validation
of data.
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3 Methodology

3.1 Proposed System

The input to our proposed system is in the form of the video. The video is passed
to the proposed model frame by frame. The proposed architecture predicts the
bounding box having the specific object and also classifies the detected object.
On the basis of the detected objects, the proposed system is also able to generate
the statistical report. The statistical report depicts how many cars of the specific
category entered into the specific area under consideration.

3.2 Pre-Processing

Training data collected from the video streams for vehicle detection and clas-
sification demands different preprocessing steps. These steps include to remove
the redundant frames from the training data. Here, redundant and unnecessary
frames refer to those training data frames which contain half and not clear objects.
Moreover, the videos collected from the camera stream placed on the roads
have a possibility that frames of the video are usually bad in quality. There are
several reasons behind the bad-quality images like foggy weather, rain, lighting
conditions, and improper configuration of the hardware instruments. The poor-
quality images are a real challenge in the color recognition techniques. To overcome
these illuminations and lightening problem, we have applied color contrast method
[37] and haze method [38] as a preprocessing technique. We have utilized the
deep learning-based Fast R-CNN algorithm for vehicle detection and classification.
The network is based on the three different parts. The first one is the convolution
neural network which is also termed as backbone architecture, the second one is the
region proposal network (RPN), and the last one is the classification network for the
detected object. The architecture of the network has been shown in Fig. 2.

3.3 Region Proposal Network

Region proposal network is basically proposed regions where the probability of
having the specific objects are very high. Region proposal network used the
convolution parameters extracted from the backbone convolution neural network
architecture. The features extracted from the region proposal network are then
passed to the classification layers to get the prediction about the regions of the
objects as well as the classification of the detected objects. The input to the region
proposal network is the features map of the image extracted after the convolution
layers, and as a result, it returns the number of rectangles containing the objects



Detection and Identification of Vehicles from High-Resolution Aerial Images. . . 71

Fig. 2 Proposed convolution neural network

based on the highest probability. Region proposal networks work on the features
map extracted from backbone convolution neural network architecture. It makes it
faster as compared to the R-CNN [31] and Fast R-CNN [32]. Both R-CNN and
Fast R-CNN work on the selective search for region proposal. In R-CNN first they
extract the 2000 regions from the image using the selective search and then pass
it to the CNN for classification. But the drawback of this methodology is that it
cannot be implemented real time because it takes about 47 s for each test image.
Moreover, it takes a lot of time to train the proposed network because it has to
classify 2000 regions per image. However, In Faster R-CNN instead of feeding
2000 regions, an image itself is directly passed to the CNN. Then they extract
the features map and identify the regions from the features map. These regions
are passed to the ROI pooling and Softmax layer for classification of the detected
objects. But the drawback of this methodology is that the region proposal slows
down the algorithm in terms of speed significantly. Both of the above described
techniques used the selective search for region proposal. The selective search is
slow and time-consuming in terms of speed and affect the network performance. In
Fast R-CNN, you have not to apply the selective search algorithm to find the regions.
Fast R-CNN have region proposal network which predicts the regions of the object,
based on the learning of the data. So, instead of applying selective search on the
feature map, a separate network is developed termed as region proposal network
to predict the regions of the objects. In order to generate the regions, architecture
slides the small network on the features map extracted from the last convolution
layer of the convolution neural network architecture. The region proposal network
takes the input of n × n spatial window on the convolution feature map. Then
after that these features are passed to the two fully connected layers, termed as
the regression layer and the classification layer of the predicted boxes. For each
sliding window, the algorithm predicts the multiple region proposals. The maximum
number of proposals for each sliding window predicted by the algorithm is denoted
by k. So, the regression layer of the region proposal network has the Nk outputs of
the bounding boxes, and class layer has the 2NK output scores against each box.
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Here N represents the number of classes presented in our training dataset. The score
predicts whether the object presents into the particular bounding box or not. The
predicted proposal is generated with the help of these anchors. Anchors are basically
the center of the sliding window and directly linked with the aspect ratio and the
scale. By default, the anchor uses the three scale and three aspect ratios yielding
as the nine anchors for each point. The used region proposal network is invariant
in terms of translation. The invariant translation behavior has been shown both in
terms of the anchors and the proposals that had been produced with the help of
these anchors. If function will able to translate the object into the image, the same
function will also be able to predict the location of the proposal.

The proposed algorithm is built onto the pyramids of the anchors, which is cost
effective in terms of speed and memory. The method classifies the anchors, and the
bounding box regresses based on the reference anchors of different scale and aspect
ratio. Figure 3 shows the anchors drawn on the vehicle containing image. For the
training purpose of the region proposal network, we assign the binary class label to
each anchor that predicts whether it contains object or not. The algorithm selected
two kinds of anchors and assigns positive label to it. The algorithm selects two kind
of anchors and assign labels to them. First one are those whose intersection over
union score is highest, and the second one are those whose IOU score is greater
than 0.7 with respect to ground truth.

The intersection over union has been calculated by comparing proposed anchor
scores with the ground truth anchor score by using Eq. (1).

iou = Overlapped area of compare boxes

Union area of compare boxes
(1)

The negative value is assigning to those anchors who has the intersection over
union less than the 0.3 with respect to the ground truth boxes. Anchors that do

Fig. 3 Anchors drawn on image
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not fall in both categories which means they are either negative or positive have
been discarded and do not contribute toward the training of the object detection
in the region proposal network. The loss of the region proposal network has been
calculated using Eq. (2).

Loss (xi, yi) = 1

Mclass

∑

i

Nclass
(
xi, xi

∗) + λ
1

Mreg

∑

i

x∗
i Nreg

(
yi, y

∗
i

)
(2)

Here, i represents the index of the proposed anchors, whereas xi depicts the
predicted probability for the specific anchor containing the object. The x∗

i represents
the ground truth label for the predicted anchor; the ground truth probability is 1 if
the predicted probability is positive and 0 if the predicted probability is negative.
The predicted bounding box by the region proposal network is represented by the
yi, whereas the y∗

i is the ground truth bounding box which is associated with the
positive anchors. Nclass shows the classification loss which is calculated based on
the presence and the absence of the object, whereas the Nreg measures the regression
loss which is only activated when the anchors value is positive (p = 1) and disabled
when the anchors value is negative (p = 0). The two terms Mclass and Mreg are used
to normalization and also weighted by the balancing parameter lambda. In our case,
Mclass is normalized with the help of the mini batch of 256, whereas the Mreg is
normalized with the help of the 2400 anchor positions.

These terminologies are equally weighted by the balancing parameter of lambda.
We have set the value of lambda to 10, which weighs equally for both Mclass and
Mreg.

4 Vehicle Classification

For a backbone architecture, we have utilized the VGG-16. There are total 16 layers
in this architecture including convolution, max pooling, and fully connected layers.
The input to our proposed architecture is in the form of 224 × 224 × 3 RGB image.
In the first convolution layer, 64 filters have been applied with the kernel size of
3 × 3 having stride of 1. After that the second layer is the max pooling layer. The
max pooling has been applied onto the output of the first convolution layer with the
same kernel size, and the number of filters have been applied on the first convolution
layer. After that there is third and fourth layer of the architecture. The third layer is
convolution, and the fourth layer is the max pooling layer. In the third and the fourth
layer, 128 filters have been applied with the kernel size of 3 × 3. The fourth layer is
also the max pooling layer having the stride of 2. This max pooling layer is the same
as the previous max pooling layer except the 128 filters due to which the output of
this layer is reduced to 56 × 56 × 128. The fifth and the sixth layer are also the
convolution and max pooling layer. In both layers, we have applied 256 filters with
the stride of 3 × 3. In the fifth layer, we have set the stride of 1, whereas in the
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sixth layer which is the max pooling layer, stride of 2 has been applied onto the 256
features map.

After that, from the seventh to twelfth layer, there are two sets of three
convolution layers which are followed by the max pooling layer. All convolution
layers present from 7 to 12 contains the feature map of 512 having the kernel size
of 3 × 3 with the stride of 1. The output size which we obtained from the last layer
has been reduced to 7 × 7 × 512. The 13 fully connected layer flattened the output
of the 12-convolution layer by applying the 1 × 1 convolution. After that we get
the 25,088 features. After that we have three fully connected layers. The first 2 fully
connected layer outputs the 4096 features, whereas the last convolution layer maps
to the 6 neurons which is equal to the number of our defined classes. After the fully
connected layer, we have the output layer, which converts these feature values into
the probabilistic scores against each class. For an output layer, we have utilized the
Softmax classification function to get the probabilities against defined classes using
Eq. (3).

Pj = exp (y)j

∑n
i=1 exp (y)i

(3)

Here Pj represents the predicted probability of the class, and expyj represents the
score after taking the exponent of the input of the specific class which is divided
with the sum of exponential of all the classes scores.

5 Dataset

One of the major concerns in deep learning is the preparation of the accurate
and precise data into the proper format according to the specific problem. Data
collection and preprocessing are a key factor in deep learning-based research work.
In deep learning-based research work, most of the researchers do experiments on
the datasets present over the Internet according to their needs. In our proposed work,
the data for vehicle detection and classification over the Internet does not fulfill our
requirements. So, in order to train our model, we collect and prepare data for vehicle
detection and classification ourselves.

To minimize the human efforts, UAVs (unmanned aerial vehicles) are used for
the data collection purposes. Through this smarter data collection vehicle, the risk
of human life and human involvement can be totally minimized. Sometimes humans
have to go to the field and collect the data themselves. Now humans no longer need
to go out and capture the videos. We have a drone flying on the main entrance
gate of an educational institute to capture the videos at the height of 12 ft. It
records the videos from the aerial view, as we know it is a challenging task to
identify the vehicles from the aerial view, so we also solved this problem by training
our model on the aerial view images. We have recorded multiple videos from the
livestreaming camera of 1 week and then converted it into frames at 10 frames per
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Fig. 4 Some frames from our generated dataset

second and skipped the unnecessary frames. After cleaning the data, selected frames
are carefully annotated. We have also prepared the dataset of the cropped images for
simple classification purpose. We have categorized these frames into six different
classes which includes Honda City, Mehran, Corolla, Cultus, Wagon R, and Vitz.
Each class contains 500 annotated frames. We will make this data online, and it will
be helpful for the research community for training purposes. Some frames of our
dataset have been shown in Fig. 4.

6 Training Parameters and Implementation Details

Both region proposal network and convolution neural network have gone through
the training phase. The weights of these architectures have been optimized using
the backpropagation and stochastic gradient descent. Image sampling strategy has
been applied to train the network on both detection and classification of the object.
The data is passed to the network in the form of batches. In case of region proposal
network, the mini batch is arising from the single image containing the negative and
positive anchors. It is possible to find the loss function based on all the anchors
proposed by the algorithm for the single image. But it is more biased toward
the negative anchors as it is more in quantity than of the positive anchors. So to
overcome this problem, randomly selected 256 anchors have been used to compute
the loss function of the mini batch. These anchors have the equal ratio of the positive
and the negative anchors. Initially, the weights of all the layers have been initialized
using the zero mean Gaussian distribution with the standard deviation of 0.01. To
calculate the loss of our proposed algorithm, we have used the function of mean
square error (MSE). MSE is to be defined as the indication of how much near a
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regression line is a set of points. It does this by taking the distances from the points
to regression line and then squaring them.

These distances are said to be errors. To eliminate any negative signs, squaring is
necessary to be taken. If the mean square error is smaller, then you have to find the
best fit line. Sometimes it is impossible to find the best fit line, but it totally depends
on the type of data you have trained. The value of the MSE is always nonzero,
and the values closer to zero are better and show that the training is going in the
right direction. The algorithm is trained on the momentum of 0.9 and the weight
decay of 0.005. We have set the 200,000 number of epochs for the training of the
algorithm by applying the early stop function on it. Too much training of the dataset
will lead to over-fitting, whereas the little training of the dataset will result to the
underfitting of the model. In both of the cases, we have a poor result on the test data.
The possible solution of this problem is to train the network till that point where the
performance starts to decrease on the validation data. So the possible, effective, and
simple method to train the deep neural network is by utilizing the early stop function.
Usually, when we train a large neural network, there is a point when the model will
stop learning and generalizing. The model starts to memorize the noise from the
training dataset. This will cause over-fitting, and as a result, the generalization error
will increase, and the model make less useful predictions on the unseen data. So, to
avoid all these illumination and problems, we have utilized the early stop function.
This early stop function enables the algorithm to stop the training where we get the
minimum loss value on the validation data. To calculate the MSE, Eq. (4) is to be
used.

MSE = 1

n

N∑

j=1

(
Lĵ − Lj

)2
(4)

In Eq. (4), n represents the number of classes, N represents number of samples,
Lĵ represents the presicted loss of the model while Lj represents the actual loss.

Initially the learning rate was set to 10−1, and it was eventually decreased with
the 10−1, a factor, if the loss value and validation accuracy do not improve much.
The proposed architecture is built on Python using the TensorFlow deep learning
framework. The model is trained using the NVIDIA 1080 Ti GPU. The system took
approximately about 5–6 h for the complete training of the system.

7 Experiments and Results

We have split the generated data into the train and test data. For the training purpose
of the proposed architecture, we have made a distribution of 80% of training data
and 20% of the test data. As we have set the maximum 200,000 epochs, the model
is trained till the convergence of the loss value on the validation data using the early
stop function. Training and validation accuracy on the validation data on different
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Fig. 5 Training and validation accuracy on object detection

epochs have been shown in Fig. 5. From Figs. 5 and 6, it is clearly observed that in
the initial’s epochs, the learning of the model is slow in terms of accuracy and loss
value. But with the passage of time, the accuracy is gradually improved and the loss
value is decreased. The loss value on the validation data has been shown in Fig. 6.
To evaluate our proposed model and generated dataset, we have also generated
the results on the inception v3 module, which is pretraineded on the ImageNet
dataset. We have utilized the same dataset to train this model, which we used in
our proposed architecture. To classify the image based on predefined classes of our
dataset, we have to first crop the vehicle from the frames on the training data, and
then separate the vehicles as defined in our methodology. We separate the vehicles
into the six categories as defined in our proposed dataset. The reason why we do the
separate data preprocessing on the generated dataset in due to the requirements of
the architecture.

In Fast R-CNN, we have to make sure that we have the targeted objects as well
as backgrounds on the training frame.

To classify the vehicle, we have to pass the detected object to the architecture.
So, the detected object which is vehicle in our case is passed to the architecture.
We have utilized the pretrained YOLO [33] for vehicle detection. We have utilized
the inception v3 module to classify the detected vehicle. The reason of utilizing
the inception v3 module is that it is the automatic selection of kernel size. In deep
learning the algorithm automatically selects the best features related to the problem,
but we have to specify the kernel size for the specific layer.
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Fig. 6 Training and validation loss on object detection

So, to automate the kernel size, we have utilized the inception module. The
inception module performs all types of convolution at the same time and then
concatenate these features and pass to the next module.

Global information is extracted using the large kernel size, and local information
is extracted using the small kernel size. The inception module is fine-tuned on our
dataset. The inception v3 module is initially trained on the ImageNet which contains
1000 classes.

After the inception layers, we have built the linear model containing the three
fully connected layers. The inception modules output the 2048 transfer values. In
the first fully connected layer, 2048 neurons are mapped to 1024 features. In the
second fully connected layer, 1024 features are mapped to 512 features. In the last
convolution layer, 512 feature are mapped to the 6 neurons which is equal to the
number of classes. At last, the output layer gives the probability against each class.
The inception module is trained till the 2000th epochs, in which we achieved the
87.9% accuracy on the validation data for classification. The training and validation
accuracy of the inception v3 module have been shown in Fig. 7. But the detection
accuracy is comparatively very low. The reason of this low accuracy is that we
have used the pretrained model of the YOLO for the vehicle detection purpose for
this experiment. We have also evaluated the proposed architecture onto the Vehicle
Make and Model Recognition dataset (VMMRdb). The comparison between the
accuracies of different experiments has been shown in Table 1. From Table 1, it is
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Fig. 7 Training and validation accuracy on inception

Table 1 Results of different
experiments

Methodology Dataset Accuracy (%)

Proposed (faster CNN) Self-generated 96.2
Inception Self-generated 87.9
Proposed (faster CNN) VMMRdb 93.6

clearly depicted that our proposed methodology on generated dataset achieved good
results as compared to other techniques on which the experiments have been done.

The reason is that we have generated the dataset by taking considerations of
all kinds of illumination factors and effects and tuned the architecture parameters
according to it. VMMRdb contains 291,752 images of 9170 classes of different cars
of a model from 1960 to 2016. We took the images of Honda Civic of a model from
2009 to 2016. So, we have 8 different categories; each category contains 200 images.
After taking the images from this database, we have annotated the data for training
purpose. The architecture also outperforms on this dataset, but it does not achieve
as much accuracy as we achieved on our generated dataset. The reason of this is that
our dataset is generated into the controlled environment. The comparison between
the accuracies of our generated data on proposed architecture and VMMRdb data
has been shown in Table 1. So, from the above experiments, we have conclude that
our proposed model and dataset are efficient – in terms of accuracy related to the
vehicle classification problem. We have also performed the experiments on different
methodologies referred by some latest papers. We have utilized our generated
dataset to evaluate these architectures. In the first technique of Table 2, CNN-based
YOLO architecture have been utilized for car detection and classification. But the
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drawback of this methodology is that it does perform well when we have a small
object on the input frame of the video. Since in our case we have a video obtained
from the UAVs, there is a possibility that the object present in the video is in a
smaller size. So, that’s why this algorithm fails to achieve as much accuracy as we
achieved in our proposed algorithm. In the second methodology, CNN features are
trained on the support vector machine for detection and classification of the vehicle.
The reason why this methodology has not achieved the good accuracy is that SVM
does not perform well in case of the detection purpose. SVM usually performs well
when we have the classification-related task and the data is linearly separated. In the
third methodology which is referred in Table 2, deep convolution neural network
has been utilized for the classification of the detected vehicle. But the drawback
of the methodology is that they first detect the object using the traditional image
processing techniques and then pass these objects to the convolution neural network
for the classification of these detected objects.

In our utilized algorithm, the regions for the detected objects and the classifica-
tion of these objects are both done with the help of the convolution neural network;
that’s why we achieved the good accuracy as compared to the discuss techniques in
Table 2.

Some predictions which our model made have been shown in Figs. 8 and 9,
respectively.

Table 2 Results on different methodologies

Paper Methodology Dataset Results (%)

Ammour et al. [27] CNN-based model (YOLO) Self-generated 91.8
Radovic et al. [28] CNN features along with SVM Self-generated 84.6
Qu et al. [39] DCNN Self-generated dataset 88.2

Fig. 8 Prediction on frame for detection and classification
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Fig. 9 Prediction on frame for vehicle detection

8 Conclusion

The purpose of this work is to classify the vehicles based on their makers and
models. Latest techniques of deep learning have been utilized to achieve state-of-
the-art results. The proposed methodology classifies six different cars based on their
appearances; firstly region proposal network predicts the regions with the highest
probability of occurrence of vehicle and then it is classified by fully connected
layers. We have trained our model on self-generated dataset using the UAVs and
achieved 95.3% accuracy on validation data. Future work includes vehicle color
classification and number plate detection and recognition and the analysis of the
crowd behavior using the UAVs.
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An Efficient Palm-Dorsa-Based
Approach for Vein Image Enhancement
and Feature Extraction in Cloud
Computing Environment

Kamta Nath Mishra

1 Introduction

Nowadays, security has become a primary concern for the public. So, the biometric
system is increasingly gaining interest because of the technology based on the
uniqueness of an individual’s physical or behavioral characteristics. Vein biometric
is emerging from other modalities due to its strength and advantages. Consumer
devices including smart phones show increased interest in the biometric system.
One of the important things to consider in designing a biometric system for
consumer electronic handheld devices is speed [1]. Biometric technology uses
complex and computation-intensive image processing algorithms that require them
to be implemented on powerful computers for acceptable processing time. However,
handheld devices are usually constrained in resources and performance [2].

The fingerprint is the most widely used biometric technology and is widely
known for its small device size. But at inferior environments such as construction
sites, certain fingerprints can be worn out making the fingerprint biometric lack the
usability in such a place. Iris biometric has a low error rate, but the use of light
into the user’s eyes makes some users feel psychologically uncomfortable. Hand
geometry has a high false acceptance rate although it has excellent performance in
terms of usability [3]. The advantages of vein biometric are difficult to forge, user-
friendliness, and uniqueness [4].

The sensors or readers are being used by researchers to acquire the vein images.
Then authentication is processed using the software on the computer or embedded
system. However, a software implementation of vein biometric cannot achieve
high computation performance that is needed for real-time applications. Hardware
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can provide solutions for higher performance. However, the hardware design of
the biometric system in hardware is challenging. Although few vein biometric
hardware designs has been proposed, there is still room for improvement especially
in performance [5].

The fingerprint is a well-known biometric and is widely used because of the
small device size. However, fingerprint biometric is less functional for workplaces
such as construction sites due to the fact that certain fingerprints can be worn out.
Hand geometry has excellent performance in usability, but unfortunately, it also
has a high false acceptance rate. Iris is good because it has low error rates, but
some users might feel psychologically uncomfortable with light into their eyes.
Furthermore, iris recognition requires an accurate eye position, causing the user
to experience difficulty in providing this requirement every time, whereas the vein
can overcome all these weaknesses because the vein will not wear out or change due
to environment factors, is contactless, is hygienic, and is extremely difficult to forge
[6].

The infrared (IR) ray captured by the camera not only contains a vein pattern
but also a reflection of the surrounding shades such as the bones, muscles, and
tissues. These reflections from the surrounding will worsen the vein image quality.
The distribution of the vein image grayscales is also very small. All these factors
make it difficult to extract the vein features properly. For this reason, the author is
motivated to develop an algorithm to enhance and extract the vein feature from the
palm-dorsa region [7].

While biometrics as a technology has been around for decades, improvement
for customer usability in terms of speed of recognition is a major need. Ensuring
biometric performance or customer experience is one way to develop biometric
technology in line with market demand. In addition to concerns about privacy
and security, researchers also need to focus on maximizing user-friendliness and
a more efficient and faster verification process. Nowadays, many researchers have
developed many algorithms to enhance and extract veins for biometrics. However,
most researchers only focus on the use of software such as MATLAB/Python/C
language, with the algorithms not optimized for hardware design. Researchers do
not take into consideration the hardware resources or processing time constraints
while developing vein enhancement and feature extraction algorithm. Designing of
the algorithm in hardware is challenging due to hardware resource constraints and
the complexity of hardware. When developing the algorithm, the processes in the
algorithm are considered; whether they can be processed in parallel on hardware
due to parallelism capability in hardware is the key advantage to improve the
performance of the algorithm. With the hardware design, a faster verification process
can be achieved [8, 9].

In this research work, the palm-dorsa vein enhancement and feature extrac-
tion algorithm are developed using MATLAB. Then the hardware design of the
algorithm is proposed and developed using Verilog hardware language description.
The hardware designs are developed individually for each technique. Then using
ModelSim-Altera, the designed hardware is simulated to verify the functionality.
After that, each hardware designs are integrated to produce hardware design for
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Fig. 1 Vein image example (palm vein recognition)

the palm-dorsa vein enhancement and feature extraction algorithm. Functional
verification is simulated to check the integration function. The proposed hardware
design performance analyses are evaluated to assess the characteristics of the
proposed hardware design. The palm-dorsa vein based image recognition as an
example is given in Fig. 1.

The unmanned aerial vehicles (UAVs) are basically used for collecting fewer
distances and stumpy altitude information in wireless and remotely controlled envi-
ronment. The UAVs can also serve as electronic jamming instrument in cloud and
Internet of Things (IoT)-based distributed network systems where authentication
is based on multi-biometrics. These UAVs can be used for sensors and artificial
intelligence (AI) based remotely on allocated biochemical weapon detection where
specific biometric codes are required for physical access of these highly sensitive
areas. The UAVs fly at high speed in open areas and fly at slow speed in densely
populated areas in order to avoid hitting steady objects including buildings, towers,
etc. The other applications of UAVs are in the areas of natural disasters and
communication relay. The technologies like AI, machine learning, and concepts
of deep learning are the driving forces which are driving the drone evolution into
an era where drones and UAVs are remotely accessed using vein-based biometric
systems and are integrated with IoT and cloud computing systems for performing
day-to-day activities of sending and receiving packets of different types of things
like pizza, letters, etc. [10, 11].

The deep learning concept is bringing more potential to solve day-to-day
problems in practical application scenarios. Certain research areas like big data,
genetic algorithms, Internet of unmanned aerial vehicles, mHealth monitoring using
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UAVs, and blockchain computing are more powerful and have captured almost
all of the recent technologies. The deployment of wireless networks (network
structure), allotment of node sharing points, path planning of data movement, and
data collection in cloud- and IoT-based environment are the major parameters to
be addressed in designing of drone/UAVs architecture. In the twenty-first century,
the UAVs are being considered as one of the best remote sensing techniques used
to gather sensitive data spread over a large area in a wireless environment. The
UAVs are now frequently being used as AI-enabled sensing tools for proactively
preventing/solving many issues and helping in the decision-making processes in
information technology and other industry sectors [12].

The UAVs can be considered as highly reliable technological platforms used for
efficient and cost-effective data analysis/event monitoring in real-time environment.
In the case of UAVs monitoring and control, the Internet of Things (IoT) will send
data-to-data processing systems which are being used by cloud computing system
to monitor and execute processing requirements. In the case of fog computing, the
IoT gateway will link the divergent objects of fog to the Internet. It can operate as a
cooperative interface for different networks and supports divergent communication
protocols in cloud- and IoT-based computing environment. The researchers have
worked hard in developing UAVs and multi-UAV systems. The beauty of UAV
lies in the truth that the UAV can be automatically integrated with an industrial
control system through an IoT gateway platform to provide the assigned monitoring
and controlling tasks where videos/images obtained through UAV in real-time
environment are thoroughly and instantaneously computed and analyzed in the
cloud. The visual administration of remotely located objects including gas pipeline
monitoring, high-tension electric wire monitoring, border monitoring, etc. by drones
and cloud services is integrated with control loop of IoT control system in real-time
environment [13].

Most recently, the flying sensor systems have been used by researchers to
provide critical administrations and services in certain regions like fiasco territory.
A global positioning system (GPS) or a worldwide situating framework can give
close and precise information related to certain areas if an immediate viewable
pathway like satellite-linked communication system is available. Further, the GPS
beneficiaries may face blackout situations in certain regions where satellite signals
are delayed by impediments, e.g., the normal mists in the sky and specific jammed
structures in certain high-security zones. This may bring momentous corruption in
crisply developed UAV-/drone-based remote detecting/flying applications. Further,
the cloud- and IoT-based control system of UAVs/drones may be hacked by hackers.
Hence, there is a serious need of developing a foolproof cloud- and IoT-based
UAV control system which is possible using vein biometrics because it is almost
impossible to fabricate vein biometrics in any environment [14]. In this chapter, the
author has presented a palm-dorsa-based vein image enhancement feature extraction
technique which is useful for providing access and control rights to the authorities or
machines responsible for issuing control signals to the UAVs from remote locations
in cloud- and IoT-based wireless environment.
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2 Literature Review

In the section, the theories and research works related to vein image enhancement
and feature extraction in cloud- and IoT-based environments are reviewed in
detail. First, the vein biometric theoretical background, the example applications in
industry, and the vein image capture method are reviewed. Then, the related works
on vein image enhancement and feature extraction algorithm and their work results
are discussed in detail.

The vein-based biometrics use the vein patterns available in the human body as
identification tool for authentication and access control purposes. Different parts of
the human body such as the hands, palms, fingers, and wrists can be used for this
technology. Vein biometrics uses infrared (IR) light generated from light-emitting
diodes (LED) to penetrate the human skin. Due to the difference in the absorption of
blood vessels and other tissues, the reflected or transmitted IR light is captured by a
sensor. The red blood cells present in the blood vessels absorb the IR light and form
as a darker image than the surrounding structure where the surrounding appears to
be a brighter image as shown in Fig. 2 [15].

In the palm-dorsa vein biometric, the IR light from LED penetrates the skin,
absorbed by red blood cell in the blood vessels, and reflected to be captured by
the sensor. The part where the IR light is absorbed or where the veins are appears
dark as shown in Fig. 2. After capturing the vein image, it is processed by image
processing techniques to extract the vein pattern. Various feature information of

Fig. 2 Palm-dorsa vein image processing example using authentication technologies
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Table 1 Comparing the modalities of biometrics in cloud computing environment

Biometric modality Exactness Price Size of template Long-term firmness Safety level

Facial Low High Large Low Low
Iris image High High Small Medium Medium
Fingerprint Medium Low Small Low Low
Finger vein High Medium Medium High High
Voice signals Low Medium Small Low Low
Lip motion Medium Medium Small Medium High

the vein pattern such as branching points, thickness, and so forth are extracted
and stored as a template. The extracted vein pattern information is then stored as
a template in the database for authentication purposes. The comparison of biometric
modalities in cloud-based environment is presented in Table 1 [16, 17].

At present two types of infrared (IR) imaging technologies are being used
to get the vein patterns from the human body for the purpose of biometric
identifications. Both of these mentioned imaging technologies are far infrared (FIR)
and near infrared (NIR). The authors [1, 18] have invented FIR and NIR imaging
technologies for biometric purposes. The FIR imaging technology is superior for
capturing large-size vein patterns on palm dorsa, but it faces difficulty in capturing
vein patterns of the palm and wrist. Further, the FIR technology does not provide
steady image quality because it is sensitive to the human body. Furthermore, the
FIR images have a low level of dissimilarity which makes it difficult to separate the
vein images from the background. The FIR image of palm dorsa has thermograph-
based information, but the veins are not as visible as the NIR image [2, 3]. The NIR
imaging technology is superior for capturing vein patterns on the palm dorsa, palm,
and wrist, but it has a defect that hairlike structure can also be seen on the surface
of the skin. The NIR imaging technology is more tolerant of changes in ambient
conditions [4, 19]. The NIR image for palm dorsa has no thermograph-based
unnecessary information, and the veins are very clearly visible and are trouble-
free to detect [5]. Hence, the NIR is frequently used to capture the vein pattern
because the NIR imaging technologies provide far better quality vein images than
the FIR. Figure 3 is showing the light reflection method which uses reflected infrared
lights to capture the vein patterns. In this method, the infrared LED is placed next
to the sensor, while the hand or finger is kept in front of the sensor. This method is
generally used to capture the veins of the palms, palm dorsa, or wrists of the human
body.

Therefore, the light reflection method is the finest method to capture the veins in
these parts. The foremost benefit of this light reflection method is for final product
design because infrared red LED and sensors can be packaged together to bring
compactness in the product. On the contrary, the reflection effect of all parts of the
human body such as the skin and thin penetration of infrared light under the skin
make the contrast low [2, 20]. Figure 4 is describing the light transmission method.
The finger is placed between the infrared LED and sensor. The infrared light that
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Fig. 3 Light reflection
method

Fig. 4 Light transmission method

passes through the finger will be captured by the sensor at the other end, since this
method requires infrared light to pass through the human body. Therefore, only parts
of the body with an appropriate thickness such as a finger can be used to capture
vein pattern. This method produces high-contrast vein image than light reflection
method, but the weakness is that the final product will be larger, especially using
palm or palm dorsa as biometric modal [2, 20, 21].

Hashimoto et al. [2] introduced a side lighting method that puts the IR LED
on both sides of the finger as shown in Fig. 4. In this method, the infrared lights
from both sides pass through the fingers, scatter in the fingers, and then pass on the
other side of the finger before being captured by the sensor. This particular method
produces very high-contrast vein image patterns, but it has a difficulty that the final
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obtained product using this method will be a little bigger than the light reflection
method and lesser than the light transmission method.

3 Hardware Design Performance Evaluation

Once the proposed hardware design of the vein image enhancement and feature
extraction algorithm has completed, the performance of the proposed hardware
design is evaluated. The proposed algorithm is simulated with the vein sample
images using MATLAB and Python. The results from MATLAB and Python are
used as a reference for the performance evaluation of the proposed hardware
design. The proposed hardware designs are simulated using the hardware design
language simulator ModelSim-Altera with the vein sample images. The results from
ModelSim-Altera are compared to the results from MATLAB and Python for the
performance evaluation of the proposed hardware design of the algorithm. First,
hardware design performance is individually evaluated for the resample, segmenta-
tion, median filter, and thinning techniques. Then hardware design performance is
evaluated for the top vein which is the integration of all the techniques to function
as the proposed algorithm [21, 22].

3.1 The Algorithm

As veins exist beneath the human skin, vein images are acquired by an IR
transillumination method. However, due to light scattering and characteristics of
human skin absorption, the vein image captured qualities are not always good. The
vein image comprises of noises, poor illumination, and shading artifacts. Therefore,
it is very difficult to distinguish between vein and non-vein. Simple technique cannot
distinguish whether it is a vein or not. Hence, vein image enhancement is essential
for vein feature extraction. Thus, an algorithm has been developed to enhance the
vein image and finally can extract the feature of the vein pattern in the palm-dorsa
hand [23, 24].

The flowchart of the proposed palm-dorsa vein image enhancement and feature
extraction algorithm is shown in Fig. 5. The detailed explanations are discussed
in the sections afterward. The proposed algorithm has been implemented using
MATLAB and Python for the purpose of authenticity verification in cloud-based
environments.
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Fig. 5 Flowchart of the algorithm
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Fig. 5 (continued)



An Efficient Palm-Dorsa-Based Approach for Vein Image Enhancement. . . 95

Fig. 5 (continued)
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3.2 The Input Vein Images

The obtained palm-dorsa vein images have been used in this research work.
Originally the vein image captured by a webcam produced a 640 × 480 pixel RGB
image in JPEG format. Then, the vein images have been cropped to 384 × 288
pixels by cutting the unnecessary part from the original image. The GIMP software
[25, 26] has been used to convert this image to a 384 × 288 pixel size with 8 bits
grayscale image.

3.2.1 The Resample

Due to the noises from reflected IR caused by other substances, the captured
vein images comprised noise. Typically, a Gaussian filter is used to remove the
noise. However, Gaussian filter using a lot of multiplication and addition operations
primarily involves the bigger mask filter size. The multiplication and addition
operations increased drastically when the mask filter size increases. This requires
large hardware resources to implement the Gaussian filter in hardware. The multi-
resolution technique is known to have the ability to remove noise in the image [24,
25]. In the multi-resolution technique, the vein image is resized to the size of the
quarters from the original image, then resize to the original size, before finally
resizing to one-third the original image size. However, an experiment that has been
carried out shows that resamples or down-samples, the vein image alone can also
significantly remove the noise in the image.

To remove the noise in the input vein image, the image resample technique
has been used in the proposed algorithm compared to Gaussian filter and multi-
resolution techniques. Resample has been selected instead of the Gaussian filter
because resample uses fewer hardware resources than the Gaussian filter that uses
a lot of multiplication and addition operations. Furthermore, it also significantly
reduces the number of pixels in the image, resulting in less processing time, reducing
the cost of computation and fewer data storage needed for hardware requirements. In
resample, the vein image has been down-sampled to half the size of the original vein
image of 288 × 384 pixels to 144 × 192 pixels. Under-resampling will not remove
the noise effectively, while over-resampling will remove the vital information in the
vein image.

The vein image size after resampling is 192 × 144 pixels. After resampling,
the number of pixels in the image is 27,648 pixels compared to 110,592 pixels in
the original input image, which is about 75% reduction of the original image. This
reduction of pixels not only reduces hardware storage requirements but also reduces
computation in the next process. In the next process of segmentation, median filter,
and thinning, instead of having to calculate 110,592 pixels, only 27,648 pixels need
to be calculated. Computation reduction leads to a reduction in processing time.
For resample, bi-cubic interpolation is used. Bi-cubic interpolation is the optimal
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Fig. 6 The block diagram of vein image segmentation steps

technique to use for the image resampling. An experimental investigation will be
described and discussed in the experimentation section of this paper.

3.2.2 Vein Image Segmentation

The block diagram of the image segmentation is shown in Fig. 6. It consists
of a difference of Gaussians (DoG) and threshold operation to distinguish the
vein pattern from the background. DoG is an effective technique for noisy image
segmentation by performing two different values of standard deviations of the same
image with different blurring radius, then subtracting them to produce a result (Kang
et al., 2014). DoG consists of two Gaussian filter functions that subtract the blurred
image with another blurred image on the same image. The two Gaussian filter
functions must have different standard deviations to get two different blurred images
to improve the visibility of edges in an image. In the proposed algorithm, the first
Gaussian filter has 3 × 3 masks and a standard deviation of 5, while the second
Gaussian filter has 31 × 31 masks and a standard deviation of 60. Experiments
and analysis were conducted to determine the best filter mask sizes and standard
deviations for both Gaussian filters. Figure 7 shows the distribution for the first
Gaussian filter, while Fig. 8 shows the distribution for the second Gaussian filter.

Usually, the Gaussian filter outputs are subtracted before applied with the thresh-
old technique. However, by using a certain threshold technique, the subtraction can
be removed. Instead of subtracting and then comparing the value for threshold,
only a threshold is used. The Gaussian filter outputs from DoG are applied with
the threshold technique. In threshold, the grayscale vein image will be converted
to a binary vein image. The two outputs from both Gaussian filters are compared.
If the output value from first Gaussian filter is less or equal than second Gaussian
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Fig. 8 Distribution of second Gaussian filter function with 31 × 31 masks the standard deviation
of 60

filter, the threshold output will be a binary “1,” while if the output value from first
Gaussian filter is greater than second Gaussian filter, the threshold output will be a
binary “0.” The desired vein line will be represented by binary “1” or white color,
and the background will be represented with binary “0” or black.
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3.3 The Median Filter Implementation on Vein Images

The resulting vein image from the previous image segmentation process has noise
where the edges are not smooth and burrs. It is important to remove noise and
improve the resulting vein image to the next processing of thinning. To remove this
noise, a median filter is applied to reduce speckle noise, and it preserves the edges
making it an advantage where edge blurring is not needed [26]. In this algorithm,
a 15 × 15 median filter is used. Experiments on different median filter sizes were
conducted to determine the optimum size.

3.4 Thinning of Vein Images

The next process in the algorithm is to thin the vein image. Thinning will reduce
the thick vein line to the thickness of a single pixel. For this algorithm, the thinning
technique of Zhang et al. [27] has been used. The technique is fast and involves
simple calculations. It repeatedly deletes pixels within the object to shrink it to a
single pixel. Therefore, this particular technique is selected to minimize the hard-
ware complexity of the system. This thinning technique consists of two iterations
that check the conditions set to determine if the pixels should be deleted or not.

In order to perform thinning, the desired vein image line is set to “1,” and the
background is “0.” A 3 × 3 mask size has been used in this technique as shown in
Table 2. The 3 × 3 mask has p1, p2, p3, . . . p9 points with p1 at the center point.
Before applying the condition check to the center point, determine whether it is a
contour point. Contour point is a pixel with value 1 and having at least one neighbor
with value 0. In the first iteration, the p1 pixel is marked and deleted if it meets all
of the following four conditions:

2.0 ≤ N
(
p1

)
≤ 6.0 (1)

S
(
p1

)
= 1.0 (2)

p2 × p4 × p6 = 0.0 (3)

p4 × p6 × p8 = 0.0 (4)

Table 2 The pixel values of
the vein line after having
single-value thickness

p9 p2 p3

p6 p1 p4

p7 p6 p5
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Here, N(p1) is representing the total number of nonzero neighbors of p1, and
S(p1) is representing the total number of changes of the point value from 0.0 to 1.0
in the order of p1, p2, p3, . . . p9. Here, pixel “p1” is deleted if and only if it meets
all the conditions. In other cases, the pixel “p1” is not deleted.

In the second iteration, the “p1” pixel is marked and deleted if it satisfies all of
the following four conditions:

2.0 ≤ N
(
p1

)
≤ 6.0 (5)

S
(
p1

)
= 1.0 (6)

p2 × p4 × p8 = 0.0 (7)

p2 × p6 × p8 = 0.0 (8)

The p1 pixel is not deleted if it does not meet all the conditions. The conditions
(3) and (4) are representing the differences between the first and second iterations of
proposed cloud-based biometric identification and authentication system. Here, both
of the iterations are used to the vein images repetitively until no change situation in
the vein image is obtained. This conditional thinning algorithm is fast enough, and it
needs a simple calculation which makes it most suitable to be used in the hardware
design of cloud-based biometric authentication and access system.

3.5 Output Vein Images

After the thinning process, the vein image has been saved in the “TIF” image format.
The “TIF” image format has been used because it preserves the binary value of the
vein image.

3.6 Hardware Design of Vein Image Enhancement
and Feature Extraction Algorithm

In this section, works related to the hardware design of the vein image enhancement
and feature extraction algorithm are reviewed in detail. Then, the theories and
related works associated with the hardware design of the proposed vein enhance-
ment and feature extraction algorithm are discussed in detail.

The authors [26, 27] implemented finger vein biometric feature extraction and
matching system using an embedded system on the Altera field-programmable
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Fig. 9 Embedded system architecture of the finger vein biometric system used for authentication
in cloud-based systems

gate array (FPGA) with Nios-II Linux Real-Time Operating System (RTOS) as
shown in Fig. 9. The proposed cloud-based biometric authentication system consists
of image acquisition, image preprocessing, feature extraction, and matching. The
image preprocessing consists of color to grayscale conversion to convert images
obtained to grayscale values. Then the grayscale median filter was used to smooth
the noisy background from image acquisition. For image region of interest (ROI)
segmentation, Canny edge detection technique was used. Then image alignment
and resize were applied to get the region of interest. After that, a Gaussian low-
pass filter was used to remove high-frequency noise in the image. After that, the
local dynamic threshold was applied to segment the image into a vein and non-vein
region. The binary median filter was applied to remove unwanted noise from the
threshold technique.

Finally, the thinning technique from Zhang et al. [27] was used to extract the vein
region to a single line vein. However, the disadvantage of the proposed biometric
system is that it is implemented using an embedded system that does not provide the
hardware parallel processing capability for use. Furthermore, intensive calculations
in the median filter, Canny edge, and thinning are time-consuming in addition to
being implemented in an embedded system with limited capabilities as opposed to
hardware.

The researchers implemented a finger vein biometric system on chip (SoC)
on Altera Nios2 FPGA development board with the Nios-II-Linux RTOS. They
improved performance by proposing a hardware–software co-design approach
which implements hardware for image preprocessing and image buffer manage-
ment, while the feature extraction and matching are implemented in software on
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Fig. 10 SoC architecture of the finger vein biometric system to be used for authentication in cloud-
based systems for accessing services [28, 31–33]

Nios-II as shown in Fig. 10. Figure 11 shows the image preprocessing techniques
consisting of a grayscale median filter, ROI, alignment and resize, Gaussian low-
pass filter, threshold, binary median filter, thinning and image buffer control, and
address generation implemented in hardware accelerator engine (HW Core) [28–
30].

Sun et al. [31] proposed a finger vein biometric system using digital signal
processor-based implementation. In the system, it was divided into two main
modules, image processing module and control module. The image processing mod-
ule’s function is to read the image input, image preprocessing, feature extraction,
and matching, while the control module function is to set the parameters of the
equipment and manage the communication control function. The algorithm consists
of Sobel edge detection to obtain the ROI. Then, noise reduction was applied to
reduce noise in the image and smooth out the image. High-pass filter was applied to
sharpen the image. Maximum curvature technique was used for image segmentation.
After segmentation, the median filter was applied to reduce impulse noise, and
finally thinning was used to obtain a single-line vein pattern.

4 Conclusions and Future Work

This research work presents the vein image enhancement and feature extraction
algorithm in a detailed way. The novel hardware design architecture of the vein
image enhancement and feature extraction algorithm has also been proposed in
this paper to further improve the performance of the algorithm by utilizing the
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Fig. 11 Vein image preprocessing techniques implemented in hardware [28, 34, 35]

parallelism capability in hardware [36, 37]. As a result, the proposed hardware
design performs significantly faster than any other related works. This paper also
describes the performance evaluation of the proposed hardware design of the vein
image enhancement and feature extraction.

In this research work, hardware design architecture of resampling is proposed.
The proposed hardware design is an efficient architecture that enables pipelining
computation with less hardware resource that excludes redundant calculation,
reduces computation complexity, and improves the throughput. For the interpolation
process, instead of using multipliers, shifters are used to reduce hardware usage.
Shift registers are used as an intermediate buffer between horizontal and vertical
interpolation so that memory buffer or FIFO (First In, First Out) is not required. The
hardware design architecture also features padding capability by reading the same
address of memory as before for the padding pixel. Here, novel hardware design
architecture of one-dimensional Gaussian technique that operates concurrently for
first Gaussian filter and second Gaussian filter is proposed [38, 39].

The hardware design architecture also features padding capability that comprises
of a coherent control unit that allowed the padding operation during data access.
Novel hardware design architecture of median filter is proposed. The improved
moving windows technique is proposed to accommodate a larger median filter
size which involves a lot of calculations due to filter size. In the improved
moving windows, instead of calculating all the pixels in the window, only certain
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pixels are calculated. The presented palm-dorsa-based vein image enhancement
feature extraction technique is useful for providing access and control rights to the
authorities or machines responsible for issuing control signals to the UAVs from
remote locations in cloud- and IoT-based wireless environment.
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Leveraging Unmanned Aerial Vehicles in
Mining Industry: Research
Opportunities and Challenges

Alok Ranjan, H. B. Sahu, Prasant Misra, and Bighnaraj Panigrahi

1 Introduction

Mining industry plays a crucial role in the economic growth of the country. There are
two predominant methods of mining, viz. opencast and underground. Additionally,
a few variations of opencast mining are also practiced, viz. strip mining, hydraulic
mining, placer mining, etc. In order to meet the increased demand of minerals,
there is greater stress on opencast mining compared to underground mining where
the production is limited. Moreover, with increased mechanization, it has become
possible to mine the minerals/coal occurring at greater depths from the surface. As
a result, the opencast mines are getting bigger and deeper. In fact, opencast mining
contributes to 93.31% of India’s total coal production [1]. Almost all of the iron
ore, manganese, limestone, dolomite, and bauxite are produced only by opencast
mining.

In this competitive market scenario, Coal India Limited (CIL, India) and other
mine industries have started several technology advancements in their different
opencast mines. The objective of such automation in the mine is to enhance the
safety of miners and improved productivity per shift of operation under the theme of
so-called Intelligent Mining. These initiatives involve the remote operation of mine
equipment, mine wide communication using fiber optic cable, strata monitoring
with new technology such as time domain refractometer (TDR), etc. [2]. However,
mining operations being dynamic in nature, efficient communication system still
remains a problem, particularly after a disaster. The provision of a robust and
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reliable communication system in deep opencast mines will not only enhance the
production, but also will improve the safety goals.

This technology revolution has opened the scope for a new class of emerg-
ing technology, particularly the unmanned aerial vehicles (UAVs) also known
as drones or unmanned aerial systems (UAS). Due to the ease of deployment,
high maneuverability and hovering ability, reduced maintenance cost and low
acquisition, UAVs are becoming practical choices for several commercial and
civil applications. Natural disasters, large sports events, emergency communication,
agriculture monitoring, search and rescue (SAR), constructions, etc. are few of the
application areas where UAVs have been researched extensively [3–5].

Though advancement in communication and mine automation in underground
mines are actively researched [6–8], very few findings about reliable wireless
communication and mine wide coverage infrastructures in opencast mines have
been reported in the literature. It is still a challenge and open research area to
the wireless designer community in order to propose a reliable communication
framework providing communication support at pit bottom and different benches.
Slope failures in opencast mines are a cause of concern. Sometimes men and
equipment get buried under the material due to slope failure. Providing a timely
rescue operation in such a scenario is of paramount importance. Timely exchange
of data (in the form of voice or video data) from the mobile terminal carried out by
the rescue team members at different benches to the command center and vice versa
is significant. However, the lack of communication infrastructure support affects
the rescue and speedy operation. Recent studies have advocated the use of UAVs
in mission critical applications such as natural disasters and on-demand temporary
communication coverage. However, positioning of UAVs, energy consumption, and
communication among UAVs are some challenges for such technology adoption.
Recent studies address positioning and energy efficient communication using UAVs
in a mission critical application [9, 10].

Motivated by such a challenging problem, safety improvement in mines, and the
promising features offered by UAVs, this chapter first presents an outline of the
potential application of UAVs in mines followed by basic networking architecture
and channel characteristics of opencast mines. A UAV assisted novel wireless
communication framework to support rescue operation in deep open pit mines is
then formulated and presented in the following section followed by the performance
evaluation of the proposed framework. In addition, different design considerations
for UAVs in mines have also been discussed considering different features of the
mining operation.

The rest of the chapter is organized as follows. In Sect. 2, we discuss the
background of different UAV platforms used extensively in recent time and potential
application in the context of mining industry. It is then followed by basic networking
architecture and channel characteristics of UAV based communication. A detailed
discussion on the design consideration of UAV based networking and communica-
tion is presented in Sect. 3. We then present our novel emergency communication
framework named SkyHelp for emergency wireless communication in an event of
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Table 1 Used abbreviations
and definitions

Abbreviation Definition

AB Aerial base station

BS Base station

CIL Coal India Limited

CNPC Control and non-payload communications

CS Command station

DSM Digital surface model

FSPL Free space path loss

GNSS Global navigation satellite system

ISM Industrial, scientific and medical

LiDAR Light detection and ranging

LOS Line of sight

LAP Low altitude platform

NLOS No line of sight

PER Packet error rate

QoS Quality of service

QoE Quality of experience

RPAS Remotely piloted aircraft systems

SAR Search and rescue

SFM Structure from motion

TDR Time domain refractometer

UAV Unmanned aerial vehicle

UAS Unmanned aerial system

mine disaster in Sect. 4. Detailed performance analysis of the proposed framework is
discussed in Sect. 5. We then conclude our findings reported in this work in Sect. 6.
Table 1 details the acronyms used in this chapter.

2 Background

UAV platforms can be classified mainly into two categories: fixed wing and rotary
wing. Fixed-wing UAVs can fly at higher altitudes with high endurance support.
This further makes it a suitable choice for applications which have wide spread
area and can be remotely located. These have high energy capacity compared to
rotary wing UAVs. Hence, such platforms can support events which require long
flight time. Unlike the fixed-wing platform, rotary wing platforms seem to be more
popular in applications such as natural disasters and temporary events [3, 4]. Due
to different advantages over fixed-wing platforms, viz. size, hovering capacity, low
altitude flight, and cost makes rotary wing platform a suitable candidate to support
different on-demand temporary wireless communication services in post-disaster
scenarios [11].
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Fig. 1 UAV based application in open pit mines

2.1 Potential Application of UAV in Mines

Some of the potential application areas of UAV based communication and mon-
itoring in opencast mines are presented in this section. Different UAV based
applications in mines have been classified, and it has been presented in Fig. 1.

2.1.1 Mine Surveying

Typically, in open pit mines, the topographical survey is not performed on a regular
basis because of expensive measurements, unavailability of proper equipment and
skilled professionals. Moreover, the survey based on satellite-based data is affected
by different climate factors such as clouds, raindrops, and sometimes the sand color.
Hence, to get meaningful data of the interested region within the desired time slot is
a challenge [12]. To solve this problem, recently UAVs are used for mine surveying
of the interested regions.

A Germany based company named AIBOTIX carried out a topographical survey
of Argyle gold mine located in West of Australia using a rotary wing based UAV.
The UAV had a camera and a total of 8 flights were performed to measure 1 km2 of
mine area. Each flight duration lasts 10–15 min. Later the same company performed
an aerial survey of Milas quartz mine of area 0.29 km2 using two UAVs. The
measurement data was then used to make a high-resolution digital surface model
(DSM). This DSM could be further utilized in the interpretation of any changes
in the topographical structure of the mine over time [13]. Similarly, a USA based
company, Prioria in Gainesville, Florida dealing in military UAVs at large scale
carried out an aerial survey to study the topographical conditions and also performed
an analysis of volumetric calculation, a complex task of stockpile management [14].
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To understand the potential of UAV based surveying and volume computation
in opencast mine, a comparative study on UAV based volumetric computation and
global navigation satellite system (GNSS) is carried out by Raeva et al. [15]. They
first performed the surveying task using the GNSS and later used a fixed-wing
UAV platform named eBee from senseFly for stockpile mapping of an open quarry
located in the Bulgarian capital Sofia. An accuracy difference of only 1.1% between
the UAV based computation and GNSS based measurement was observed in the
volumetric computation of stockpile. From the findings, it is understood that UAV
is a promising platform which could be used in opencast mine for such surveying
task offering a rapid mapping over the conventional method.

A discussion on the advantages of UAV based volumetric computation over tra-
ditional measurement methods viz. terrestrial light detection and ranging (LiDAR)
and GNSS is also reported in the literature [16]. A total of 13 objects were surveyed
using UAV, out of which only 6 findings had a relative error of 5%. Whereas due
to the poorly constructed 3D model, 7 objects were reported with a relative error
of 15%. It was suggested that the accuracy is directly proportional to the 3D model
constructed from UAV data. Nonetheless, the system provided a cost effective and
time efficient mapping compared to the traditional approaches. Few more recent
studies related to surveying and mapping of mining area using UAVs can also be
seen in the literature [17–19]. Though few recent works have been reported by the
research community, UAVs in such application category is still in a progression
phase and need the careful realization of such tool for efficient utilization and
coordination with daily mine activities.

2.1.2 Drilling and Blasting

Mining operation is highly mobile, and the topology changes are frequent. Once the
extraction of minerals is finished at some level, then further advancement of mine
areas for future extractions are required. To this, drilling and blasting operations are
the routine operations of a mine. In addition, the drilling operation is also performed
to serve several other objectives such as strata management and joints. Blasting
operation in mine causes for severe ground vibration and also results in fly rock
propagation causing environmental damages such as crack propagation in nearby
surroundings and houses and sometimes also caused injuries to the mine personnel
[20]. Therefore, mine safety regularities have fixed the minimum distance to be
followed by mine personnel from the blasting site to perform a blasting operation.
3D modeling approach may be useful to analyze the behavior of rocks and strata in
both pre and post analysis of blasting operation.

UAV based 3D modeling resulted from the post DSM could be further used to
have a relevant analysis of effects of blasting in nearby surroundings by comparing
both pre and post topographical changes due to blasting [12]. An example of such
an application is shown in Fig. 2. Moreover, a DSM could also be useful in regular
monitoring of mine sites. Hence, it will help in taking preventive measures to
achieve different safety goals.
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Fig. 2 Contours created using a UAV in open pit mine for analysis [12]. (a) before blasting. (b)
after blasting

A recent study by Bamford et al. [21] also supports the candidature of UAVs in
mine application. They used UAV in post-blast fragmentation analysis. The main
idea to use a UAV was to avoid the manual data collection which is costly and
time consuming. Further, a laboratory set up was carried out to study the rock
fragmentation analysis using UAV. In addition, a comparative analysis of UAV based
results with manual pile fragmentation was also performed. It was concluded that
UAV takes less time over conventional method and has high accuracy. However, the
work was limited to the laboratory environment.

2.1.3 Mine Management

In a mine, several mine equipment and fleet of mine trucks are used. Since
the mining activity is highly mobile, mine trucks and equipment are distributed
serving different purposes such as dumping of overburden from one place to other,
transportation of extracted minerals, and water sprinkling in mine roadways to
suppress the excess of dust concentration, etc. Regular monitoring of positioning of
mine trucks and equipment is crucial for efficient utilization of infrastructure, hence
will help in improved mine productivity per shift of operation. Moreover, as the
operation advances from one level to other the communication coverage to the new
site is typically not available, and it may take several days to have a fully functional
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two-way communication support. In such cases, to track the mine equipment and
trucks is a challenge.

To this challenge, UAV could be utilized on demand based tracking of mine
equipment and trucks. Such tracking support is highly reliable, real-time, and may
cover a wide area of the mine site. In addition to this, in case of a vehicle collision
at some level or in mine roadways, UAV is useful to serve as a reporting agent of
the accident location as UAVs are capable of providing aerial images, support rapid
deployment, high speed, and greater communication capabilities to the base station
or command center.

2.1.4 Mine Safety

Mine sites are highly exposed to safety problems. Regular and real-time monitoring
of strata behavior and dump yard is hard to perform, and the current measurement
techniques are either manual or periodic, hence vulnerable to safety risks and lives
of miners. Such measurement techniques may not accurately help in analyzing the
strata behavior and may cause for sudden collapses of slopes or benches, or even
a complete failure of dump yard which result in fatal injuries, loss of lives and
infrastructure losses. In addition to safety vulnerability, spontaneous heating of coal
is another concern for the mines [22, 23]. The sudden change in the temperature
beyond the threshold point may lead to a mine fire. To avoid such unforeseen
circumstances at the workplace in open pit mine, UAV based monitoring is recently
performed in United Kingdom (UK) by Hexagon. A thermal camera mounted on the
UAV is used to detect the heat arising from the area of interest such as running belt
conveyor. Moreover, a scope for the infrared based thermal camera is also studied to
further monitor the self-ignition of coal at stockpiles and in different working levels
[24]. Francioni et al. [25] also carried out research on the use of UAV based slope
monitoring with the integration of remote sensing technique in mining environment.

Salvini et al. [26] carried out a study on the geological investigation of a closed
marble mine in Italy using remotely piloted aircraft systems (RPAS). The main
idea behind using RAPS was to avoid the unfavorable conditions of surveying risks
due to different geomorphic properties of mine. A detailed characterization of rock
behavior is further analyzed based on the 3D model, and different recommendations
are provided to address the safety hazards due to strata or bench failures. When a
disaster takes place in a mine, it may affect a large working area and may also affect
the communication infrastructure. Considering such a scenario and dysfunctional of
communication and monitoring devices, UAVs could be useful in the establishment
of temporary communication support. Moreover, UAV could be utilized as a
message ferrying agent to gather data from one device to other which are out of
communication range from each other during any accident or mine disaster.

Another potential application of UAV in open pit mine is dust concentration
monitoring in mine roadways. It is observed that the high concentration of dust in
mine roadways have caused poor visibility. This poor visibility further may lead to
mine vehicle collisions and sometimes resulted in fatal injuries to the miners or loss
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of lives [27, 28]. In the present time, dust monitoring is done manually in most of
the open pit mines and is time taking. Moreover, to monitor the dust concentration
to different working levels is a very much complex task and needs more mine
personnel. A UAV based dust monitoring in mine roadways may help to map the
complete mine in a timely manner. Hence, quick response to dust suppression might
be achieved.

2.1.5 Mine Construction

In general, a mine is spread over several kilometers, and mining operation keeps on
advancing further to those planned areas. Initially, mine managements start their
exploration activities with the basic infrastructure required to carry out mining
activity. However, with time new construction plans and further advancement
of mine face will take place. Since the mine is wide spread and dynamic, a
reference geometry of the entire mine plan would be significantly useful to the
mine management for future construction plans. Such an example of maintaining
a reference point for the mine management is recently performed.

A fixed-wing based UAV was used to perform a topographical survey of a deep
open pit mine in Scotland with an objective of efficient mine management. The UAV
platform named eBee from senseFly, a Swiss company was used for this purpose.
The UAV covered an area of 0.51 km2 and captured 127 photos for the management
purposes from an elevation of 300 m. The captured images were then used to
develop a DSM and orthoimages for the studied mine. The developed DSM is now
being used for short term mine management and mine planning targeting different
environmental management tasks and construction planning [29]. In another effort
led by the largest gold mine company (BARRICK) in the world, a DSM for the
Pueblo Viejo mine in the Dominican Republic using the 3D modeling with an
objective of mine constructions and planning is developed. The collected data could
be further utilized as reference data for future mine management [30].

Nicoll et al. [31] also used UAV based aerial photogrammetry to avoid the safety
risks involved in the geotechnical studies. The collected data were further used to
study the crack propagation around the perimeter of the cave subsidence for better
management and construction of haul road. A UAV based hyperspectral monitoring
of acid mine drainage was performed by Jackish et al. [32] in the Sokolov lignite
district of the Czech Republic. They concluded that it is feasible to use UAVs for
mine monitoring application which may reduce the complexity of ground based
sampling and additional costs to perform such study. Jakob et al. [33] also supported
the feasibility of UAVs in mines. They further proposed a processing tool box for
frame-based hyperspectral imaging which can be used in precise corrections of
hyperspectral based imaging for geological mapping especially in rough terrains
such as mining sites.

Rauhala et al. [34] performed a UAV based surveillance of a mine tailings
impoundment in Sub-Arctic Conditions covering an area of 0.5 km2 of Laiva Mine
in Finland. The main objective of this project was to measure the potential subsi-
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dence of mine tailings. Structure from motion (SFM) photogrammetry was used to
generate the topographical structure of mine tailings so that structural deformation
could be tracked and reported in a timely manner. The findings suggested that
UAV could be utilized for the management of mine tailings for tracking surface
displacement and maintenance with an accuracy of decimeter range. Few early
findings on the use of UAVs in mine management and constructions are also
discussed in recent work [35].

Tables 2 and 3 list features of few UAV platforms recently used in mining
applications [13–15, 17, 18, 36]. A summary of a few recent studies based on UAVs
in mines is presented in Table 4.

2.2 Basic Networking Architecture and Channel
Characteristics

Reliable networking and communication protocols remained significant concerns
for the mobile networking researchers. In this context, 5G enabled networking and
communication need several research efforts in designing robust data communi-
cation protocols, new architecture design considering UAVs in 5G era, adaptive
routing, cross-layer protocol designs, and multimedia delivery [37, 38]. Since, UAV

Table 2 Fixed-wing UAVs
used for study in open pit
mines

UAV platform

Features eBee UX5 Maveric F550

Weight (kg) 0.69 2.20 1.16 3.87

Wing span (cm) 96 100 74.9 54.8

Battery (mAh) 2150 8000 NA 5500

Camera (mega pixel) 16 10 NA Gopro

Maximum flight time
(min)

50 45 45–60 20

Speed (km/h) 40–90 80 34–101 61.2

Wireless link range (km) 3 5 7.6 3

Table 3 Rotary wing UAVs
used for study in open pit
mines

UAV platform

Features Phantom2 eXom Inspri1

Weight (kg) 1.24 1.80 2.94

Wing span (cm) 35 56 55.9

Battery (mAh) 5200 8500 4500

Camera (mega pixel) 14 18.2 12

Maximum flight time (min) 25 22 18

Speed (km/h) 54 28–43 79

Wireless link range (km) 0.3 2 2
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Table 4 Recent studies on UAV based application in mines

Application UAV platform Altitude (m) References

Mine tailings monitoring Fixed wing 300 and 150 [34]

Surface extent variations and
volume prediction

Fixed and rotary wings 110.43 and 187.45 [17]

Quarry monitoring Rotary wing 50 [18]

Subsidence inventory Rotary wing 100 [19]

Geological investigation of
rock slope

Rotary wing 93.9 and 60.7 [26]

Acid mine drainage Fixed and rotary wings 50 and 120 [32]

Mine mapping based on
hyperspectral imaging

Fixed and rotary wings 50 and 118 [33]

Geological condition
monitoring

NA NA [31]

Blast fragmentation Rotary wing NA [21]

3D mapping of open pit and
archeological excavation

Fixed and rotary wings NA [36]

assisted emergency wireless communication coverage is also mobile in nature,
contributions in developing new routing protocols and networking architecture
will further advance the future research direction. However, depending on the
deployment environment the channel characteristics may change [39–41]. In this
section, the basic networking architecture for UAV based communication and
monitoring in open pit mines followed by different channel characteristics for UAV
deployments have been presented. Figure 3 depicts the generic architecture of UAV
network in mines for different applications perspectives and consists two links viz.
control and non-payload communications (CNPC) link and data link.

2.2.1 Control and Non-payload Communications

To ensure the safe operation of all UAVs, CNPC links are considered to be very
significant. These links should be highly reliable, capable of providing secure two-
way communications and delay bounded services to support mission critical data
exchange among UAVs, as well as command stations (CS) at the ground to UAVs,
e.g., mobile terminals mounted on vehicles on the ground. In a broader sense, CNPC
link information exchange is categorized into three main categories [42–44]:

• Control from CS to UAVs;
• Status of the aircraft information from UAV to CS at ground;
• Information exchange among UAVs

Considering the case of autonomous flight of UAVs in case of any emergency,
e.g., unusual behavior of UAV due to any malicious practice or malfunction, the
CNPC links are required for the explicit intervention of a human. Due to the
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Fig. 3 Basic networking architecture for UAVs in mines

different critical functions and tasks assigned to UAVs, it is suggested that CNPC
links, in general, should operate in the protected spectrum bands. In the present
scenario, two such bands have been allocated known as L-band, and C-band operates
in the range of (960–977 MHz) and (5030–5091 MHz), respectively [45]. However,
researchers have also explored other bands such as industrial, scientific and medical
(ISM) to explore the capabilities of UAV based communication and networking.

Though direct CNPC links between CS and UAVs are preferred and act as
primary links due to delay bound services, secondary CNPC links could be
established via satellite act as backup links. This will further enhance the reliability
of the network. It is to be noted here that an effective security mechanism for CNPC
links is required to protect the UAVs from unauthorized users or individuals which
may control the UAVs flight causing ghost behavior and functionalities. To this
security mechanism, emerging physical layer powerful authentication techniques
could be applied to CNPC links in UAV based wireless communication.

2.2.2 Data Link

The data links aim to support mission-specific communication need. This may
further include different communication devices depending on the application
requirement such as mobile terminals, terrestrial base stations (BSs), gateway
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nodes, wireless sensor nodes, etc. Considering the on-demand UAV aided temporary
wireless communication and monitoring in deep opencast mines, the data links
maintained by the UAV should support the following modes of communication:

• Communication between mobile units to the UAV in case of BS is malfunctioned
or dysfunctional and offloading of data to the BS;

• UAV to gateway nodes and UAV to BS; and
• UAV–UAV communication.

Depending upon the application requirement, the capacity of such links may vary
from few Kbps to Gbps.

2.2.3 UAV-Ground Communication Channel

In comparison to piloted aircraft where the wireless channels of air-ground com-
munication are well understood and researched, experimental measurements and
extensive simulation studies of UAV-ground wireless communications are still
ongoing and is an area of interests to the wireless communication community. The
propagation environment of UAV based wireless communication is quite complex as
compared to the piloted aircraft which are having high rise antenna towers mounted
in open space usually [42]. However, in case of UAV based wireless communication
channel for the air-ground communication link, it may or may not have a clear line
of sight to BS/command center or gateway devices in case of data collections [46].

In general, it is expected that for air-ground communication channels there
should have a line of sight (LOS) links. However, in certain situations viz. terrains,
high rise dense buildings, or due to man-made structures such as subway, links
might be obstructed and caused for no line of sight links (NLOS) [47, 48]. In fact,
recent studies have detailed that for low altitude platforms (LAP) for wireless and
broadband communication services, an air-ground channel suffers from different
multipath components due to scattering, reflection, diffraction by hilly terrain or
buildings in both urban and near urban environment, and foliage distributions, etc.,
[49, 50].

The channel characteristics of open pit mines are not the same as of normal
propagation environment such as free space, urban and suburban environment, etc.
For example, an open pit mine has slopes and benches enriched with minerals
causing for high reflective surfaces, hence work as attenuators for radio propagation.
Moreover, the change in the topology of mine benches further makes reliable
communication coverage a complex task. For UAV based wireless communication
and broadband services, researchers have studied and implemented different channel
models of which widely used channel models for different use cases are free space
when there is a dominance of LOS probability, a two-ray model for over sea surface
and agriculture monitoring, and stochastic Rician fading with deterministic LOS
component [46, 50, 51]. Nevertheless, UAV to ground channel modeling in case of
measurements performed in the mining environment is yet to be studied and needed
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in near time to provide UAV based communication and networking services in both
routine and emergency scenarios.

2.2.4 UAV–UAV Communication Channel

In case of UAV–UAV communication channel the effect of the multipath component
on the link is comparatively minimal than that of air-ground communication
channels, hence results in better link quality. However, a UAV–UAV link may
suffer from high Doppler frequencies due to the relative velocity of UAVs for
wireless communication or data exchange [11, 52]. More systematic measurements
in this regard would be helpful to develop an understanding of such UAV–UAV
communication link and their impacts on different prospects such as spectrum
allocation, the capacity of the network, routing protocols and reliability considering
unique propagation environment characteristics of open pit mines.

Though few works have been carried out to perform surveying, digital map
generation, and pre and post analysis of blasting operation in mines; to the best
of our knowledge, no such study is reported which detailed and discussed the
UAV aided wireless communication network in the open pit mine environment.
Therefore, it would be an interesting research problem to understand the signal
propagation behavior in open pit mines considering different measurement scenarios
and how the propagation characteristics are different than the propagation in a
normal environment. In addition, proper systematic measurement and consideration
will help to formulate different application requirement and novel communication
and protocol design targeting such high-stress work environment.

3 Design Considerations

3.1 Optimized Path Planning

Considering the potential applications of UAVs in mines, path planning of UAV
is a significant concern for the reliable design of UAV based networks in mines
offering different services. Appropriate path planning may effectively reduce the
communication distance between UAVs and sensor nodes. In addition, this could
also be a case for the UAV–UAV communication link. This will further help to
achieve the high-capacity performance of UAV based communication networks.
However, optimization of UAV path considering different application scenario in
mines is a complex problem. Such optimization of UAV path planning needs
more systematic measurements, and modeling approach as the mine propagation
environment is different than the normal terrestrial scenarios such as urban or
suburban UAV aided networks [53].
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The optimization problem of UAV path planning in mines further has two
aspects. First, path determination and continuous tracking of the trajectory of UAVs
in mines, which involves several variables that might affect the path planning of
UAVs in mines viz. UAV speed, the spatial distribution of sensors (in case of data
gathering), antenna orientation, and altitude, etc. Second, constraints which are
practical in nature and need to be considered such as the reliable and robust link
between UAV and node, flight time, collision avoidance, desired data rate support
and network capacity, etc. [54]. However, modeling all practical constraints are
difficult and also may vary for different propagation environment targeting different
applications.

It is imperative that the path determination of a UAV in mines will also depend
on the type of application. For example, in order to support a disaster scenario in a
mine, it is evident that there should be more than one UAV deployment to provide
communication coverage to the users at ground; whereas tracking of mine vehicles
may need only one UAV for information exchange. In addition, data collection
from sensors monitoring strata behavior/dump slope will require only one UAV for
data dissemination, as such kind of data exchange follows delay-tolerant network
application, hence can be periodically reported. However, considering the disaster
scenario and rotary wing UAVs to be deployed and serving as an aerial base station
(ABS), in such cases finding an optimal altitude of UAV for wireless communication
support is another crucial problem. Notably, researchers have studied the optimal
altitude of UAVs for the provision of wireless and broadband services targeting
maximum coverage in an urban and suburban environment, but is yet to be
ascertained for mining scenario [45, 55]. Hence, optimal altitude study and coverage
analysis of UAVs in open pit mines are open research problems.

3.2 Energy Efficient Communication

Though UAVs have been exploited in different civil and military applications in
the past, but the on board energy and flight time always remained a concern to
researchers. In a broader sense, such energy constraint problem can be solved
through two different approaches. First, on board energy management mechanisms
for different communication supports. Second, replenishment of energy source with
minimum compromise in communication links. Hence, it should not affect the
quality of service (QoS) [56, 57].

In the context of application in mines, on-demand temporary wireless communi-
cation coverage is required during advancement of mine operation from one level to
other, where no basic communication infrastructure is present. In such a scenario,
considering more than one UAV serves the purpose of reliable wireless commu-
nication coverage than an adaptive energy replenishment scheduling mechanism
exploiting inter UAV distance by increasing the transmission power can significantly
help to achieve energy efficient deployment. In addition, the scheduling mechanism
of energy source should be in such a manner that it should not affect the network.
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One approach to this scheduling may be to identify the types of data traffic in a
particular shift of mine operation. Hence, the time slot where the low data rate
traffic is expected (for instance, fleet monitoring and reporting) could be used to
implement the scheduling mechanism. Energy efficient communication support,
on the other hand, aims to minimize energy consumption while communicating to
sensor nodes/gateway devices or UAV–UAV communication. This can be addressed
by different mechanisms, of which the significant ones include efficient routing,
controlled mobility, and optimized access mechanisms.

4 UAV Aided Emergency Wireless Communication

In this section, the on-demand UAV assisted emergency communication framework
to support rescue operation in deep open pit mines is discussed. It is then followed
by proof of concept of the proposed emergency communication framework named
SkyHelp for mine safety and rescue operations.

4.1 Proposed Framework

Due to the increased demand of raw materials, the mining operation is going deeper
day by day. To this increasing deep operation, mine personnel is exposed to risks
of accidents and injuries. Also, several mine equipment is widely spread involved
in different kind of mine activities. It is evident from the past disasters in deep
opencast mines that bench failure and dump failure caused for many fatal injuries
and loss of lives [20]. Moreover, such disaster also leads to infrastructure losses
to the mine management, which hampers the overall productivity of a mine. One
of the most common reasons for communication failures in opencast mines is the
destruction of infrastructure during a bench collapse. In fact, given the nature of
deep mining via open pits, any strata failure at the top level has a ripple effect
on the mine benches below it; which not only dysfunctionalizes the respective
equipment but also causes serious injuries to the mine personnel. Figure 4 shows
a case of bench/strata failure in open pit mine. Moreover, such consequences will
lead to a complete communication blockage to the affected mine site. In such events,
providing a timely rescue operation to the miners trapped beneath the ore body or
rocks is of paramount importance for the mine management. In addition, such timely
rescue will help to mitigate the effects of a disaster to the miners.

4.1.1 The Design of SkyHelp

In case of a disaster in any mines, the first priority is to rescue the miners to
save theirs’ lives and minimize the infrastructure losses. In this context, speedy
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Fig. 4 Slope failure in Bingham Canyon mine [58]

rescue operation and emergency response are the most critical steps and should
be conducted quickly and efficiently. The major problems to achieve these tasks
are lack of communication infrastructure and situational awareness during a mine
disaster due to remote and wide spread operation of mines. Hence, affecting
the search and rescue (SAR) operation in mines. Therefore, in this work, an
emergency response system named SkyHelp has been proposed. The idea behind
the SkyHelp framework for emergency response in deep open pit mines, given the
high dynamism of the operations environment, is to use an UAV as the immediate
responder to resurrect the communication link between the mine personnel (trapped
in the deep pit) and the remotely located base station (on the mine surface).

4.1.2 Wireless Channel Characteristics of Opencast Mines

The study of wireless channel characteristics in opencast mines is limited [59, 60]
as opposed to underground mines [6, 61–63], and it is often seen similar to free
space radio propagation. However, a recent work by Barbosa et al. [64] disapproves
of this hypothesis and shows a compelling need for better wireless channel model
for this application category. Based on the recent experimental findings carried out
in deep open pit mines, a modified free space path loss model for the wireless
communication channel is adopted in our work [59]. The modified model consists
of two components.
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• The inverted pyramid architecture (due to the unique topology from pit bottom
to surface) for communication from the deep pit bottom to the mine surface and
vice versa; and is affected by severe multipath (due to structural constraints) and
signal attenuation (due to the material absorption).

• The straight line architecture for communication between the surface landing
station and the base station.

The consolidated end-to-end path loss is given as follows:

FSPLinverted = 25 log10(d) + 25 log10(f ) + 32.44 (1)

FSPLsurface = 23 log10(d) + 23 log10(f ) + 32.44 (2)

where: d = distance of the receiver from the transmitter in km, f = signal
frequency in MHz. For this work, the path loss exponent of 2.5 and 2.3 are used
for the inverted pyramid and straight line architectures, respectively; and is based
on the results reported by De Almeida et al. [59].

4.2 SkyHelp Framework

The proposed architecture is shown in Fig. 5, given that a mine disaster at any
level may cause physical damage to the installed communication and monitoring
infrastructures. Emergency communication framework may be classified into three
categories.

• Case 1—No UAV: It may happen that due to the physical damage of the
communication gateways, the only mode could be a direct communication link
between the pit bottom and the BS, and vice versa; but with no line of sight
(NLOS). This NLOS is mainly due to the topographical features of the open pit
mines.

• Case 2—One UAV: Here, one UAV as the relay or forwarder node is introduced,
which would hover at some specified distance from the pit bottom, with
direct line of sight (LOS) between the user devices and the UAV. Hence, the
communication link will be better than the former defined case.

• Case 3—Two UAVs: As the mine operation goes deeper, it may happen that one
relay node may not provide good coverage between the pit bottom and the BS.
In such a case, an additional UAV could be used to close the coverage gap.

5 Performance Evaluation and Preliminary Analysis

In this section, performance evaluation and preliminary analysis of SkyHelp
framework are presented. For the analysis, a detailed simulation study is performed.
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Fig. 5 Proposed emergency
communication framework in
deep open pit mines. (a) No
UAV, during disaster. (b)
Introducing one UAV post
disaster. (c) After disaster,
two UAVs for deeper pit
coverage
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MATLAB 2015b is used to build a simulation model for UAV based emergency
communication. A signal frequency of 2.4 GHz is chosen for link characteristic
analysis. Different pit depths, viz., 100–600 m are considered. The motivation
behind considering greater pit depths is to illustrate the benefit of the proposed
framework. Table 5 lists the simulation parameters used in this study.

Based on the channel characteristics, a user transmits 1000 bits to the receiver
from its location. It may be noted here that for No UAV scenario, BS serves as a
receiver. However, in case of one UAV, the user first transmits all data packets to
the UAV working as relay and the UAV then transmits all data packet to BS. Same
assumption is followed in case of two UAVs for deep open pit mines. Nevertheless,
the total hops in the latter Case will be more compared to the former two Cases.
For all the categories (described in the above subsection), the distance between the
user to the BS/command center is 600 m. However, in the case of one UAV working
as a relay or forwarder, the distance between the UAV and BS is 500 m whereas
the distance between the user and UAV is 100 m from the pit bottom to UAV flying
at the surface and it keeps on increasing till 600 m. In case of increased depth (for
example, 200 m), two UAVs have been used for the analysis. The distance between
the UAV hovering close to the user is fixed at 100 m, and the distance between the
UAV-to-UAV is also 100 m. The same deployment setting is assumed for rest pit
depths consideration. For the UAV flying near to the surface, the distance between
the UAV and BS is 500 m which is same as of with one UAV consideration.

To validate the assumptions of guaranteed communication during a disaster in
deep open pit mines following performance metrics are considered.

• End-to-End Packet Error Rate (PER): It is defined as the successful packet
received at the BS from the receiver and vice versa.

• Successful End-to-End Per Packet Delay: It is the performance metric used
to measure the total transmission delay of each packet which is successfully
received at the BS and vice versa.

• Number of Retransmission: It is the measure to express the total number of
attempts to transmit a packet to BS and vice versa based on the channel condition.

• Successful End-to-End Per Packet Energy Consumption: The total amount of
energy consumed to transmit a successful packet to the BS and vice versa.

The plot for end-to-end PER is shown in Fig. 6. It is observed that when there is
no UAV (case 1, 100 m pit depth), the end-to-end PER is 0.98; whereas introduction

Table 5 Simulation
considerations

Simulation parameters Values

Transmit power 20 dBm

Bandwidth 1.4 MHz

Signal frequency 2.4 GHz

No of bits 1000

Depth of pit bottom 100–600 m

Noise figure −95 dB
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Fig. 6 End-to-End PER
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of one UAV in the emergency communication framework (case 2, 100 m pit depth),
the end-to-end PER is significantly reduced and is recorded as 0.0051 only. This is
because in the case of no UAV, the communication link is unreliable and packet drop
is more due to the inferior signal reception at the receiver. However, introducing one
UAV reduces the total distance between the transmitter (user node) to the receiver
(UAV as a primary BS to the user).

This finding confirms the benefit of utilizing UAV during an emergency in
mine accidents and ensures the reliable communication link between user and
receiver. Encouraged from the initial results, further investigations were performed
to understand the communication coverage with only one UAV. Therefore, different
pit depths were considered, viz. 200 up to 600 m with a uniform depth gap of 100 m.
The objective behind this assumption was to consider the practical mine depths
which is typically followed for mineral exploration. It is analyzed that the end-
to-end PER for greater depths, viz. 200 and 300 m were limited to 0.0051 only.
However, the end-to-end PER slowly increases after 300 m pit depth and reached a
maximum value of 0.98 which is same as of Case 1 (No UAV) where the user has to
communicate directly to the BS. This suggests that one UAV can serve the purpose
of providing wireless coverage in an event of emergency up to a depth of 500 m only.
If the pit depth is more than 500 m (which is the case of several open pit mines in
real-world) then another UAV could be used to fill the communication coverage gap.
This can be seen in Fig. 6, where second UAV has an end-to-end PER of only 0.0077.
In the event of an emergency, delay bounded communication is very crucial. A quick
response is possible if the message is delivered in a timely manner. Considering the
catastrophic event of slope failure in mine, successful end-to-end per packet delay
for each case is also performed. The result for this parameter is shown in Fig. 7.
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Fig. 7 End-to-End Per
successful packet delay
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From the plot, it is observed that No UAV case has the highest successful per packet
end-to-end delay compared to one UAV and Two UAV cases for all pit depths.
Though the hops in case 2 (one UAV) and case 3 (two UAVs) are more compared to
case 1 (no UAV), the delay for each successful packet transmission is less. Hence,
the proposed communication framework ensures the quality of experience (QoE) to
the end users.

Considering the channel characteristics of open pit mine, it is learned from
the path loss that the channel quality for case 1 (No UAV) is severely attenuated.
Hence, such link will affect the communication between user to BS and vice versa.
Therefore, an analysis of number of retransmission per hop and end-to-end number
of retransmission for each use case is also performed. Plots for both assumptions
are shown in Figs. 8 and 9 for number of retransmission per hop and end-to-end
retransmission per packet respectively.

It was observed that for each single packet the total number of retransmission
required in case of no UAV is 61; whereas it is reduced to only 1 after consideration
of one UAV in the proposed framework. The same was noticed in the case of two
UAVs. The end-to-end retransmission per packet for different pit depths can be
seen in Fig. 9. It is observed from the plot that the number of retransmission is
significantly reduced in the case of UAV based communication infrastructure. The
rest of the observations were the same as of end-to-end PER and delay.

6 Conclusion

In this chapter, different potential application of UAVs in opencast mines is
formulated and discussed in detail. Considering the future utilization of UAVs
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in both routine to an emergency scenario in mines, a basic communication, and
networking architecture is also proposed. In addition, the scope for UAV based
wireless emergency communication framework in deep opencast mines is proposed.
As a proof of concept, detailed performance evaluation of the proposed novel
communication framework named SkyHelp is carried out. Different performance
metrics for this objective is considered such as end-to-end PER, end-to-end delay,
and per packet retransmission. It is shown that UAV serves as a useful tool during
an emergency scenario and fills the coverage gap when there is no communication
infrastructure. From the detailed analysis, it is found that the proposed novel
framework significantly improves the wireless communication services during an
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emergency. It is believed that the proposed framework could be very useful to
provide a speedy rescue operation and may serve as a reporting agent in case
of any mishaps. As a future work, we intend to perform real-time measurements
and channel modeling for UAV based wireless communication and monitoring in
operational open pit mines. We believe that the findings and challenges discussed
in this chapter could be utilized in advancing the future research in this application
category.
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UAV and Fog Computing for IoE-Based
Systems: A Case Study on Environment
Disasters Prediction and Recovery Plans

Mohammed Al-Khafajiy, Thar Baker, Aseel Hussien, and Alison Cotgrave

1 Introduction

With the rapid increase of population in cities and the continuous movement of
people from rural areas to the cities, the challenges for city’s administrators who
are striving to maintain or enhance the city’s services and the citizens quality
of life (QoL) [1] increase. This push the community to adopt and invest in new
technologies to help city’s administrators to not only control the city, but also
to provide reliable, sustainable and high quality of services to the citizens. This
results in adopting various types of embedded systems that rely on sensors, actu-
ators, drones, machine learning technologies and different type of data processing
mediums (e.g., fog and edge computing) to create intelligent and powerful internet
systems, introducing the so- called internet of everything (IoE) [2, 3], hence bringing
the concept the smart city (SC) as everything becomes connected and able to
exchange data [1, 4]. IoE and SC technologies are rapidly becoming interested in
utilising the advanced information and communication technologies (ICT), such as
robotics and unmanned aerial vehicles (UAVs) [2] in order to provide convenient
services. The goal of SC is to provide efficient infrastructures and services that
satisfy citizens’ needs, whilst reducing costs. The European Network of Living Labs
and EPIC (i.e., European Platform for Intelligent Cities) defined the SC as “The
use of discrete new technology applications such as RFID and Internet of Things
through more holistic conception of intelligent, integrated working that is closely
linked to the concept of living and user generated services” [1, 5].

ICT aims at developing efficient infrastructures that involve dynamic moni-
toring and adjustments to the infrastructures to handle sudden occasions, such
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as environmental disasters and hazards. Environmental disasters are events that
cannot be prevented [6]. The physical extent of the disaster makes it very hard
and in some cases completely impossible for humans to react to it and face the
problem [7]. In addition, after a disaster occurrence, it is usual that most of
the communication infrastructures were collapsed due to the damage created by
the disaster to the infrastructure [6], such as communication antennas, control
stations, power resources, etc. Nevertheless, some systems such as natural disaster
management systems can be used to forecast that neutral disaster is approaching.
Hence, their effects can be mitigated by adopting proper early warning systems
and post-disaster recovery plans, thus aiding the communication systems that are
essential to support disaster management systems. Therefore, the ICT recent trend
is about adopting the use of UAV and fog computing as a data processing medium
for disasters management.

UAVs can be adopted for both pre and post disaster systems processes. The UAVs
are able to aid the pre disaster processes by providing a real-time data from the sky
about any environmental changes that could lead to a disaster or forecasting that a
disaster is approaching [1, 8]. UAVs can fly over certain areas in a given time-period
and with a given update-frequency to monitor and assist in disaster prediction and
taking actions when it occurs [5, 9]. Also, in post disaster situations, UAVs can assist
rescue teams to find vulnerable people or maintain connectivity with vulnerable
people and direct them to safe areas and evacuation routes based on the information
gathered when disaster is progressing.

Fog computing also can be adopted for both pre and post disaster system
processes. Fog computing is used to gather and process data gathered from wireless
sensors network (WSN) in the pre disaster period. Fog nodes can be disrupted over
the city and form a mesh network to process WSN data in real time and report back
to control stations [10, 11]. Fog node can be deployed with some machine learning
algorithms to act upon, and learn from, the data collected from WSN. Hence, fog
nodes will be able to make intelligent and powerful networked systems for natural
disaster forecasting [1, 12]. Although fog nodes can be very useful for pre disaster
system processes, they are least effective/important in post-disaster processes as
they might be collapsed/damaged by the disaster. However, they might able to
indicate that a particular area might be affected.

This chapter highlights the importance of UAVs and fog in serving natural
disaster management systems. UAVs can work independently or in collaboration
with fog nodes in the monitoring processing by involving the cameras and WSN to
collect and analyse huge amounts of data in real time. Fog nodes assist the UAVs
in processing data due to UAVs on-board micro-processors limited capacities. The
remainder of this chapter is organised as follows: Sect. 2 provides an overview of
the disaster management related technologies of IoE, UAVs and fog computing.
Section 3 addresses the general technical connectivity of deploying both UAVs and
fog nodes for disaster management. Section 4 presents the stages of a natural disaster
along with the use of UAVs and fog nodes in disaster monitoring, early warning and
planning search and rescue missions. Finally, Sect. 5 concludes this chapter.
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2 Background

Smart cities (SC) are cities that adopt and invest in smart solutions and recent
technologies to improve the quality of life (QoL) for the citizens. SC vision is not
only to enhance the QoL by creating efficiency, improve sustainability, servicing
needs and better utilising resources, but also to reduce the negative impact on the
environment [1] by early warning for natural disasters. The SC concept integrates
information and communication technology (ICT), and various physical devices
connected to the network to optimise the efficiency of SC operations/services and
make the citizens connected [4, 13]. SC technologies allow infinite control for
administrators and services to interact directly with both community and infras-
tructure to monitor what is happening in the surrounding community/environment
as well as managing urban flows and allow real-time responses [4]. Therefore, SC
could be more prepared to respond to challenges (e.g., disasters) than normal cites
with a simple traditional relationship with its citizens, community and environ-
ment [14]. Important properties of SC systems and applications are the robustness,
resource efficiency, being adaptable and cooperativeness. Thus, SC systems bring
together the power of internet of everything (IoE), unmanned aerial vehicles (UAVs)
and fog computing to serve public needs and improve the QoL.

2.1 Internet of Everything

Internet of everything (IoE) is the network of physical devices which is able to
establish connections among each other and exchange data. In IoE area, the concept
of Everything refers to anything able to connect to the Internet and exchange data
over this IoE network, thus, this could point to a diversity of devices (e.g., wearable),
vehicles (e.g. smart cars), smart home appliances (e.g., smart appliances), and so
forth.

Cisco IBSG estimated that approximately 50 billion sensors will be connected
to the IoE as soon as 2020 [10, 15]. According to IBM, currently we are creat-
ing 2.5 Quintillion bytes of data every day through different sensing devices [16]
worldwide. International Data Corporation predicts that from 2005 to 2020, the
digital universe will grow from 130 exabytes to 40,000 exabytes, or 40 trillion
gigabytes (i.e., more than 5200 gigabytes for every human on earth in 2020) [16].
It is clear that we are entering the era of “Big Data” which is accelerated by
unmanned aerial vehicle (UAV) which feeds the network with heavy-weighted data
packets from its on-board camera [10, 11, 17]. UAV’s emerging technology becomes
widely accepted for video surveillance applications/systems due to its abilities in
monitoring a target from the sky using the on-board cameras and sensors to collect
huge amounts of data in real time and transmit them to ground stations.

Information and communication technology (ICT) is continuously enhancing its
infrastructure to provide appropriate data processing mediums to serve the massive
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data generated by the IoE. Thus, providing secure transformation channels, rapid
processing and proper use of data. ICT-based operation models that organisations
adopt have been swinging from centralisation (e.g., mainframe) to decentralisa-
tion (e.g., client–server) and vice versa. The latest swing towards centralisation
embraces Cloud computing by making software, platform and infrastructure
available to organisations as services (i.e., anything-as-a-services) or utility in return
for a fee. However, research has proven that cloud may not be a feasible solution
for IoE data due to several factors such as high latency [18], network bandwidth,
reliability and security [18, 19]. A new swing rises toward the adoption of f og

computing, hence developing the ICT to become the future trends, thus, attracting
the Research and Development (R&D) community.

IoE-based systems bring together the power of embedded smart things (e.g., sen-
sors and actuators) and flying-things (e.g., UAVs) along with the data processing
mediums (e.g., fog and edge computing) to create intelligent and powerful net-
worked systems.

2.2 Unmanned Aerial Vehicle (UAV)

The continuous development of robotics resulted in serious enhancements to the
design and capabilities of UAVs. In varying sized inexpensive UAVs equipped
with microprocessors, local data storage as well as on-board sensors, actuators and
cameras. In addition, most UAVs are supported with a wireless communication
device that enables UAVs to establish various types of connections with either other
UAVs or ground controllers. UAVs are reliable and operate with high level of flight
stability, unlike a few years ago when UAVs could lose communication or lose
sustainability which leads to UAVs overturning. UAVs were mainly developed for
military applications, but also numerous civil applications have recently emerged
and contributed in improving UAV capabilities in a more cost-effective manner [1].
The on-board UAVs system is usually able to offer various types of services
ranging from sensing and navigation to data gathering and processing besides
the transformation of these data to ground stations. UAVs also called drones
have received increasing interest for environmental and natural disaster monitor-
ing [20], border surveillance, emergency assistance, search and rescue missions,
and relay communications [1, 20]. UAVs are useful, especially small multi-copters,
in monitoring practices due to their ease of deployment and low acquisition and
maintenance costs [20].

The incredible advancement in developing small and cheap UAVs has resulted in
having the UAVs deployed and adopted in different industries, also their reliability
and efficiency makes it more acceptable for the public. The typical architecture of a
UAV consists of number of inter-connected components and sub-systems that allow
UAVs to operate to such high performance. The main systems and components are
flying control systems including landing processes, communication control system,
monitoring system, sensors, actuators and data processing system.
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Table 1 Most common
technologies used in UAVs
networking [9]

Technology Type Available at

VHF, UHF 915 MHz (UHF) [24]

IEEE 802.11 (Wi-Fi) IEEE 802.11a [25]

IEEE 802.11b [26, 27]

GPRS, 3 G, LTE [28–30]

Satellite [30, 31]

Airmax [32]

There are two main types of UAVs, the types are identified by the actual archi-
tecture of the UAV, it can be either fixed-wing UAVs architecture or rotary-wing
UAVs architecture [21]. Fixed-wing UAVs are airplane-like vehicles. These UAVs
perform horizontal takeoff-and-landing operations, such as passenger airplanes,
while the rotary-wing UAVs perform vertical takeoff-and-landing. Hence, they can
hover on a specific location during the flight, this feature is especially important
for surveillance UAVs. Some UAVs that are generally formed as wireless ad-hoc
network are called aerial ad-hoc networks (AANETs) [22, 23]. AANET vehicles
have the ability to move at high speed or, on the contrary, to maintain specific
positions when it is needed [9], this type can be found in helicopter-like architecture.
Moreover, UAVs make advantage of the fact that air-to-air communications usually
are less affected by disruptions than ground-to-ground communication links [9].

Different technologies have been used for communications within the UAV
networks to establish sustainable communication among UAVs or between a UAV
and base stations. Table 1 presents some of the most common technologies used in
UAVs. It is worth noting that several UAVs development do not rely on only one
technology but multiple ones are adopted. This is extremely important for UAVs
to have backup plan when one UAV system is not available due to failures. Thus,
there is still the possibility to use an alternative one for the connection with the other
UAVs or ground station. The IEEE 802.11 is always the main choice for designing
UAVs networks due to its massive use in commercial wireless devices as it can offer
high bandwidth [9]. However, IEEE 802.1 technology would only support star or
multi-star topologies. Other technologies would be required to implement the ideal
case of hierarchical or flat mesh networks [9, 33].

2.3 Fog Computing

Smart city system applications rely mostly on data provided from sensors, actuators
and other wireless devices. These applications and systems are normally integrated
with a cloud-based data centre to perform the required processing and analysis
of the data for various purposes. Cloud-based approach is adopted for long term
now and it is good enough for data storage, powerful processing and advanced
services. However, with the emerge of IoE and UAVs the generated data every
second becomes much bigger than it used to be, hence a greater demand on



138 M. Al-Khafajiy et al.

developing and new data processing mediums becomes essential. Nevertheless,
integrating IoE applications with the cloud has many restrictions as the cloud cannot
deal with the essential characteristics and requirements of IoE applications such as
highly heterogeneous devices, mobility, low-latency responses, location and context
awareness [1, 10]. Fog computing was proposed by CISCO [10, 17] to overcome
these restrictions.

Fog computing can improve the cloud computing paradigm by offering smaller
platforms located at the network edges closer to the IoE devices and networks.
Fog computing offers the ability to extend the storage, networking and computing
capabilities of the cloud but with better positioning within the network in relation
to the end-devices, such as IoE smart objects, that require this data with low
latency [10, 17]. Fog computing is not a replacement to cloud, but only extends the
services to the edge of the network with the ability to reduce latency and improve
availability to the end-users. Using fog computing, an application in a certain area
can utilise an architecture that uses a dedicated computer available locally. This
provides access to computing and storage services at a smaller scale, but very close
to the application, thus reducing response times and providing localised services. As
a result, access to cloud services can be minimised, yet efficiently accessible when
needed [1, 10].

A new paradigm of UAV-based fog computing was introduced recently [12]. This
paradigm brings together the power and advantages of fog computing and UAVs
to better support IoE systems and applications by utilising UAVs services along
with the support of fog nodes services to achieve certain tasks forming UAV-Fog
networks. UAV-Fog computing can provide flexibility, mobility and fast deployment
features to support IoE systems in a smart city. UAV-Fog can be used for different
purposes, such as disaster management systems. For example, in disaster situations,
UAV-Fog can be deployed to support search and rescue operations.

3 UAV-Fog Collaboration and Coordination

This section of the chapter discusses the network between UAVs and fog
nodes, including both collaboration and coordination modes for the networked
UAVs and fog nodes, see Fig. 1. Simply put, the horizontal networking among
UAVs (e.g., UAV-2-UAV) or fog nodes (e.g., Fog-2-Fog) is a collaboration mode.
This collaboration mode triggers when two or more networked objects (i.e., UAV
or fog) are networked to serve one user or works toward achieving one task. For
example, two UAVs monitor the two sides of a long-bridge and report to each other
upon hazard detection to take action like informing the rescue team or closing down
a bridge, while the vertical networking among UAVs and fog nodes (e.g., UAV-2-
fog or fog-2-UAV) is a coordination mode. This coordination mode triggers when
a UAV networks with a fog node or vice versa. Such mode occurs when a process
needs to be carried out over several steps. For example, due to the limited processing
capabilities of the UAVs, they will not be able to process live images taken by its
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Fig. 1 Smart City with UAVs and Fog computing

on-board camera, therefore, fog will help in performing image processing for these
images and report back to the UAV.

3.1 Collaborative UAVs

The minimal design requirement of any UAV must include a micro-controller and
wireless transceivers [34]. UAVs are equipped with a micro-controller to process
received commands and allow to be externally controlled via remote controller
where desired. In addition, the wireless transceivers are embedded in UAVs to allow
UAVs communication among themselves and with other objects on the ground, such
as fog nodes. When two or more UAVs are communicating among each other to
achieve one task, they are forming a so-called UAV ad-hoc network. The advances
in ad-hoc communication paradigm among UAVs suit the main requirements of
UAV systems, which are: (1) node mobility and (2) adaptive network topology. The
ad-hoc network allows data packets to be shared among networked UAVs with no
delay (i.e., in real time) [34–36]. Thus, the shared data packets are routed through
the networked UAVs with a path taken depending on the used routing protocol.
According to [34, 37], there are two main routing protocols, proactive routing
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protocol and reactive routing protocol. In proactive routing, the networked UAVs
know the shortest network path to each other. Thus, the shortest data is logged
locally and updated frequently upon UAVs location updates. Hence, due to the big
amount of packets transmitted over the network regularly to maintain connectivity,
the overall available network bandwidth will be reduced. In reactive routing, the
shortest paths need to be known only when data packets need to be sent among
UAVs. Thus, reactive routing requires more time compared to proactive routing that
knows paths ahead of time which allows a low end-to-end time delay for sending
data packets. Therefore, when choosing a routing protocol, a trade-off must be made
between time-delay and available bandwidth.

Most systems that adopt UAVs technologies are notable with their rapid changes
in either the network topology and/or the networking connectives, hence, UAVs are
adopted based on their abilities to operate in a highly dynamic environment [8].
For example, as most UAVs are self-programmed during the time of operation,
some mission conditions may change for various reasons, such as weather condition
changes that may affect UAV connectivity, and thus it requires the UAV to act
accordingly. In such a scenario, if a UAV has no opportunity to establish an ad-hoc
network with other UAVs to regain signal to complete the initial mission or return to
ground, the UAV will be highly unreliable [38]. Therefore, the adoption of the ad-
hoc network in UAV systems will feature the connectivity among UAVs, and hence
enhances the reliability of the UAVs [38]. In addition, UAVs battery life is another
important reason where the collaboration among UAVs is important. Networked
UAVs could help in reducing the drawback of UAV limited time of operation by
triggering the UAV to outsource the processes to another UAV before it goes offline.
The majority of UAVs have about 20–30 min of flight time [39], and the way to
extend network lifetime is by alternating network responsibilities among UAVs
through the ad-hoc network.

Due to the ad-hoc nature of UAVs, the topology of the network may change
over time. Also, UAVs consist of different types of UAVs organised in different
hierarchies [8, 9]. Such that, a sub-group of UAVs may only be equipped for long-
range communication services in order to communicate with external networks,
while another sub-group of UAVs maybe designed for sensing and monitoring
tasks only [40], hence carrying some specific sensors and cameras. Each group
would share the data packets with their equal UAVs within the group, but they
also can send the information to other sup-group when required [9]. This flexibility,
in terms of topology and hierarchy, allows UAVs to adapt to a variety of system’s
needs. The most common wireless technology used for UAV-2-UAV communication
is the IEEE 802.11 standards, while IEEE 802.115.4 is used for other UAV
communications with other connected objects [9].
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3.2 Collaborative Fogs Computing

This section discusses the network model that supports Fog-2-Fog collaboration.
The collaboration between fog nodes is about gathering multiple fog nodes to
perform/achieve a specific task in a certain situation or scenario. Fog computing
becomes members of a federation because of their capabilities that satisfy the needs
and requirements of a situation assigned to this federation for handling. Hence,
fogs are described and discovered for federation and then selected for a particular
federation according to planned and ad-hoc federations [41].

• Planned federation, formed at design-time, all its fog nodes participants are
already identified and ready to act according to a task’s needs and requirements.

• Ad-hoc federation, formed at run-time, fogs are joined together according to
certain occasions where each fog can empower the federation with various types
of processing and controls that enhance.

Consider a scenario where a fog node accepts a data-processing request from
a UAV. Fog will process the request and respond back to the UAV in real time.
However, when the fog node is busy processing other UAV’s requests, it may only
be able to process part of the payload and offload the remaining parts or offload
the whole request to other fog nodes. Therefore, either planned or ad-hoc should
be supported by the fog so it can collaborate with the other fog nodes in the
network to serve the request sent from the UAV. Hence, there are two approaches
to model interactions among fog nodes. (1) the centralised model, which relies on
a central node that controls the interactions among the fog nodes in one domain.
(2) the decentralised model, which relies on a universal protocol that allows direct
interactions among fog nodes so that each fog identifies the best fog node to
collaborate with. In the decentralised fog model, the fogs are distributed as a mesh
network, hence there is no need for a centralised fog node to share the state of fog
nodes and its location. Instead, each fog node runs a protocol to distribute their
updated state (e.g., load and location) information with the neighbouring nodes.
Thereafter, each fog node will hold a list of best fog nodes which can be updated
periodically. The decentralised model is more suitable for scenarios where a UAV
system is in operation as fog node can cope with the mobility of UAVs, hence
more flexibility in data acquisition. The process of selecting and sorting the best
neighbouring fog nodes is based on the possibilities of collaboration between the
fog nodes and able to provide data processing with low latency and high reliability.
More details on such Fog-2-Fog collaboration can be found in [10].

3.3 Coordination of UAV and fog

Integrating UAVs with the fog computing paradigm can boost the reliability of
service times and availability, thus enabling many applications to have advanced
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services utilisation in smart cities. Fog computing can provide powerful services for
the operations of the UAVs. For example, using a fog-based system to process and
analyse the image taken by the UAV camera in real time [42, 43].

Having the coordination between UAVs and fog nodes is extremely important
when it comes to the systems where large amount of data is collected every millisec-
ond. The coordination of UAV and fog nodes is useful for rapid data processing,
thus fog nodes will act as external processing unit for the data captured by UAV,
such as sensed data or regular stream of live images. This huge amount of data will
require immediate processing before its importance vanishes. Moreover, sensed data
is generally have different types and can be collected in different time-interval, such
as images or sensors data streams at defined time intervals, critical location data, and
mission’s commands. Hence, UAVs on-board processors are not powerful enough to
cope with all these data types especially when it comes to systems where real-time
data processing is essential for decision making [1]. Therefore, the coordination of
UAV and fog is especially important in the dissemination of critical data. Important
events should be transmitted reliably at all costs. Therefore, the aim is to achieve
low latency, high reliability, and a high success ratio of data delivery in UAVs and
fog nodes data routing in mission-critical applications, such as disaster prediction
systems.

Effective coordination among UAVs and fog nodes relies on timely information
sharing. However, the time varying flight environment and the intermittent link
connectivity pose great challenges to message delivery. The main objective of UAVs
and fog coordination is threefold:

• System latency: The objective of the coordination networking among UAVs
and fog nodes is to minimise latency from timely sensitive application, such as
disaster hazard monitoring systems where the time between the hazard detection
and the delivery of message to rescue team is very critical.

• System reliability: This is about the success ratio of data packets delivery.
In UAV-Fog packets delivery, the minimal packets losses and faster sharing-

time, the higher is the reliability. Therefore, in the scenario of disaster systems,
providing reliable communication for critical data is essential to ensure that the
sensed data is being transmitted to the desired destination successfully.

• System self-adaption: The networking protocols should be able to deal with the
mobility of UAVs. Hence, UAVs must always maintain a good connectivity with
the nearest fog nodes to transmit its data. It is worth noting that this process could
be an energy-intensive process.

During UAVs time of operation, the weather condition may change and some
of the UAVs may be disconnected. If the ad-hoc UAV system cannot support this
scenario, it can maintain the connectivity through fog computing. This connectivity
feature enhances the reliability of the UAVs system. Therefore, in a UAV-Fog net-
work all UAVs will be connected to a ground fog node via wireless communication.

To provide robust UAV network control and information acquisition, emphasis
must be placed on communication security. Malicious attacks are closely related to
UAV network operation, so robust communication protocols play a critical role.
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The coordination between UAVs and fog nodes also helps in ensuring privacy
and trust within the UAVs systems by monitoring all the privacy policy for the
shared data. For example, video footage that is recorded by a UAV during the
disaster response may contain sensitive frames (e.g., dead or wounded people)
that should be censored [44]. Indeed, this will raise a number of important
questions about the information privacy and trust when using UAVs to gather
multimedia information (e.g., live images) about the people who affected by a
natural disaster [44]. Thus, fog nodes could have the abilities to run extensive image
processing to determine whether the shared images may breach any privacy policies.

4 UAV-Fog for Environment Disasters Management

Natural disasters occur frequently worldwide and they are considered as a factor that
affects human life and development [7]. Natural disasters are significant adverse
incidents resulting from some natural processes of the earth (e.g., earthquakes
and floods) or geological processes (e.g., volcano) [45]. A natural disaster can
severely impact the environment and people’s lives and infrastructures [46], such
as telecommunication systems. This raises big challenges to traditional disaster
monitoring systems and makes the rescue actions harder to achieve and sometimes
ineffective. However, natural disaster severity highly depends on the affected
population’s resilience (i.e., the ability to recover) as well as the infrastructure
available to handle such events.

In natural disasters, such as flood, the rescue and emergency response manage-
ment is very challenging. Hence, early efforts in event/circumstances monitoring,
analysis, rescue operations and emergency arrangements are extremely impor-
tant [1]. In most of these state of affairs, rescue teams cannot easily and quickly
enough reach vulnerable people and also most of the infrastructures, such as com-
munication systems, may be damaged because of the impact of the disasters [47].
Thus proper management and early actions are significantly required for such
circumstances.

Utilising UAVs and fog computing can effectively improve the disaster monitor-
ing/prediction in such circumstances of a natural disaster [1, 48, 49]. Fog computing
and UAVs can be used as flexible and reliable networking infrastructure for data
sharing and monitoring the situation in real time. In addition, they are very safe
tools for monitoring the current situation without risking human lives dealing with
the disaster.

4.1 Disaster Management Stages

It is important to understand the nature of a disaster and its stages to effectively
respond to them and to develop a feasible disaster management and prediction
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Fig. 2 Natural disaster stages

method. The disaster stages concept has been used in the past decades to describe
and examine disasters and to organise emergency management processes [7].
The continuous process of disaster management known as disaster management
cycle [7, 50] is the most common stage of a disaster management cycle shown in
Fig. 2, thus they cover the following processes [51]:

• Predicting and planning before a disaster can happen. The goal is to minimise
the effects of a disaster by giving early warning and identifying risk zones. Also,
planning and preparedness on how to respond to a disaster.

• Rescue operations and response to emergencies when a disaster happens. The
goal is to minimise the hazards formed by a disaster.

• Recovering after the disaster. The goal is to assess the damages created by a
disaster. Also, acquire some knowledge that can be used to prepare and evaluate
a prediction model for such disasters.

Response time to disaster hazard during a natural disaster is key in saving human
lives, especially those who live/work in the affected areas. UAV-Fog can assist
disaster management processes, thus they can improve the processes of acquiring
real-time data from the environment, through the embedded environmental sensors
connected to the fog nodes, or data from the sky, through the sensors and camera
connected to the UAVs. UAV-Fog can assist with the following processes of a
disaster management:

1. Disasters monitoring, preparedness and early warning.
2. Situational awareness, logistics, and evacuation.
3. Search and rescue missions

Each disaster management process imposes a set of UAVs and fog nodes
tasks. Each task may require different lengths of time and with varying priority
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levels [44]. Therefore, a static network of fog nodes and UAVs is no longer sustain-
able for disaster management processes. Instead, the network must continuously
evolve in topology and capability, having reasonable capabilities of networking
coordination between UAVs and Fog nodes as well as collaboration features
among them (i.e., UAV-2-UAV and Fog-2-Fog), so they can be self-adapted with
situations, when a disaster is progressing.

4.2 Disasters Monitoring, Preparedness and Early Warning

At this stage of disaster management processes, the UAVs and fog systems are
classified into three main groups: monitoring, preparedness and early warning sys-
tems. This classification follows the disaster management phases, where the forecast
group of systems refers to the prevention, preparedness and rescue operations for a
natural disaster. The prevention covers the monitoring of a disaster through all stages
as UAV-Fog system will provide disaster information during all the phases, while
the preparedness includes all procedures required for how to deal with a disaster
hazard, and the rescue operations refer to a disaster response and recovery.

4.2.1 Disasters Monitoring

The UAVs technologies and advanced wireless sensor network (WSN) technology
that often used with fog computing have recently gain more attention and improve-
ment, thus it is being used for many disaster management systems, especially in
disaster monitoring systems.

Some disaster monitoring systems require the WSN sensed data to be transmitted
in real time to a control station through a multi-fog communication. For example,
when a hazard detected by a sensor, such as a flood sensor, the fog nodes
should be able to acquire this data from sensors in real time and transmitted
straight to the disasters control station (either fog-2-station or multi-fog-2-station)
where admins/operators can make decisions and arrangements. However, some
disaster monitoring systems are delay tolerant and do not require the WSN sensed
data to be transferred to the desired destination in real time. These types of
systems normally collect the data for historical data archiving and disasters pattern
creation/recognition. For example, systems that monitor infrastructure-health and
environmental changes. In such scenarios, UAVs and fog computing can be used
as data collectors from these distributed sensors to transfer them to the main
stations [1, 52, 53] when they are not busy with higher priority tasks that require
real-time/instant attention. In flood disaster scenarios, multiple deployed WSN
collect physical information, such as the water level at the monitored bank and
vibration/displacement on the territory. Thereafter, the data gets transmitted to
connected fog nodes, where the information is logged and processed.

In disaster monitoring events, the objective is to monitor certain areas in a
given time-period and with a given update-frequency to assist rescue reams and
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operations. Hence, the UAVs establish communication links among UAVs and links
with other higher level networks (e.g., fog nodes) and ground base stations. Some
research to enhance communication links among UAVs, UAVs and WAS and/or
fog can be found in nodes [1, 54, 55]. Thus, it is common to find UAVs-to-ground
communication links in order to transmit data from the UAVs for fog nodes and/or
ground stations. The UAVs can pass over WSN and wirelessly collect their sensed
data. Thus, this way they can save the WSN energy by reducing the communications
and extend the battery life of WSN [1, 56]. Although the UAVs are efficient for
monitoring purposes and situational awareness, there are different regulations that
apply to the usage of UAVs, depending on the country [44]. However, during a
disaster, special authorisations are granted to UAVs to help first disasters monitoring
and assessing the situation [44].

4.2.2 Preparedness and Early Warning

The preparedness processes for a disaster have no predefined duration and could
start before or within the actual occurrence of a disaster. During the preparedness
stage, the data acquisition from WSN is normally used by the connected fog
nodes to perform some processing and analysis to assess the probability of disaster
occurrences, thus, using UAVs as source of live data from the sky, such as live
images. UAVs have limited use at this stage as the processes during this stage is
more like identifying the suitable methods to achieve the minimal effects of a natural
disaster, including the rescue operations required to elevate the hazards caused by a
disaster. However, the WSN could have the most use for ground-based environment
measurements, because the operational time of WSN can be sufficient to capture
the different trends in the sensed environment natural parameters that could help for
disaster early warning.

Early warning systems (EWS) represent the essential part of the preparedness
towards natural disasters [7], hence, there are lots of efforts focused on developing
an efficient EWS. For example, the UrbanFlood1 is a European project that aims
to investigate the use of sensors within flood embankments to support an online
EWS, and real-time emergency management. EWS uses the data from both UAVs
and fog’s connected WSN to predict and forecast a natural disaster by processing
and analysing the structural and environmental monitored data. Hence, the goal of
most EWS is to create a connected service’s platform that can be used to link WSN
data with predictive models and emergency warning systems. Thus, the warnings
and information produced by these platforms can be accessible by all people within
an area that in a high-risk of a threaten natural disaster attack.

1http://www.urbanflood.eu/.

http://www.urbanflood.eu/
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4.3 Situational Awareness, Logistics and Evacuation

The start of this stage occurs as soon as a disaster takes place in which parts of
the environment and topographical region are damaged and become unusable for
vehicular traffic or people habitation. The employment of UAVs and fog computing
at this stage can be useful in reporting real-time data from the area affected by a
hazard. The critical tasks carried by the UAVs during this stage involves the process
of establishing ground communication processes with the affected people, then
transferring the gathers data to the control station and/or rescue team raise awareness
about vulnerable people. This monitoring processes at this time of the disaster will
help in assessing the situation as UAVs and fog nodes are able to provide a real-time
data for the surrounding that can help in accurate assessment of the situation/hazard.
For example, the UAVs fly over an affected region by a flood and send live images
to the rescue teams about any possible vulnerable people as per Fig. 1.

4.3.1 Situational Awareness

Situational awareness is part of the disaster management processes where the main
goal is to gather enough information when a disaster is progressing. Gathered
data will significantly help in providing safe and secure recommendations to the
vulnerable people who are endangered from the disaster, as well as the rescue
teams deployed on the disaster area [39]. Both UAVs and fog connected WSN
can be used during this stage to transfer information about the affected areas as
well as the vulnerable people. Although, some fog nodes and their connected WSN
may also be affected by a disaster, they still used as indication that particular
area might be affected by a disaster in which caused the damage for the planted
fog nodes and WSN. The fog nodes and it connected WSN infrastructure that is
partially in operational can be used in conjunction with the operated UAVs. Hence,
video/images collected present an overview of the situation. Also, affected people
might also use various social-media or forward messages and/or images via the
UAVs observing them, to the rescue team or control centre so they can get help.

4.3.2 Logistics and Evacuation

UAVs could have more advantages during the logistics and evacuation processes
compared to fog nodes and WSN. The UAVs can be significantly useful due to
their ability of movement and flying to a targeted area. UAVs can be used for
delivering first-aid equipment in very convenient way for all areas that are hard
or not accessible due to the infrastructure damages caused by a disaster, also rural
areas that are surrounded by forests. This will be significantly crucial to deliver
the logistical services which are delay-sensitive [9] and it is important to deliver
to affected people as soon as possible, such as delivering medication or medical
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resources. In addition, UAVs can maintain connectivity with vulnerable people and
direct them to safe areas and evacuation routes based on the information gathered
during the disaster progression.

4.4 Search and Rescue Missions

The main goal of search and rescue (SAR) missions is to search for and to rescue
the unfortunate people that happen to be lost, trapped by debris or injured during a
natural disaster. The first 72 h after a disaster is the most critical [7, 39, 44] as SAR
operations are on its peak where the rescue teams need to safely find the survivors
in disaster situations as well as give them right assistance. Hence, the goal of SAR
is to help in taking quick actions to preserve people’s lives.

To increase the effectiveness of SAR missions and rescue teams, different tech-
nologies must be used at the same time, such as WSN, social networks, autonomous
UAVs, data processing mediums (e.g., fog nodes) and satellite observations [7].
Therefore, UAVs and fogs can be used to help in SAR operations significantly
as they are able to provide instant and real-time data about the surrounding
environment. UAV and fog connected WSN are used in disaster situations where
continuous updates are needed or where rescue teams cannot reach easily and/or
safely to the target area due to debris or other obstructions. UAVs provide a great
surveillance tool as it can fly over the targeted area and relay information, such as
capturing images and video for a specific target, back to the rescue workers to keep
them updated. In such event, UAVs network must maintain both connection and
throughput between individual UAVs within the network and the ground station or
the fog nodes forming the UAV-2-UAV, UAV-2-station and/or UAV-2-fog. However,
the videos or images footage collected by UAVs are different substantially from
images acquired on the ground [57], therefore, such aspect should be taken into
account when designing the image processing algorithm for the UAVs use for SAR
missions.

5 Conclusions

Smart cities (SC) adopt and invest in smart solutions and recent technologies, such
as UAVs and fog computing, to improve the quality of life for the citizens. SC main
goal is to enhance the QoL by creating efficiency, improve sustainability, better
services utilisation as well as reducing the negative impacts on the environment,
such as early warning systems for natural disasters. UAV and fog computing
have been introduced recently to bring together the power and advantages of fog
computing and UAVs to better support IoE systems and application by utilising
UAV services along with the support of fog nodes services. UAV-Fog computing
can provide flexibility, mobility, and fast deployment features to support IoE
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systems in smart cities. Also, UAV-Fog has significant advantages for disaster
management systems as it helps in disaster situations to deploy services supports
for all pre-disaster monitoring, forecasting and all search and rescue operations.
During disasters, UAVs fly over affected regions to collect live images and videos
to help in assessing the situation and relay to the rescue teams about any possible
vulnerable people. UAV in conjunction with fog computing presents a promising
future technology for disaster management systems.
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Drone of IoT in 6G Wireless
Communications: Technology,
Challenges, and Future Aspects

B. D. Deebak and Fadi Al-Turjman

1 Introduction

Drone of Internet of Things (D-IoT) is known to design a layered network
framework that mainly accesses the coordinates of unmanned aerial vehicles
(UAVs) not only to operate the airspace but also to offer the navigation services.
D-IoT extends its services for various application domains such as search and
rescue operation, aerial surveillance, traffic, and environment monitoring [1]. From
aeriform navigation to discover–rescue operation to deliver the legal transfers,
the UAVs are highly exploded. According to the Federal Aviation Administration
(FAA) report, the drone fleets is expected to be 2.4 million units in 2022 [2].
Moreover, it is evident that more frameworks will emerge to fuel the growth of
the UAVs. Importantly, the frameworks associate with UAVs to telephone networks
that ensure superior communication and control mechanism to evolve the business
opportunities, i.e., for mobile operators. Of late, third Generation Partnership Project
(3GPP) has overseen the standard accomplishments of mobile networks that equip
the operator to handle the challenges of UAVs.

This emerging technology has led the world in the development of sixth-
generation (6G) network to characterize the key factors of telecommunication
infrastructure. It is designed to support more user/device connectivity that highly
demands the Internet access to conform the performance standards. In order to
extend the influence of business framework, Internet of Things (IoT) emerged. It
is aimed to connect more devices to provide the reliable applications such as smart
city, smart agriculture, and smart factory. In general, they are involved to sense,
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collect, and analyze the environment data to meet the expectation of business IoT
model. Due to design limitation and intrinsic experience, the terrestrial network
infrastructure could not guarantee the typical key performance indicators of 6G.
Transmission coverage forms a terrestrial infrastructure to build an economical
network that offers high technological resilience and quality of experience (QoE). In
6G, UAVs and satellite communication integrate the IoT as a benefit tool to increase
the bandwidth utilization.

It is essential to perform a reliable packet delivery activity such as Amazon Prime
Air [3], which transforms Boeing’s drone into a submarine [4]. IoT can properly
equip as an intellectual gateway to collect the sensing data, i.e., from IoT sensors.
In 6G, the coverage range authorizes the users to access the data over wireless
channel. The user positions and its related mobility may arbitrarily exchange the
coverage area to cover data generation, customization, and infrastructure overhead.
In addition, IoT has a chance to act as an intermediate node, which is completely
depending on payload hardware to provide technological solution. Satellite commu-
nication has widely been deployed for the extension of Internet access. Currently,
it is deploying to support global connectivity through the act of low Earth orbit
(LEO) satellite [5, 6]. In the literature, the introductory studies have exploited the
use of satellite communication for IoT devices. They are envisioned to perform data
exchange between end users and IoT networks via satellite [6]. It may be connected
as an intermediate node to offer dynamic deployment and network connectivity.

1.1 IoT Wireless Technologies

Generally, IoT determines the essential quality of data exchange between devices
and sensors over wireless channel, i.e., free from human interference. It is nowa-
days applied in various industrial environments, namely, smart automation, smart
metering, and smart weather forecasting. As from the insight report, it is expected
to grow from 23.14 billion in 2018 to 75.44 billion in 2025 [6]. Broadly speaking,
IoT technologies are classified into short- and long-range communication.

Table 1 summarizes commercial market solution for short-range and long-range
approaches. IoT uses wireless technologies to transmit the data to the broadband
gateway residing at physical and data link layer, which encapsulates the application
data. As the technologies are highly involved of protocol specification for the
broadband connectivity, each network gateway proactively applies the application
protocol stack to convert the IoT data. Moreover, it would tactfully enforce the layer
conversion to suit the end user applications. Figure 1 shows long-range commercial
solution for IoT applications [7]. IoT environment standardizes the commercial
market to promote the special groups such as the Third Generation Partnership
Project, the European Telecommunications Standards Institute, and the Institute of
Electrical and Electronics Engineers. Importantly, the proposed solution addresses
the category of low power wide area (LPWA) protocol [8].
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Table 1 Summary of short-range and long-range approaches and its related market solution

Wireless
specification Short range Long range

Bluetooth Zigbee WiFi LoRaWAN SigFox Ingenu

Modulation
method

G-FSK/
D-QPSK/
D-PSK

B-PSK/
O-QPSK

IEEE
802.11
a/b/g

Chirp
spread
Spectrum

D-BPSK
(upload)
G-FASK
(download)

RPMA
DSSS
(upload)
CDMA
(download)

MAC
interface

FDMA/
TDMA

CSMA/
CA

CSMA/
CA

Unslotted
MAC

Unslotted
ALOHA

CDMA-
Like

Transmission
rate

3 Mbps 250 Kbps 7 Gbps 0.3 –
50 Kbps

100 bps
(upload)
600 bps
(download)

78 Kbps
(upload)
19 Kbps
(download)

Network
coverage

∼30 m ∼100 m ∼100 m ∼5 km
(urban)
∼15 km
(rural)

∼10 km
(urban)
∼50 km
(rural)

∼15 km
(urban)

Smart
Insurance

Smart
Agriculture

Smart
Building

Smart
Medical

LoRa Gateway

SigFox

Ingenu

IoT Devices IoT Gateway IoT Cloud End User

Fig. 1 Long-range commercial solution for IoT applications

It is evident that the commercial IoT applications present the broadband gateway
to substitute the activity of cellular base station. The effective communication
ensures between the IoT devices to guarantee the business objectives of IoT
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networks. The application layer relies on end-to-end data exchange [9], which
invokes a typical publish–subscribe model to categorize the message pattern. The
major message classes are as follows:

1. CoAP is expressed as constrained application protocol, which is put into service
for IoT applications standardized by Constrained RESTful Environments, IETF
[10, 11].

2. XMPP is defined as eXtensible Messaging and Presence Protocol that makes
working for a particular purpose of instant messaging (IM) standard, IETF.

3. MQTT is represented as Messaging Queueing Telemetry Transport (MQTT) that
integrates the embedded devices and the communication networks to link through
application and middleware.

4. Data Distribution Service (DDS) is an object-oriented group (OOG) to provide a
scalable data exchange between the real-time systems [12, 13].

5. AMQP is denoted as Advanced Message Queuing Protocol, which is an open
communication standard to provide an effective data transmission between the
applications or organizations.

1.2 UAVs with IoT Integration

UAVs are exceptionally growing to develop the market opportunities that highly
demand the IoT integration to collect the information services of industrial envi-
ronment such as public surveillance, air pollution [14, 15], etc. In the future, UAVs
known as drone deploy its intellectual standard to meet the objectives of real-time
systems, namely, automation, transportation [16], boarder,and homeland security
[17, 18]. The UAV case study models are as follows:

Military: UAVs are widely used to provide a search operation in military
surveillance. Importantly, they are considered as a weapon tool to destroy the
opposition’s military base. In 2015, Defense Advanced Research Projects Agency
(DARPA) has revealed the growth of systematic approach using low-cost drones
[18].

Earthquake and disaster management: The integration of IoT and UAVs is
equipped to collect the necessary information, namely, gas level, video, images,
etc. The collective information will be helpful to track and aid the visiting area in
terms of food delivery and medicament [19].

Crowded surveillance: UAVs allow the security agent to monitor the public area.
It is equipped with IoT features to capture the abnormal situation that alerts the
agent to interfere physically in order to ensure the public’s security and safety [19].

Real-time traffic monitoring: UAVs aviate over a specific location to collect the
real-time information that will subsequently be sent to a central server to analyze
the data features. Moreover, the relevant data may also be updated to navigate the
route mapping, i.e., to the users.

Weather forecasting: The specialized UAVs operate over any specific area to
collect the useful information such as temperature, humidity, wind speed, etc.
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Moreover, the collective information is transmitted to minimize the computation
complexity of weather forecasting.

1.3 UAV and IoT: A State of the Art

An exhaustive research has been carried out for the extensive use of IoT integration.
In most of the real-time case, the crowdsource applications employ face recognition
to exploit the integrated IoT with UAVs [20]. In LTE-A, UAVs associate the camera
sensor to connect the ground station. A surveillance drone may execute a command
that applies the facial recognition to analyze the suspicious behavior over a criminal
track record. Yoo et al. [21] demonstrated the optimal routing and flyer path that uses
location-aware multilayer mapping to explore the utility functions such as density,
time, risk, and energy. Moreover, a genetic algorithm is utilized to maximize the
usage of evacuation support system [22].

This system is composed of IoT device, agent,and autonomous controller that
apply a suitable strategy to evacuate the people to a safe zone. Peng et al. [23]
designed an intelligent home security system to monitor the environment activities
such as sensing, analyzing, and controlling. The experimental result showed the
effectiveness of home intelligent system. Lately, UAVs and its integral IoT play
a significant role to monitor the field parameters in order to improve the quality
of agriculture crops. Uddin et al. [24] designed a distributed IoT network for
heterogeneous application domains that proactively examine the field parameters.

1.4 Satellite and IoT Network

IoT network has applied state-of-the-art approaches for rural environment that
use the device network to monitor the terrestrial communication such as the
desert, ocean, and mountain [25]. A possible IoT/satellite system uses a LEO
constellation to obtain cost-efficient solution that minimizes the propagation delay
and information loss in comparison with GEO satellite. Kawamoto et al. [26]
utilized a data collection technique known as satellite-routed sensor system that
uses distributed IoT network to send the environment data to the ground or remote
station. Kawamoto et al. [27] introduced a tsunami detection technique to detect the
earthquake earlier in time. In this scenario, a large number of sensor objects such as
buoys are involved to sense and analyze the gathered data at a remote area.

However, there are several open challenges to address the IoT communication
protocols, which have a choice of satellite communication to allow the network
properly [28]. Siris et al. [29] investigated the proposed model to minimize the
influences of data and control overheads when the integrated IoT supports over
satellite–terrestrial networks. The employment of wireless and satellite network
supports machine-to-machine or device-to-device communication that exploits
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several convergence technologies such as smart grid and supervisory control and
data acquisition (SCADA) to investigate the pros and cons of information-centric
networking [30].

Bacco et al. [31] studied the CoAP protocol to test the communication system
over random-access networks in order to reduce the network traffic and congestion.
Soua et al. [31] integrated satellite network and M2M communication to configure
both MQTT and CoAP. Chiti et al. [32] provided a challenging solution to repress
the data traffic that fulfills the energy efficiency of 6G networks.

2 UAVs, IoT, and Emerging 6G Technologies

The rapid advancement and its related application domains such as virtual reality,
three-dimensional media, and Internet of Everything have led for voluminous
amount of data generation. As reported in [33], global mobile traffic was recorded
as 213 Exabyte per month in 2010 and is expected to be 5016 Exabyte per
month. The importance of statistical improvement clearly depicts the evolution of
autonomous sectors such as transport, industry, health, space, and ocean. To provide
a smart automation, millions of sensing components are embedded in the real-time
environments. As a result, a reliable transmission rate is highly demanded to provide
smart application services. Fifth generation (5G) has widely been deployed for the
application features of wireless networks. However, it could not be more competent
to automation and smart intelligence [34].

In order to fulfill the smart automation and intelligence, 6G communication is
nowadays evolving meticulously. The associative features of 6G may exploit the
advanced spectrum management to experience better quality of services (QoS).
Moreover, the technological features invoke several techniques to test the integrated
licensed and non-licensed frequency band [35]. The growth of automation and data-
centric system is nowadays exceeding the capabilities of 5G. In some application
domains, it is even more demanding than 10 Gbps transmission rate such as virtual
reality devices [36]. In 2030, 5G would reach its limitation to support new ventures
and its related challenges. As a result, 6G is newly emerging to meet the standard
goals of application features such system throughput, power consumption, and
massive network connectivity.

6G networks certainly emerged the additional services such as artificial intel-
ligence, smart sensors, three-dimensional printing, vehicle tracking, and intelligent
device computation. The significant features of 6G network are massive data storage
and high-speed transmission rate for the effective device communication [36]. In
the future, 6G will play an important role to diversify the application features to
improve the performance of service quality. It will also provide better security and
data privacy to meet the objectives of global communication. It is predicted that
the transmission rate will be ∼1 Tbps in several application scenarios to extend
its connectivity 1000 times faster than 5G. In ultra-range communication, 6G will
experience ∼1 ms latency to facilitate the exciting feature of AI.
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2.1 Emerging Trends in Mobile Networks

In 1980, the first analog communication was evolved to improve the quality
metrics such as network service and data traffic. Over a decade, the mobile data
traffic has proportionally grown for the massive use of smart devices and M2M
communication. Figure 2 shows the growth rate of mobile network connectivity.
It is predicted that the growth of mobile traffic will raise 670 times in 2030 as
compared to 2010 [33]. An international telecommunication union (ITU) reports
that the overall data traffic will surpass 5 Zettabyte per month. The number of
subscriber connectivity will arrive at 17.1 billion as compared to 5.32 billion in
2010. Moreover, the number of machine-to-machine connectivity will exponentially
grow to exceed the volume of data traffic. As a result, the mobile data traffic will
gain more congestion, i.e., 50 times greater than 2010. Table 2 shows the global
developments in wireless connectivity.

Of late, the data-driven method has transformed into intelligent-driven approach
that builds a basic structure for intelligence networks providing the AI operations
[34]. The fully intelligent networks adapt the network management to drive the
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Table 2 Global developments in wireless connectivity

Network issues 2010 2020 2030 Units

Mobile user subscription 5.32 10.7 17.1 Billion
Smartphone user subscription 0.645 1.3 5.0 Billion
M2M user subscription 0.213 7.0 97 Billion
Data traffic volume 7.462 62 5016 Billion
M2M data traffic 0.256 5 622 Billion
Data traffic per subscription 1.35 10.3 257.1 Gigabyte per month

possible key features such as reliability, energy efficiency, spectrum allocation,
traffic availability, communication convergence, sensing, control, computing, and
localization.

2.2 Integrated Wireless Technologies

In 6G, the integrated AI incorporates resource management, network instrumen-
tation, signal processing, service connection, and physical layer to promote the
revolution of Industry 4.0. It has transformed the industrial engineering into digital
form that envisions the architecture of 6G communication system. Some important
prospects are as follows:

Ultrasmart society: 6G structures accelerate the features of smart societies such
as environment analysis, industrial automation, and quality improvement that use
the energy harvester and AI-based communication to make the network more
efficient.

Extended reality (XR): The services such as virtual reality, augment reality,
and mixed reality to signify the features of 6G communication. The key drivers
such as three-dimensional (3D) objects and AI are provided to meet the standard
requirements such as storage, cognition, computing, and human interaction.

Autonomous connectivity and robotics: An autonomous robot is used to inves-
tigate the activities of automotive objects that help to deploy the drone-integrated
UAV. In 6G, the wireless communication can radically promote the development
of self-driven mechanism, i.e., driverless car. The sensors such as radar, GPS,
sonar, odometry, light detection, and ranging are grounded to support the system
controller between UAV and ground station. Moreover, the integrated wireless
technologies support high transmission rate and data broadcasting to the application
domains such as disaster management, agriculture, product manufacture, and
military surveillance.

Wireless brain–computer interaction (BCI): In medicine, a direct communication
path between external devices and brain activities is continuously monitoring the
brain signals to interpret the data features.
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Branch of haptic communication: In haptic, a branch of nonverbal communica-
tion uses the touch sensing to support the superior features of real-time interaction.

Five-sensing information transfer: Human has five senses, namely, touch, hear-
ing, taste, sight, and smell, to examine the data transfer. It uses the neurological
process to infer the sensation through the integration of sensory systems.

Internet of Everything (IoE): This convergence technology provides seam-
less connectivity to the large number of computing platforms including sensor,
controller, and computing devices. It integrates physical objects and wireless
technologies to introduce the AI intelligence-based 6G convergence.

3 Technical Requirement and Specification

6G technologies have tactfully engaged in the trade of several challenging issues
such as deployment cost, energy efficiency, delay, throughput, hardware complexity,
and reliability. In order to meet the technological demand, 6G tries to fill the
bridgework such as device connectivity, high data transmission rate, reliable service
connectivity, latency, and machine intelligence. Moreover, it is estimated that 6G
will be able to provide a simultaneous connectivity, i.e., 1000 times higher than
the 5G features. In order to extend the energy harvesting, 6G will use the system
intelligence.

3.1 Network Characteristics

The important network characteristics are as follows:
Integrated satellite networks: To support a global connectivity and satellite

integration, 6G is highly required of system intelligence.
System intelligence: In wireless communication, 6G will advance the pervasive

computing to produce a new computing paradigm.
Seamless integration and energy transfer: 6G will intellectually transfer the

energy to charge the smartphone or device to integrate the wireless information and
energy transfer (WIET).

3D connectivity: In 6G, the core network functionalities will access the very low
Earth orbit to make the 3D connectivity ubiquitously.

3.2 General Requirements in Networks

The important characteristics of wireless network are as follows:
Small-cell network: The small cell network has improved the signaling quality

for the enhancement of cellular and spectral efficiency.
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Backhaul connectivity: A high backhaul network is influenced to support high-
volume data traffic and capacity.

Integrated radar technology: In 6G, the network features integrate the radar
technologies to support the mobile communication systems.

Virtualization and software systemization: The design features of software
systemization and virtualization ensure reconfigurability, programmability, and
flexibility that provide intelligence to share the physical infrastructure effectively.

4 Key Responsibilities in 6G

6G network has driven various technologies using system intelligence. The impor-
tant enabling technologies are as follows:

Artificial intelligence: 6G has significantly improved the system intelligence for
the support of industrial automation. The technological advancement creates more
intelligent networks to improve the efficiency of real-time data.

Spectral efficiency: In 6G communication, spectral efficiency can substantially
increase the bandwidth utilization to advance the multiple input and multiple out
(MIMO) technologies. The key properties are high data transmission rate and path
loss arising out of high frequency.

Optical wireless technologies: Optical communication is envisioned to support
device-to-access network and access network-to-backhaul connectivity. However, it
can be used widely to enhance the performance of wireless technologies.

Blockchain: This technology massively uses the data communication that influ-
ences a distributed ledger to distribute the computing devices. Moreover, it manages
the peer-to-peer network to gather and structure the data blocks. As a result, it
will extend several functional possibilities such as traceability, interoperability, and
autonomic interactivity.

Quantum communication: In 6G, the networks employ unsupervised learning to
build the complex representation that is operated in truly autonomous networks.

Cell-free communication: 6G network is crucial to integrate multiple frequencies
and heterogeneous networks. As a result, it is claimed to provide seamless connec-
tivity to provide better quality of services (QoS).

Big data analytics: In order to analyze the complex datasets, big data analytics
is highly involved. This process discloses the hidden pattern, customer inclination,
and unknown correlation to achieve better data management.

5 Challenges and Future Aspects

Several technical issues are demanded to deploy the IoT-integrated UAV in 6G
networks. The possible concerns are as follows:
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High propagation: A new design transceiver is operated at high frequency, i.e.,
THz communication to challenge the long-distance data transfer.

Technological complexity in resource management: 3D network extends the
vertical direction to add some new dimension that significantly degrades the network
performance. Thus, a new competing technique is essential to optimize the resource
management and network mobility.

Hardware constraints in network heterogeneity: In 6G, various communication
systems such as service delivery and network topologies are involved to access the
mobile terminal effectively.

Autonomous wireless networks: In order to support the automation process, 6G
will provide a reliable automation such as UAVs and Industry 4.0. To emerge the
wireless networks, autonomous systems are designed.

Modeling frequencies: The key-driven factors are subjected to characterize the
effects of absorption and dispersive effect. Thus, the channel modeling is relatively
complex to design a perfect channel modeling.

Backhaul connectivity: The access networks are diverse in nature to support high
data rate transmission that is widely used to handle the massive amount of data
connectivity.

Interference and spectrum management: Due to spectrum scarcity and interfer-
ence issues, 6G spectra effectively includes the innovative spectrum techniques and
management to achieve maximum resource utilization.

Beam management (THz): The massive MIMO system provides a promising
technology to support high-transmission data rate. However, seamless data connec-
tivity and handover are so important to optimize the beam management techniques
in high-speed UAVs.

6 Conclusion

This paper discusses IoT wireless technologies, UAVs with IoT integration, and
satellite and IoT network to signify the application scenario of IoT technologies.
The important issues related to emerging 6G technologies are rigorously studied
to explore the opportunities of cellular networks. The preliminary studies are
majorly pointed to highlight the significance of 6G networks. It is expected to deal
with future technologies that promise public safety and individual system privacy.
Moreover, this paper is envisioned to present the possible application scenario and
its related technologies that clarify the vision of 6G communication systems. In the
future, a new cyber-physical system will be addressed to identify the challenging
aspects of UAV-based cellular systems.
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Image Processing in Unmanned Aerial
Vehicles

Boran Sekeroglu and Kubra Tuncal

1 Introduction

Although they are known as unmanned aerial vehicles (UAVs) in remote sensing
science, their prevalent name is drones, and they are aerial vehicles that are able to
operate without a presence of a pilot [1]. They have increasing importance in every
field of science and life with huge variety of applications in the last decade [2].
From entertainment to military missions or to professional photography, they assist
humans and provide vision that humans are not able to see. Recent researches [2]
present that drones are used for disaster management [3], geographical monitoring
[4], journalism [5], and farming [6] beside entertainment and military missions.

Different viewpoints and angles of UAV cameras create estimable captured
frames and scenes. In addition, applied image processing techniques to these frames
make it possible to obtain valuable results for particular applications. A variety
of image processing techniques and unique characteristics of each frame of each
captured image is a big challenge for the determination of proper techniques
for specific application. Thus, the analysis of recent researches, investigation
of preferred image processing techniques, and effective classification of drone
applications are required for future implementation and applications to minimize
the time of image processing part of drone-captured images.

This chapter focuses on the types and applications of drones, especially by
considering image processing techniques, and classifies UAV applications into
different categories. Considered image processing techniques and corresponding
applications are presented with recent examples.
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The organization of this chapter is as follows: Sect. 2 briefly introduces the types
of UAVs, and Sect. 3 presents the application areas of these drones. Sect. 4 performs
analysis of applied image processing techniques in drone-captured images, and Sect.
5 presents the discussions and conclusions of the performed analysis and drone
applications.

2 Classification of UAV Types

A huge number of models and types are available for UAVs, and different classifi-
cations have been performed for UAVs by considering their diverse characteristics.
US Department of Defense classified UAVs into five categories as small, medium,
large, larger, and largest according to their maximum gross takeoff weight, normal
operating altitude, and airspeed. However, most common classifications are based
on their size, endurance, and configuration [2, 7].

In size classification, large-scale and medium-scale UAVs have a size of 10 and
5 m, respectively, while small-scale UAVs have sizes between 50 cm and 2 m and
a weight of 2–10 kg. Mini UAVs are categorized by their size (1–1.4 m) without
considering weight, and in micro/nano UAVs, only weight is considered and limited
to 100 g [2].

In endurance classification, endurance hours and flight range are considered to
classify UAVs as very low cost and close-range UAVs, close-range UAVs, mid-range
UAVs, and long-endurance UAVs. Endurance of UAVs differs from 0.5 to 36 h and
directly affects the flight range of UAVs.

In configuration category, UAVs are divided into three classes as fixed wing
that need runway for takeoff and landing, rotary wing which is able to land and
take off vertically and flapping wing that is bio-inspired UAVs. Table 1 shows
classification of UAVs by their three different characteristics as size, endurance, and

Table 1 Common
classification of UAVs [2, 7]

Category Types

Size Large-scale UAVs
Medium-scale UAVs
Small-scale UAVs
Mini UAVs
Micro/nano UAVs

Endurance Very low-cost and close-range UAVs
Close-range UAVs
Mid-range UAVs
Long-endurance UAVs

Configuration Fixed wing
Rotary wing
Flapping wing
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Fig. 1 Example UAVs—(a) mini UAV [8], (b) long-endurance UAV [9], and (c) flapping wing
UAV [10]

configuration. Figure 1 shows mini UAV, long-endurance UAV, and flapping wing
UAV, respectively.

3 Application Areas of UAVs

The popularity of UAVs or drones has gained an importance in the last decades
[11] while their application areas become wide. Technological developments and
increased capabilities of UAVs provide the use of UAVs in every field and moment
of life.

It is difficult to categorize the applications of UAVs into groups and subgroups,
but some of the researchers tried to separate these applications into fields according
to their usage areas. Kaimaris et al. [1] categorized UAV applications into five
areas according to their purposes beyond military usage as forestry and agriculture,
archaeology and cultural heritage, surveying, urban and regional planning, and
environmental surveying and transportation for traffic monitoring.

In forestry and agriculture, wide applications of UAVs have been recently
investigated and implemented by researchers. Saadat and Sherif [12] used UAVs
for forest surveillance system and applied machine learning and image processing
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algorithms in order to recognize the tree species in the forest. Orillo et al. [13]
applied image processing techniques to drone-capture images to determine the
density of green leaves. Ye Seul et al. [14] used UAVs similarly to calculate the
tree heights from drone image.

Marsujitullah et al. [15] applied image processing techniques and support vector
machine (SVM) to determine the growth phase of rice farms. Stavrakoudis et al.
[16] implemented multiple linear regression model for multispectral drone-captured
images to predict agronomic traits of rice plants. Hunt Jr. and Rondon [17] used
drone images to detect potato beetle damage.

In environmental surveying, UAVs are used for mapping and interpretation [18]
and for three-dimensional reconstruction of geospatial data [19].

In transportation, implementations are generally based on vehicle detection and
counting to assist experts about the traffic density of the roads. Thus, object detec-
tion in images or in video frames is essentially used in these applications. Vehicle
detection in UAV camera frames has been implemented by various researches [20–
23].

Transportation applications in drone-captured images have similarities between
other implementations such as human detection, motion detection, and object
recognition in urban areas. Nguyen et al. [24] implemented convolutional neural
network (CNN) for multiple human detection in drone image, and Karim et al. [25]
proposed a system to detect weapons in drone-captured images in order to control
street crimes. Zhu et al. [26] proposed a system for large-scale object detection and
tracking.

Recent different and diverse applications of UAVs require to update the appli-
cation areas by taking them into consideration. Leonardi et al. [27] performed a
research to locate pothole and cracks on roads by using drone images, and Seo et
al. [28] proposed principles for bridge inspection by drone-captured images. Kim et
al. [29] proposed image processing techniques on drone images for concrete crack
detection. Shajahan et al. [30] and Reddy et al. [31] proposed systems for monopole
tower inspection and cracks and damage detection in wind turbines by using drone
images, respectively. In another interesting study, Lee et al. [32] used drone-based
thermal images for sinkhole detection. Drones are also used in marine environments
effectively [33].

In the light of these researches, it is possible to extend the previous categories of
drone applications. Table 2 shows the extended categories of UAVs applications.

4 Image Processing in UAV Images

Each of the UAV applications requires proper image processing techniques as
well as machine learning models in order to make captured images significant for
each application area. Thus, categorical separation of UAV applications is possible
according to the purposes of their images used. These purposes can be categorized
as segmentation and analysis, identification and prediction, and 3D reconstruction.
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Table 2 Extended categories of UAVs applications

Category Aim

Forestry and agriculture Save time and resources to identify problems [1]
Archaeology and cultural heritage Mapping or 3D modeling or archaeological sites [1]
Surveying and urban and regional
planning

Create and update maps, applications, illegal
constructions, etc. [1]

Environmental surveying Monitoring water and soil resources for environment
protection [1]

Transportation – Traffic monitoring and project supervision [1]
– Road security

Unmilitary rescue operations To help humans after accidents and disasters
Construction safety To assist engineers for the detection of damages and

cracks in the buildings
Animal care To observe and count animals to estimate the change in

animal population thus as an effect of climate

Table 3 Proposed categorical applications of UAVs according to image processing purposes

Category Definition Application

Segmentation and
analysis

Direct manipulation or segmentation
of region of interest (RoI) in
drone-captured images by applying
image processing techniques

– Construction safety
– Object detection
– Animal care
– Vehicle detection
– Human detection
– Unmilitary rescue operations

Identification and
prediction

Recognition of segmented or
unsegmented objects or scenes and
prediction of the future using machine
learning techniques

– Object recognition
– Person identification
– Agricultural estimation
– Animal care

3D reconstruction Reconstruction of 3D images using
multiple or single 2D scenes.

– Geospatial data processing
– Environment mapping

Table 3 presents proposed categorical applications of UAVs according to the
purposes, and Fig. 2 shows the relationship between these categories with each other
as a set.

Segmentation and analysis and identification and prediction categories are inter-
mixed together, while some UAV applications use both of them in one application
or need another step of other categories to produce superior results.

4.1 Analysis and Segmentation

Analysis and segmentation part of UAV image processing generally includes image
binarization and morphological operations to separate region of interest from whole
image or to provide explicit captured image of RoI.
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Fig. 2 Relationship between
UAV categories by techniques
and applications

Laliberte and Ripple [34] applied thresholding and pixel clustering in order to
count snow geese. Similarly, Fang et al. [35] applied image binarization (thresh-
olding) and morphological operations to segment and detect animals in wildlife.
Vayssade et al. [36] also applied image binarization to segment goats in drone-
captured images, and Canny filter and Hough transform are also applied to finalize
segmentation. Segmented regions are identified by linear discriminant analysis
(LDA) classifier. Figure 3 presents obtained results of thresholding and morpho-
logical operation implementations on animal detection [35].

Seul et al. [14] used lambda schedule segmentation to segment their test area for
the calculation of tree height. Different test areas consist different structures, but
the RoI was the trees in order to provide significant height calculation. Figure 4
demonstrates the example segmentation result of Seul et al.’s research.

Kim et al. [29] used different and basic image processing techniques such as
image subtraction, median filtering, and thresholding to detect concrete cracks in
images captured by UAVs.

4.2 Identification and Prediction

In different researches, identification or prediction tasks were performed either after
applying analysis and segmentation algorithms or directly to the drone-captured
images. Identification and prediction tasks are commonly based on machine learning
models and deep learning.

Lee et al. [32] applied adaptive dual thresholding to detect candidate sinkholes
and morphological operations to obtain enhanced images. They ensemble different
classifiers such as random forest, boosted random forest, and convolutional neural
network for sinkhole recognition.

Reddy et al. [31] implemented CNN for the detection of damages and cracks in
wind tribunes, and Nguyen et al. applied Faster R-CNN for multiple human tracking
in drone-captured images. Karim et al. [25] applied histogram of oriented gradient
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Fig. 3 Example of thresholding and morphological operations implementations on UAV image by
Fang et al. [35]: (a) original image, (b) optical flow vectors, (c) binarized image, (d) morphological
operations applied image, (e) segmentation with errors, and (f) detection result

(HOG) for weapon detection to control street crimes in drone images. In this study,
detected weapons were classified by support vector machines.

Maria et al. [21] applied cascade classification, and Tang et al. [23] implemented
CNN for the car and vehicle detection in UAVs images. Hunt et al. [17] applied
rule-based classification to detect potato beetle damages. Fan et al. [37] applied
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Fig. 4 Segmentation result of trees in UAVs images by Seul et al. [6]

Fig. 5 Car detection in drone images by cascade classifier [21]

morphological operations, image binarization, and watershed segmentation in order
to extract tobacco plant in drone images. Then, they applied CNN to recognize
if extracted plants were either tobacco or not. Figure 5 shows an example of car
detection in transport infrastructure [21], and Fig. 6 presents segmentation and
recognition results of tobacco plant by [37].
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Fig. 6 Tobacco plant segmentation and recognition results [37]

4.3 3D Reconstruction

3D Reconstruction of drone-captured images can be used for every field of
application to visualize 2D images and provide data for further investigation of
these images. GPS, trajectory and position of camera, land position, and camera
parameters have vital importance for 3D reconstruction of 2D images. Sanfourche
et al. [18] presented a workflow for 3D reconstruction steps. An example of 3D-
reconstructed images is shown in Fig. 7 [19].
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Fig. 7 Example of 3D-reconstructed image from 2D drone images [19]

5 Discussions and Conclusions

The importance of unmanned aerial vehicles is rising since the last decade. They
provide a vision for humans, and also processing of these vision which are drone-
captured images has a vital role in applications that increase the human life quality,
effect the food sources, or make roads and streets more secure.

Drone images may analyzed directly by human experts for specific application
but they mostly need implementation of image processing techniques for further
analysis. Because, sometimes the characteristics of drone images may not be
suitable for naked-eye inspection and need automation for rapid results.

Classification of drone applications is one of the initial challenges, and different
classifications have been performed. An update of recent classification which
was based directly to the application field has been performed on behalf of
recent researches and applications. In addition, applications are classified according
to the image processing techniques applied in these applications. These novel
categories are segmentation and analysis, identification and classification, and 3D
reconstruction.

Identification and classification category may use image processing techniques
used in segmentation and analysis to provide more effective data for classifiers.
However, 3D reconstruction class is completely independent from others and needs
some parameters for efficient reconstruction.

It is obvious that automated application-specific content acquirement of drone-
captured images requires proper image processing techniques where the selection
of these techniques creates big challenge for scientists. Recent researches show
that basic image processing techniques are still the most effective and preferred
methods for drone image analyses. These are image binarization and morphological
operations. On the other hand, image binarization has different types as local, global,
or adaptive, and this also creates another challenge to determine which will be
the proper binarization method for the application. Segmentation results that are
obtained by image binarization are generally supported by morphological operations
such as opening, closing, dilation, and erosion to remove noise or to fill the gaps
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within segmented parts of RoI. In some researches, these two fundamental image
processing techniques are applied before or after other image processing techniques
to obtain superior results.

Contrary to binarization and morphological operations, there are no specific
segmentation or noise removal methods; however, they were independently applied
to drone-captured images by trial and error to increase the accuracy of the system.

In identification and prediction, researches showed that direct feeding captured
images to classifiers where the CNN and it’s types are the most preferred classifiers,
to obtain classification results. Therefore, the usage of fundamental image process-
ing techniques is decreased in these types of applications. But it should also noticed
that, in some applications, binarization and morphological operations were used for
segmentation of RoI, then segmented areas fed to classifiers.
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