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Abstract

Tight frames in Hilbert spaces have been studied intensively for the
past years. In this paper we demonstrate that it often is an advantage
to use pairs of dual frames rather than tight frames. We show that
in any separable Hilbert space, any pairs of Bessel sequences can be
extended to a pair of dual frames. If the given Bessel sequences are
Gabor systems in L2(R), the extension can be chosen to have Gabor
structure as well. We also show that if the generators of the given
Gabor Bessel sequences are compactly supported, we can choose the
generators of the added Gabor systems to be compactly supported as
well. This is a significant improvement compared to the extension of
a Bessel sequence to a tight frame, where the added generator only
can be compactly supported in some special cases. We also analyze
the wavelet case, and find sufficient conditions under which a pair of
wavelet systems can be extended to a pair of dual frames.
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1 Introduction

Extension principles have a long history in frame theory. In 1997 Ron and
Shen introduced the unitary extension principle, which allows certain wavelet
systems to be extended to tight wavelet frames in L2(R) by adding extra
generators [13], [14]. In [2], Casazza and Leonhard showed that any Bessel
sequence in a finite-dimensional space can be extended to a tight frame, a
result that was later extended to the infinite-dimensional case by Li and Sun
[11]. The purpose of this note is to consider extension of Bessel sequences
to more general dual frame pairs. The advantage of this is that dual frame
pairs is a more flexible tool than tight frames. Therefore the extension to
a dual frame pair might be computationally more efficient, and we might
obtain properties that are impossible if we extend to a tight frame. We will
see theoretical results and examples of both types.

As starting point we will show in Section 2 that any pair of Bessel se-
quences in a separable Hilbert space can be extended to a pair of dual frames.
In contrast with the known extension of a Bessel sequence to a tight frame,
the procedure does not involve calculation of the square root of an operator.
Furthermore, we give simple examples where the extension to a dual frame
pair is computationally more efficient than the extension to a tight frame.

In Section 3 we consider the case of Bessel sequences in L2(R) having
Gabor structure. We show that if the given Bessel sequences have Gabor
structure, it is always possible to extend to a dual frame pair by adding one
extra Gabor system to each Bessel sequence. We also show that if the gener-
ators for the given Bessel sequences are compactly supported, the generators
for the resulting dual frame pair can be chosen to be compactly supported
as well. This is a serious improvement compared to the known extension to
a tight frame, where such a result only holds if the generator of the given
Bessel sequence has sufficiently small support.

We also analyze the corresponding problem for wavelet systems and find
sufficient conditions under which a pair of wavelet Bessel sequences can be
extended to a pair of dual wavelet frames. Our results are complementary
to the classical extension principles in wavelet analysis: in fact, our results
require the Fourier transform of the given generators to be compactly sup-
ported, while the unitary extension principle and its subsequent generaliza-
tions usually have been applied for the construction of wavelet systems where
the generators are compactly supported.

In the rest of the introduction we review the needed facts from frame
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theory. Let H denote a separable Hilbert space. A sequence {fi}i∈I in H is
called a frame if there exist constants A,B > 0 such that

A ||f ||2 ≤
∑
i∈I

|〈f, fi〉|2 ≤ B ||f ||2, ∀f ∈ H. (1.1)

The sequence {fi}i∈I is a Bessel sequence if at least the upper bound in (1.1)
is satisfied. The number B is called an upper frame bound, and the smallest
possible value for B is called the optimal bound. A frame is tight if we can
choose A = B in (1.1).

For any frame {fi}i∈I there exists at least one dual frame, i.e., a frame
{gi}i∈I for which

f =
∑
i∈I

〈f, fi〉gi, ∀f ∈ H. (1.2)

If {fi}i∈I is a tight frame with A = B = 1, one can take gi = fi and we
obtain the representation

f =
∑
i∈I

〈f, fi〉fi, ∀f ∈ H. (1.3)

The desire of obtaining (1.3) immediately motivates the problems considered
in [13], [14], [2], [11] in various settings: if {fi}i∈I is a Bessel sequence with
bound B ≤ 1, how can we find a sequence {pj}i∈J such that{fi}i∈I ∪ {pj}i∈J

is a tight frame with bound A = 1, i.e., such that

f =
∑
i∈I

〈f, fi〉fi +
∑
j∈J

〈f, pj〉pj, ∀f ∈ H? (1.4)

In this paper we aim at the more general results of the type in (1.2). Thus,
given Bessel sequences {fi}i∈I and {gi}i∈I , we ask for the existence of Bessel
sequences {pj}i∈J and {qj}i∈J such that {fi}i∈I∪{pj}i∈J and {gi}i∈I∪{qj}i∈J

are dual frames, i.e., such that

f =
∑
i∈I

〈f, fi〉gi +
∑
j∈J

〈f, pj〉qj, ∀f ∈ H. (1.5)

Note that even in the case where gi = fi, it is an advantage to consider the
more general extension problem in (1.5) rather than (1.4). For illustration

3



of this point, see the comment after Theorem 2.1, Example 2.2, and, in the
Gabor setting, Theorem 3.1 and Example 3.2.

For more information on general frames we refer to the books [5], [15],
[3].

2 Extensions of Bessel sequences in general

Hilbert spaces

Given any Bessel sequence {fi}i∈I in a separable Hilbert space H, it was
shown by Li and Sun [11] that there exists a sequence {pj}i∈J in H such that
{fi}i∈I∪{pj}i∈J is a tight frame for H. We first extend this result by showing
that any pair of Bessel sequences can be extended to a pair of dual frames:

Proposition 2.1 Let {fi}i∈I and {gi}i∈I be Bessel sequences in a Hilbert
space H. Then there exist Bessel sequences {pj}i∈J and {qj}i∈J in H such
that {fi}i∈I ∪{pj}i∈J and {gi}i∈I ∪{qj}i∈J form a pair of dual frames for H.

Proof. Let T and U denote the preframe operators (or synthesis operators)
for {fi}i∈I and {gi}i∈I , respectively, i.e.,

T, U : `2(I) → H, T{ci}i∈I =
∑
i∈I

cifi, U{ci}i∈I =
∑
i∈I

cigi.

Then

UT ∗f =
∑
i∈I

〈f, fi〉gi, ∀f ∈ H.

Consider the bounded operator Φ := I−UT ∗, and let {aj}i∈J , {bj}i∈J denote
any pair of dual frames for H. Then

Φf =
∑
j∈J

〈Φf, aj〉bj =
∑
j∈J

〈f, Φ∗aj〉bj, ∀f ∈ H.

Thus,

f = UT ∗f + Φf =
∑
i∈I

〈f, fi〉gi +
∑
j∈J

〈f, Φ∗aj〉bj, ∀f ∈ H. (2.1)
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The sequences {fi}i∈I , {gi}i∈I , and {bj}i∈J are Bessel sequences by definition,
and it is easy to verify that {Φ∗aj}j∈J is a Bessel sequence as well. Thus,
(2.1) implies by [12] or Lemma 5.7.1 in [3] that {fi}i∈I ∪ {Φ∗aj}j∈J and
{gi}i∈I ∪ {bj}i∈J are dual frames for H. ¤

Note that the construction of the sequence {pj}i∈J in Proposition 2.1 only
involves the operator Φ∗ = I−TU∗. Thus, the practical computation is easier
than the extension to a tight frame in [11], which involves computation of
the square root of a bounded operator.

In the special case where {fi}i∈I = {gi}i∈I , Proposition 2.1 follows from
the mentioned result by Li and Sun. But even in that case it is an advantage
to consider extensions to dual frame pairs rather than to a tight frames. This
is demonstrated in the context of Gabor systems in Section 3. For now, we
just present a simple example which shows that extension to a dual frame
pair might be significantly cheaper than extension to a tight frame.

Example 2.2 Let {ej}10
j=1 be an orthonormal basis for C10 and consider the

frame

{fj}10
j=1 := {2e1} ∪ {ej}10

j=2.

The frame {fj}10
j=1 is not tight, but we can make it tight by adding the vectors

{gj}10
j=2 = {√3ej}10

j=2. This is the optimal extension, in the sense that 9 is
the minimal number of vectors that needs to be added in order to obtain a
tight frame. On the other hand, a pair of dual frames can be obtained by
adding just one element. In fact, the two sequences

{fj}10
j=1 ∪ {−3e1} and {fj}10

j=1 ∪ {e1}

form dual frames in C10. ¤

The construction in Example 2.2 can clearly be extended to any dimen-
sion. Similar examples can be made for normalized frames, e.g., for the
frame

{fj}10
j=1 := {e1 + e2√

2
} ∪ {ej}10

j=2.
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3 Extensions of Gabor Bessel sequences

If the given Bessel sequences have a special structure, it is interesting to
know if we can keep the same structure for the extension to a dual frame
pair. We first consider Gabor systems. Recall that a Gabor system in L2(R)
has the form {e2πimbxg(x−na)}m,n∈Z for some parameters a, b > 0 and a given
function g ∈ L2(R). Using the translation operators Taf(x) := f(x− a), a ∈
R, and the modulation operators Ebf(x) := e2πibxf(x), b ∈ R, both acting
on L2(R), we will denote a Gabor system by {EmbTnag}m,n∈Z. For more
information about Gabor systems and their applications we refer to the book
[9] as well as the collection of research articles in [7] and [8].

We will now show that any pair of Gabor Bessel sequences can be ex-
tended to a pair of dual frames with Gabor structure. We also prove that we
can choose the generators of the added Gabor systems to be compactly sup-
ported if the given generators are compactly supported. This is a significant
improvement compared to the extension of a Bessel sequence {EmbTnag1}m,n∈Z
to a tight frame reported in [11]: in that case the compact support of the
added generator is only guaranteed if the given generator g1 has sufficiently
small support, i.e., |supp g1| ≤ 1/b.

Theorem 3.1 Let {EmbTnag1}m,n∈Z and {EmbTnah1}m,n∈Z be Bessel sequences
in L2(R), and assume that ab ≤ 1. Then the following hold:

(i) There exist Gabor systems {EmbTnag2}m,n∈Z and {EmbTnah2}m,n∈Z in
L2(R) such that

{EmbTnag1}m,n∈Z ∪ {EmbTnag2}m,n∈Z and {EmbTnah1}m,n∈Z ∪ {EmbTnah2}m,n∈Z

form a pair of dual frames for L2(R).

(ii) If the functions g1 and h1 are compactly supported, the functions g2 and
h2 can be chosen to be compactly supported as well.

(iii) Assume that ab < 1 and that the functions g1 and h1 are compactly
supported and C∞. Then the g2 and h2 can be chosen to be compactly
supported and C∞ as well.

Proof. Let T and U denote the preframe operators for {EmbTnag1}m,n∈Z
and {EmbTnah1}m,n∈Z, respectively. Then

UT ∗f =
∑

m,n∈Z
〈f, EmbTnag1〉EmbTnah1.
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Consider the operator Φ := I−UT ∗, and let {EmbTnar1}m,n∈Z, {EmbTnar2}m,n∈Z
denote any pair of dual frames for L2(R) (see Appendix A). By the proof of
Proposition 2.1, {EmbTnag1}m,n∈Z∪{Φ∗EmbTnar1}m,n∈Z and {EmbTnah1}m,n∈Z∪
{EmbTnar2}m,n∈Z are dual frames for L2(R). Note that Φ∗ = I − TU∗, i.e.,

Φ∗f = f −
∑

m,n∈Z
〈f, EmbTnah1〉EmbTnag1. (3.1)

A standard argument (as in Lemma 9.3.1 in [3]) shows that Φ∗ commutes
with all the time-frequency shift operators EmbTna. Thus we conclude that

{EmbTnag1}m,n∈Z ∪ {EmbTnaΦ
∗r1}m,n∈Z and {EmbTnah1}m,n∈Z ∪ {EmbTnar2}m,n∈Z

are dual frames for L2(R). This proves (i).
We now prove (ii). Take the functions r1 and r2 in the proof of (i) to be

compactly supported (see Appendix A). Then we just need to show that the
function g2 = Φ∗r1 is compactly supported. Due to the compact support of
the functions r1 and h1 there exists a number N such that

〈r1, EmbTnah1〉 = 0, ∀m ∈ Z if n /∈ [−N,N ].

Thus, by (3.1),

Φ∗r1 = r1 −
∑

m,n∈Z
〈r1, EmbTnah1〉EmbTnag1

= r1 −
N∑

n=−N

∑

m∈Z
〈r1, EmbTnah1〉EmbTnag1, (3.2)

which is clearly compactly supported.
For the proof of (iii), it suffices to show that g2 = Φ∗r1 ∈ C∞(R). For

k ∈ N, define a norm || · ||k : C∞ → R by

||f ||k := max
0≤r≤k

||f (r)||∞.

Choose the functions r1, r2 in the proof of (ii) to be C∞(R) (see Appendix
A). We first estimate |〈r1, EmbTnah1〉|. Choose L so that

N⋃
n=−N

supp
{
r1(·)h1(· − na)

} ⊂ [−L,L].
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For any k ∈ {0, 1, 2, . . . }, integration by parts implies

〈r1, EmbTnah1〉 =

∫ ∞

−∞
e−2πimbx(r1(x)h1(x− na))dx

=
1

2πimb

∫ ∞

−∞
e−2πimbx(r1(x)h1(x− na))′dx

= · · ·
=

1

(2πimb)k

∫ ∞

−∞
e−2πimbx(r1Tnah1)

(k)(x)dx.

By Leibnitz formula for the k-derivative of a product, we have

(r1Tnah1)
(k)(x) =

k∑
r=0

(
k

r

)
r
(r)
1 (x)h

(k−r)

1 (x− na).

Thus,

||(r1Tnah1)
(k)||∞ ≤

k∑
r=0

(
k

r

)
||r(r)

1 ||∞||h(k−r)

1 (· − na)||∞

≤
k∑

r=0

(
k

r

)
||r1||k||h1||k

= 2k||r1||k||h1||k.
Hence, for any k ∈ {0, 1, . . . },

|〈r1, EmbTnah1〉| ≤ 2L

(πmb)k
||r1||k||h1||k. (3.3)

We now estimate the derivative (EmbTnag1)
(`)(x), ` ∈ N :

∣∣∣(EmbTnag1)
(`) (x)

∣∣∣ =

∣∣∣∣∣
∑̀
r=0

(
`

r

)
(e2πimbx)(r)g

(`−r)
1 (x− na)

∣∣∣∣∣

=

∣∣∣∣∣
∑̀
r=0

(
`

r

)
(2πimb)re2πimbxg

(`−r)
1 (x− na)

∣∣∣∣∣

≤
∑̀
r=0

(
`

r

)
(2πmb)r||g1||`

= (2πmb + 1)` ||g1||`. (3.4)
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Now, fix `0 ∈ N and choose k0 ∈ N so that k0 − `0 > 1. Using (3.3) with
k = k0 and (3.4), we have

N∑
n=−N

∑

m∈Z\{0}
|| (〈r1, EmbTnah1〉EmbTnag1)

(`0) ||∞

≤




N∑
n=−N

∑

m∈Z\{0}

2L

(πmb)k0
(2πmb + 1)`0



 ||r1||k0||h1||k0||g1||`0

< ∞,

since k0 − `0 > 1. By Weierstrass M-test, the infinite series

N∑
n=−N

∑

m∈Z\{0}
(〈r1, EmbTnah1〉EmbTnag1)

(`0) (x)

converges uniformly for any `0 ∈ N. This implies that the function

N∑
n=−N

∑

m∈Z\{0}
〈r1, EmbTnah1〉EmbTnag1

is infinitely often differentiable, and that for any `0 ∈ N,




N∑
n=−N

∑

m∈Z\{0}
〈r1, EmbTnah1〉EmbTnag1




(`0)

=
N∑

n=−N

∑

m∈Z\{0}
(〈r1, EmbTnah1〉EmbTnag1)

(`0) .

Using the expression in (3.2), we deduce that Φ∗r1 ∈ C∞. ¤

Note that Theorem 3.1 is based on the assumption ab ≤ 1. If ab > 1 we
can not find dual frames {EmbTnar1}m,n∈Z and {EmbTnar2}m,n∈Z for L2(R).
But if we choose N ∈ N such that ab

N
≤ 1, we can always find dual frames

{EmbTna/Nr1}m,n∈Z and {EmbTna/Nr2}m,n∈Z. Repeating the proof of Theorem
3.1 with T and U replaced by the preframe operators for {EmbTna/Ng1}m,n∈Z
and {EmbTna/Ng2}m,n∈Z now shows that

{EmbTna/Ng1}m,n∈Z ∪ {EmbTna/NΦ∗r1}m,n∈Z
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and

{EmbTna/Nh1}m,n∈Z ∪ {EmbTna/Nr2}m,n∈Z

form a pair of dual frames for L2(R). Thus, the given Gabor systems are
again subsystems of dual Gabor frames, obtained by oversampling of the
original lattice.

As already mentioned, the extension to a pair of dual frames has the
advantage (compared to the extension to a tight frame) that the extraction
of a square root of a bounded operator. The next example illustrates this in
the context of a Gabor system.

Example 3.2 Let {EmbTnag1}m,n∈Z be a Gabor Bessel sequence with bound
B. Denote the frame operator by S1 and let S2 := BI − S1. With g2 :=
b1/2S

1/2
2 χ[0,a], Example 4.4 in [11] shows that {EmbTnag1}m,n∈Z∪{EmbTnag2}m,n∈Z

is a tight frame for L2(R). On the other hand, since {EmbTnab
1/2χ[0,a]}m,n∈Z

is a tight frame for L2(R) we can use Proposition 3.1 with r1 = r2 = b1/2χ[0,a]

and Φ = I − S1 to conclude that

{EmbTnag1}m,n∈Z ∪ {EmbTnab
1/2(I − S1)χ[0,a]}m,n∈Z

and

{EmbTnag1}m,n∈Z ∪ {EmbTnab
1/2χ[0,a]}m,n∈Z

are dual frames for L2(R). Thus, compared to the tight frame approach the
construction avoids the use of the square root of the operator S2. ¤

4 The wavelet case

Wavelet systems in L2(R) have the form {2j/2ψ(2jx− k)}j,k∈Z for some fixed
function ψ ∈ L2(R). Using the scaling operator,

D : L2(R) → L2(R), (Df)(x) := 21/2f(2x), x ∈ R,

the wavelet system can be written on the form {DjTkψ}j,k∈Z.
We already mentioned that the unitary extension principle by Ron and

Shen allows certain wavelet systems to be extended to tight frames or dual
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wavelet frames. Important reformulations were later presented by various
groups, see [6] and [4]. All of these constructions are based on a multireso-
lution analysis setup.

In general, the issue of extending a pair of wavelet Bessel sequences to a
pair of dual wavelet frames turns out to be significantly more complicated
than the corresponding problem for Gabor systems. To illustrate this, con-
sider two Bessel sequences {DjTkψ1}j,k∈Z and {DjTkψ̃1}j,k∈Z with preframe
operators T, U and let Φ = I−UT ∗. Then we can copy our approach in Propo-
sition 2.1 and expand Φ∗f in a pair of dual frames {DjTkr1}j,k∈Z, {DjTkr2}j,k∈Z.
This yields a pair of dual frames, namely,

{DjTkψ1}j,k∈Z ∪ {Φ∗DjTkr1}j,k∈Z

and

{DjTkψ̃1}j,k∈Z ∪ {DjTkr2}j,k∈Z.

Here, the problem is that in general {Φ∗DjTkr1}j,k∈Z does not have wavelet
structure. In the following results we present conditions that ensure the
wavelet structure. A concrete sufficient condition is presented in Corollary
4.4.

Lemma 4.1 Let {DjTkψ1}j,k∈Z and {DjTkψ̃1}j,k∈Z be Bessel sequences in
L2(R) with preframe operators T, U. Assume there exists a function ϕ ∈
L2(R) such that the following two conditions hold:

(i) {DjTkϕ}j,k∈Z is a wavelet frame that has a dual {DjTkϕ̃}j,k∈Z;

(ii) TU∗Tkϕ = TkTU∗ϕ.

Then there exist wavelet systems {DjTkψ2}j,k∈Z and {DjTkψ̃2}j,k∈Z such that

{DjTkψ1}j,k∈Z ∪ {DjTkψ2}j,k∈Z and {DjTkψ̃1}j,k∈Z ∪ {DjTkψ̃2}j,k∈Z

form dual frames for L2(R).

Proof. Consider the operator Φ := I−UT ∗. Taking the functions ϕ, ϕ̃ such
that {DjTkϕ}j,k∈Z and {DjTkϕ̃}j,k∈Z are dual wavelet frames, any f ∈ L2(R)
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can be decomposed as

f = UT ∗f + Φf

=
∑

j,k∈Z
〈f, DjTkψ1〉DjTkψ̃1 +

∑

j,k∈Z
〈Φf,DjTkϕ〉DjTkϕ̃

=
∑

j,k∈Z
〈f, DjTkψ1〉DjTkψ̃1 +

∑

j,k∈Z
〈f, Φ∗DjTkϕ〉DjTkϕ̃.

Put ψ2 := Φ∗ϕ and ψ̃2 := ϕ̃. We need to show that the system {Φ∗DjTkϕ}j,k∈Z
has wavelet structure. A standard manipulation shows that the operator Dj

commutes with TU∗, so

TU∗DjTkϕ = DjTU∗Tkϕ. (4.1)

Therefore, by the condition (ii),

Φ∗DjTkϕ = (I − TU∗)DjTkϕ = Dj(I − TU∗)Tkϕ = DjTkΦ
∗ϕ,

as claimed.
¤

A closer look at the conditions in Lemma 4.1 leads to a more concrete
condition on the function ϕ. For Φ ⊂ L2(R), let S(Φ) denote the shift-
invariant space of Φ defined by

S(Φ) := span{Tkϕ : ϕ ∈ Φ, k ∈ Z}.

Then

S({DjTkψ : j < 0, k ∈ Z}) = span{TlD
jTkψ : j < 0, k, l ∈ Z}.

Theorem 4.2 Let {DjTkψ1}j,k∈Z and {DjTkψ̃1}j,k∈Z be Bessel sequences in
L2(R). Assume there exists a function ϕ ∈ L2(R) such that the following two
conditions hold:

(i) {DjTkϕ}j,k∈Z is a wavelet frame that has a dual {DjTkϕ̃}j,k∈Z;

(ii) ϕ ∈ L2(R)ª S({DjTkψ̃1 : j < 0, k ∈ Z}).
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Then there exist wavelet systems {DjTkψ2}j,k∈Z and {DjTkψ̃2}j,k∈Z such that

{DjTkψ1}j,k∈Z ∪ {DjTkψ2}j,k∈Z and {DjTkψ̃1}j,k∈Z ∪ {DjTkψ̃2}j,k∈Z

form dual frames for L2(R).

Proof. Let T and U denote the preframe operators for {DjTkψ1}j,k∈Z and

{DjTkψ̃1}j,k∈Z, respectively. From Lemma 4.1, it suffices to show that

TU∗Tkϕ = TkTU∗ϕ. (4.2)

The condition (ii) implies that

〈ϕ, T−kD
j′Tk′ψ̃1〉 = 0, j′ < 0, k, k′ ∈ Z.

Then

TU∗Tkϕ =
∑

j′,k′∈Z
〈Tkϕ, Dj′Tk′ψ̃1〉Dj′Tk′ψ1

=
∑

j′,k′∈Z
〈ϕ, T−kD

j′Tk′ψ̃1〉Dj′Tk′ψ1

=
∑

j′≥0,k′∈Z
〈ϕ, T−kD

j′Tk′ψ̃1〉Dj′Tk′ψ1

= TkT−k

∑

j′≥0,k′∈Z
〈ϕ, T−kD

j′Tk′ψ̃1〉Dj′Tk′ψ1

= Tk

∑

j′≥0,k′∈Z
〈ϕ, T−kD

j′Tk′ψ̃1〉T−kD
j′Tk′ψ1.

Using that T−kD
j′Tk′ = Dj′T−2j′k+k′ , we arrive at

TU∗Tkϕ = Tk

∑

j′≥0,k′∈Z
〈ϕ,Dj′T−2j′k+k′ψ̃1〉Dj′T−2j′k+k′ψ1

= Tk

∑

j′≥0,k′∈Z
〈ϕ,Dj′Tk′ψ̃1〉Dj′Tk′ψ1

= Tk

∑

j′,k′∈Z
〈ϕ,Dj′Tk′ψ̃1〉Dj′Tk′ψ1

= TkTU∗ϕ.
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Hence (4.2) holds. ¤

Note that the conditions in Theorem 4.2 are just sufficient conditions for
the extension to dual wavelet frames. They are not necessary, as demon-
strated by the following example.

Example 4.3 As shown in [1] there exists dual wavelet frames {DjTkψ1}j,k∈Z
and {DjTkψ̃1}j,k∈Z for which

S({DjTkψ̃1 : j < 0, k ∈ Z}) = L2(R).

In this case the extension problem has a trivial answer (take ψ2 = ψ̃2 = 0),
but the conditions (i) and (ii) in Theorem 4.2 can not be satisfied. ¤

We will now show that the conditions in Theorem 4.2 can be satisfied if the
support of the Fourier transform of ψ1 is sufficiently small. Our convention
for the Fourier transform of a function ψ ∈ L1(R) is

ψ̂(γ) =

∫ ∞

−∞
f(x) e−2πixγ dx,

with the usual extension to functions in L2(R).

Corollary 4.4 Let {DjTkψ1}j,k∈Z and {DjTkψ̃1}j,k∈Z be Bessel sequences in

L2(R). Assume that the Fourier transform of ψ̃1 satisfies

supp
̂̃
ψ1 ⊆ [−1, 1].

Then there exist wavelet systems {DjTkψ2}j,k∈Z and {DjTkψ̃2}j,k∈Z such that

{DjTkψ1}j,k∈Z ∪ {DjTkψ2}j,k∈Z and {DjTkψ̃1}j,k∈Z ∪ {DjTkψ̃2}j,k∈Z (4.3)

form dual frames for L2(R).

Proof. Let ϕ denote the Shannon wavelet, that is,

ϕ̂(γ) := ϕ̂SH(γ) := χ[−1,−1/2]
⋃

[1/2,1](γ).

14



Notice that {DjTkϕ}j,k∈Z is an orthonormal basis for L2(R). The condition

(ii) implies that {DjTkψ̃1}j,k∈Z is a Bessel sequence in L2(R). Since

(TlD
jTkψ̃1)

∧(γ) = 2−j/2̂̃ψ1(γ/2j)e−i2πγ(l+k/2j),

we see that for each j < 0, k, l ∈ Z,

supp (TlD
jTkψ̃1)

∧(·) = supp
̂̃
ψ1(·/2j) ⊂ [−2j, 2j] ⊆ [−1/2, 1/2].

Hence ϕ is orthogonal to S({DjTkψ̃1 : j < 0, k ∈ Z}), that is,

ϕ ∈ L2(R)ª S({DjTkψ̃1 : j < 0, k ∈ Z}). (4.4)

By Theorem 4.2, the result follows. ¤

Remark 4.5 A sufficient condition for {DjTkψ}j,k∈Z to be a Bessel sequence

is that ψ̂ is bounded and satisfies

ψ̂(γ) = O(|γ|δ) as γ → 0, (4.5)

ψ̂(γ) = O(|γ|− 1
2
−δ) as |γ| → ∞,

for some δ > 0, see [10, Theorem 13.0.1]. It is also known that the condition

(4.5) is almost necessary: in fact, if ψ̂ is continuous at zero, ψ can only

generate a Bessel sequence if ψ̂(0) = 0.

It is natural to ask whether we obtain a result corresponding to the Gabor
result in Theorem 3.1(ii) for the wavelet systems in Corollary 4.4. That is, if

we also assume that ψ̂1 is compactly supported, can we find functions ψ2 and
ψ̃2 with compactly supported Fourier transforms such that the systems in
(4.3) are dual frames? Interestingly, the answer is positive if we strengthen
the condition (4.5) slightly:

Corollary 4.6 In the setup of Corollary 4.4, assume that ψ̂1 is compactly
supported and that

supp
̂̃
ψ1 ⊆ [−1, 1] \ [−ε, ε]

for some ε > 0. Then the functions ψ2 and ψ̃2 can be chosen to have com-
pactly supported Fourier transforms as well.
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Proof. Take ϕ = ϕ̃ = ϕSH in the proof of Lemma 4.1. Then we just need
to show that the function ψ̂2 = Φ̂∗ϕ is compactly supported. By (4.4), we
have

Φ∗ϕ = ϕ−
∑

j,k∈Z
〈ϕ,DjTkψ̃1〉DjTkψ1 = ϕ−

∑
j≥0

∑

k∈Z
〈ϕ,DjTkψ̃1〉DjTkψ1

Now,

〈ϕ,DjTkψ̃1〉 = 〈ϕ̂,FDjTkψ̃1〉 = 〈ϕ̂,D−jE−k
̂̃
ψ1〉.

Take N ∈ N such that 2jε > 1 for j > N. Then D−jE−k
̂̃
ψ1 is supported

outside [−1, 1] for j > N, and therefore the above calculation shows that

〈ϕ,DjTkψ̃1〉 = 0, ∀k ∈ Z, if j > N.

Thus,

Φ∗ϕ = ϕ−
N∑

j=0

∑

k∈Z
〈ϕ,DjTkψ̃1〉DjTkψ1

Taking the Fourier transform yields

Φ̂∗ϕ = ϕ̂−
N∑

j=0

∑

k∈Z
〈ϕ,DjTkψ̃1〉D−jE−k

̂̃
ψ1,

which is clearly compactly supported. ¤

Note that the results presented here are complementary to the traditional
extension principles in wavelet analysis. In fact, the classical applications of
the unitary extension principle and its variants deal with wavelet systems
generated by compactly supported functions. In contrast, the concrete man-
ifestations of our results in Corollary 4.4 deals with extension of wavelet
systems generated by functions whose Fourier transform has compact sup-
port.
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5 Appendix A

For the case ab = 1 it is well known that there does not exist a Gabor frame
{EmbTnag}m,n∈Z with a compactly supported continuous generator g. How-
ever, there exist tight frames generated by a compactly supported function.
For the case ab < 1 we can find Gabor frames with compactly supported
generators of arbitrary smoothness, with dual generators enjoying the same
properties:

Example 5.1 Assume that ab < 1. Take ε ∈ [0, 1/2] such that a+2ε < 1/b,
and choose a function g ∈ L2(R) such that

• supp g ⊆ [0, a + 2ε];

• g = 1 on [ε, a + ε];

• g ∈ C∞(R);

• ||g||∞ = 1.

Then the function

G(x) :=
∑

n∈Z
|g(x− na)|2

is bounded below by 1 and bounded above by 2. It is well known (see,
e.g., Cor. 9.1.7 in [3]) that {EmbTnag}m,n∈Z is a frame with bounds 1/b, 2/b.
Letting S denote the frame operator, the canonical dual frame is given by
{EmbTnaS

−1g}m,n∈Z, where

S−1g =
b

G
g.

By construction, S−1g is compactly supported and belongs to C∞(R). ¤

Note that this construction proves the existence of the functions r1, r2 in
the proof of Theorem 3.1. Thus, if ab < 1, the function h2 can always be
chosen to be compactly supported and C∞.
Acknowledgment: The authors would like to thank Marcin Bownik for
discussions related to the topic of the paper. We also thank the anonymous
reviewers for their comments, which helped to improve the paper.
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