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Abstract

We present a construction of dual windows associated with Gabor frames with
compactly supported windows. The size of the support of the dual windows are
comparable to that of the given window. Under certain conditions we prove that
there exist dual windows with higher regularity than the canonical dual window. On
the other hand, there are cases where no differentiable dual window exists, even in
the overcomplete case. As a special case of our results we show that there exists a
common smooth dual window for an interesting class of Gabor frames. In particular,
for any value of K ∈ N there is a smooth function h which simultaneously is a dual
window for all B-spline generated Gabor frames {EmbTnBN (x

2 )}m,n∈N for B-splines
BN of order N = 1, . . . , 2K + 1 with a fixed and sufficiently small value of b.

Keywords Dual frame pairs, Gabor systems
2010 Mathematics Subject Classification: 42C15

1 Introduction

A frame {fk} in a separable Hilbert space H leads to expansions of arbitrary elements
f ∈ H, in a similar fashion as the well known orthonormal bases. More precisely, there
exists at least one so-called dual frame, i.e., a frame {hk} such that

f =
∑

〈f, hk〉fk, ∀f ∈ H.

Unless {fk} is a basis, the dual {hk} is not unique. This makes it natural to search for
duals with special prescribed properties. In this paper we will consider Gabor frames with
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translation parameter a = 1, i.e., frames for L2(R) that for a certain fixed parameter b > 0
and a fixed function g ∈ L2(R) have the form {EmbTng}m,n∈Z := {e2πimbxg(x − n)}m,n∈Z.
The function g is called the window function. We will construct dual frames of the form
{EmbTnh}m,n∈Z = {e2πimbxh(x − n)}m,n∈Z for a suitable function h ∈ L2(R), to be called
the dual window.

It is known that a frame {EmbTng}m,n∈Z will be overcomplete if b < 1, with the re-
dundancy increasing when b decreases. Thus, the dual window is not unique. We will
investigate whether this freedom can be used to find dual windows with higher regularity
than the canonical dual and comparable size of the support. We will present cases where
this is possible, and other cases where it is not. As a special case of our results we show
that there are certain classes of interesting frames that have the same dual window. For
example, for any value of K ∈ N there is a smooth function h which simultaneously is a
dual window for all B-spline generated Gabor frames {EmbTnBN(x

2
)}m,n∈N for B-splines BN

of order N = 1, . . . , 2K + 1 with a fixed and sufficiently small value of b.
Just to give the reader an impression of the results to come, consider the B-spline B2.

The function B2 is continuous but not differentiable at the points 0,±1. The Gabor system
{EmbTnB2}m,n∈Z is a frame for all sufficiently small values of b > 0. As b tends to zero,
the redundancy of the frame {EmbTnB2}m,n∈Z increases, meaning that we get more and
more freedom in the choice of a dual window h. However, we will show that it is impossible
to find a differentiable dual window h supported on supp B2 = [−1, 1], regardless of the
considered b > 0. On the other hand, by a seemingly innocent scaling we obtain the
function g(x) := B2(x/2). Again, {EmbTng}m,n∈Z is a frame for all sufficiently small values
of b > 0. But in contrast with the situation for B2, we will show that one can find infinitely
often differentiable dual windows h that are supported on supp g = [−2, 2], for any value
of b ∈]0, 1/2]. These examples illustrate that the question of differentiability of the dual
windows is a nontrivial issue. The examples will be derived as a consequence of more
general results, see Example 4.4.

The above results will be based on a construction of dual windows, to be presented in
Section 2. In Section 3 we consider a particular case where it is possible to obtain smooth
dual windows, regardless of the regularity of the given window g. This is much more than
one can hope for in the general case. A general approach to the question of differentiability
of the dual windows is given in Section 5. Since the necessary conditions are quite involved
and not very intuitive, we first, in Section 4, state a version for the case of windows g that
are supported in [−1, 1]. For this case we can provide concrete examples demonstrating
that the desired conclusions might fail if any of the constraints is removed.

Note that a complementary approach to duality for Gabor frames that also deals with
the issue of regularity is considered by R. Laugesen [8] and I. Kim [6]. For more information
about the theory for Gabor analysis and its applications, see [3, 4, 5].

2 Construction of dual frames

In the literature, various characterizations of the pairs of dual Gabor frames are available.
For general frames, Li gave a characterization in [9], which in the special case of Gabor
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frames also lead to a class of dual Gabor frames; later, in [2], it was shown that these
duals actually characterize all duals. In order to start our analysis, we need the duality
conditions for Gabor frames by Ron and Shen [11], resp. Janssen [7]:

Lemma 2.1 Two Bessel sequences {EmbTnag}m,n∈Z and {EmbTnah}m,n∈Z form dual frames
for L2(R) if and only if

∑

k∈Z
g(x + n/b + ka)h(x + ka) = bδn,0, a.e. x ∈ [0, a]. (2.1)

We will use the following to apply Lemma 2.1:

Lemma 2.2 Let G̃ be a real-valued bounded function, and assume that for some constant
A > 0,

|G̃(x− 1)|+ |G̃(x)| ≥ A, x ∈ [0, 1]. (2.2)

Then there exists a real-valued bounded function H̃ with supp H̃ ⊆ supp G̃
⋂

[−1, 1] such
that

G̃(x− 1)H̃(x− 1) + G̃(x)H̃(x) = 1, x ∈ [0, 1]. (2.3)

Proof. Consider x ∈ [0, 1]. We will define H̃(x) and H̃(x − 1) simultaneously. In
case |G̃(x − 1)| ≥ A/2, put H̃(x) = 0 and H̃(x − 1) = 1

G̃(x−1)
. On the other hand, if

|G̃(x − 1)| < A/2, we know that |G̃(x)| ≥ A/2. In this case, put H̃(x − 1) = 0 and
H̃(x) = 1

G̃(x)
. Clearly, we can take H̃ = 0 outside [−1, 1]. ¤

We will now present a general result about the existence of frames with a dual window
of a special form. Note that, in contrast with most results from the literature, we do not
need that the integer-translates of the window function form a partition of unity.

Associated to a function g with support on an interval [−(2K + 1), 2K + 1], K ∈ N,
we will in the rest of the paper use the function

G̃(x) :=
∑

k∈Z
g(x + 2k), x ∈ R. (2.4)

Due to the periodicity of G̃, we are mainly interested in x ∈ [−1, 1]. Note that by the
compact support of g,

G̃(x) =
K∑

k=−K

g(x + 2k), x ∈ [−1, 1]. (2.5)

Theorem 2.3 Let K ∈ N⋃{0} and let b ∈]0, 1
4K+2

]. Let g be a real-valued bounded func-
tion with supp g ⊆ [−(2K + 1), 2K + 1], for which

∣∣∣∣∣
∑

n∈Z
g(x + n)

∣∣∣∣∣ ≥ A, x ∈ [0, 1], (2.6)

for a constant A > 0. Then the following hold:
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(i) The function G̃ in (2.4) satisfies the conditions in Lemma 2.2.

(ii) Take H̃ as in Lemma 2.2, and let

h(x) = b

K∑

k=−K

T2kH̃(x). (2.7)

Then {EmbTng}m,n∈Z and {EmbTnh}m,n∈Z form dual frames for L2(R), and h is sup-
ported in [−(2K + 1), 2K + 1].

Proof. To prove (i), we note that by (2.6) and the definition of G̃, for x ∈ [0, 1],

∣∣∣G̃(x− 1)
∣∣∣ +

∣∣∣G̃(x)
∣∣∣ =

∣∣∣∣∣
∑

k∈Z
g(x− 1 + 2k)

∣∣∣∣∣ +

∣∣∣∣∣
∑

k∈Z
g(x + 2k)

∣∣∣∣∣

≥
∣∣∣∣∣
∑

k∈Z
g(x + k)

∣∣∣∣∣ ≥ A.

Thus G̃ satisfies the condition (2.2) in Lemma 2.2. Also, it is clear that G̃ is bounded,
real-valued, and 2-periodic. Therefore we can choose a function H̃ which is supported in
[−1, 1] and such that

G̃(x− 1)H̃(x− 1) + G̃(x)H̃(x) = 1, x ∈ [0, 1]. (2.8)

Define h as in (2.7). In order to prove (ii) we will apply Lemma 2.1. By assumption, the
function g has compact support and is bounded; by the construction, the function h shares
these properties. It follows that {EmbTng}m,n∈Z and {EmbTnh}m,n∈Z are Bessel sequences.
In order to verify that these sequences form dual frames, we need to check that for x ∈ [0, 1],

∑

k∈Z
g(x + n/b + k)h(x + k) = bδn,0, a.e. x ∈ [0, 1]. (2.9)

By assumption and construction, g and h have support in [−(2K + 1), 2K + 1]; thus (2.9)
is satisfied for n 6= 0 whenever 1

b
≥ 4K + 2, i.e., if b ∈ ]

0, 1
4K+2

]
. For n = 0, and using the

compact support of g, we need to check that

2K∑

k=−2K−1

g(x + k)h(x + k) = b, x ∈ [0, 1]. (2.10)

For each k ∈ {−K,−K + 1, · · · , K}, if x ∈ [0, 1], then

x− 1 + 2k ∈ [2k − 1, 2k], x + 2k ∈ [2k, 2k + 1];

thus we have
h(x− 1 + 2k) = bH̃(x− 1), h(x + 2k) = bH̃(x).
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This together with (2.5) and (2.8) implies, for x ∈ [0, 1],

2K∑

k=−2K−1

g(x + k)h(x + k) =
K∑

k=−K

g(x− 1 + 2k)h(x− 1 + 2k) +
K∑

k=−K

g(x + 2k)h(x + 2k)

= b

K∑

k=−K

g(x− 1 + 2k)H̃(x− 1) + b

K∑

k=−K

g(x + 2k)H̃(x)

= b
(
G̃(x− 1)H̃(x− 1) + G̃(x)H̃(x)

)
= b.

Hence (2.10) holds. Therefore {EmbTng}m,n∈Z and {EmbTnh}m,n∈Z form dual frames for
L2(R). ¤

3 Smooth dual windows for a class of Gabor frames

Before we start the general analysis of the dual windows in Theorem 2.3 we will consider
a particular case, where we can construct smooth compactly supported dual windows,
regardless of the regularity of the window itself.

Theorem 3.1 Let K ∈ N⋃{0} and let b ∈]0, 1
4K+2

]. Let g be a real-valued bounded func-
tion with supp g ⊆ [−(2K + 1), 2K + 1], for which

∑

n∈Z
g(x + 2n) = 1, x ∈ [−1, 1]. (3.1)

Let f : R→ R be any bounded function for which

f(x) = 0, x ≤ 0, f(x) = 1, x ≥ 1. (3.2)

Define the function H̃ by

H̃(x) =





1
2
f(2(x + 1)), −1 ≤ x < −1/2,

1− 1
2
f(−2x), −1/2 ≤ x < 0,

1− 1
2
f(2x), 0 ≤ x < 1/2,

1
2
f(2(1− x)), 1/2 ≤ x < 1,

0, otherwise,

(3.3)

and let

h(x) := b

K∑

k=−K

T2kH̃(x). (3.4)

Then the following holds:

(i) h is a symmetric function with supp h ⊆ [−(2K + 1), 2K + 1].
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(ii) {EmbTng}m,n∈Z and {EmbTnh}m,n∈Z are dual frames for L2(R).

(iii) If f is chosen to be smooth, then the function H̃ in (3.3) is smooth, and consequently
the dual window h in (3.4) is smooth as well.

Proof. By the assumption (3.1), we have

G̃(x) = 1, x ∈ [−1, 1]. (3.5)

Take H̃ as in (3.3). For x ∈]0, 1/2[,

H̃(x− 1) + H̃(x) = f(2x)/2 + (1− f(2x)/2) = 1;

for x ∈]1/2, 1[,

H̃(x− 1) + H̃(x) = (1− f(−2(x− 1))/2) + f(2(1− x))/2 = 1.

That is, H̃(x− 1) + H̃(x) = 1, x ∈ [0, 1]. Combining this with (3.5) yields

G̃(x− 1)H̃(x− 1) + G̃(x)H̃(x) = H̃(x− 1) + H̃(x) = 1, x ∈ [0, 1].

By Theorem 2.3, h is a dual window of g. By construction, h is a symmetric function with
supp h ⊆ [−(2K + 1), 2K + 1]. The result in (iii) follows by direct investigation of the
derivatives at −1,−1/2, 0, 1/2, 1. ¤

An example of a smooth function f satisfying condition (3.2) is (see [10, p.36])

f(x) =





exp
[−{exp [x/(1− x)]− 1}−1] , 0 < x < 1,

0, x ≤ 0,
1, x ≥ 1.

(3.6)

As noted in the introduction, the possibility of constructing a smooth dual window is
a significant improvement compared to the use of the canonical dual window, which might
not even be continuous. We return to this point in Example 4.4.

Another interesting feature of the construction in Theorem 3.1 is that the dual window
h in (3.4) is independent of the window g that generates the frame {EmbTng}m,n∈Z! In
other words, we can construct a window h that generates a dual frame for all the frames
{EmbTng}m,n∈Z satisfying the conditions in Theorem 3.1 for fixed values of K and b.

Corollary 3.2 Let K ∈ N and let b ∈]0, 1
4K+2

]. Consider a bounded real-valued function φ
that is supported on [−K,K] and satisfies the partition of unity condition,

∑

n∈Z
φ(x− n) = 1, x ∈ R. (3.7)

Then the function g(x) := φ(x/2) generates a Gabor frame {EmbTng}m,n∈Z. Choosing H̃ as
in (3.3), the function h in (3.4) is a dual window of g.
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Proof. By the choice of the function φ, supp g ⊆ [−2K, 2K] ⊆ [−2K − 1, 2K + 1], and

∑

n∈Z
g(x− 2n) =

∑

n∈Z
φ(x/2− n) = 1.

Choose H̃ as in (3.3). By Theorem 3.1, the function h defined by h(x) = b
∑K

k=−K T2kH̃(x)
is a dual window of g. ¤

It is known that the partition of unity condition (3.7) is satisfied for a large class of func-
tions, e.g., any scaling function for a multiresolution analysis. As a concrete example, recall
that the centered B-splines BN , N ∈ N are given inductively by B1 = χ[−1/2,1/2], BN+1 =
BN ∗ B1. Any B-spline satisfies the partition of unity condition, and the B-spline BN has
support on the interval [−N/2, N/2]. Thus, for each fixed value of K ∈ N, the function h
in (3.4) is a dual window for each of the B-splines BN , N = 1, . . . , 2K and a fixed choice
of b ≤ 1

4K+2
.

4 Regularity of the dual windows if supp g ⊆ [−1, 1]

Based on Theorem 2.3 we now aim at a general analysis of the relationship between the
regularity of a window g and the associated dual windows h with comparable support
size. We will exhibit cases where the smoothness can be increased, and other cases where
these dual windows can not have higher smoothness than the window itself. The general
version of our result, to be stated in Theorem 5.1, is quite complicated and the role of
the conditions not intuitively clear. Therefore we will first present, in Theorem 4.1, the
corresponding version for windows g that are supported in [−1, 1]. An advantage of this
approach is that for each of the requirements in Theorem 4.1 we can provide an example
showing that the desired conclusion might fail if the condition is removed.

Given a function g that is supported in [−1, 1], let

Z := {x ∈ [−1, 1] : g(x) = 0} (4.1)

and

E := {x ∈ [−1, 1] : g is not differentiable at x} (4.2)

Theorem 4.1 Let g be a real-valued bounded function with supp g ⊆ [−1, 1]. Assume that
for some constant A > 0,

|g(x− 1)|2 + |g(x)|2 ≥ A, x ∈ [0, 1]. (4.3)

Then the following assertions hold:

(1) If g is not differentiable at 0, then there does not exist a differentiable dual window h
with supph ⊆ [−1, 1] for any b > 0;
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(2) Assume that g is differentiable at 0. Assume further that the set Z is a finite union
of intervals and points not containing 0, that the set E is finite, and that

(a) E
⋂

(E + 1) = ∅;
(b) Z

⋂
(E ± 1) = ∅.

Then, for any b ∈ ]
0, 1

2

]
, there exists a differentiable dual window h with supp h ⊆

supp g.

Note that (4.3) is a necessary condition for {EmbTng}m,n∈Z being a frame; thus it is not a
restriction in this context. To support the conditions in Theorem 4.1 we will now provide
a series of examples, where just one of these conditions breaks down and the conclusion in
Theorem 4.1 fails. We first give an example where condition (a) is not satisfied.

Example 4.2 Consider the function

g(x) :=





2x + 2, x ∈ [−1,−1/2];
1, x ∈ [−1/2, 1/2];
−2x + 2, x ∈ [1/2, 1];
0, x /∈ [−1, 1].

Then K = 0, Z = {±1} and E = {±1/2,±1}, so E
⋂

(E + 1) = {1/2}, Z
⋂

(E ± 1) = ∅.
Hence g satisfies condition (b) but not (a) in Theorem 4.1. Now we will show that g does
not have a differentiable dual of any form. Suppose that there exists such a dual h. By the
duality condition we obtain

g(x− 1)h(x− 1) + g(x)h(x) = b, x ∈ [0, 1]. (4.4)

Letting D−g and D+g denote the left, resp. right derivatives of g, we note that

g(−1/2) = g(1/2) = 1, D−g(−1/2) = 2, D+g(−1/2) = 0, D−g(1/2) = 0, D+g(1/2) = −2.
(4.5)

Taking the left and right derivative of (4.4) at x = 1/2, this implies that

Dh(−1/2) + Dh(1/2) = −2h(−1/2) and Dh(−1/2) + Dh(1/2) = 2h(1/2).

But by the conditions (4.4) and (4.5), we have h(−1/2)+h(1/2) = b. This is a contradiction.
Thus, a differentiable dual window does not exist. ¤

Note that the conclusion in Example 4.2 is even stronger than what we asked for: no
dual window at all can be differentiable, regardless of its form and support size. In the next
example condition (b) in Theorem 4.1 is not satisfied and the conclusion breaks down.
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Example 4.3 Consider

g(x) :=





5
2
x + 3

2
, x ∈ [−3/5,−1/5];

1, x ∈ [−1/5, 1/5];
−5

2
x + 3

2
, x ∈ [1/5, 3/5];

0, x /∈ [−3/5, 3/5].

Easy considerations as in Example 4.2 show that g satisfies condition (a) but not (b) in
Theorem 4.1, and that g does not have a differentiable dual of any form. We leave the
details to the interested reader. ¤

Let us now provide the details for the example mentioned in the introduction:

Example 4.4 Consider the B-spline B2, which is continuous but not differentiable at the
points 0,±1. It is an easy consequence of the results in the literature (see, e.g., [1]) that
the Gabor system {EmbTnB2}m,n∈Z is a frame for all sufficiently small values of b > 0. As b
tends to zero, the redundancy of the frame {EmbTnB2}m,n∈Z increases, meaning that we get
more and more freedom in the choice of h. However, since B2 is non-differentiable at x = 0,
Theorem 4.1 implies that none of the dual windows supported on [−1, 1] are differentiable,
for any b ∈]0, 1/2].

On the other hand, consider the scaled B-spline g(x) := B2(x/2). Again, {EmbTng}m,n∈Z
is a frame for all sufficiently small values of b > 0. The requirements in Theorem 3.1 are
satisfied for b ∈]0, 1/2], implying that infinitely often differentiable dual windows exists. ¤

5 Regularity of the dual windows in the general case

We will now present the general version of Theorem 4.1. The main difference between the
results is that the conditions in the general version are stated in terms of the function G̃
in (2.4) rather than g itself. The proof is in Appendix A. Given a compactly supported
function g : R→ C, define G̃ as in (2.4) and let

Z̃ := {x ∈ [−1, 1] : G̃(x) = 0}

and

Ẽ := {x ∈ [−1, 1] : G̃χ[−1,1] is not differentiable at x}

Theorem 5.1 Let K ∈ N⋃{0} and let b ∈]0, 1
4K+2

]. Let g be a real-valued bounded func-

tion with supp g ⊆ [−(2K+1), 2K+1]. Define G̃ as in (2.4). Then the following assertions
hold:

(1) If G̃ is not differentiable at 0, then there does not exist a differentiable dual window
h defined as in (2.7);
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Assume that for some constant A > 0,

|G̃(x− 1)|+ |G̃(x)| ≥ A, x ∈ [0, 1], (5.1)

and that the set Z̃ is a finite union of intervals and points not containing 0.

(2) Assume that G̃ is differentiable at 0, that the set of points Ẽ is finite, and that

(a) Ẽ
⋂ (

Ẽ − 1
)

= ∅;

(b) G̃(x) 6= 0, x ∈
(
Ẽ − 1

) ⋃ (
Ẽ + 1

)
.

Then {EmbTng}m,n∈Z is a frame for L2(R) and there exists a differentiable dual win-
dow h of the form (2.7).

Note that the conditions in Theorem 5.1 (2) are void if G̃ is differentiable, i.e., the
standing assumptions alone imply the existence of a differentiable dual window.

For non-negative functions the conditions in Theorem 5.1 can be formulated in an easier
way, where we again refer directly to properties of the function g rather than G̃.

Corollary 5.2 Let K ∈ N⋃{0} and let b ∈]0, 1
4K+2

]. Let g be a non-negative bounded
function with supp g ⊆ [−(2K + 1), 2K + 1]. Assume that for some constant A > 0,

2K∑

k=−2K−1

g(x + k) ≥ A, x ∈ [0, 1]. (5.2)

Assume that the set Z of zeros of g on [−(2K +1), 2K +1] is a finite union of intervals
and points, that g is differentiable except on a finite set E of points, and that the sets E
and Z satisfy the following conditions:

(a) 0 /∈
(⋂K

k=−K (Z − 2k)
) ⋃ (⋃K

k=−K (E − 2k)
)

;

(b)
(⋃K

k=−K (E − 2k)
) ⋂ (⋃K

k=−K (E − 2k + 1)
)

= ∅;

(c)
(⋂K

k=−K (Z − 2k)
) ⋂ (⋃K

k=−K (E − 2k ± 1)
)

= ∅.

Then {EmbTng}m,n∈Z is a frame for L2(R) and there exists a differentiable dual window h
supported on [−(2K + 1), 2K + 1].

Proof. We check condition (2) in Theorem 5.1. Let

G̃(x) :=
∑

k∈Z
g(x + 2k).
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By an argument similar to the one at the beginning of the proof of Theorem 2.3, (5.2)
together with (2.5) implies

|G̃(x− 1)|+ |G̃(x)| ≥ A, x ∈ [0, 1].

Since g is non-negative, the zeros of G̃ restricted to [−1, 1] is

Z̃ :=

(
K⋂

k=−K

(Z − 2k)

)⋂
[−1, 1].

A direct calculation shows that if g is differentiable except on the set E, then G̃ is differ-
entiable outside the set

⋃K
k=−K (E − 2k). Let

Ẽ :=

(
K⋃

k=−K

(E − 2k)

) ⋂
[−1, 1].

Then the sets Ẽ and Z̃ satisfy the conditions (a) and (b) of (2) in Theorem 5.1. Hence
there exists a differentiable dual window h. ¤

Example 5.3 Let

g(x) :=

(
5

2
x + 2

)
χ[− 4

5
,− 2

5 ]
(x) + χ[− 2

5
, 2
5 ]

(x) +

(
−5

2
x + 2

)
χ[ 2

5
, 4
5 ]

(x).

A direct calculation shows that

E =

{
±2

5
,±4

5

}
, E + 1 =

{
1

5
,
3

5
,
7

5
,
9

5

}
, E − 1 =

{
−9

5
,−7

5
,−3

5
,−1

5

}

and

Z =

[
−1,−4

5

] ⋃ [
4

5
, 1

]
.

Thus the conditions (a)-(c) in Corollary 5.2 are satisfied. Hence, for any b ∈]0, 1
2
], there

exists a differentiable dual window h.

Appendix: proof of Theorem 5.1:

The full proof of Theorem 5.1 is notationally complicated. We will therefore formulate the
proof for a function g for which

• K = 0 in (2.5), i.e., G̃(x) = g(x), x ∈ [−1, 1];

• G̃ is differentiable except at one point, i.e., Ẽ = {c};
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• The zeroset of G̃ within ] − 1, 1[ consists of just one interval [a, b] (containing the
degenerate case of just one point a = b as a special case), i.e., Z̃ = {−1}⋃

[a, b]
⋃{1}.

We leave the obvious modifications to the general case to the reader.
We use the following abbreviation:

ψ(a−) := lim
x→a−

ψ(x), ψ(a+) := lim
x→a+

ψ(x).

Proof of Theorem 5.1: (1) We will prove the contra-positive result, so suppose that a
dual window h defined as in (2.7) with K = 0, i.e.,

h(x) = bH̃(x)

with suppH̃ ⊆ [−1, 1], is differentiable on R. Then H̃ is also differentiable on R. Then we
have

H̃(−1) = H̃(1) = DH̃(−1) = DH̃(1) = 0. (5.3)

The duality condition can for n = 0 be written as

g(x− 1)h(x− 1) + g(x)h(x) = b, x ∈ [0, 1], (5.4)

or, in terms of G̃ and H̃,

G̃(x− 1)H̃(x− 1) + G̃(x)H̃(x) = 1, x ∈ [0, 1]. (5.5)

It follows from (5.3) that
G̃(0)H̃(0) = 1.

Putting this into (5.5), we have

G̃(x− 1) H̃(x− 1) + G̃(x)
(
H̃(x)− H̃(0)

)
+ H̃(0)

(
G̃(x)− G̃(0)

)
= 0, x ∈]0, 1[,

or, by dividing with x,

G̃(x− 1)
H̃(x− 1)

x
+ G̃(x)

(
H̃(x)− H̃(0)

x

)
+ H̃(0)

(
G̃(x)− G̃(0)

x

)
= 0, x ∈]0, 1[.

This implies that

G̃(x)− G̃(0)

x
= −

G̃(x− 1) H̃(x−1)
x

+ G̃(x)
(

H̃(x)−H̃(0)
x

)

H̃(0)
, x ∈]0, 1[.

Using (5.3) it now follows that

D+G̃(0) = −G̃(0+)D+H̃(0) + G̃((−1)+)D+H̃(−1)

H̃(0)
= −G̃(0+)DH̃(0)

H̃(0)
.

12



Similarly,

D−G̃(0) = −G̃(0−)DH̃(0)

H̃(0)
.

The conditions (5.3), (5.4) and the continuity of H̃ show that G̃ is continuous at x = 0.
Hence D+G̃(0) = D−G̃(0), which implies that G̃ is differentiable at 0.

(2): We construct a real-valued differentiable function H̃ with suppH̃ ⊆ [−1, 1] so that

G̃(x− 1)H̃(x− 1) + G̃(x)H̃(x) = 1, x ∈ [0, 1].

Let
Z̃ := {−1}

⋃
[a, b]

⋃
{1} and Ẽ := {c}.

There are various scenarios concerning the location of the points a, b, c. They are treated
in a similar way, and we will assume that −1 < a ≤ b < 0 < c < 1. By the condition (2) in
Theorem 5.1, one of the following cases occurs:

(1) b < c− 1 < 0; (2) − 1 < c− 1 < a.

The cases are similar, so we only consider the case (1), i.e.,

−1 < a ≤ b < c− 1 < 0 < c < 1. (5.6)

Let
W̃ := Z̃

⋃
Ẽ = {−1}

⋃
[a, b]

⋃
{c}

⋃
{1}.

and

Ṽ :=
(
W̃

⋂
[−1, 0]

) ⋃ (
(W̃ − 1)

⋂
[−1, 0]

)
=

(
{−1}

⋃
[a, b]

) ⋃ (
{c− 1}

⋃
{0}

)

We define H̃(x) on [−1, 1] as follows: first, we define h(x) on Ṽ
⋃ (

Ṽ + 1
)

by

H̃(x) :=





0, x ∈ W̃
⋂

[−1, 0] = {−1}⋃
[a, b];

1
G̃(x)

, x ∈ (W̃ − 1)
⋂

[−1, 0] = {c− 1}⋃{0};
1

G̃(x)
, x ∈ (W̃ + 1)

⋂
[0, 1] = {0}⋃

[a + 1, b + 1];

0, x ∈ W̃
⋂

[0, 1] = {c}⋃{1},

(5.7)

which is well defined by (5.6). Then

G̃(x− 1)H̃(x− 1) + G̃(x)H̃(x) = 1, x ∈ Ṽ + 1; (5.8)

We now extend H̃(x) on [−1, 1]\
(
Ṽ

⋃ (
Ṽ + 1

))
=

(
[−1, 0] \ Ṽ

) ⋃ (
[0, 1] \

(
Ṽ + 1

))
:

choose H̃(x) on [−1, 0] \ Ṽ so that H̃ is differentiable on [−1, 0] \ Ṽ and

D+H̃(−1) = D−H̃(a) = D+H̃(b) = 0 (5.9)

DH̃(c− 1) = D

(
1

G̃

)
(c− 1) (5.10)

D−H̃(0) = D

(
1

G̃

)
(0). (5.11)
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Then (5.7) and (5.9)-(5.11) imply that H̃ is differentiable on ]− 1, 0[ and that

D+H̃(−1) = 0, D−H̃(0) = D

(
1

G̃

)
(0). (5.12)

We then define H̃(x) on [0, 1] \ (Ṽ + 1) by

H̃(x) =
1− G̃(x− 1)H̃(x− 1)

G̃(x)
, (5.13)

which is well defined since

W̃
⋂

[0, 1] = {c, 1} ⊆ (Ṽ + 1).

This implies that

G̃(x− 1)H̃(x− 1) + G̃(x)H̃(x) = 1, x ∈ [0, 1] \ (Ṽ + 1). (5.14)

Recall that G̃(x−1), G̃(x), H̃(x−1) are differentiable on [0, 1]\(Ṽ +1). By (5.13), the same
is the case for H̃(x). Since supp H̃ ⊆ [−1, 1], it remains to show that H̃ is differentiable on
Ṽ +1 = {0}⋃

[a+1, b+1]
⋃{c}⋃{1}, and that D−H̃(1) = 0. Note that G̃ is differentiable

on {0}⋃
[a + 1, b + 1]. Thus, by (5.7) and (5.12), it suffices to show

D+H̃(0) = D

(
1

G̃

)
(0); (5.15)

D−H̃(a + 1) = D

(
1

G̃

)
(a + 1); D+H̃(b + 1) = D

(
1

G̃

)
(b + 1); (5.16)

D−H̃(c) = D+H̃(c), D−H̃(1) = 0. (5.17)

We first show (5.15). From (5.7), we get

H̃(−1) = 0, G̃(0)H̃(0) = 1. (5.18)

Putting this into (5.14), we have for x ∈ [0, 1] \ (Ṽ + 1),

G̃(x− 1)
(
H̃(x− 1)− H̃(−1)

)
+ G̃(x)

(
H̃(x)− H̃(0)

)
+ H̃(0)

(
G̃(x)− G̃(0)

)
= 0,

or by dividing with x,

G̃(x− 1)

(
H̃(x− 1)− H̃(−1)

x

)
+ G̃(x)

(
H̃(x)− H̃(0)

x

)
+ H̃(0)

(
G̃(x)− G̃(0)

x

)
= 0.

This implies that

H̃(x)− H̃(0)

x
= −

G̃(x− 1)
(

H̃(x−1)−H̃(−1)
x

)
+ H̃(0)

(
G̃(x)−G̃(0)

x

)

G̃(x)
, x ∈ [0, 1] \ (Ṽ + 1).
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Using (5.9), it follows that

D+H̃(0) = −G̃((−1)+)D+H̃(−1) + H̃(0)D+G̃(0)

G̃(0+)
= −H̃(0)D+G̃(0)

G̃(0+)
.

Since G̃(x) is differentiable at 0 /∈ W̃ , we have G̃(0+) = G̃(0), D+G̃(0) = DG̃(0). This
together with (5.18) implies that

D+H̃(0) = −H̃(0)DG̃(0)

G̃(0)
= −DG̃(0)

G̃2(0)
= D

(
1

G̃

)
(0).

This proves that (5.15) holds. The results in (5.16) and (5.17) can be shown in a similar
way. ¤
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