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Abstract

The R-dual sequences of a frame {f;};cs, introduced by Casazza,
Kutyniok and Lammers in [1], provide a powerful tool in the analysis
of duality relations in general frame theory. In this paper we derive
conditions for a sequence {w;};er to be an R-dual of a given frame
{fi}ier- In particular we show that the R-duals {w;};cs can be charac-
terized in terms of frame properties of an associated sequence {n; }icy.
We also derive the duality results obtained for tight Gabor frames in
[1] as a special case of a general statement for R-duals of frames in
Hilbert spaces. Finally we consider a relaxation of the R-dual setup
of independent interest. Several examples illustrate the results.

Math Subject Classifications: 42C15, 42C40, 42A38.
Keywords: Duality principle, Frame, Riesz basis, Gabor system, Wexler-
Raz theorem.

1 Introduction and notation

Let { f; }icr denote a frame for a separable Hilbert space H with inner product
(-,+). In [1], Casazza, Kutyniok, and Lammers introduced the Riesz-dual
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sequence (R-dual sequence) of { f; }icr with respect to a choice of orthonormal
bases {e;}ier and {h;}icr as the sequence {w;},cr given by

wj =Y (fiephi, j €L (1.1)

iel

The paper [1] demonstrates that there is a strong relationship between the
frame-theoretic properties of {w;};e; and {f;}icr, see Theorem 1.3 below
for details. The purpose of this paper is to analyze the concept of R-dual
sequence from another angle than it was done in [1]. Technically this is done
by considering a dual formulation of (1.1), namely, for a given frame {f;}icr
and a (Riesz) sequence {w;},es to search for orthonormal bases {e;};c; and
{h;}ier such that

fi = Z(u)j, hi>€j7 1 € I. (12)

jel

Using this approach we state a number of equivalent conditions for {w;} e/
to be an R-dual of { f;};c;. In particular we introduce a sequence {n; };c; that
can be used to check whether {w;};er is an R-dual of { f;}icr or not; in fact,
the answer is yes if and only if {n;};c; is a tight frame sequence with frame
bound F = 1.

One of the key properties of the R-duals is a certain duality relation that
resembles the duality principle in Gabor analysis. The driving force in the
article [1] was the question whether the duality principle in Gabor analysis
actually can be derived from the theory of the R-duals. The question remains
unsolved, but in [1] a positive conclusion is derived in the special case of a
tight Gabor frame. The results presented here shed new light on this issue:
in fact, the partial result in [1] turns out to be a consequence of a general
result about R-duals, valid for any tight frame in any Hilbert space.

In the rest of this section we review some of the needed facts about the
R-duals, as well as tools from frame theory. We also state a few basic results
about Gabor systems and their relationship to the R-dual concept. Our main
results for the R-duals associated with general frames are stated in Section
2. Section 3 deals with an relaxation of the above setup: we show that for
the relevant sequences { f; }ier and {w; };er and any orthonormal basis {e; }ier
we can always find an orthogonal system {h;};c; such that (1.2) holds. An
additional condition on the relationship between { f;};c; and {w;};e; implies
that {h;}ic; can even be chosen as an orthonormal system, i.e., compared to
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the general agenda only the completeness of {h;};c; is missing. Appendix A
contains a proof of a technical lemma.

Frames and Riesz bases. It will be essential to distinguish carefully
between sequences forming a basis/frame for the entire Hilbert space H or
a subspace thereof. For that reason we begin with the following standard
definition:

Definition 1.1 Let I denote a countable index set.

(i) A sequence {f;}icr in H is a Bessel sequence if there ezists a constant
B > 0 such that

ST P < BISIP, Vf € H.

el

(ii) A sequence {f;}ier inH is a frame for H if there ezist constants A, B >
0 such that

AIAIP <YK flP < BISIP, Vf € H.

el

The numbers A, B are called frame bounds. The frame is tight if we
can choose A = B.

(1it) A sequence {w;};er in ‘H is a Riesz sequence if there exist constants
C,D > 0 such that

C el <

jel

2
<D g

jel

E CjW;

jel

for all finite sequences {c;}icr. The numbers C, D are called (Riesz)
bounds.

(iv) A Riesz sequence {w;}jer is a Riesz basis for H if span{w;}jer = H.
Given any sequence {w;}jer in H, let

W = span{w, } jer.



In case {w;};er is a Riesz sequence, it is well known that {w;};e; has a
unique dual Riesz sequence belonging to W: that is, there exists a unique
Riesz sequence {wy }res of elements in W such that

<Wj,(:—d\_];> = 05k, j, kel (13)
If {w;}jer has Riesz bounds C, D, then the dual Riesz sequence has bounds

1/D,1/C.
Recall that the sequence {w;};e; has infinite deficit if

dim(span{w; }j;) = oo

The R-duals of a sequence {f;}ic;. We now state the definition of the
R-dual sequence, repeated from [1]. We are only interested in the case where
‘H is infinite-dimensional, in which case we can also index the R-duals by I:

Definition 1.2 Let {e;}ic; and {h;}ic; denote orthonormal bases for H, and
let {fi}ier be any sequence in H for which

S lifue)lt < o0, Vi€ L (1)
il
The R-dual of {fi}icr with respect to the orthonormal bases {e;}ic; and
{hi}ier is the sequence {w;};er given by
wi=> (fiej)hi, j€L. (1.5)
il
Note that any given sequence {f;}ic; has many associated R-dual se-
quences, namely, one for each choice of the orthonormal bases {e;}c; and

{hi}icr. We collect the main results about the relationship between {f;}icr
and {w;},er from [1].

Theorem 1.3 Let {e;}icr and {h;}icr denote orthonormal bases for H, and
let { fi}ier be any sequence in M for which Y, ; [{fi,e;)|* < oo for all j € I.
Define the R-dual {w;}jer as in (1.5). Then the following hold:

(i) Foralli€ I,
fi= Z<Wj;hi>€ja (1.6)
jel

i.e., {fitier ts the R-dual sequence of {w;}jer w.r.t. the orthonormal

bases {h;}icr and {e;}icr.



(11) {fi}ier is a Bessel sequence if and only {w;}icr is a Bessel sequence;
the Bessel bounds coincide.

(i1i) {fi}icr satisfies the lower frame condition with bound A if and only if
{w;}jer satisfies the lower Riesz sequence condition with bound A.

(i) {fitier is a frame for H with bounds A, B if and only if {w;}jer is a

Riesz sequence in 'H with bounds A, B.

(v) Two Bessel sequences {f;}icr and {g;}ier in H are dual frames if and
only if the associated R-dual sequences {w;}jer and {v;};er w.r.t. the
same choices of orthonormal bases {e;}icr and {h;}ier satisfy

(Wi, k) = 5k, Jik € L. (1.7)

The property in Theorem 1.3(v) is a key result and the main motivation
for the interest in the R-dual. The next paragraph explains this in more
detail.

Gabor systems. For a function g € L*(R), the Gabor system associated
with ¢ and two given parameters a, b is the collection of functions given by

{e%imbxg(x o na)}m,nez-
We will use the short notation {E,470a9 }mnez to denote the Gabor system.

The duality principle is one of the most fundamental results in Gabor
analysis. It was discovered almost simultaneously by three groups of re-
searchers: Janssen [6], Daubechies, Landau, and Landau [3], and Ron and
Shen [7]. The duality principle concerns the relationship between frame prop-
erties for a function g with respect to the lattice {(na, mb)},nez and with
respect to the so-called dual lattice {(n/b,m/a)}mnez:

Theorem 1.4 Let g € L*(R) and a,b > 0 be given. Then the Gabor sys-
tem {EmpThag}tmnez is a frame for L*(R) with bounds A, B if and only if
{\/L(Tb EraThpg}mnez is a Riesz sequence with bounds A, B.

Comparing Theorem 1.4 with Theorem 1.3(iv) makes it natural to ask
whether {\/% ErjaTnng}mmner can be realized as the R-dual of { By Thag}mnez

with respect to appropriate choices of orthonormal bases {€;n}mnez and
{hmn}mmnez. Combined with Theorem 1.3(v), the well known Wezler-Raz
theorem provides strong support for this hypothesis:
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Theorem 1.5 If the Gabor systems {E,wTnag}mnez and {EmpTooh}mnez
are dual frames, then the Gabor systems {\%Tb ErnaTh b9} mnez and {\/Laib EraThphtmmez
are biorthogonal.

In [1], Casazza, Kutyniok and Lammers proved the following partial re-
sult:

Theorem 1.6 Assuming that {EpTnagtmnez is a frame for L*(R) the fol-
lowing hold:

(i) If ab = 1, then {\/%Tb ErjaTongtmmner can be realized as the R-dual of

{EmbThag}mnez w.r.t. certain choices of orthonormal bases {€m n}mnez
and {hm.n}tmnez for L2(R).

(11) If {EvpTnag}tmmnez is a tight frame, then {\/% ErnoTh/b9}mmnez can be
realized as the R-dual of {EnpThag}mnez w.r.t. certain choices of or-
thonormal bases {emn}mnez and {huypntmnez for L*(R).

Among other results, we will show that Theorem 1.6(ii) is a consequence
of a general result that is valid for any tight frame in any separable Hilbert
space.

2 Duality for general frames

Our first goal is to find conditions on two sequences {f;}icr, {w;};er such
that {w;},es is the R-dual of {f;}ic; with respect to some choice of the
orthonormal bases {e;}ic; and {h;}ic;. Assume that {f;},c; is a frame for
H. By Theorem 1.3 this implies that any R-dual sequence {w,};er is a Riesz
sequence in H and that (1.6) holds. On the other hand, Theorem 1.3 shows
that if {w;};er is a Riesz sequence and (1.6) holds, then {w,},es is a R-dual
of {fi}ier. Thus we arrive at the following key question:

Question: Let {f;};c; be a frame for H and {w;};c; a Riesz sequence in H.
Under what conditions can we find orthonormal bases {e; },c;r and {h;};es for
H such that (1.6) holds?

We first show that for any Riesz sequence {w;};er, any sequence {f;}icr,
and any orthonormal basis {e;};c;, we can actually find and characterize
the sequences {h;};e; for which (1.6) holds; thus, the remaining question is



whether at least one of these sequences forms an orthonormal basis for H.
The key point in the analysis is the definition of a sequence {n; };cs, given by

ni=» (ex fi)or, i €1, (2.1)
kel

where {wy}rer is the dual Riesz sequence of {w;};e;. Note that under the
above assumptions the sequences {wy }rer and {e;};c; are Bessel sequences,
implying that the infinite series defining n; is convergent.

Note that while the motivation for our analysis comes from the case where
{fi}ier is a frame, several of our results hold for any sequence { f; };e;. Thus,
we only state the frame assumption when it is necessary. We begin with a
simple lemma, relating the involved sequences:

Lemma 2.1 Let {w;};er be a Riesz basis for the subspace W of H, with dual
Riesz basis {wg }rer. Let {e;}icr be an orthonormal basis for H. Given any
sequence { fi}icr in H, define {n;}icr as in (2.1). Then

(wj,nl-> = <fi76j>a VZ,] € I

Lemma 2.1 is a direct consequence of the definition of n; and (1.3). Our
starting point is now to characterize the sequences {h;};c; for which (1.6)
holds:

Proposition 2.2 Let {w;};cr be a Riesz basis for the subspace W of H, with
dual Riesz basis {wy}rer. Let {e;}icr be an orthonormal basis for H. Given
any sequence { fi}ier in H, the following hold:

(i) There exists a sequence {h;}ier in H such that
fi = Z(wj,hi>ej, Viel. (22)

jel
(ii) The sequences {h;}ier satisfying (2.2) are characterized as
hi = m; + n,, (2.3)
where n; is given by (2.1) and m; € W+.
(1it) If {w;}jer is a Riesz basis for H, then (2.2) has the unique solution

hi:ni, 1€ 1.



Proof. Expanding f; in the orthonormal basis {e;};c; and using Lemma
21,

fi= Z<fi;€j>ej = Z<wjvni>€j> e,

jel jel

i.e., the choice h; = n; satisfies (2.2). This proves (i). For m; € W+ it now
follows from w; € W that the choice h; = m; + n; will satisfy (2.2) as well.
In order to complete the proof of (ii) we only need to show that all solutions
{hi}ier of (2.2) are of the form in (2.3). Let {h;};e; be any sequence in H
satisfying (2.2). Fix any i € I. We can write h; = m; +n; with m; := h; —n,.
The expansion coefficients of f; in terms of the basis {e;};c; are unique, so
from

fi =) (wihije; =D (wjmie;

jeI jeI
it follows that
(W hi) = (wj na), Vj el
ie.,
(wj,m;) =0, Vj € 1.

This implies that m; € W=. This proves (ii). The result in (iii) is a conse-
quence of (ii). O

With Proposition 2.2 at hand our goal is now to find conditions under
which an orthonormal basis {h;}ie; for H of the form (2.3) exists. We note
that Proposition 2.2 did not use any assumption on {f;};c; or any relation-
ship between {f;}ier and {w;};er. The uniqueness statement in Proposi-
tion 2.2(iii) makes it easy to find a case where no orthonormal basis of the
form (2.3) exists, even if we assume that {f;};c; is a frame; for example
let {e;}ier be an orthonormal basis for H, let {w;}icr := {e;}ier, and take
{fitier := {2e1,e9,€3,---}. Then a simple calculation shows that the only
solution of (2.3) is hy = 2ey, h; = ¢;, 1 > 2.

We will now have a closer look at the properties of the sequence {n;};cs
in (2.1).



Lemma 2.3 Let {w;}jer be a Riesz sequence in H with bounds C, D, and let
{ei}tier an orthonormal basis for H. Given a frame {f;}icr for H with frame
bounds A, B, the sequence {n;}icr in (2.1) is a frame for W := span{w;}jer
with frame bounds A/D, B/C.

Proof. It is clear that n; € W, Vi € I. Now, for any f € W,

Z‘<f7nl>’2 = Z <fvz<ek7fl>&7k/>

el el kel

i€l | kel

- Z (fuZ@E, fex)

el kel

2

Note that {wg}rer is a Riesz basis for W with bounds 1/D,1/C. Thus the
above calculation yields that

2

= AY @ NI

kel

A 2
SR

i€l

> (@ fex

kel

v

The proof for the upper bound is similar. O

We will now present a solution to our key question, i.e., characterize the
existence of an orthonormal basis {h;};c;r for H such that (2.2) holds. We
note that the case where the Riesz sequence {w;};ecs spans the entire space
H is solved in Proposition 2.2(iii). Thus, we concentrate on the case where
the Riesz sequence {w;};cr spans a proper subspace of H.

Theorem 2.4 Let {w;};er be a Riesz sequence spanning a proper subspace
W of H and {e;}ic; an orthonormal basis for H. Given any frame {f;}icr
for 'H, the following are equivalent:

(1) {w;}jer is an R-dual of {fi}ier w.r.t. {e;}ier and some orthonormal
basis {hz}zej



(ii) There exists an orthonormal basis {h;}icr for H satisfying (2.2).

(11i) The sequence {n;}icr in (2.1) is a tight frame for W with frame bound
E =1, i.e., a Parseval frame.

Proof. The equivalence (i) < (ii) follows from Proposition 2.2.

(ii) =-(iii). Let P denote the orthogonal projection of H onto W. The
expression in (2.3) for all solutions to (2.2) shows that a sequence {h;}icr
in ‘H is a solution if and only if Ph; = n;, Vi € I. Now, it is well known
that the projection of an orthonormal basis onto a subspace forms a tight
frame for that subspace with frame bound equal to one. Thus, if {h;}cs is
an orthonormal basis for H, then necessarily {n;};cs is a tight frame for W
with frame bound F = 1.

(iii) =(ii). If {n;}ier is a tight frame for W with frame bound E = 1, then
Naimark’s theorem (see, e.g., [5]) says that there exists an orthonormal basis
for a larger Hilbert space such that Ph; = n;. Since W is assumed to be a
proper subspace of ‘H we can identify the larger Hilbert space with H, which
leads to the desired conclusion. O

Using Theorem 2.4 we can now give an example of a frame {f;};,c; and a
Riesz sequence {w;};er that can not be an R-dual of {fi}ier w.r.t. a given
orthonormal basis {¢; };c; and any choice of {h; };es, despite the fact that the
bounds for {f;}ic; and {w;};e; coincide:

Example 2.5 Let {¢;};c; be an orthonormal basis for H and

{fi}iel = {2617617627637 s },

{w;}ijer = {be1,es,e5,... }.

Then {f;}iesr is a frame with bounds A = 1, B = 5, and {w,};es is a Riesz
sequence with the same bounds. The dual Riesz sequence is
— 1
{Wk}rer = {561763, €5y - - }-

Direct calculation shows that

2
{ni}iel = {561, 561763,6’57 ce }
The frame is clearly not tight, so {w;};es is not an R-dual of {f;}ic; with
respect to {e;}ie; and any choice of an orthonormal basis {h;}icr. O
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Combining Lemma 2.3 and Theorem 2.4, we obtain a partial answer to
our key question. Note that the assumptions stated in the following result
also can be formulated by saying that {w;};er is an equal norm orthogonal
sequence.

Corollary 2.6 Assume that {w;};er is a Riesz sequence with upper and
lower bound A, spanning a proper subspace of H, and that {f;}icr is a tight
frame for H with frame bound A. Then {w;}icr is an R-dual of {f;}icr.

Proof. The assumptions imply by Lemma 2.3 that {n;};c; is a tight frame
for W with frame bound E = 1, for any choice of the orthonormal basis
{€;}icr- Now the result follows from Theorem 2.4. O

The assumptions in Corollary 2.6 correspond exactly to the known rela-
tionship between a tight Gabor frame and the corresponding Gabor system
on the dual lattice. Thus Corollary 2.6 is a generalization of the result from
[1] that we stated in Theorem 1.6(ii).

The assumption that {w;};e; spans a proper subspace of H is essential in
Corollary 2.6:

Example 2.7 Let {e;};en be an orthonormal basis for H, and let

{fitien = {ei,e1,e9,69,... 1,

{witien = {e1,e2,--}.
Then {f;}ien is a tight frame for H, but {w;},en is not an R-dual w.r.t.
{e;}ien and any choice of {h; }ien. In fact, if {w;}jen was an R-dual of { f;}ien
with respect to {e;}ien and some orthonormal basis {h;}ien, the definition
(1.5) with j = 1 would show that e; = hy + hg, which is impossible. O

With Theorem 2.4 and Corollary 2.6 in mind it is natural to ask whether
an orthonormal basis {h; },c; for H satisfying (2.2) can be found if the frame
{fi}ier is non-tight. Intuitively this sounds unlikely - but there are cases
where the answer is yes:

Example 2.8 Let {e;}ic; be an orthonormal basis for H, and define the
sequences {f;}ier and {w;};er by

1
{fz'}iel = {561, €2,€3, " }7
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respectively,

{wjtjer = {3617627637 et
Then
Wi, = {2e1, 9,63, },
and thus

n; = Z<€k7fi>&;l; =e;, Vi €I

kel

Thus {n;}ic; is an orthonormal basis and therefore tight, despite the fact
that {f;}ics is non-tight. O

Theorem 2.4 leads to a simple criterion for {w;};e; to be an R-dual of
{fi}ier- The result can be considered as an if and only if version of Proposition
5in [1]:

Corollary 2.9 Let {w;}jer be a Riesz basis for the subspace W of H and let
{ei}ier be an orthonormal basis for H. For any ¢ = {c;}icr € (*(I), let the
vectors e. and w. be related by

e = Zc_jej, We = chwj. (2.4)
jer jel
Then {w;}jer is an R-dual of {fi}ier w.r.t. {e;}ier and some orthonormal
basis {h;}icr if and only if
> [ firee) = lwel?
iel
for all choices of the sequence ¢ € (*(I).

Proof. Let {wy}rer be the dual Riesz basis of {w;};e; and define {n;};cs
as in (2.1). By the result in Lemma 2.1 and the relation between e. and w,,

(Niywe) = Zc_j<ni7wj> = Zc_j<ej7fi> = (ec, fi)-

jeI jel
Thus

> i we) P =" {ee fi)

iel icl
The result now follows from Theorem 2.4. O
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3 Orthonormal sequences {h;}c;

In Proposition 2.2 we have shown that a Riesz sequence {w; };er is an R-dual
of a frame { f; }ies if there exists orthonormal bases {h;};c;r and {e;}ie; such
that

fi= Z(u)j, hi>6j7 Vi e I. (31)

jel

In order to gain further insight into the problem we will now consider
a weaker version of this condition. In fact, we will assume that {e;};cs is
a given orthonormal basis, and ask for the existence of an orthogonal, resp.
orthonormal sequence {h;};c; such that (3.1) holds. We will show that these
questions have very general answers.

We begin with a lemma, stating an observation of independent interest.
For the proof, see Appendix A.

Lemma 3.1 Assume that {f;}icr is a Bessel sequence with bound B. Then

for any fi, fj,
[{fis f)* < B(B = IIAIIF = 1f117) + AP (3.2)

Note that the result in Lemma 3.1 is trivial if B — ||f;||* — || f;]]* > 0.
However, under the assumptions given here it can very well happen that
B —||filI> = 11/;]|> < 0, and for such elements f;, f; the result is an improve-
ment of Cauchy-Schwarz’ inequality:.

Theorem 3.2 Let {w;}jer be a Riesz sequence in H having infinite deficit,
and let {e;}ier be an orthonormal basis for H. Then the following hold:

(i) For any sequence {f;}ic; in H there exists an orthogonal sequence

{hi}ier in H such that

fi= Z(wj,hi>ej, Vi e I. (33)

jel
(11) Assume that {f;}icr is a Bessel sequence with bound B and that {w;}er

has a lower Riesz basis bound C' > B. Then there exists an orthonormal
sequence {h;}icr such that (3.3) holds.
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(111) For any Bessel sequence { f;}icr and regardless of the lower Riesz bound
for {w;}jer, there exist an orthonormal sequence {h;}ic;r in H and a
constant o > 0 such that

fi = Z(Ozwj, hi>ej; Vi e l. (34)

jel

Proof. The proof of (i) is based on Proposition 2.2. We consider again the
vectors n; in (2.1) and want to find m; € W+, i € I, such that h; :== m; +n;
is an orthogonal sequence. For notational convenience, assume that I = N.
Note that with such a choice of h;, we know that (3.3) is satisfied. Note also
that

(hi, hj) = (ni,ng) + (mg,my), Vi, j € N. (3.5)

We will use the following inductive procedure. Choose m; € W+ arbi-
trarily. Now, take my € W+ such that

(h1,hg) =0,
i.e., such that
(my1, ma) = —(nqy,nog).
In general, assuming that we have constructed m,...,my € W+ such that

{h;}X | is an orthogonal system, take my.; € W+ such that
(hi, hn41) =0, k=1,...,N,
i.e., such that
(mg,mys1) = —(ng,nns1), k=1,..., N.

This can always be done because {w;};es is assumed to have infinite deficit.
We conclude that {h;};c; forms an orthogonal system, as desired.

For the proof of (ii), let B denote an upper frame bound for {f;};c; and
C' a lower bound for the Riesz sequence {w;};e;. By an argument like in the
proof of Lemma 2.3, the sequence {n;};cr is a Bessel sequence with bound
g < 1; in particular, the norms of the vectors n; are uniformly bounded by
[|ni]] < 1. We now aim at a construction of a sequence {h;};cs satisfying
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(3.3) and ||h;]| = 1, Vi € I. We use the inductive procedure outlined in (i),
but now paying attention to the norm of the vectors h;. First we choose
my € W+ such that ||hy]|| = 1, i.e., such that

[Imall = V1 = [[ma 2.

We now want to choose my € W+ such that ||hsy|| = 1 and (hy, he) = 0; this
means that we want that

[|ma|| = /1 —||ne||? and (mq,mo) = —(ny,na). (3.6)
The first condition in (3.6) can always be satisfied; and the second can be
satisfied for a sequence my with [[ma|| = /1 — ||nz||? if and only if

V1=[mlPyV1—[lne|? > [(n1,n). (3.7)
The condition in (3.7) is satisfied by Lemma 3.1.

Following the inductive procedure outlined in (i), we see that it is possible
to construct an orthonormal sequence {h;};e; satisfying (3.3) if

V=l 2T = [lng[* = (na, )], Vi, 5 € 1,

which is satisfied by Lemma 3.1.

Finally, the result in (iii) is obtained by scaling of the Riesz sequence
{w;};er in such a way that we obtain a sequence {aw;};er to which we can
apply (ii). O

4 Appendix A - proof of Lemma 3.1

Proof of Lemma 3.1: We give the proof for the case B = 1; the general
case follows from here by replacing {fi}ic; by {fi/ \/E}le ;. For notational
convenience we take i = 1,7 = 2.

First, we assume (f1, fo) is real. Let f := xf; + f2 for some x € R. Then

1AI1* = 2*|LAl]* + 22(f1, fo) + |Ifel (4.1)

and

[Cfs fO1?+ 1, f2) I

1ll2® + 2(fr, f) LAl PP2 + [{fr, f)?

+ [ o) P2+ 2(f, )l fol P + |1 fol
= (IAIF+ 1 212 + 20f, L) (AP + (] fa] )z
+ A"+ [ ) (4.2)
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Using the upper frame condition on f,

SOUE P <1

iel
keeping only the terms corresponding to ¢ = 1,2 shows that
[{fs fOl? + 1 £ 2 < A1 (4.3)
Putting (4.1) and (4.2) into this yields

(LA + 1 2102 + 20, L) LA+ L)z + [l + [ fo) 2
< || Al + 221, f2) + 1 %)

or,

(AT = AN = 1 £ + 20, f2) (L= LA = [ £z
HILI? = LN = 1, f2) I > 0. (4.4)

We split into two cases:

(1): Assume [|f1]]* = [[Al[* = [(fi, f2)[? =0, or,
[{fro f) P = AN = (AT (4.5)
Note that (4.4) is satisfied for all real values of z. Thus,

(fio f2) (1= |IAP = 11f2l*) = 0.

If (f1, f2) = 0, then (3.2) trivially holds; if 1 — || f1||* — || f2]|> = 0, then (4.5)
implies that

(i 1 = (AN =LA
= (1= IAIMIAI
= (= lIAIMA =1L,

so (3.2) holds.
(2): Assume that [|f1][* — [[/il|* = [{f1, f2)|* # 0. Let

a = LA = LA = (A 2 (#0)
b= (fi, f2) (L= AP = lI£2P) (4.6)
c:= [l = I ll" = (1, S

16



Then (4.4) implies that
ax® + 2bx + ¢ > 0.

Substitute z := —b/a into this, to obtain
—(b* — ac)/a > 0. (4.7)
The frame condition (4.3) applied to f := f; yields that

[{frs 212 < AP = AL

so a > 0. It follows that
b —ac<0 (4.8)

Using (4.6), a direct calculation shows that

v —ac = (|[(fi. ) = IAIPII A7) x
(1 S22 = (L= LA = AP+ 1AL fI1) -

By Cauchy-Schwarz inequality,
(s F2) P < LAIPI fl
This and (4.8) imply
[(frs f2)* < L= ILAIE = (1Rl + LAIPIA
Thus (3.2) holds.

Now, we assume (f1, fp) is complex. Choose A € C such that [A\| = 1 and
/\<f1, f2> = |<f1,f2>| Let f = l‘)\fl + fQ for x € R. Then

A1 = 2®|LAlP + 22[(fr, fo) + 11 ol

and

P+ I 1P = AN+ [ £ + 20 ) LALR + [ fol )2
+ A"+ [ )

Hence we can apply the partial result just proved to f.

Note that the correct value of the Bessel bound is essential in (3.2) :

17



Example 4.1 Let {e1, es} be an orthonormal basis for a 2-dimensional Hilbert

space and put f; = /1 + €eeq, fo = /1 — €ey for some € €]0, 1[. Then {f1, fo}

is a Bessel sequence with bound 1 + €, and

L=[IAIP=IAIP+IAIPHAI? = 1-(0+¢ -1 -+ 1 +e)(1—¢)
= —<0.

By Lemma 3.1 the inequality (3.2) holds with B = 1 + €. The above calcu-
lation shows that the inequality is false if B is replaced by 1. U

Acknowledgment: The authors thank the reviewers for useful comments
that improved the presentation of the paper. In particular one reviewer sug-
gested to use Example 2.7 instead of our original more complicated example.
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