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Abstract

The R-dual sequences of a frame {fi}i∈I , introduced by Casazza,
Kutyniok and Lammers in [1], provide a powerful tool in the analysis
of duality relations in general frame theory. In this paper we derive
conditions for a sequence {ωj}j∈I to be an R-dual of a given frame
{fi}i∈I . In particular we show that the R-duals {ωj}j∈I can be charac-
terized in terms of frame properties of an associated sequence {ni}i∈I .
We also derive the duality results obtained for tight Gabor frames in
[1] as a special case of a general statement for R-duals of frames in
Hilbert spaces. Finally we consider a relaxation of the R-dual setup
of independent interest. Several examples illustrate the results.

Math Subject Classifications: 42C15, 42C40, 42A38.
Keywords: Duality principle, Frame, Riesz basis, Gabor system, Wexler-
Raz theorem.

1 Introduction and notation

Let {fi}i∈I denote a frame for a separable Hilbert spaceH with inner product
〈·, ·〉. In [1], Casazza, Kutyniok, and Lammers introduced the Riesz-dual
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sequence (R-dual sequence) of {fi}i∈I with respect to a choice of orthonormal
bases {ei}i∈I and {hi}i∈I as the sequence {ωj}j∈I given by

ωj =
∑
i∈I

〈fi, ej〉hi, j ∈ I. (1.1)

The paper [1] demonstrates that there is a strong relationship between the
frame-theoretic properties of {ωj}j∈I and {fi}i∈I , see Theorem 1.3 below
for details. The purpose of this paper is to analyze the concept of R-dual
sequence from another angle than it was done in [1]. Technically this is done
by considering a dual formulation of (1.1), namely, for a given frame {fi}i∈I

and a (Riesz) sequence {ωj}j∈I to search for orthonormal bases {ei}i∈I and
{hi}i∈I such that

fi =
∑
j∈I

〈ωj, hi〉ej, i ∈ I. (1.2)

Using this approach we state a number of equivalent conditions for {ωj}j∈I

to be an R-dual of {fi}i∈I . In particular we introduce a sequence {ni}i∈I that
can be used to check whether {ωj}j∈I is an R-dual of {fi}i∈I or not; in fact,
the answer is yes if and only if {ni}i∈I is a tight frame sequence with frame
bound E = 1.

One of the key properties of the R-duals is a certain duality relation that
resembles the duality principle in Gabor analysis. The driving force in the
article [1] was the question whether the duality principle in Gabor analysis
actually can be derived from the theory of the R-duals. The question remains
unsolved, but in [1] a positive conclusion is derived in the special case of a
tight Gabor frame. The results presented here shed new light on this issue:
in fact, the partial result in [1] turns out to be a consequence of a general
result about R-duals, valid for any tight frame in any Hilbert space.

In the rest of this section we review some of the needed facts about the
R-duals, as well as tools from frame theory. We also state a few basic results
about Gabor systems and their relationship to the R-dual concept. Our main
results for the R-duals associated with general frames are stated in Section
2. Section 3 deals with an relaxation of the above setup: we show that for
the relevant sequences {fi}i∈I and {ωj}j∈I and any orthonormal basis {ei}i∈I

we can always find an orthogonal system {hi}i∈I such that (1.2) holds. An
additional condition on the relationship between {fi}i∈I and {ωj}j∈I implies
that {hi}i∈I can even be chosen as an orthonormal system, i.e., compared to
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the general agenda only the completeness of {hi}i∈I is missing. Appendix A
contains a proof of a technical lemma.

Frames and Riesz bases. It will be essential to distinguish carefully
between sequences forming a basis/frame for the entire Hilbert space H or
a subspace thereof. For that reason we begin with the following standard
definition:

Definition 1.1 Let I denote a countable index set.

(i) A sequence {fi}i∈I in H is a Bessel sequence if there exists a constant
B > 0 such that

∑
i∈I

|〈f, fi〉|2 ≤ B ||f ||2, ∀f ∈ H.

(ii) A sequence {fi}i∈I in H is a frame for H if there exist constants A,B >
0 such that

A ||f ||2 ≤
∑
i∈I

|〈f, fi〉|2 ≤ B ||f ||2, ∀f ∈ H.

The numbers A,B are called frame bounds. The frame is tight if we
can choose A = B.

(iii) A sequence {ωj}j∈I in H is a Riesz sequence if there exist constants
C, D > 0 such that

C
∑
j∈I

|cj|2 ≤
∣∣∣∣∣

∣∣∣∣∣
∑
j∈I

cjωi

∣∣∣∣∣

∣∣∣∣∣

2

≤ D
∑
j∈I

|cj|2

for all finite sequences {ci}i∈I . The numbers C, D are called (Riesz)
bounds.

(iv) A Riesz sequence {ωj}j∈I is a Riesz basis for H if span{ωj}j∈I = H.

Given any sequence {ωj}j∈I in H, let

W := span{ωj}j∈I .
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In case {ωj}j∈I is a Riesz sequence, it is well known that {ωj}j∈I has a
unique dual Riesz sequence belonging to W : that is, there exists a unique
Riesz sequence {ω̃k}k∈I of elements in W such that

〈ωj, ω̃k〉 = δj,k, j, k ∈ I. (1.3)

If {ωj}j∈I has Riesz bounds C,D, then the dual Riesz sequence has bounds
1/D, 1/C.

Recall that the sequence {ωj}j∈I has infinite deficit if

dim(span{ωj}⊥j∈I) = ∞.

The R-duals of a sequence {fi}i∈I. We now state the definition of the
R-dual sequence, repeated from [1]. We are only interested in the case where
H is infinite-dimensional, in which case we can also index the R-duals by I:

Definition 1.2 Let {ei}i∈I and {hi}i∈I denote orthonormal bases for H, and
let {fi}i∈I be any sequence in H for which

∑
i∈I

|〈fi, ej〉|2 < ∞, ∀j ∈ I. (1.4)

The R-dual of {fi}i∈I with respect to the orthonormal bases {ei}i∈I and
{hi}i∈I is the sequence {ωj}j∈I given by

ωj =
∑
i∈I

〈fi, ej〉hi, j ∈ I. (1.5)

Note that any given sequence {fi}i∈I has many associated R-dual se-
quences, namely, one for each choice of the orthonormal bases {ei}i∈I and
{hi}i∈I . We collect the main results about the relationship between {fi}i∈I

and {ωj}j∈I from [1].

Theorem 1.3 Let {ei}i∈I and {hi}i∈I denote orthonormal bases for H, and
let {fi}i∈I be any sequence in H for which

∑
i∈I |〈fi, ej〉|2 < ∞ for all j ∈ I.

Define the R-dual {ωj}j∈I as in (1.5). Then the following hold:

(i) For all i ∈ I,

fi =
∑
j∈I

〈ωj, hi〉ej, (1.6)

i.e., {fi}i∈I is the R-dual sequence of {ωj}j∈I w.r.t. the orthonormal
bases {hi}i∈I and {ei}i∈I .
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(ii) {fi}i∈I is a Bessel sequence if and only {ωi}i∈I is a Bessel sequence;
the Bessel bounds coincide.

(iii) {fi}i∈I satisfies the lower frame condition with bound A if and only if
{ωj}j∈I satisfies the lower Riesz sequence condition with bound A.

(iv) {fi}i∈I is a frame for H with bounds A,B if and only if {ωj}j∈I is a
Riesz sequence in H with bounds A,B.

(v) Two Bessel sequences {fi}i∈I and {gi}i∈I in H are dual frames if and
only if the associated R-dual sequences {ωj}j∈I and {γj}j∈I w.r.t. the
same choices of orthonormal bases {ei}i∈I and {hi}i∈I satisfy

〈ωj, γk〉 = δj,k, j, k ∈ I. (1.7)

The property in Theorem 1.3(v) is a key result and the main motivation
for the interest in the R-dual. The next paragraph explains this in more
detail.

Gabor systems. For a function g ∈ L2(R), the Gabor system associated
with g and two given parameters a, b is the collection of functions given by

{e2πimbxg(x− na)}m,n∈Z.

We will use the short notation {EmbTnag}m,n∈Z to denote the Gabor system.
The duality principle is one of the most fundamental results in Gabor

analysis. It was discovered almost simultaneously by three groups of re-
searchers: Janssen [6], Daubechies, Landau, and Landau [3], and Ron and
Shen [7]. The duality principle concerns the relationship between frame prop-
erties for a function g with respect to the lattice {(na,mb)}m,n∈Z and with
respect to the so-called dual lattice {(n/b,m/a)}m,n∈Z:

Theorem 1.4 Let g ∈ L2(R) and a, b > 0 be given. Then the Gabor sys-
tem {EmbTnag}m,n∈Z is a frame for L2(R) with bounds A,B if and only if
{ 1√

ab
Em/aTn/bg}m,n∈Z is a Riesz sequence with bounds A,B.

Comparing Theorem 1.4 with Theorem 1.3(iv) makes it natural to ask
whether { 1√

ab
Em/aTn/bg}m,n∈Z can be realized as the R-dual of {EmbTnag}m,n∈Z

with respect to appropriate choices of orthonormal bases {em,n}m,n∈Z and
{hm,n}m,n∈Z. Combined with Theorem 1.3(v), the well known Wexler-Raz
theorem provides strong support for this hypothesis:

5



Theorem 1.5 If the Gabor systems {EmbTnag}m,n∈Z and {EmbTnah}m,n∈Z
are dual frames, then the Gabor systems { 1√

ab
Em/aTn/bg}m,n∈Z and { 1√

ab
Em/aTn/bh}m,n∈Z

are biorthogonal.

In [1], Casazza, Kutyniok and Lammers proved the following partial re-
sult:

Theorem 1.6 Assuming that {EmbTnag}m,n∈Z is a frame for L2(R) the fol-
lowing hold:

(i) If ab = 1, then { 1√
ab

Em/aTn/bg}m,n∈Z can be realized as the R-dual of

{EmbTnag}m,n∈Z w.r.t. certain choices of orthonormal bases {em,n}m,n∈Z
and {hm,n}m,n∈Z for L2(R).

(ii) If {EmbTnag}m,n∈Z is a tight frame, then { 1√
ab

Em/aTn/bg}m,n∈Z can be

realized as the R-dual of {EmbTnag}m,n∈Z w.r.t. certain choices of or-
thonormal bases {em,n}m,n∈Z and {hm,n}m,n∈Z for L2(R).

Among other results, we will show that Theorem 1.6(ii) is a consequence
of a general result that is valid for any tight frame in any separable Hilbert
space.

2 Duality for general frames

Our first goal is to find conditions on two sequences {fi}i∈I , {ωj}j∈I such
that {ωj}j∈I is the R-dual of {fi}i∈I with respect to some choice of the
orthonormal bases {ei}i∈I and {hi}i∈I . Assume that {fi}i∈I is a frame for
H. By Theorem 1.3 this implies that any R-dual sequence {ωj}j∈I is a Riesz
sequence in H and that (1.6) holds. On the other hand, Theorem 1.3 shows
that if {ωj}j∈I is a Riesz sequence and (1.6) holds, then {ωj}j∈I is a R-dual
of {fi}i∈I . Thus we arrive at the following key question:

Question: Let {fi}i∈I be a frame for H and {ωj}j∈I a Riesz sequence in H.
Under what conditions can we find orthonormal bases {ei}i∈I and {hi}i∈I for
H such that (1.6) holds?

We first show that for any Riesz sequence {ωj}j∈I , any sequence {fi}i∈I ,
and any orthonormal basis {ei}i∈I , we can actually find and characterize
the sequences {hi}i∈I for which (1.6) holds; thus, the remaining question is
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whether at least one of these sequences forms an orthonormal basis for H.
The key point in the analysis is the definition of a sequence {ni}i∈I , given by

ni :=
∑

k∈I

〈ek, fi〉ω̃k, i ∈ I, (2.1)

where {ω̃k}k∈I is the dual Riesz sequence of {ωj}j∈I . Note that under the
above assumptions the sequences {ω̃k}k∈I and {ei}i∈I are Bessel sequences,
implying that the infinite series defining ni is convergent.

Note that while the motivation for our analysis comes from the case where
{fi}i∈I is a frame, several of our results hold for any sequence {fi}i∈I . Thus,
we only state the frame assumption when it is necessary. We begin with a
simple lemma, relating the involved sequences:

Lemma 2.1 Let {ωj}j∈I be a Riesz basis for the subspace W of H, with dual
Riesz basis {ω̃k}k∈I . Let {ei}i∈I be an orthonormal basis for H. Given any
sequence {fi}i∈I in H, define {ni}i∈I as in (2.1). Then

〈ωj, ni〉 = 〈fi, ej〉, ∀i, j ∈ I.

Lemma 2.1 is a direct consequence of the definition of ni and (1.3). Our
starting point is now to characterize the sequences {hi}i∈I for which (1.6)
holds:

Proposition 2.2 Let {ωj}j∈I be a Riesz basis for the subspace W of H, with
dual Riesz basis {ω̃k}k∈I . Let {ei}i∈I be an orthonormal basis for H. Given
any sequence {fi}i∈I in H, the following hold:

(i) There exists a sequence {hi}i∈I in H such that

fi =
∑
j∈I

〈ωj, hi〉ej, ∀i ∈ I. (2.2)

(ii) The sequences {hi}i∈I satisfying (2.2) are characterized as

hi = mi + ni, (2.3)

where ni is given by (2.1) and mi ∈ W⊥.

(iii) If {ωj}j∈I is a Riesz basis for H, then (2.2) has the unique solution

hi = ni, i ∈ I.
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Proof. Expanding fi in the orthonormal basis {ej}j∈I and using Lemma
2.1,

fi =
∑
j∈I

〈fi, ej〉ej =
∑
j∈I

〈ωj, ni〉ej, i ∈ I,

i.e., the choice hi = ni satisfies (2.2). This proves (i). For mi ∈ W⊥ it now
follows from ωj ∈ W that the choice hi = mi + ni will satisfy (2.2) as well.
In order to complete the proof of (ii) we only need to show that all solutions
{hi}i∈I of (2.2) are of the form in (2.3). Let {hi}i∈I be any sequence in H
satisfying (2.2). Fix any i ∈ I. We can write hi = mi +ni with mi := hi−ni.
The expansion coefficients of fi in terms of the basis {ei}i∈I are unique, so
from

fi =
∑
j∈I

〈ωj, hi〉ej =
∑
j∈I

〈ωj, ni〉ej

it follows that

〈ωj, hi〉 = 〈ωj, ni〉, ∀j ∈ I,

i.e.,

〈ωj,mi〉 = 0, ∀j ∈ I.

This implies that mi ∈ W⊥. This proves (ii). The result in (iii) is a conse-
quence of (ii). ¤

With Proposition 2.2 at hand our goal is now to find conditions under
which an orthonormal basis {hi}i∈I for H of the form (2.3) exists. We note
that Proposition 2.2 did not use any assumption on {fi}i∈I or any relation-
ship between {fi}i∈I and {ωj}j∈I . The uniqueness statement in Proposi-
tion 2.2(iii) makes it easy to find a case where no orthonormal basis of the
form (2.3) exists, even if we assume that {fi}i∈I is a frame; for example
let {ei}i∈I be an orthonormal basis for H, let {ωi}i∈I := {ei}i∈I , and take
{fi}i∈I := {2e1, e2, e3, · · · }. Then a simple calculation shows that the only
solution of (2.3) is h1 = 2e1, hi = ei, i ≥ 2.

We will now have a closer look at the properties of the sequence {ni}i∈I

in (2.1).
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Lemma 2.3 Let {ωj}j∈I be a Riesz sequence in H with bounds C, D, and let
{ei}i∈I an orthonormal basis for H. Given a frame {fi}i∈I for H with frame
bounds A,B, the sequence {ni}i∈I in (2.1) is a frame for W := span{ωj}j∈I

with frame bounds A/D, B/C.

Proof. It is clear that ni ∈ W, ∀i ∈ I. Now, for any f ∈ W,

∑
i∈I

|〈f, ni〉|2 =
∑
i∈I

∣∣∣∣∣〈f,
∑

k∈I

〈ek, fi〉ω̃k〉
∣∣∣∣∣

2

=
∑
i∈I

∣∣∣∣∣
∑

k∈I

〈f, ω̃k〉〈fi, ek〉
∣∣∣∣∣

2

=
∑
i∈I

∣∣∣∣∣〈fi,
∑

k∈I

〈ω̃k, f〉ek〉
∣∣∣∣∣

2

.

Note that {ω̃k}k∈I is a Riesz basis for W with bounds 1/D, 1/C. Thus the
above calculation yields that

∑
i∈I

|〈f, ni〉|2 ≥ A

∣∣∣∣∣

∣∣∣∣∣
∑

k∈I

〈ω̃k, f〉ek

∣∣∣∣∣

∣∣∣∣∣

2

= A
∑

k∈I

|〈ω̃k, f〉|2

≥ A

D
||f ||2.

The proof for the upper bound is similar. ¤

We will now present a solution to our key question, i.e., characterize the
existence of an orthonormal basis {hi}i∈I for H such that (2.2) holds. We
note that the case where the Riesz sequence {ωj}j∈I spans the entire space
H is solved in Proposition 2.2(iii). Thus, we concentrate on the case where
the Riesz sequence {ωj}j∈I spans a proper subspace of H.

Theorem 2.4 Let {ωj}j∈I be a Riesz sequence spanning a proper subspace
W of H and {ei}i∈I an orthonormal basis for H. Given any frame {fi}i∈I

for H, the following are equivalent:

(i) {ωj}j∈I is an R-dual of {fi}i∈I w.r.t. {ei}i∈I and some orthonormal
basis {hi}i∈I .
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(ii) There exists an orthonormal basis {hi}i∈I for H satisfying (2.2).

(iii) The sequence {ni}i∈I in (2.1) is a tight frame for W with frame bound
E = 1, i.e., a Parseval frame.

Proof. The equivalence (i) ⇔ (ii) follows from Proposition 2.2.
(ii) ⇒(iii). Let P denote the orthogonal projection of H onto W . The
expression in (2.3) for all solutions to (2.2) shows that a sequence {hi}i∈I

in H is a solution if and only if Phi = ni, ∀i ∈ I. Now, it is well known
that the projection of an orthonormal basis onto a subspace forms a tight
frame for that subspace with frame bound equal to one. Thus, if {hi}i∈I is
an orthonormal basis for H, then necessarily {ni}i∈I is a tight frame for W
with frame bound E = 1.
(iii) ⇒(ii). If {ni}i∈I is a tight frame for W with frame bound E = 1, then
Naimark’s theorem (see, e.g., [5]) says that there exists an orthonormal basis
for a larger Hilbert space such that Phi = ni. Since W is assumed to be a
proper subspace of H we can identify the larger Hilbert space with H, which
leads to the desired conclusion. ¤

Using Theorem 2.4 we can now give an example of a frame {fi}i∈I and a
Riesz sequence {ωj}j∈I that can not be an R-dual of {fi}i∈I w.r.t. a given
orthonormal basis {ei}i∈I and any choice of {hi}i∈I , despite the fact that the
bounds for {fi}i∈I and {ωj}j∈I coincide:

Example 2.5 Let {ei}i∈I be an orthonormal basis for H and

{fi}i∈I := {2e1, e1, e2, e3, . . . },

{ωj}j∈I = {5e1, e3, e5, . . . }.
Then {fi}i∈I is a frame with bounds A = 1, B = 5, and {ωj}j∈I is a Riesz
sequence with the same bounds. The dual Riesz sequence is

{ω̃k}k∈I = {1

5
e1, e3, e5, . . . }.

Direct calculation shows that

{ni}i∈I = {2

5
e1,

1

5
e1, e3, e5, . . . }.

The frame is clearly not tight, so {ωj}j∈I is not an R-dual of {fi}i∈I with
respect to {ei}i∈I and any choice of an orthonormal basis {hi}i∈I . ¤
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Combining Lemma 2.3 and Theorem 2.4, we obtain a partial answer to
our key question. Note that the assumptions stated in the following result
also can be formulated by saying that {ωj}j∈I is an equal norm orthogonal
sequence.

Corollary 2.6 Assume that {ωj}j∈I is a Riesz sequence with upper and
lower bound A, spanning a proper subspace of H, and that {fi}i∈I is a tight
frame for H with frame bound A. Then {ωi}i∈I is an R-dual of {fi}i∈I .

Proof. The assumptions imply by Lemma 2.3 that {ni}i∈I is a tight frame
for W with frame bound E = 1, for any choice of the orthonormal basis
{ei}i∈I . Now the result follows from Theorem 2.4. ¤

The assumptions in Corollary 2.6 correspond exactly to the known rela-
tionship between a tight Gabor frame and the corresponding Gabor system
on the dual lattice. Thus Corollary 2.6 is a generalization of the result from
[1] that we stated in Theorem 1.6(ii).

The assumption that {ωj}j∈I spans a proper subspace of H is essential in
Corollary 2.6:

Example 2.7 Let {ei}i∈N be an orthonormal basis for H, and let

{fi}i∈N := {e1, e1, e2, e2, . . . },
{ωj}j∈N := {e1, e2, · · · }.

Then {fi}i∈N is a tight frame for H, but {ωj}j∈N is not an R-dual w.r.t.
{ei}i∈N and any choice of {hi}i∈N. In fact, if {ωj}j∈N was an R-dual of {fi}i∈N
with respect to {ei}i∈N and some orthonormal basis {hi}i∈N, the definition
(1.5) with j = 1 would show that e1 = h1 + h2, which is impossible. ¤

With Theorem 2.4 and Corollary 2.6 in mind it is natural to ask whether
an orthonormal basis {hi}i∈I for H satisfying (2.2) can be found if the frame
{fi}i∈I is non-tight. Intuitively this sounds unlikely - but there are cases
where the answer is yes:

Example 2.8 Let {ei}i∈I be an orthonormal basis for H, and define the
sequences {fi}i∈I and {ωj}j∈I by

{fi}i∈I = {1

2
e1, e2, e3, · · · },
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respectively,

{ωj}j∈I = {1

2
e1, e2, e3, · · · }.

Then

ω̃k = {2e1, e2, e3, · · · },
and thus

ni =
∑

k∈I

〈ek, fi〉ω̃k = ei, ∀i ∈ I.

Thus {ni}i∈I is an orthonormal basis and therefore tight, despite the fact
that {fi}i∈I is non-tight. ¤

Theorem 2.4 leads to a simple criterion for {ωj}j∈I to be an R-dual of
{fi}i∈I . The result can be considered as an if and only if version of Proposition
5 in [1]:

Corollary 2.9 Let {ωj}j∈I be a Riesz basis for the subspace W of H and let
{ei}i∈I be an orthonormal basis for H. For any c = {ci}i∈I ∈ `2(I), let the
vectors ec and ωc be related by

ec =
∑
j∈I

cjej, ωc =
∑
j∈I

cjωj. (2.4)

Then {ωj}j∈I is an R-dual of {fi}i∈I w.r.t. {ei}i∈I and some orthonormal
basis {hi}i∈I if and only if

∑
i∈I

|〈fi, ec〉|2 = ||ωc||2

for all choices of the sequence c ∈ `2(I).

Proof. Let {ω̃k}k∈I be the dual Riesz basis of {ωj}j∈I and define {ni}i∈I

as in (2.1). By the result in Lemma 2.1 and the relation between ec and ωc,

〈ni, ωc〉 =
∑
j∈I

cj〈ni, ωj〉 =
∑
j∈I

cj〈ej, fi〉 = 〈ec, fi〉.

Thus ∑
i∈I

|〈ni, ωc〉|2 =
∑
i∈I

|〈ec, fi〉|2.

The result now follows from Theorem 2.4. ¤
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3 Orthonormal sequences {hi}i∈I

In Proposition 2.2 we have shown that a Riesz sequence {ωj}j∈I is an R-dual
of a frame {fi}i∈I if there exists orthonormal bases {hi}i∈I and {ei}i∈I such
that

fi =
∑
j∈I

〈ωj, hi〉ej, ∀i ∈ I. (3.1)

In order to gain further insight into the problem we will now consider
a weaker version of this condition. In fact, we will assume that {ei}i∈I is
a given orthonormal basis, and ask for the existence of an orthogonal, resp.
orthonormal sequence {hi}i∈I such that (3.1) holds. We will show that these
questions have very general answers.

We begin with a lemma, stating an observation of independent interest.
For the proof, see Appendix A.

Lemma 3.1 Assume that {fi}i∈I is a Bessel sequence with bound B. Then
for any fi, fj,

|〈fi, fj〉|2 ≤ B
(
B − ||fi||2 − ||fj||2

)
+ ||fi||2||fj||2. (3.2)

Note that the result in Lemma 3.1 is trivial if B − ||fi||2 − ||fj||2 ≥ 0.
However, under the assumptions given here it can very well happen that
B − ||fi||2 − ||fj||2 < 0, and for such elements fi, fj the result is an improve-
ment of Cauchy–Schwarz’ inequality.

Theorem 3.2 Let {ωj}j∈I be a Riesz sequence in H having infinite deficit,
and let {ei}i∈I be an orthonormal basis for H. Then the following hold:

(i) For any sequence {fi}i∈I in H there exists an orthogonal sequence
{hi}i∈I in H such that

fi =
∑
j∈I

〈ωj, hi〉ej, ∀i ∈ I. (3.3)

(ii) Assume that {fi}i∈I is a Bessel sequence with bound B and that {ωj}j∈I

has a lower Riesz basis bound C ≥ B. Then there exists an orthonormal
sequence {hi}i∈I such that (3.3) holds.
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(iii) For any Bessel sequence {fi}i∈I and regardless of the lower Riesz bound
for {ωj}j∈I , there exist an orthonormal sequence {hi}i∈I in H and a
constant α > 0 such that

fi =
∑
j∈I

〈αωj, hi〉ej, ∀i ∈ I. (3.4)

Proof. The proof of (i) is based on Proposition 2.2. We consider again the
vectors ni in (2.1) and want to find mi ∈ W⊥, i ∈ I, such that hi := mi + ni

is an orthogonal sequence. For notational convenience, assume that I = N.
Note that with such a choice of hi, we know that (3.3) is satisfied. Note also
that

〈hi, hj〉 = 〈ni, nj〉+ 〈mi,mj〉, ∀i, j ∈ N. (3.5)

We will use the following inductive procedure. Choose m1 ∈ W⊥ arbi-
trarily. Now, take m2 ∈ W⊥ such that

〈h1, h2〉 = 0,

i.e., such that

〈m1,m2〉 = −〈n1, n2〉.

In general, assuming that we have constructed m1, . . . , mN ∈ W⊥ such that
{hi}N

i=1 is an orthogonal system, take mN+1 ∈ W⊥ such that

〈hk, hN+1〉 = 0, k = 1, . . . , N,

i.e., such that

〈mk,mN+1〉 = −〈nk, nN+1〉, k = 1, . . . , N.

This can always be done because {ωj}j∈I is assumed to have infinite deficit.
We conclude that {hi}i∈I forms an orthogonal system, as desired.

For the proof of (ii), let B denote an upper frame bound for {fi}i∈I and
C a lower bound for the Riesz sequence {ωj}j∈I . By an argument like in the
proof of Lemma 2.3, the sequence {ni}i∈I is a Bessel sequence with bound
B
C
≤ 1; in particular, the norms of the vectors ni are uniformly bounded by

||ni|| ≤ 1. We now aim at a construction of a sequence {hi}i∈I satisfying

14



(3.3) and ||hi|| = 1, ∀i ∈ I. We use the inductive procedure outlined in (i),
but now paying attention to the norm of the vectors hi. First we choose
m1 ∈ W⊥ such that ||h1|| = 1, i.e., such that

||m1|| =
√

1− ||n1||2.
We now want to choose m2 ∈ W⊥ such that ||h2|| = 1 and 〈h1, h2〉 = 0; this
means that we want that

||m2|| =
√

1− ||n2||2 and 〈m1,m2〉 = −〈n1, n2〉. (3.6)

The first condition in (3.6) can always be satisfied; and the second can be
satisfied for a sequence m2 with ||m2|| =

√
1− ||n2||2 if and only if

√
1− ||n1||2

√
1− ||n2||2 ≥ |〈n1, n2〉|. (3.7)

The condition in (3.7) is satisfied by Lemma 3.1.
Following the inductive procedure outlined in (i), we see that it is possible

to construct an orthonormal sequence {hi}i∈I satisfying (3.3) if
√

1− ||ni||2
√

1− ||nj||2 ≥ |〈ni, nj〉|, ∀i, j ∈ I,

which is satisfied by Lemma 3.1.
Finally, the result in (iii) is obtained by scaling of the Riesz sequence

{ωj}j∈I in such a way that we obtain a sequence {α ωj}j∈I to which we can
apply (ii). ¤

4 Appendix A - proof of Lemma 3.1

Proof of Lemma 3.1: We give the proof for the case B = 1; the general
case follows from here by replacing {fi}i∈I by {fi/

√
B}i∈I . For notational

convenience we take i = 1, j = 2.
First, we assume 〈f1, f2〉 is real. Let f := xf1 + f2 for some x ∈ R. Then

||f ||2 = x2||f1||2 + 2x〈f1, f2〉+ ||f2||2 (4.1)

and

|〈f, f1〉|2 + |〈f, f2〉|2 = ||f1||4x2 + 2〈f1, f2〉||f1||2x + |〈f1, f2〉|2
+ |〈f1, f2〉|2x2 + 2〈f1, f2〉||f2||2x + ||f2||4
= (||f1||4 + |〈f1, f2〉|2)x2 + 2〈f1, f2〉(||f1||2 + ||f2||2)x
+ ||f2||4 + |〈f1, f2〉|2 (4.2)
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Using the upper frame condition on f ,
∑
i∈I

|〈f, fi〉|2 ≤ ||f ||2;

keeping only the terms corresponding to i = 1, 2 shows that

|〈f, f1〉|2 + |〈f, f2〉|2 ≤ ||f ||2. (4.3)

Putting (4.1) and (4.2) into this yields

(||f1||4 + |〈f1, f2〉|2)x2 + 2〈f1, f2〉(||f1||2 + ||f2||2)x + ||f2||4 + |〈f1, f2〉|2
≤ x2||f1||2 + 2x〈f1, f2〉+ ||f2||2,

or,

(||f1||2 − ||f1||4 − |〈f1, f2〉|2)x2 + 2〈f1, f2〉(1− ||f1||2 − ||f2||2)x
+||f2||2 − ||f2||4 − |〈f1, f2〉|2 ≥ 0. (4.4)

We split into two cases:
(1): Assume ||f1||2 − ||f1||4 − |〈f1, f2〉|2 = 0, or,

|〈f1, f2〉|2 = ||f1||2 − ||f1||4. (4.5)

Note that (4.4) is satisfied for all real values of x. Thus,

〈f1, f2〉(1− ||f1||2 − ||f2||2) = 0.

If 〈f1, f2〉 = 0, then (3.2) trivially holds; if 1− ||f1||2 − ||f2||2 = 0, then (4.5)
implies that

|〈f1, f2〉|2 = ||f1||2 − ||f1||4
= (1− ||f1||2)||f1||2
= (1− ||f1||2)(1− ||f2||2),

so (3.2) holds.

(2): Assume that ||f1||2 − ||f1||4 − |〈f1, f2〉|2 6= 0. Let

a := ||f1||2 − ||f1||4 − |〈f1, f2〉|2 ( 6= 0)

b := 〈f1, f2〉(1− ||f1||2 − ||f2||2) (4.6)

c := ||f2||2 − ||f2||4 − |〈f1, f2〉|2.
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Then (4.4) implies that
ax2 + 2bx + c ≥ 0.

Substitute x := −b/a into this, to obtain

−(b2 − ac)/a ≥ 0. (4.7)

The frame condition (4.3) applied to f := f1 yields that

|〈f1, f2〉|2 ≤ ||f1||2 − ||f1||4,
so a > 0. It follows that

b2 − ac ≤ 0 (4.8)

Using (4.6), a direct calculation shows that

b2 − ac =
(|〈f1, f2〉|2 − ||f1||2||f2||2

)×(|〈f1, f2〉|2 − (1− ||f1||2 − ||f2||2 + ||f1||2||f2||2)
)
.

By Cauchy-Schwarz inequality,

|〈f1, f2〉|2 ≤ ||f1||2||f2||2.
This and (4.8) imply

|〈f1, f2〉|2 ≤ 1− ||f1||2 − ||f2||2 + ||f1||2||f2||2.
Thus (3.2) holds.

Now, we assume 〈f1, f2〉 is complex. Choose λ ∈ C such that |λ| = 1 and
λ〈f1, f2〉 = |〈f1, f2〉|. Let f̃ := xλf1 + f2 for x ∈ R. Then

||f̃ ||2 = x2||f1||2 + 2x|〈f1, f2〉|+ ||f2||2

and

|〈f̃ , f1〉|2 + |〈f̃ , f2〉|2 = (||f1||4 + |〈f1, f2〉|2)x2 + 2|〈f1, f2〉|(||f1||2 + ||f2||2)x
+ ||f2||4 + |〈f1, f2〉|2.

Hence we can apply the partial result just proved to f̃ .
¤

Note that the correct value of the Bessel bound is essential in (3.2) :
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Example 4.1 Let {e1, e2} be an orthonormal basis for a 2-dimensional Hilbert
space and put f1 =

√
1 + ε e1, f2 =

√
1− ε e2 for some ε ∈]0, 1[. Then {f1, f2}

is a Bessel sequence with bound 1 + ε, and

1− ||f1||2 − ||f1||2 + ||f1||2||f2||2 = 1− (1 + ε)− (1− ε) + (1 + ε)(1− ε)

= −ε2 < 0.

By Lemma 3.1 the inequality (3.2) holds with B = 1 + ε. The above calcu-
lation shows that the inequality is false if B is replaced by 1. ¤

Acknowledgment: The authors thank the reviewers for useful comments
that improved the presentation of the paper. In particular one reviewer sug-
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