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Abstract

Using the fiberization technique of a shift-invariant space and the
matrix characterization of the decomposition of a shift-invariant space
of finite length into an orthogonal sum of singly generated shift-invariant
spaces, we show that the main result in [L. Mu, Z. Zhang, P. Zhang,
Appl. Comput. Harmon. Anal. 16 (2004), 44–59] can be interpreted
as a statement about the length of a shift-invariant space, and give a
more natural construction of multiwavelet frames from a frame mul-
tiresolution analysis of L2(Rd).
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1 Introduction

For y ∈ Rd and f ∈ L2(Rd), Ty denotes the unitary translation operator such
that Tyf(x) := f(x− y) and D denotes the unitary dyadic dilation operator
such that Df(x) := 2d/2f(2x). A family of closed subspaces {Vk}k∈Z of
L2(Rd) is said to be a frame multiresolution analysis (FMRA) if

(1) Vk ⊂ Vk+1, k ∈ Z;

(2) ∪k∈ZVk = L2(Rd), ∩k∈ZVk = {0};
(3) D(Vk) = Vk+1, k ∈ Z;
∗This research was supported by the Yeungnam University research grants in 2008.
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(4) There exists a scaling function ϕ ∈ V0 such that {Tkϕ : k ∈ Zd} is a
tight frame with the frame bound one for V0.

For the sake of brevity of presentation we only consider the dyadic dilation
even though all of our results can be repeated verbatim if we consider general
dilation, and we do not recount the theory and the history of FMRA in the
literature [1, 2, 7, 9, 10, 11, 12, 13].

It is well-known that the condition (4) is equivalent to the condition that
{Tkϕ : k ∈ Zd} is a frame for V0 [3, 14]. Moreover, let W0 := V1 ª V0 and
Wj := Dj(W0). Then it is easy to see that L2(Rd) = ⊕j∈ZWj . Hence, if
there exists {ψ1, ψ2, · · · , ψL} ⊂ W0 such that {Tkψl : k ∈ Zd, 1 ≤ l ≤ L} is a
frame for W0, then {DjTkψl : j ∈ Z, k ∈ Zd, 1 ≤ l ≤ L} is a frame for L2(Rd).
In this case we say that {ψ1, ψ2, · · · , ψL} is a (semi-orthogonal) wavelet set.
It is interesting to determine the minimal cardinality of a wavelet set, which
is called the index of an FMRA in [13]. It is well-known and easy to see
that the index is 2d − 1 if the shifts (multi-integer translates) of a scaling
function form a Riesz basis of V0.

We now present the main result in [13]. For f ∈ L2(Rd) and x ∈ Rd,
let f̂||x := (f̂(x + k))k∈Zd . Here ∧ denotes the Fourier transform defined by
f̂(x) :=

∫
Rd f(t)e−2πix·t dt for f ∈ L1(Rd) ∩ L2(Rd), and extended to be a

unitary operator on L2(Rd) by the Plancherel theorem. Then f̂||x ∈ `2(Zd)
for a.e. x ∈ Rd. Suppose we are given an FMRA with a scaling function ϕ.
Let Φ(x) :=

∥∥ϕ̂||x
∥∥2

`2(Zd)
, Q := {x ∈ Rd : Φ(2x) = 0}, and

Q := {q1, q2, · · · , q2d} := {0, 1}d, (1.1)

which is a complete set of representatives of the quotient group Zd/2Zd.
For a Lebesgue measurable subset A of Rd |A| denotes its Lebesgue

measure.

Definition 1.1 (i) For a fixed point x ∈ Rd, if the sequence {Φ(x+q/2) :
q ∈ Q} has just r nonzero terms, then we say x ∈ Br.

(ii) If an integer p satisfies both |Bp| > 0 and |Br| = 0(r > p), then we
define the index λ of the underlying FMRA as follows:

λ =
{

p, if |Q ∩Bp| > 0;
p− 1, if |Q ∩Bp| = 0.

The following is the main result in [13].
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Theorem 1.2 ([13]) Let {Vj}j∈Z be an FMRA for L2(Rd) with its index
λ. Then there exists a wavelet set {ψl}n

l=1 ⊂ W0 such that {Tkψl : 1 ≤ l ≤
n, k ∈ Zd} is a tight frame for W0 with the frame bound one if and only if
n ≥ λ. In this case, {DjTkψl : j ∈ Z, k ∈ Zd, 1 ≤ l ≤ n} is a tight frame for
L2(Rd) with the frame bound one.

Theorem 1.2 has a most natural interpretation in the language of the
theory of shift-invariant spaces [3, 4, 5, 6, 14, 15]. A closed subspace S of
L2(Rd) is said to be a shift-invariant space if it is invariant under each shift.
In this case, Ŝ||x := {f̂||x : f ∈ S}, called the fiber of S at x, is a closed
subspace of `2(Zd) for a.e. x ∈ Td := Rd/Zd ≡ [0, 1]d ≡ [−1/2, 1/2]d. The
spectrum of S is defined to be σ(S) := {x ∈ Td : Ŝ||x 6= {0}}. It is known
that any shift-invariant space S has a generating set F ⊂ L2(Rd), which is
at most countable, such that S = S(F ) := span{Tkf : k ∈ Zd, f ∈ F}. The
length of S is defined to be lenS := min{#F : S = S(F )}. Moreover, we
have ([3])

lenS = ess-sup
{

dim Ŝ||x : x ∈ Td
}

. (1.2)

Now, suppose L := lenS is finite. Then, a careful examination of [4, The-
orem 3.3] shows the following fact: For any F ⊂ L2(Rd) with #F < L,
S 6= S(F ), and for any n ≥ L there exists F ⊂ L2(Rd) with #F = n such
that S = ⊕f∈FS({f}), and {Tkf : k ∈ Zd, f ∈ F} is a tight frame for S
with the bound one. Here ⊕ denotes the orthogonal sum. Note that V0 is
a shift-invariant space with lenV0 = 1. It is a standard fact that V1 is also
a shift-invariant space with lenV1 ≤ 2d [7, 11] (see Section 2), and hence
W0 is also a shift-invariant space with lenW0 ≤ 2d. Therefore, once we
show that the index λ and lenW0 coincide (Theorem 2.4), then Theorem
1.2 follows. We also give a more natural construction of a wavelet set in
Theorem 2.5 using the fiberization technique of shift-invariant space theory,
the newly found matrix characterization theorem of the decomposition of a
shift-invariant space of finite length into an orthogonal sum of singly gener-
ated shift-invariant spaces (Theorem 2.2) and elementary linear algebra.

2 Main results

In this section, we prove that the index of an FMRA is lenW0, and construct
a semi-orthogonal wavelet set from an FMRA using the language of shift-
invariant spaces.

Suppose that ϕ is a scaling function of an FMRA {Vj}j∈Z. We assume
that

∑
k∈Zd |ϕ̂(x + k)|2 = χσ(V0)(x) a.e. x ∈ Td, which is equivalent to the
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condition that the shifts of ϕ form a tight frame with the frame bound one
for V0 [3, 14]. Since V0 ⊂ V1 := D(V0), ϕ is refinable, i.e., there exists
m0 ∈ L2(Td) such that

ϕ̂(2x) = m0(x)ϕ̂(x) a.e. x ∈ Rd. (2.1)

We note that each k ∈ Zd can be written uniquely as k = 2k′ + q for some
k′ ∈ Zd and q ∈ Q. Note also that DTy = Ty/2D for each y ∈ Rd. Therefore,
{DTkϕ : k ∈ Zd} = {Tk′DTqϕ : k′ ∈ Zd, q ∈ Q}. Hence V1 = S(Π), where
Π := {DTqϕ : q ∈ Q}. This shows that lenV1 ≤ 2d.

We recall the known facts about the fibers of the shift-invariant subspaces
V0,W0 and V1 in [7, 8, 11] that will be used throughout this article. For
q ∈ Q, define Pq : `2(Zd) → `2(Zd) via

(Pqa)(k) :=

{
a(k), if k ∈ 2Zd + q,
0, otherwise.

Then `2(Zd) = ⊕q∈QPq(`2(Zd)). Define, for each x ∈ Td and each q ∈ Q,

ax,q := Pq

((
ϕ̂

(
x + k

2

))

k∈Zd

)
. (2.2)

Note that ax,q is the ‘up-sampled’ version of ϕ̂||(x+q)/2, i.e.,
{

ax,q(2k + q) = ϕ̂||(x+q)/2(k), if k ∈ Zd,

ax,q(k) = 0, if k /∈ 2Zd + q.

Therefore,
||ax,q||`2(Zd) = ||ϕ̂||(x+q)/2||`2(Zd). (2.3)

With this notation, we get

ϕ̂||x = (ϕ̂(x + k))k∈Zd =
(

m0

(
x + k

2

)
ϕ̂

(
x + k

2

))

k∈Zd

=
∑

q∈Q

m0

(
x + q

2

)
ax,q. (2.4)

Then, we have, by (2.4) and the orthogonality of {ax,q : q ∈ Q},

χσ(V0)(x) =
∑

k∈Zd

|ϕ̂(x + k)|2 =
∑

q∈Q

∣∣∣∣m0

(
x + q

2

)∣∣∣∣
2

‖ax,q‖2
`2(Zd). (2.5)

The basic facts about the fibers of the shift-invariant spaces V0,W0 and V1

are concisely represented in the following lemma whose proof can be found
in [7, 8, 11].

4



Lemma 2.1 ([7, 8, 11]) For a.e. x ∈ Td

V̂0||x = span





∑

q∈Q

m0

(
x + q

2

)
ax,q



 , (2.6)

V̂1||x = span {ax,q : q ∈ Q} . (2.7)

In particular, for a.e. x ∈ Td,

dim V̂1||x = #{ax,q : ax,q 6= 0}. (2.8)

Now, suppose that {ψ1, ψ2, · · · , ψn} ⊂ V1. Let W
(i)
0 := S({ψi}) for

i = 1, 2, · · · , n. For the sake of notation let ψ0 := ϕ and W
(0)
0 := V0. Then

there exist m1,m2, · · · ,mn ∈ L2(Td) such that

ψ̂i(2x) := mi(x)ϕ̂(x), 1 ≤ i ≤ n. (2.9)

Then for each i = 1, 2, · · · , n,

ψ̂i||x = (ψ̂i(x + k))k∈Zd =
∑

q∈Q

mi

(
x + q

2

)
ax,q. (2.10)

Let M be the matrix-valued function defined by

M(x) :=




m0

(
x + q1

2

)
m0

(
x + q2

2

) · · · m0

(
x + q

2d

2

)
m1

(
x + q1

2

)
m1

(
x + q2

2

) · · · m1

(
x + q

2d

2

)
...

...
. . .

...
mn

(
x + q1

2

)
mn

(
x + q2

2

) · · · mn

(
x + q

2d

2

)


 . (2.11)

and let M(x)k1,··· ,kl denote the matrix-valued function obtained from M(x)
by deleting the k1, · · · , kl-th columns of M(x). Note that M satisfies




ϕ̂||x
ψ̂1||x

...
ψ̂n||x


 = M

(x

2

)



ax,q1

ax,q2

...
ax,q

2d


 . (2.12)

Let us define, for 0 ≤ i ≤ 2d,

∆i := {x ∈ Td : dim V̂1||x = i}, (2.13)

5



where dim V̂1||x can be computed by (2.8). Then σ(V1) = ]2d

i=1∆i, where
] denotes the disjoint union. And, for each 1 ≤ l ≤ 2d − 1 and each
k1, k2, · · · , kl such that 1 ≤ k1 < k2 < · · · < kl ≤ 2d, define

∆k1,··· ,kl

2d−l
:=

{
x ∈ ∆2d−l : ax,qk1

= · · · = ax,qkl
= 0

}
,

which is clearly a Lebesgue measurable set. Then we have, by (2.8) and the
orthogonality of {ax,q : q ∈ Q},

∆2d−l =
⊎

1≤k1<k2<···<kl≤2d

∆k1,k2,··· ,kl

2d−l
.

The following matrix characterization theorem of the decomposition of a
shift-invariant space of finite length into an orthogonal sum of singly gener-
ated shift-invariant spaces is used repeatedly in the construction of a wavelet
set.

Theorem 2.2 Let ψ0 := ϕ ∈ L2(Rd) be refinable and its shifts form a tight
frame with the frame bound one for V0 := W

(0)
0 := S({ϕ}). Let m1, · · · ,mn

be in L2(Td) and define ψ1 · · · , ψn and M as in (2.9) and (2.11), respec-
tively. Then the shifts of ψi form a tight frame with the frame bound one
for W

(i)
0 := S({ψi}) for each i = 1, 2, · · · , n and

V1 := DV0 = W
(0)
0 ⊕W

(1)
0 ⊕ · · · ⊕W

(n)
0 (2.14)

if and only if:

(1) For a.e. x ∈ ∆2d, 2d rows of M(x/2) are orthonormal vectors and the
remaining rows are zero vectors in C2d

;

(2) For each l = 1, 2, · · · , 2d − 1 and for each choice of 1 ≤ k1 < k2 <
· · · < kl ≤ 2d, 2d − l rows of M(x/2)k1,··· ,kl are orthonormal vectors
and the remaining rows are zero vectors in C2d−l for a.e. x ∈ ∆k1,··· ,kl

2d−l
.

We can check ψj ∈ L2(Rd), 1 ≤ j ≤ n, by (2.5) and (2.9). For the
proof of Theorem 2.2, we need the following lemma, whose ‘only if’ part is
mentioned in [3].

Lemma 2.3 Let A,B and C be shift-invariant subspaces of L2(Rd). Then
A = B ⊕ C if and only if Â||x = B̂||x ⊕ Ĉ||x for a.e. x ∈ Td.
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Proof. (⇒): Let b ∈ B and c ∈ C. Then, for any k ∈ Zd,

0 = 〈b, Tkc〉L2(Rd) =
∫

Td

〈
b̂||x, ĉ||x

〉
`2(Zd)

e2πik·x dx.

This shows that, for any b ∈ B and c ∈ C,
〈
b̂||x, ĉ||x

〉
`2(Zd)

= 0 for a.e.

x ∈ Td. Now, let a ∈ A. Then there exist b ∈ B and c ∈ C such that
a = b⊕ c. Hence, for a.e. x ∈ Td, â||x = b̂||x ⊕ ĉ||x.

(⇐): The assumption implies that B ⊥ C by a calculation similar to the
previous one. Since B and C are shift-invariant subspaces, so is D := B⊕C.
Now, the fiber spaces of A and D coincide a.e. Hence A = D by a standard
result (see, for example, [4, Proposition 1.5]). ¤

Proof of Theorem 2.2: (⇒): The tight frame assumption implies that∑
k∈Z |ψ̂i(x + k)|2 = χ

σ(W
(i)
0 )

(x) a.e. for each i = 0, 1, · · · , n. In particular,

the tight frame assumption for ψ0 = ϕ implies that ||ax,q||2`2(Zd)
= 1 or 0 a.e.

by (2.3) for each q ∈ Q. We have

χ
σ(W

(i)
0 )

(x) =
∑

q∈Q

∣∣mi

(x+q
2

)∣∣2 ||ax,q||2`2(Zd) =
∑

q∈Q,ax,q 6=0

∣∣mi

(x+q
2

)∣∣2 (2.15)

for a.e. x ∈ Td and for each i = 0, 1, · · · , n by Equations (2.4) and (2.10)
and by the orthogonality of {ax,q : q ∈ Q}. On the other hand, Equations
(2.14), (2.4) and (2.10) imply that

0 =
∑

q∈Q

mi

(x+q
2

)
mj

(x+q
2

) ||ax,q||2`2(Zd) =
∑

q∈Q,ax,q 6=0

mi

(x+q
2

)
mj

(x+q
2

)

(2.16)
for a.e. x ∈ Td and for each 0 ≤ i 6= j ≤ n. Now, by Lemma 2.3, (2.14) is
equivalent to the fact that, for a.e. x ∈ Td,

V̂1||x = (W (0)
0 )∧||x ⊕ (W (1)

0 )∧||x ⊕ · · · ⊕ (W (n)
0 )∧||x. (2.17)

Therefore, by Lemma 2.1 and (2.17), we have

dim V̂1||x = #{q ∈ Q : ax,q 6= 0} = #
{

i ∈ {0, 1, · · · , n} : x ∈ σ
(
W

(i)
0

)}
.

Suppose that x ∈ ∆k1,··· ,kl

2d−l
. For a.e. such x, dim V̂1||x = 2d − l and ax,q = 0

if q ∈ {qk1 , · · · , qkl
} and ax,q 6= 0 if q ∈ Q \ {qk1 , · · · , qkl

}. Hence there exist
exactly 2d − l number of i ∈ {0, 1, · · · , n} such that x ∈ σ(W (i)

0 ). Now,
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Equations (2.15) and (2.16) imply that those 2d− l rows of M(x/2)k1,··· ,kl is
orthonormal vectors in C2d−l and the remaining rows are zero vectors. This
proves Condition (2). Condition (1) can be proved similarly.
(⇐): Note that Condition (2.9) implies that {ψi}n

i=1 ⊂ V1. We show that
(2.17) holds a.e. x ∈ Td and that for i = 1, · · · , n, ||ψ̂i||x||2`2(Zd)

= 0 or 1 a.e.,
which is equivalent to the condition that the shifts of ψi form a tight frame.
If x ∈ Td \ σ(V1), then (2.17) holds trivially. Now let x ∈ ∆2d . For a.e. such
x, (2.12) holds. The elements of the right-most vector in the right-hand
side of (2.12) form an orthonormal basis of V̂1||x. Condition (1) now implies
that 2d elements of the vector in the left-hand side of (2.12) also form an
orthonormal basis of V̂1||x and the remaining elements are zero vectors of
`2(Zd). Hence (2.17) holds a.e. x ∈ ∆2d . Moreover, ||ψ̂i||x||2`2(Zd)

= 0 or 1

for a.e. x ∈ ∆2d . On the other hand, for a.e. x ∈ ∆k1,··· ,kl

2d−l
, (2.12) also holds.

For those x ∈ ∆k1,··· ,kl

2d−l
, {ax,q : q ∈ Q \ {qk1 , qk2 , · · · , qkl

}} is an orthonormal
basis for V̂1||x, and ax,q = 0 if q ∈ {qk1 , qk2 , · · · , qkl

}. Hence, (2.12) now
takes a simpler form:

(
(ψ̂i||x)n

i=0

)t
= M(x/2)k1,··· ,kl

(
(ax,q)q∈Q\{qk1

,qk2
,··· ,qkl

}
)t

,

where t denotes the transpose of a matrix or a vector. Now (2.17) holds
by the same argument for x ∈ ∆2d , and ||ψ̂i||x||2`2(Zd)

= 0 or 1 for a.e.

x ∈ ∆k1,··· ,kl

2d .
¤

We now show that lenW0 is equal to the index of the FMRA in Definition
1.1.

Theorem 2.4 Let λ1 := lenV1. Then

len W0 =
{

λ1, if |∆λ1 \ σ(V0)| > 0,
λ1 − 1, if |∆λ1 \ σ(V0)| = 0.

= the index λ of the FMRA. (2.18)

Proof. Note that, by (2.3) and (2.8), λ1 = p where p is defined as in
Definition 1.1 (ii). Equations (1.2) and (2.13) imply that λ1 = max{i :
|∆i| > 0}, where |∆i| denotes the Lebesgue measure of ∆i. Recall that
V̂1||x = V̂0||x ⊕ Ŵ0||x a.e. and that dim V̂0||x = χσ(V0)(x). Hence dim Ŵ0||x =
dim V̂1||x− dim V̂0||x = dim V̂1||x−χσ(V0)(x), which implies the first equality
of (2.18). The second equality of (2.18) follows by the facts that

2Q∩ Td = σ(V0)c, 2Bp ∩ Td = ∆λ1 ,
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where Q and Bp are defined as in Definition 1.1. ¤
We now give a concrete construction of such {ψi : 1 ≤ i ≤ λ} based on

Theorem 2.2, which recovers Theorem 1.2.

Theorem 2.5 Let {Vj}j∈Z be an FMRA for L2(Rd) and λ := lenW0. Then
there exist {ψl}n

l=1 ⊂ W0 such that {Tkψl : 1 ≤ l ≤ n, k ∈ Zd} is a tight
frame for W0 with the frame bound one if and only if n ≥ λ.

Proof. If n < lenW0, then the shifts of n functions are not even complete
in W0 by the very definition of the length of the shift-invariant space. On
the other hand, we now suppose that n ≥ λ. Our goal is to construct a
1-periodic matrix-valued measurable mapping M(x) of size (λ+1)×2d such
that its first row of M(x/2) is (m0(

x+qj

2 ))2
d

j=1 and it satisfies Conditions (1)
and (2) of Theorem 2.2. The remaining entries of M(x/2) will be measurable
simple functions in our constructions below. Recall

σ(V1) = ∆2d ]
2d−1⊎

l=1

⊎

1≤k1<k2<···<kl≤2d

∆k1,k2,··· ,kl

2d−l
,

where some of the sets may be null sets. Recall also that either ax,q = 0 or
‖ax,q‖`2(Zd) = 1 for each q ∈ Q by (2.3) since we assumed that the shifts of
ϕ form a tight frame with the frame bound one for V0.

Now for any x ∈ Td \ σ(V1), let the remaining λ rows be 0. It suffices to
define the remaining λ rows of M(x/2) for a.e. x ∈ σ(V1). Now we divide
into two cases.
Case I: λ = λ1, i.e., |∆λ1 \ σ(V0)| > 0.
First, suppose that λ = λ1 = 2d. Then, ‖ax,q‖`2(Zd) = 1 for each q ∈ Q

and for a.e. x ∈ ∆2d by (2.7). If x ∈ ∆2d \ σ(V0), then m(x+q
2 ) = 0 a.e.

for each q ∈ Q by (2.5). Hence the first row of M(x/2) is 0. We define the
remaining λ = 2d rows to be those of the 2d× 2d identity matrix. Note that
for a.e. x in such set, whose Lebesgue measure is positive, the last λ rows of
M(x/2) are linearly independent. Hence, M(x/2) with the first row deleted
times (ax,q)t

q∈Q gives λ linearly independent vectors of V̂1||x. On the other
hand, if x ∈ ∆2d ∩ σ(V0), then the norm of the first row is 1 by (2.5) since
‖ax,q‖2

`2(Zd)
= 1 for each q ∈ Q. We define the last row of M(x/2) to be 0

and define the in-between λ − 1 rows so that the first λ rows of M(x/2) is
a unitary matrix. This definition satisfies Condition (1) of Theorem 2.2.

Next, suppose that λ = λ1 = 2d − l < 2d for some l ∈ {1, 2, · · · , 2d − 1}.
Then

∆λ1 =
⊎

1≤k1<k2<···<kl≤2d

∆k1,k2,··· ,kl

2d−l
.
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If x ∈ ∆k1,k2,··· ,kl

2d−l
, then ax,q = 0 if q ∈ {qk1 , · · · , qkl

} and ‖ax,q‖`2(Zd) = 1

if q ∈ Q \ {qk1 , · · · , qkl
}. For a.e. x ∈ ∆k1,k2,··· ,kl

2d−l
\ σ(V0), the first row of

M(x/2) is 0. We define the remaining λ rows of M(x/2) so that the ki-
th column is 0 for each i = 1, 2, · · · , l, and the deletion of the first row of
M(x/2)k1,··· ,kl is the λ1 × λ1 identity matrix. Since |∆λ1 \ σ(V0)| > 0, at
least one of ∆k1,k2,··· ,kl

2d−l
\ σ(V0) is of positive Lebesgue measure. For this set

the last λ rows of M(x/2) are linearly independent. Moreover, M(x/2) with
the first row deleted times (ax,q)t

q∈Q gives λ linearly independent vectors of
V̂1||x. Now if x ∈ ∆k1,k2,··· ,kl

2d−l
∩ σ(V0), the norm of the first row of M(x/2)

with each the ki-th element deleted is 1 by (2.5). We define the last row of
M(x/2) to be 0 and the λ − 1 number of in-between rows so that all the
ki-th columns of M(x/2) are 0 and the first λ rows of M(x/2)k1,··· ,kl is a
unitary matrix. This definition satisfies Condition (2) of Theorem 2.2.

We have defined M(x/2) for x ∈ ∆λ1 . In particular, for at least one
choice of 1 ≤ k1 < k2 < · · · < kl ≤ 2d, ∆k1,k2,··· ,kl

2d−l
\ σ(V0) has positive

Lebesgue measure, and for a.e. x in such set M(x/2) with the first row
deleted times (ax,q)t

q∈Q gives λ linearly independent vectors of V̂1||x.
Now our job is to define M(x/2) on

∆λ1−l =
⊎

1≤k1<k2<···<k
2d−(λ1−l)

∆
k1,··· ,k

2d−(λ1−l)

λ1−l

for l = 1, 2, · · · , λ1 − 1 so that it satisfies Condition (2) of Theorem 2.2.
This can be done by the above idea in the following way. First, define the
last l rows of M(x/2) to be 0. We only need to define the second to the

(λ1 − l + 1 = λ − l + 1)-st rows of M(x/2). If x ∈ ∆
k1,··· ,k

2d−(λ1−l)

λ1−l \ σ(V0),
then the first row is 0. Define the k1, · · · , k2d−(λ1−l)-th columns of M(x/2)
to be 0 and define the remaining rows so that λ− l in-between rows with the
k1, · · · , k2d−(λ1−l)-th columns deleted form the identity matrix. On the other

hand, if x ∈ ∆
k1,··· ,k

2d−(λ1−l)

λ1−l ∩ σ(V0), then the norm of the first row with
k1, · · · , k2d−(λ1−l)-th elements deleted is 1. Define the k1, · · · , k2d−(λ1−l)-th
columns of M(x/2) to be 0 and define λ − l + 1-st row to be also 0. Then
we define the remaining λ− l−1 in-between rows so that the first λ− l rows
with the k1, · · · , k2d−(λ1−l)-th columns deleted form a unitary matrix.
Case II: λ = λ1− 1, i.e., |∆λ1 \ σ(V0)| = 0. The proof is identical to Case I
except for the fact that when we deal with ∆λ1 , the first row with suitable
elements deleted is almost surely of norm 1. Hence the construction yields
a subset of ∆λ1 of positive measure such that for a.e. elements of the set
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the first λ1 = λ + 1 rows of M(x/2) with suitable columns deleted form a
unitary matrix. The construction is identical for ∆λ1−l, 1 ≤ l ≤ λ1 − 1.

It is routine to see that M(x/2) satisfies Conditions (1) and (2) of The-
orem 2.2 in either cases for a.e. x ∈ Td. Hence we have defined M(x/2) for
a.e. x ∈ Td. If we scrutinize (2.11), then we see that we have defined the
filters m0,m1, · · · ,mλ on Td. If we extend the filters 1-periodically, then we
define a 1-periodic M . Now, finally, define ψ1, ψ2, · · · , ψλ so that (2.12) is
satisfied. It is easy to see that ψ1, ψ2, · · · , ψλ ∈ L2(Rd). Then, Theorem 2.2
yields that V1 = V0⊕W0, and W0 = ⊕λ

i=1S({ψi}). This completes the proof
in the case that n = λ.

We now consider the case n > λ. Note that |∆λ| > 0. Then there exist
positive measurable subsets {Ii}n−λ

i=0 such that

∆λ = ]n−λ
i=0 Ii.

Define M(x) as in Case I. Let M̃(x) be the n × 2d matrix-valued function
defined by

(
M̃(x)

)
i,j

=
{

(M(x))i,j , if1 ≤ i ≤ λ− 1;
(M(x))λ,j χIi−λ

(x), ifλ ≤ i ≤ n.
(2.19)

Define ψ1, ψ2, · · · , ψn so that (2.12) is satisfied by replacing M(x) by M̃(x).
Using the argument similar to Case I, we can show that ψ1, ψ2, · · · , ψn satisfy
that V1 = V0 ⊕W0, and W0 = ⊕n

i=1S({ψi}). ¤
We now give another interesting corollary to Theorem 2.2, which is re-

lated to the concept of the unitary extension principle (UEP) of Ron and
Shen [15].

Corollary 2.6 Let ψ0 := ϕ ∈ L2(Rd) be refinable and its shifts form a tight
frame with the frame bound one for V0 := W

(0)
0 := S({ϕ}). Suppose there

exist n(≥ 2d−1) functions ψ1, ψ2, · · · , ψn ∈ V1 := D(V0) such that the shifts
of each ψl form a tight frame with the frame bound one for W

(l)
0 := S({ψl})

and (2.14) is satisfied. Then there exists a 1-periodic (n + 1) × 2d matrix-
valued mapping M satisfying (2.12) such that M(x)∗M(x) = I2d for a.e.
x ∈ σ(V0). In particular, if limx→0 ϕ̂(x) = 1, then {DjTkψl : j ∈ Z, k ∈
Zd, 1 ≤ l ≤ n} is a tight frame associated with an FMRA defined by the
UEP.

Proof. The hypotheses guarantee a 1-periodic (n + 1) × 2d matrix-valued
mapping M(x) satisfying (2.12). We change the entries of M(x) so that
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(2.12) still holds and M(x)∗M(x) = I2d for a.e. x ∈ σ(V0). First we need
an obvious observation: If N is an (n + 1) × 2d matrix such that whose 2d

rows are orthonormal and the remaining rows are 0, then N∗N = I2d . This
holds since the matrix obtained by deleting all the 0 rows are 2d×2d unitary
matrix and since N∗N is simply the product of the adjoint of the deleted
matrix and the deleted matrix.

Suppose x ∈ σ(V0). Then [7, Lemma 8] shows that σ(V1) = 2σ(V0) (mod 1).
Hence there exists k ∈ Zd such that y := 2x + k ∈ σ(V1). Note that if we
permute the columns of M(y/2) suitably, then M(y/2) becomes M(x) since
y/2 = x + k/2. If y ∈ ∆2d , then M(y/2)∗M(y/2) = I2d by Condition (1) of
Theorem 2.2 and by the above observation. Hence M(x)∗M(x) = I2d by the
nature of the column permutation. Now suppose that y ∈ ∆k1,··· ,kl

2d−l
. Then

0 = ay,qk1
= · · · = ay,qkl

. Hence k1, · · · , kl-th columns of M(y/2) have no
contribution in (2.12). Moreover, M(y/2)k1,··· ,kl satisfies Condition (2) of
Theorem 2.2. It is easy to see that we can change k1, · · · , kl-th columns of
M(y/2) so that exactly 2d rows are orthonormal and the remaining rows are
0. Hence M(y/2)∗M(y/2) = I2d also by the above observation. Therefore,
M(x)∗M(x) = I2d by the nature of the column permutation. In particular,
if limx→0 ϕ̂(x) = 1, then {DjTkψl : j ∈ Z, k ∈ Zd, 1 ≤ l ≤ n} is a tight frame
by [15]. ¤
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