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Abstract

We present a new family of compactly supported and symmetric biorthogonal wavelet
systems. Each refinement mask in this family has tension parameter ω. When ω = 0, it
becomes the minimal length biorthogonal Coifman wavelet system [17]. Choosing ω away from
zero, we can get better smoothness of the refinable functions at the expense of slightly larger
support. Though the construction of the new biorthogonal wavelet systems, in fact, starts
from a new class of quasi-interpolatory subdivision schemes, we find that the refinement masks
accidently coincide with the ones by Cohen, Daubechies and Feauveau [5, §6.C] (or [7, §8.3.5]),
which are designed for the purpose of generating biorthogonal wavelets close to orthonormal
cases. However, the corresponding mathematical analysis is yet to be provided. In this study,
we highlight the connection between the quasi-interpolatory subdivision schemes and the masks
by Cohen, Daubechies and Feauveau, and then we study the fundamental properties of the
new biorthogonal wavelet systems such as regularity, stability, linear independence, vanishing
moments and accuracy.

Keywords: Subdivision, Coifman Wavelet, Biorthogonal Wavelet, Multiresolution Analysis,

Quasi-Interpolation, Refinable Function, Regularity, Linear Independence.

1 Introduction

During the last decades, the theory of wavelets and multiresolution analysis has established itself

firmly as one of the most successful methods for a broad range of signal processing applications.

The construction of classical wavelets is now well-understood due to pioneer works such as [5, 6, 7].

Many properties, such as symmetry (or antisymmetry), vanishing moments, regularity and short

support, are required for a practical use in application areas. It has been well-known that orthogo-

nality and symmetry are conflicting properties for the design of compactly supported wavelets [7].

In order to maintain the symmetric properties of wavelet systems, the orthogonality constraint has

been relaxed to semi-orthogonality or biorthogonality. In particular, spline functions have been
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a good source for wavelet constructions. We select some of them from references [5, 2, 3]. Also,

recently, a new class of compactly supported biorthogonal wavelet systems has been constructed

from pseudo-splines in [9].

It is very common to introduce wavelets through the notion of multiresolution analysis [16]

which is introduced as follows. First, we say that a function φ ∈ L2(R) is a refinable function if

it satisfies the so-called refinement equation

φ(x) =
∑

n∈Z

anφ(2x− n) (1.1)

where a := {an : n ∈ Z} is usually called the refinement mask for φ. The function φ is also

termed as the basic limit function of a subdivision scheme with the mask a (see Definition 2.1).

Let φ ∈ L2(R) be a compactly supported refinable function and let Vj be a shift invariant space

defined by

Vj = span{φj,k := 2j/2φ(2j · −k) : k ∈ Z}.

We say that a sequence of subspaces {Vj : j ∈ Z} forms a multiresolution analysis (MRA) if it

satisfies the following conditions:

(1) {Vj : j ∈ Z} is nested, i.e., Vj ⊂ Vj+1 for all j ∈ Z.

(2)
⋃

j∈Z
Vj is dense in L2(R) and

⋂

j∈Z
Vj = {0}.

(3) f(x) ∈ Vj if and only if f(2x) ∈ Vj+1 for all j ∈ Z.

(4) The set of the translates {φ(· − k) : k ∈ Z} is a Riesz basis for the space V0; see Section 3.

Let {Vj : j ∈ Z} and {Ṽj : j ∈ Z} be a pair of MRAs. The concept of biorthogonal wavelets

consists of finding complement space Wj and W̃j of Vj and Ṽj respectively satisfying

W̃j ⊥ Vj , Wj ⊥ Ṽj

so that Wj ⊥ W̃ℓ for j 6= ℓ.

Our construction of biorthogonal wavelet systems starts from a new class of subdivision

schemes [1] (say, SL). The reader is referred to the paper [1] to find its interesting features in view

of CAGD (computer aided geometric design). Each scheme in this class is a quasi-interpolatory

scheme, which reproduces polynomials up to a certain degree, with a tension parameter ω. When

ω = 0, it becomes the Deslauriers-Dubuc’s interpolatory scheme, whose mask is used as a key

ingredient to construct the (minimal length) biorthogonal Coifman wavelets. A biorthogonal

wavelet system with compact support is called a biorthogonal Coifman wavelet system for degree

L if the synthesis refinable function φ(x) and the dual wavelets ψ(x) and ψ̃(x) have the vanishing

moments L, that is,
∫

R

xnφ(x)dx = δ0,n, ∀n = 0, . . . , L,

∫

R

xnψ(x)dx =

∫

R

xnψ̃(x)dx = 0, ∀n = 0, . . . , L.

(1.2)

Thus, the main objective of this paper is to present and to analyze a new family of biorthog-

onal Coifman wavelet systems which are symmetric and compactly supported. An interesting

observation is that the refinement masks of the new family coincide with the ones by Cohen,

Daubechies and Feauveau [5, §6.C] (see also [7, §8.3.5]), which are designed for the purpose of
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generating biorthogonal filters close to orthonormal cases (in fact, to some coiflets). However, the

corresponding mathematical analysis has not been provided yet. In this study, we highlight the

connection between the quasi-interpolatory subdivision schemes SL and the refinement masks in

[5, 7]. Furthermore, we analyze the mathematical properties associated with the refinable func-

tions and wavelets such as stability, linear independence, regularity, and vanishing moments. We

then will enjoy the following advantages of the suggested wavelet systems:

• Choosing ω away from zero, the corresponding refinable functions have better smoothness, at

the expense of slightly larger support, than the ones of ω = 0. For instance, the suggested

refinable function based on the cubic polynomial can be H3.7074 in the sense of Hölder

regularity, while the one by the cubic polynomial-based Deslauriers-Dubuc scheme is H2−ǫ

and the cubic B-spline refinable function is H3−ǫ.

• One attractive property of the new wavelet systems is that some filter coefficients can be

dyadic rationals, i.e., rationals of the form (2p+1)/2q for some positive integers p and q > 0;

since division by 2 can be done very fast in a computer, this makes it very suitable for fast

computation.

• The coefficients in the biorthogonal projection Pjf onto the space Vj (see (5.8)) can be

replaced by the sampled values of a function f , keeping the optimal convergence order of

the error ‖f −Pjf‖L2(R). This amounts to avoiding the calculation of the inner products of

approximands f and refinable functions.

• For some suitable values of ω, the corresponding biorthogonal wavelet systems are very close

to orthonormal cases. For an algorithm to find ω and details, the reader should consult [5].

The article is organized in the following manner: In Section 2, we briefly introduce the quasi-

interpolatory subdivision schemes along with the Deslauriers-Dubuc interpolatory scheme. Some

analysis on their masks is also given. In Section 3, we find the condition of ω which guarantees

the linear independence of the integer translates of the refinable function φ associated with the

quasi-interpolatory scheme. The regularity of the refinable functions are studied in Section 4. In

Section 5, we construct a new class of biorthogonal wavelet systems, which are symmetric and

compactly supported. Finally, we show some specific examples of biorthogonal wavelet systems

based on cubic polynomial.

2 Quasi-Interpolatory Subdivision Schemes

2.1 Subdivision Scheme

Starting with the initial values f0 = {f0
n ∈ R : n ∈ Z}, a subdivision scheme defines recursively

new discrete values f j = {f j
n ∈ R : n ∈ Z} on finer levels by linear sums of existing values as

follows:

f j+1
ℓ =

∑

n∈Z

aℓ−2nf
j
n, j ∈ Z+, (2.1)

where the sequence a = {an : n ∈ Z} is termed the mask of the given subdivision. We denote the

rule at each level by S and have the formal relation

f j = Sjf0. (2.2)
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Definition 2.1 A subdivision scheme S is said to be Cν if for the initial data f0 := {δn,0 : n ∈ Z},

there exists a limit function φ := S∞f0 ∈ Cν(R), φ 6≡ 0, satisfying

lim
j→∞

sup
n∈Z

|f j
n − φ(2−jn)| = 0. (2.3)

The function φ is called the basic limit function of S and it satisfies the refinement equation in

(1.1) [11]. It is obvious that supp φ ⊆ [supp a] where [A] indicates the smallest closed interval

containing the set A.

To simplify the presentation of a subdivision scheme and its analysis, it is convenient to

introduce the Laurent polynomial defined by a = {an : n ∈ Z}

a(z) :=
∑

n∈Z

anz
n, z ∈ C \ {0}. (2.4)

The Laurent polynomial a(z) is also called the symbol of its corresponding refinable function φ;

see (2.3). Next, define the Laurent polynomial a[j](z), j ∈ N, by

a[j](z) :=
∑

n∈Z

a[j]
n z

n := a(z)a(z2) · · · a(z2j−1

). (2.5)

Using the coefficients a
[j]
n in (2.5), the norm of the iterated scheme Sj in (2.2) is defined as the

following [11]:

‖Sj‖∞ := max
{

∑

β∈Z

|a
[j]

γ+2jβ
| : γ = 0, . . . , 2j − 1

}

. (2.6)

2.2 The Mask of Quasi-Interpolatory Subdivision Scheme

As observed in (2.1), a univariate subdivision consists of two rules, which can be represented by

the even and the odd masks. First, for the construction of the odd mask, we use the stencil of

L = 2N points to reproduce polynomials of degree < 2N . That is, the odd mask {a1−2n : n =

−N + 1, . . . , N} is obtained by solving the linear system:

pℓ(2
−1) =

N
∑

n=−N+1

a1−2npℓ(n), ℓ = 1, . . . , L, (2.7)

where pℓ, ℓ = 1, . . . , L, is a basis of Π<L. Obviously, there is a unique solution of the linear system

(2.7) and it is exactly the same as the odd mask of the L-point Deslauriers-Dubuc scheme, i.e.,

a1−2n = Ln(1/2)

=
(−1)n

1 − 2n

(

2N − 2

N − 1

)(

2N − 1

N − n

)

2N − 1

24N−3
.

Here, Ln(x) is the Lagrange polynomials on {−N + 1, . . . ,N} defined by

Ln(x) =

N
∏

ℓ 6=n
ℓ=−N+1

x− ℓ

n− ℓ
, n = −N + 1, . . . ,N, (2.8)
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so that

pℓ(x) =

N
∑

n=−N+1

Ln(x)pℓ(n) (2.9)

where p1, . . . , pL constitute a basis of Π<L.

Next, for the construction of the even mask, we use the stencil of L + 1 = 2N + 1 points to

reproduce polynomials in Π<L. That is, the even mask {a2n : n = −N, . . . ,N} is obtained by

solving the linear system:

pℓ(0) =

N
∑

n=−N

a−2npℓ(n), pℓ ∈ Π<L. (2.10)

This is an underdetermined system of L+ 1 unknowns a2n, n = −N, . . . ,N , in L equations, and

hence there is one degree of freedom which will be used as a tension parameter ω. Here and in

the sequel, for convenience, we put

ω := a2N .

The following lemma treats the explicit formula of the even mask a2n.

Lemma 2.2 Let {a2n : n = −N, . . . ,N} be the even mask of the subdivision scheme SL obtained

from (2.10) and let a2N = ω. Then, for n = −N + 1, . . . ,N ,

a−2n = δn,0 − ωb−2n. (2.11)

where

b−2n = (−1)N−n+1 (2N)!

(N + n)!(N − n)!
. (2.12)

Proof. Using a2N = ω, the linear system (2.10) can be changed to

N
∑

n=−N+1

a−2npℓ(n) = pℓ(0) − ωpℓ(−N), pℓ ∈ Π<L. (2.13)

This is a 2N × 2N system and it guarantees the unique solution of (2.13). Let M and Rx be

matrices defined by M(ℓ, k) = pℓ(k − N), k, ℓ = 1, . . . , L, and Rx(ℓ) = pℓ(x), ℓ = 1, . . . L. The

solution Aeven = {a−2n : n = −N + 1, . . . ,N} can be expressed in the matrix form

Aeven = M−1(R0 − ωR−N ).

From (2.9), it is obvious that

M−1R0 = (Ln(0) : n = −N + 1, . . . ,N),

M−1R−N = (Ln(−N) : n = −N + 1, . . . ,N),
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with Ln(x) the Lagrange polynomial in (2.8). Here, for any n = −N + 1, . . . ,N , we have

Ln(−N) =
N
∏

ℓ 6=n
ℓ=−N+1

−N − ℓ

n− ℓ

=
(−1)2N (2N)!

−N − n
·
(−1)N−n

(N − n)!
·

1

(N + n− 1)!

= (−1)N−n+1 (2N)!

(N + n)!(N − n)!
.

Denoting the last term by b−2n, the proof is done. �

Remark 2.3 From Lemma 2.2, it is obvious that if ω = 0, a2n = δn,0. This implies that the

2N -point Deslauriers-Dubuc scheme is a special case of SL with ω = 0 and L = 2N .

The next lemma provides the explicit form of the Laurent polynomial a(z) associated with

the scheme SL.

Lemma 2.4 Let {an : n ∈ Z} be the mask of the subdivision scheme SL with L = 2N and a(z)

be its corresponding Laurent polynomial. If we set a2N = ω and y = sin2(ξ/2), then

a(eiξ) = (1 − y)N

[

2

N−1
∑

n=0

(

N − 1 + n

n

)

yn + ω24N (−1)NyN

]

. (2.14)

Proof. The Laurent polynomial of the 2N -point Deslauriers-Dubuc scheme can be written as

aD(z) := 1 +

N
∑

n=−N+1

a1−2nz
1−2n. (2.15)

Using this expression and applying Lemma 2.2, we get

a(z) = ωz2N +
N
∑

n=−N+1

(

(δn,0 − ωb−2n)z−2n + a1−2nz
1−2n

)

= ω

(

z2N −
N
∑

n=−N+1

b−2nz
−2n

)

+ aD(z)

(2.16)

with b−2n as in (2.12). It is well known from the literature (e.g., see [7]) that the Laurent

polynomial aD(z), z = eiξ, has the explicit form

aD(eiξ) = 2 cos2N (ξ/2)
N−1
∑

n=0

(

N − 1 + n

n

)

sin2n(ξ/2). (2.17)

Moreover, invoking the definition of b−2n in (2.12) and using z = eiξ, we have
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z2N −
N
∑

n=−N+1

b−2nz
−2n = z2N −

N
∑

n=−N+1

(−1)N−n+1 (2N)!

(N + n)!(N − n)!
z−2n

= z2N

(

1 +
2N
∑

n=1

(−1)−n (2N)!

n!(2N − n)!
z−2n

)

= z2N (1 − z−2)2N

= z−2N24N i2N

(

1 + z

2

)2N(1 − z

2i

)2N

= 24N i2N cos2N (ξ/2) sin2N (ξ/2). (2.18)

Combining (2.17) and (2.18) with (2.16),

a(eiξ) = cos2N (ξ/2)

[

2

N−1
∑

n=0

(

N − 1 + n

n

)

sin2n(ξ/2) + ω24N i2N sin2N (ξ/2)

]

= (1 − y)N

[

2

N−1
∑

n=0

(

N − 1 + n

n

)

yn + ω24N (−1)NyN

]

where y = sin2(ξ/2). This completes the proof. �

We can find that the Laurent polynomial a(z) in (2.14) coincides with the one in [5, §6.C]

(see also [7, §8.3.5]), which was designed for the purpose of constructing biorthogonal filters

close to orthonormal cases (or to some coiflets). However, the mathematical properties of the

corresponding refinable functions are not studied. In the following sections, we will discuss the

fundamental properties of a(z) in (2.14) in relation to the linear independence and the smoothness

of the corresponding refinable functions.

3 Linear Independence and Stability of Refinable Functions

Given a refinable function φ, a fundamental question is whether its integer translates are linearly

independent: The integer translates of a compactly supported function φ ∈ L2(R) are linearly

independent if for any c ∈ ℓ(Z),
∑

j∈Z

c(j)φ(· − j) = 0 implies c(j) = 0, ∀j ∈ Z.

The linear independence of the integer translates of φ is a necessary and sufficient condition for the

existence of a compactly supported dual refinable function φ̃ ∈ L2(R) of φ (see [15]). Furthermore,

it is well-known that the existence of a compactly supported dual refinable function of φ is a key

step to construct a pair of biorthogonal wavelets from the given φ.

An issue related to the linear independence is the (somewhat weaker) notion of the stability

of φ: A function φ ∈ L2(R) is stable if there exist 0 < A,B < ∞ such that for any sequence

c ∈ ℓ2(Z),

A‖c‖ℓ2(Z) ≤
∥

∥

∥

∑

j∈Z

c(j)φ(· − j)
∥

∥

∥

L2(R)
≤ B‖c‖ℓ2(Z). (3.1)
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In other words, the integer translates of φ are stable if the collection {φ(· − j) : j ∈ Z} is an

unconditional basis for the subspace of L2(R) generated by them. The upper bound of (3.1)

always exists for any compactly supported function φ ∈ L2(R) [12, Theorem 2.1]. It is also

well-known from [12, Theorem 3.5] that the lower bound is equivalent to

(

φ̂(ξ + 2πk)
)

k∈Z
6= 0, ∀ξ ∈ R, (3.2)

where 0 indicates the zero sequence in ℓ(Z). Thus, the stability of a compactly supported function

φ ∈ L2(R) is equivalent to (3.2).

The linear independence of the integer translates of a refinable function φ is characterized

in terms of their masks in [13]. The main results, Theorem 1 and 2 in [13], imply directly the

following lemma. Here, the notion of symmetric zeros is used: A Laurent polynomial a(z) has a

pair of symmetric zeros on C \ {0} if there is a zero z0 ∈ C \ {0} such that a(z0) = a(−z0) = 0.

Lemma 3.1 [13] Let φ ∈ L2(R) be a compactly supported refinable function. The integer trans-

lates of φ are linearly independent if and only if the following two conditions are satisfied:

(1) The function φ is stable.

(2) The Laurent polynomial a(z) does not have any symmetric zeros in C \ {0}.

From the above lemma, it is apparent that for a compactly supported function φ ∈ L2(R),

the linear independence of the integer translates of φ implies the stability of φ. In what follows,

we find the condition on ω which guarantees the linear independence of the integer translates of

φ associated with the subdivision scheme SL. For this, two useful lemmas are introduced.

Lemma 3.2 Let

PN (y) :=

N−1
∑

n=0

(

N − 1 + n

n

)

yn (3.3)

and

QN (y) := PN (y) − (−1)N+124N−1ωyN . (3.4)

Then QN (y) and QN (1 − y) do not vanish simultaneously for y ∈ [0, 1] if and only if

ω 6= (−1)N+12−2N .

Proof. First we claim that the polynomial QN has at most one zero for y ∈ [0, 1]. For this proof,

suppose that QN (y1) = 0. Clearly, y1 6= 0, and it follows from (3.4) that

PN (y1) = (−1)N+124N−1ωyN
1 . (3.5)

Then, for any y 6= y1, we apply (3.4) to get the relation

QN (y) = PN (y) − PN (y1)
( y

y1

)N

=
N−1
∑

j=0

(

N − 1 + j

j

)

yj

(

1 −
( y

y1

)N−j
)

,
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where QN (y) > 0 if y < y1 and QN (y) < 0 if y > y1; hence QN has at most one zero in [0, 1].

Therefore, QN (y) and QN (1 − y) do not vanish simultaneously if and only if QN (1/2) 6= 0, that

is, by (3.4), equivalent to

ω 6= (−1)N+12−3N+1PN (1/2). (3.6)

Finally, we need to evaluate PN (1/2). Since the polynomial PN satisfies the equation [7]

yNPN (1 − y) + (1 − y)NPN (y) = 1,

we get PN (1/2) = 2N−1 by setting y = 1/2. Combining this with (3.6) leads to the claim of the

lemma. �

Remark 3.3 According to the condition (3.6) and its subsequent argument, we conclude that if

ω = (−1)N+12−2N , the polynomial QN (y) has one root at y = 1/2, i.e., QN (1/2) = 0.

Lemma 3.4 [13, Theorem 1] Let φ ∈ L2(R) be a compactly supported refinable function with the

symbol a(z). Then φ is stable if and only if the following two conditions are satisfied:

(1) The symbol a(z) does not have any symmetric zeros on the unit circle T .

(2) For any odd integer m > 1 and a primitive m-th root z0 of unity, there is d ∈ N such that

a(−z2d

0 ) 6= 0.

Based on this lemma, we prove that the refinable function φ associated with SL is stable.

Invoking the definition of QN in (3.4), it is useful for the following analysis to represent a(eiξ) in

(2.14) as

a(eiξ) = 2(1 − y)NQN (y), y = sin2(ξ/2). (3.7)

Lemma 3.5 Let φ ∈ L2(R) be the refinable function associated with the subdivision scheme SL

with the tension parameter ω. Then φ is stable if and only if

ω 6∈ (−1)N+12−2N+1
{

1/2, PN (1/4)
}

.

Proof. We prove this lemma by using Lemma 3.4. Due to Lemma 3.2, it suffices to show that the

condition (2) in Lemma 3.4 is equivalent to the condition

ω 6= (−1)N+12−2N+1PN (1/4).

Let z0 be a primitive 3-rd root of unity, i.e., z0 = e2πi/3 or e4πi/3. We first claim that a(−z2d

0 ) = 0

for all d ≥ 0 if and only if ω = (−1)N+12−2N+1PN (1/4). For this proof, define ζ0 by z0 = eiζ0 .

A direct calculation shows that for any integer d ≥ 0, sin2(2d−1ζ0) = 3/4. Therefore, we obtain

from (3.4) that for all d ≥ 0,

a(−z2d

0 ) = 2 sin2N (2d−1ζ0)QN (cos2(2d−1ζ0))

= 2 sin2N (2d−1ζ0)(PN (1/4) − (−1)N+124N−1ω4−N ),
(3.8)
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such that a(−z2d

0 ) = 0 if and only if ω = (−1)N+12−2N+1PN (1/4). Now, assume that ω 6=

(−1)N+12−2N+1PN (1/4) and that there exists z1 = eiζ1 ∈ C \ {0, z0} with ζ1 ∈ (0, 2π) such that

a(−ei2
dζ1) = 0 for all integer d ≥ 0. Let y1 := sin2(ζ1/2). Then, let us consider the cases d = 0

and 1. If d = 0,

a(−eζ1i) = 2yN
1 QN (1 − y1) = 0

and if d = 1,

a(−e2ζ1i) = 2(4y1(1 − y1))
NQN ((1 − 2y1)

2) = 0.

It follows that QN (1− y1) = QN ((1− 2y1)
2) = 0. Since QN (y) has at most one zero (as observed

in the proof of Lemma 3.2), 1 − y1 should be equal to (1 − 2y1)
2. It implies that y1 = 3/4. But,

due to (3.8), QN (1 − y1) = QN (1/4) 6= 0 since ω 6= (−1)N+12−2N+1PN (1/4). This proves the

lemma. �

Lemma 3.6 Let a(z) be the Laurent polynomial of the subdivision scheme SL and let b2n for

n = −N + 1, . . . , N be given as in (2.12). Assume that z0 ∈ C \ {0} be a zero of a(z). Then, z0
is a symmetric zero of a(z) if and only if

ω =

[ N
∑

n=−N+1

b−2nz
−2n
0 − z2N

0

]−1

. (3.9)

Proof. Recalling the expression of a(z) in (2.16), let z0 ∈ C \ {0} be a symmetric zero of a(z).

Dividing a(z) into even and odd degree terms and using the condition a(z0) = a(−z0) = 0, it can

be easily induced that

aodd(z0) :=
∑

n∈Z

a1−2nz
1−2n
0 = 0. (3.10)

Since the mask {a1−2n : n ∈ Z} is exactly the same as the case of the L-point Deslauriers-Dubuc

scheme, it is clear that aD(z0) = 1 with aD(z) in (2.15). Thus, by (2.16), we obtain the required

condition (3.9). �

Theorem 3.7 Let φ ∈ L2(R) be the refinable function generated by the subdivision scheme SL,

L = 2N , with a tension parameter ω. Assume that

ω 6∈ (−1)N+12−2N+1
{

1/2, PN (1/4)
}

∪ VN (3.11)

where

VN =

{

(

N
∑

n=−N+1

b−2nz
−2n
0 − z2N

0

)−1
: aodd(z0) = 0, z0 ∈ C \ {0}

}

Then the integer translates of φ are linearly independent.

Proof. We check the two sufficient conditions in Lemma 3.1. The condition (1) is proved in

Lemma 3.5. The condition (2) is also an immediate consequence of Lemma 3.6. �
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L γ ω L γ ω

2 2.9999 1
8 12 6.6976 −.000078

4 3.7074 −.024397 14 7.4445 .000019
6 4.6783 .005632 16 8.1887 −.00000462
8 5.4800 −.001348 18 8.5983 .00000109
10 6.1221 .000332 20 9.4260 −.00000027

Table 1: The maximum Hölder regularities Hγ of φ associated with SL for each L = 2, . . . , 20
and the corresponding values of ω. These are computed by using MAPLE 8, digits = 15.

4 Smoothness Analysis

4.1 Maximal Smoothness of Refinable Functions

Let φ be the refinable function associated with the subdivision scheme SL. An interesting observa-

tion is that as the tension parameter ω is away from zero (up to a suitable range), the smoothness

of φ is increased. Here, we discuss the maximal Hölder smoothness of φ for each given L. For a

given γ = n+ s with n ∈ N and s ∈ [0, 1), the Hölder space Hγ is defined as the space of n-times

continuously differentiable functions f whose n-th derivative f (n) satisfies the Lipschitz condition

sup
x,h∈R

|f (n)(x+ h) − f (n)(x)|

|h|s
≤ C.

In particular, it is well known (e.g., see Lemma 7.1 of [8] ) that if |f̂(ξ)| ≤ c(1 + |ξ|)−1−γ−ǫ with

ǫ > 0, then f belongs to the space Hγ .

The specific maximal Hölder regularity of φ generated by SL is obtained in Table 1 with the

corresponding values of ω. For this computation, we used Corollary 3.3 and Theorem 3.4 in [11,

section 2.3]. It is remarkable to see that the refinable function φ based on cubic polynomial (i.e.,

by SL with L = 4) is H3.7074, while the cubic-based Deslauriers-Dubuc’s interpolatory scheme is

H2−ǫ and the cubic B-spline is H3−ǫ.

4.2 Asymptotic smoothness

For a suitable ω, we expect that the Hölder regularity of φ associated with SL, L = 2N , increases

as N is increasing. In what follows, we estimate its asymptotic property of a regularity of φ for

the special choice of ω = ωN with

ωN := 2−4N+1(−1)N+1N − 1

N + 1

(

2N − 1

N − 1

)

, (4.1)

as N tends to ∞. Of course, it does not provide the best smoothness among all possible ranges

of ω for a fixed L, but at least we can compare it with the asymptotic property of the regularity

of the case ω = 0, as N → ∞. With the choice of ω = ωN , the Laurent polynomial a(z) becomes

of the form

a(eiξ) = 2 cos2N (ξ/2)QN (sin2(ξ/2))
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with

QN (y) :=

[

N−1
∑

n=0

(

N − 1 + n

n

)

yn −
N − 1

N + 1

(

2N − 1

N − 1

)

yN

]

, y = sin2 ξ/2. (4.2)

Theorem 4.1 For a given L = 2N , let ωN be given as in (4.1). Let φ be the refinable function

associated with SL and ωN . Then, we have the optimal decay

|φ̂(ξ)| ≤ C(1 + |ξ|)−2N+κ, (4.3)

where κ = log(|QN (3/4)|)/ log 2 with QN in (4.2). Consequently, φ ∈ H2N−κ−1−ǫ for any ǫ > 0.

We put the proof of Theorem 4.1 in Section 4.3 for the better readability of the article. The

following theorem treats the special case ω = 0, which is the case of the Deslauriers-Dubuc

interpolatory scheme. Then, with PN in (3.3), the Laurent polynomial aD(z) can be written as

aD(eiξ) = 2 cos2N (ξ/2)PN (sin2(ξ/2)).

Theorem 4.2 [4, 7] Let φ be the refinable function associated with the Deslauriers-Dubuc inter-

polatory scheme. Then, we have the optimal decay

|φ̂(ξ)| ≤ C(1 + |ξ|)−2N+κ̃, (4.4)

where κ̃ = log(|PN (3/4)|)/ log 2 with PN in (3.3). Consequently, φ ∈ H2N−κ̃−1−ǫ for any ǫ > 0.

Remark 4.3 It is easy to check that |PN (3/4)| > |QN (3/4)|; see also Lemmas 4.5 and 4.6.

Hence,the suggested refinable function φ in Theorem 4.1 has better smoothness than the case of

Deslauriers-Dubuc interpolatory scheme with the amount of

κ̃− κ =
1

log 2
log

(

|PN (3/4)|

|QN (3/4)|

)

> 0.

4.3 Proof of Theorem 4.1

We cite the following result from [10] (see also [7, Lemma 7.1.7]).

Proposition 4.4 Let φ be the refinable function with the symbol a(z) of the form

|a(eiξ)| := 2(1 − y)N |Q(y)|, y = sin2(ξ/2),

for some polynomial Q. Suppose that

(1) |Q(y)| ≤ |Q(3/4)| for 0 ≤ y ≤ 3/4;

(2) |Q(y)Q(4y(1 − y))| ≤ |Q(3/4)|2 for 3/4 ≤ y ≤ 1.

Then, we have the optimal decay

|φ̂(ξ)| ≤ C(1 + |ξ|)−2N+κ,

with κ = log(|Q(3/4)|)/ log 2. Consequently, φ ∈ C2N−κ−1−ǫ for any ǫ > 0.
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In order to prove Theorem 4.1, we will show that the symbol

aN (eiξ) = 2(1 − y)NQN (y), y = sin2(ξ/2)

satisfies the hypothesis of Proposition 4.4. To this end, we need the following lemmas.

Lemma 4.5 Let ℓ ≤ N be a positive integer. The following statements hold:

(1) For any j ∈ N, (j + 1)
(N+j

j+1

)

= (N + j)
(N−1+j

j

)

.

(2)
ℓ
∑

j=0

(

N − 1 + j

j

)

j =
ℓ(ℓ+ 1)

N + 1

(

N + ℓ

ℓ+ 1

)

.

Proof. The relation (1) is trivial, and (2) can be shown by induction on ℓ. �

Lemma 4.6 Let f be a polynomial of the form

f(y) =

N−1
∑

j=0

ajy
j − bNy

N ,

with aj > 0, j = 0, . . . , N − 1 and bN = 1
N

∑N−1
j=1 jaj , so that f ′(1) = 0. Then f is positive and

increasing on [0, 1].

Proof. Note that f(0) = a0 > 0. It follows from the choice of bN that

f ′(y) =

N−1
∑

j=1

jaj(1 − yN−j)yj−1 ≥ 0, ∀y ∈ [0, 1].

Therefore f is positive and increasing on [0, 1]. �

For any ℓ = 0, 1, . . . , N − 1, define a polynomial QN,ℓ by

QN,ℓ(y) :=

ℓ
∑

j=0

(

N − 1 + j

j

)

yj − νℓ y
ℓ+1 (4.5)

with

νℓ :=
ℓ

N + 1

(

N + ℓ

ℓ+ 1

)

=
1

ℓ+ 1

ℓ
∑

j=0

j

(

N − 1 + j

j

)

. (4.6)

Lemma 4.7 For any ℓ = 0, . . . , N − 1, QN,ℓ in (4.5) satisfies the following properties:

(1) QN,ℓ+1(y) = QN,ℓ(y) + νℓ+1y
ℓ+1

(

ℓ+ 2

ℓ+ 1
− y

)

. (4.7)

(2) Q′
N,ℓ+1(y) =

ℓ
∑

j=0

(N + j)

(

N − 1 + j

j

)

(

yj − yℓ+1
)

. (4.8)
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Proof. From Lemma 4.5 (1), we rewrite QN,ℓ(y) as follows:

QN,ℓ(y) =

ℓ
∑

j=0

(

N − 1 + j

j

)(

yj −
j

ℓ+ 1
yℓ+1

)

(4.9)

=
ℓ+1
∑

j=0

(

N − 1 + j

j

)(

yj −
j

ℓ+ 1
yℓ+1

)

=
ℓ+1
∑

j=0

(

N − 1 + j

j

)

yj −
ℓ+ 2

ℓ+ 1
νℓ+1y

ℓ+1.

Thus the relation (4.7) is immediate from the definition of QN,ℓ+1 in (4.5). Also, using (4.6) and

Lemma 4.5 (1), we get the relation in (2). �

We now proceed to the proof of Theorem 4.1. We follow the method in [9] but the presentation

become simpler by introducing this function

Λj(y) := Λℓ,j(y) := yj

(

1 −
ℓ+ 1

ℓ+ 2
y

)

. (4.10)

Proof of Theorem 4.1: We check the conditions (1) and (2) of Proposition 4.4. Using Lemma 4.5

and the identity
(

2N−1
N−1

)

=
(

2N−1
N

)

, it is easy to see that QN (y) satisfies the hypothesis of Lemma

4.6 and hence, QN (y) is positive and monotonically increasing on [0, 1]. Hence the condition (1)

is satisfied. Next, for the proof of the condition (2), we define

WN,ℓ(y) := QN,ℓ(y)QN,ℓ(4y(1 − y)) − (QN,ℓ(3/4))
2 (4.11)

and verify that for any ℓ = 0, . . . , N − 2,

WN,ℓ+1(y) −WN,ℓ(y) ≤ 0, y ∈ [3/4, 1]. (4.12)

Note here that QN,0(y) ≡ 1, which implies WN,0(y) ≡ 0, and that QN,N−1 = QN due to the

identity
(

2N−1
N−1

)

=
(

2N−1
N

)

. Then Proposition 4.4 (2) follows immediately from (4.12). To this end,
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let us first observe from (4.7) and (4.11) that

WN,ℓ+1(y) −WN,ℓ(y)

=QN,ℓ+1(y)QN,ℓ+1(4y(1 − y)) −QN,ℓ(y)QN,ℓ(4y(1 − y)) − (QN,ℓ+1(3/4))
2 + (QN,ℓ(3/4))

2

=QN,ℓ+1(y)QN,ℓ(4y(1 − y)) +QN,ℓ+1(y)νℓ+1(4y(1 − y))ℓ+1

(

ℓ+ 2

ℓ+ 1
− 4y(1 − y)

)

−QN,ℓ(y)QN,ℓ(4y(1 − y)) − (QN,ℓ+1(3/4))
2 + (QN,ℓ(3/4))

2

=QN,ℓ+1(y)νℓ+1(4y(1 − y))ℓ+1

(

ℓ+ 2

ℓ+ 1
− 4y(1 − y)

)

+QN,ℓ(4y(1 − y))[QN,ℓ+1(y) −QN,ℓ(y)] − (QN,ℓ+1(3/4))
2 + (QN,ℓ(3/4))

2

=QN,ℓ+1(y)νℓ+1(4y(1 − y))ℓ+1

(

ℓ+ 2

ℓ+ 1
− 4y(1 − y)

)

+QN,ℓ(4y(1 − y))νℓ+1y
ℓ+1

(

ℓ+ 2

ℓ+ 1
− y

)

− (QN,ℓ+1(3/4))
2 + (QN,ℓ(3/4))

2

=
ℓ+ 2

ℓ+ 1
νℓ+1 [Λℓ+1(4y(1 − y))QN,ℓ+1(y) + Λℓ+1(y)QN,ℓ(4y(1 − y))]

− (QN,ℓ+1(3/4))
2 + (QN,ℓ(3/4))

2.

Since WN,ℓ+1(3/4) −WN,ℓ(3/4) = 0, in order to prove the relation (4.12), it suffices to show that

WN,ℓ+1(y) −WN,ℓ(y) decreases monotonically on [3/4, 1]. Seeing that QN,ℓ+1(y) ≥ QN,ℓ(y) for

any y ∈ [0, 1], it is equivalent to verify that

G(y) := Λℓ+1(4y(1 − y))QN,ℓ+1(y) + Λℓ+1(y)QN,ℓ(4y(1 − y))

decreases monotonically on [3/4, 1], i.e., G′(y) ≤ 0, y ∈ [3/4, 1]. Now, we compute G′ as follows:

G′(y) = − (ℓ+ 1)(8y − 4)(4y(1 − y))ℓ[1 − 4y(1 − y)]QN,ℓ+1(y) + Λℓ+1(4y(1 − y))Q′
N,ℓ+1(y)

+ (ℓ+ 1)yℓ(1 − y)QN,ℓ(4y(1 − y)) − (8y − 4)Λℓ+1(y)Q
′
N,ℓ(4y(1 − y)).

From (4.7), we find the identity

Q′
N,ℓ(y) = Q′

N,ℓ+1(y) − (ℓ+ 2)νℓ+1y
ℓ(1 − y). (4.13)

Also, we see from (4.7) that QN,ℓ+1(y) = QN,ℓ(y)+ νℓ+1
ℓ+2
ℓ+1Λℓ+1(y). This together with (4.7) and

(4.13) implies that

G′(y) = − (ℓ+ 1)(8y − 4)(4y(1 − y))ℓ[1 − 4y(1 − y)]QN,ℓ(y) + Λℓ+1(4y(1 − y))Q′
N,ℓ+1(y)

+ (ℓ+ 1)yℓ(1 − y)QN,ℓ(4y(1 − y)) − (8y − 4)Λℓ+1(y)Q
′
N,ℓ+1(4y(1 − y)).

Using (4.8) and (4.9), a direct calculation shows that

G′(y) =
ℓ
∑

j=0

(

N − 1 + j

j

)

yj(4y(1 − y))j(fj,ℓ(y) + (N + j)gj,ℓ(y)), (4.14)
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where fj,ℓ and gj,ℓ are defined by

fj,ℓ(y) := − (ℓ+ 1)(8y − 4) (4y(1 − y))ℓ−j (1 − 4y(1 − y))

(

1 −
j

ℓ+ 1
yℓ+1−j

)

(4.15)

+ (ℓ+ 1)yℓ−j(1 − y)

(

1 −
j

ℓ+ 1
(4y(1 − y))ℓ+1−j

)

,

gj,ℓ(y) :=Λℓ+1−j(4y(1 − y))(1 − yℓ+1−j) − (8y − 4)Λℓ+1−j(y)(1 − (4y(1 − y))ℓ+1−j).

In order to prove that G′(y) ≤ 0, we show that for 0 ≤ j ≤ ℓ ≤ N − 2

fj,ℓ(y) + (N + j)gj,ℓ(y) ≤ 0, ∀y ∈ [3/4, 1]. (4.16)

First, to estimate fj,ℓ(y), we see that

fj,ℓ(y) = −(ℓ+ 1)(8y − 4) (4y(1 − y))ℓ−j (1 − 4y(1 − y)) + (ℓ+ 1)yℓ−j (1 − y)

+ j
(

(4y(1 − y))ℓ−j yℓ−j ((8y − 4)y (1 − 4y(1 − y)) − 4y(1 − y)(1 − y))
)

. (4.17)

Since 8y − 4 ≥ 2, 0 ≤ 4y(1 − y) ≤ 3/4 for y ∈ [3/4, 1], we have

(8y − 4)y (1 − 4y(1 − y)) − 4y(1 − y)(1 − y) ≥
3

16
> 0.

For j ≤ ℓ, it leads to the relation

fj,ℓ(y) ≤− (ℓ+ 1)(8y − 4) (4y(1 − y))ℓ−j (1 − 4y(1 − y)) + (ℓ+ 1)yℓ−j (1 − y)

+ (ℓ+ 1)
(

(4y(1 − y))ℓ−j yℓ−j ((8y − 4)y (1 − 4y(1 − y)) − 4y(1 − y)(1 − y))
)

= − (ℓ+ 1)(8y − 4) (4y(1 − y))ℓ−j (1 − 4y(1 − y))
(

1 − yℓ+1−j
)

+ (ℓ+ 1)yℓ−j(1 − y)
(

1 − (4y(1 − y))ℓ+1−j
)

. (4.18)

Also, since 0 ≤ 4y(1 − y) ≤ y ≤ 1 and −16y2 + 40y − 20 ≥ 0 for y ∈ [3/4, 1], we obtain

gj,ℓ(y) ≤ yℓ−j [Λ1(4y(1 − y)) − (8y − 4)Λ1(y)]
(

1 − (4y(1 − y))ℓ+1−j
)

(4.19)

= yℓ−j+1
(

1 − (4y(1 − y))ℓ+1−j
)

(

8 − 12y +
ℓ+ 1

ℓ+ 2
y
(

−16y2 + 40y − 20
)

)

≤ −8yℓ−j+1
(

1 − (4y(1 − y))ℓ+1−j
)

(2y − 1)(1 − y)2.

This implies that gj,ℓ(y) ≤ 0. Thus, if N + j ≥ ℓ+ 2 + j ≥ ℓ+ 2, (N + j)gj,ℓ(y) ≤ (ℓ+ 2)gj,ℓ(y).

Putting this and (4.19) into (4.16), we have

fj,ℓ + (N + j)gℓ,j(y) ≤− (ℓ+ 1)(8y − 4) (4y(1 − y))ℓ−j (1 − 4y(1 − y))(1 − yℓ+1−j) (4.20)

+ (ℓ+ 1)yℓ−j (1 − y) (1 − (4y(1 − y))ℓ+1−j)

+ (ℓ+ 2)Λℓ+1−j(4y(1 − y))(1 − yℓ+1−j)

− (ℓ+ 2)(8y − 4)Λℓ+1−j(y)(1 − (4y(1 − y))ℓ+1−j)

= (4y(1 − y))ℓ−j (1 − yℓ+1−j)h1(y) + yℓ−j(1 − (4y(1 − y))ℓ+1−j)h2(y)
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where h1 and h2 are given by

h1(y) := −(ℓ+ 1)(8y − 4) (1 − 4y(1 − y)) + (ℓ+ 2)Λ1(4y(1 − y))

h2(y) := (ℓ+ 1) (1 − y) − (ℓ+ 2)(8y − 4)Λ1(y).

Since 8y − 4 ≥ 2 and 4y(1 − y) ≤ 1 on [3/4, 1], we have

h1(y) ≤ −(ℓ+ 1)2 (1 − 4y(1 − y)) + (ℓ+ 2)

(

1 −
ℓ+ 1

ℓ+ 2
4y(1 − y)

)

≤ 1. (4.21)

Moreover, since (8y − 4)y > 1 on [3/4, 1], we have

h2(y) ≤ (ℓ+ 1) (1 − y) − (ℓ+ 2)

(

1 −
ℓ+ 1

ℓ+ 2
y

)

= −1. (4.22)

Since 0 ≤ 4y(1 − y) ≤ y ≤ 1 for any y ∈ [3/4, 1], combining (4.21) and (4.22) with (4.20) yields

fj,ℓ(y) + (N + j)gℓ,j(y) ≤ (4y(1 − y))ℓ−j
(

1 − yℓ+1−j
)

− yℓ−j
(

1 − (4y(1 − y))ℓ+1−j
)

≤ yℓ−j
(

1 − yℓ+1−j
)

− yℓ−j
(

1 − yℓ+1−j
)

= 0,

which implies G′(y) ≤ 0, y ∈ [3/4, 1], with G′(y) in (4.14). This completes the proof. �

5 Compactly Supported Biorthogonal Wavelets

5.1 Biorthogonal Wavelet Systems

Let φ ∈ L2(R) be a stable refinable function with the symbol a(z) such that a(1) = 2 and

a(−1) = 0. As usual, the first step for the construction of biorthogonal wavelet systems is to find

a refinable function φ̃ ∈ L2(R) such that

〈φ, φ̃(· − ℓ)〉 = δ0,ℓ, ℓ ∈ Z. (5.1)

If φ̃ is stable and satisfies the condition (5.1), we call φ̃ the dual refinable function of φ (or just

dual of φ). Let ã(z) be the symbol of φ̃ such that ã(1) = 2 and ã(−1) = 0. For convenience, we

use the notation

m0(ξ) = a(e−iξ)/2, m̃0(ξ) = ã(e−iξ)/2.

Then, the refinable functions φ and φ̃ are defined respectively by

φ̂(ξ) :=
∞
∏

j=1
m0(2

−jξ), ˆ̃φ(ξ) :=
∞
∏

j=1
m̃0(2

−jξ). (5.2)

These infinite products in (5.2) converge absolutely and uniformly on compact sets and are the

Fourier transforms of compactly supported φ and φ̃ with their support widths given by the filter

lengths [5, 8]. A necessary condition for φ and φ̃ to satisfy the duality condition (5.1) is

m0(·)m̃0(·) +m0(· + π)m̃0(· + π) = 1. (5.3)
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Given a pair of dual refinable functions φ and φ̃ with their associated filters m0(ξ) and m̃0(ξ),

the dual wavelet functions ψ and ψ̃ are defined via the relation

ψ̂(ξ) = m1(ξ/2)φ̂(ξ/2),
ˆ̃
ψ(ξ) = m̃1(ξ/2)

ˆ̃
φ(ξ/2), (5.4)

where

m1(ξ) = e−iξm̃0(ξ + π), m̃1(ξ) = e−iξm0(ξ + π). (5.5)

We usually call {φ, φ̃, ψ, ψ̃} a biorthogonal MRA-wavelet system if the following conditions hold:

(i) {ψj,k : j, k ∈ Z} and {ψ̃j,k : j, k ∈ Z} are Riesz bases for L2(R) respectively, and they are

biorthogonal in the sense that 〈ψj,k, ψ̃ℓ,m〉 = δj,ℓδk,m with j, k, ℓ,m ∈ Z.; (ii) the condition

〈φ, ψ̃(· − ℓ)〉 = 〈ψ, φ̃(· − ℓ)〉 = 0 (5.6)

is satisfied. In the following theorem, we give a sufficient condition for ψ and ψ̃ to be biorthogonal

wavelets associated with φ and φ̃. In fact, this theorem is a slight generalization of Proposition

4.9 in [5] and explained in view of subdivision scheme. Since the proof is almost the same, we

abbreviate it here. A reader who is interested in this proof is referred to [14]; this paper is a

reduced version of the preprint [14]. For this theorem, it is necessary for a reader to remind that

the norm of the iterated scheme Sk, i.e., ‖Sk‖, is defined in (2.6).

Theorem 5.1 Let φ and φ̃ be refinable functions whose symbols a(z) and ã(z) are respectively of

the form

a(z) =
(1 + z

2

)ℓ
b(z), ã(z) =

(1 + z

2

)ℓ̃
b̃(z) (5.7)

for some ℓ, ℓ̃ ∈ N, where b(z) and b̃(z) are Laurent polynomials such that b(1) = b̃(1) = 2. Assume

that ‖(1
2Sb)

k‖ < 1 and ‖(1
2Sb̃)

k̃‖ < 1 for some k, k̃ > 0, where Sb and Sb̃ are subdivision schemes

associated with b(z) and b̃(z) respectively. Then, if ℓ+ ℓ̃ ≥ 3, {φ, φ̃, ψ, ψ̃} in (5.2) and (5.4) is a

biorthogonal MRA-wavelet system.

5.2 Approximation Order and Vanishing Moment

For f ∈ L2(R), we define the biorthogonal projection Pjf of f onto the space Vj by

Pjf =
∑

k∈Z

〈f, φ̃j,k〉φj,k. (5.8)

For a pair of biorthogonal wavelets ψ and ψ̃, we also define a projection Qjf of f onto the space

Wj := span{ψj,k : k ∈ Z} by

Qjf =
∑

k∈Z

〈f, ψ̃j,k〉ψj,k.

By construction, it is obvious that ‖Pjf − f‖L2(R) = O(2−jL). In many applications, Pjf is

interpreted as an approximation to f at the resolution 2−j , while Qjf represents the fine detail in

f . One advantage of using our biorthogonal wavelet system is as follows. If we use sample values of

smooth function as refinable function coefficients at a fine scale, then the resulting biorthogonal
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projection Pjf(x) approximates the underlying function f with the (optimal) approximation

rate O(2−jL). More specifically, the value 2j/2〈f, φ̃j,k〉 can be approximated by the function

value f(2−jk) with the error bound O(2−jL) for f ∈ CL(R). The next theorem treats this

approximation.

Theorem 5.2 Let φ and φ̃ be refinable functions obtained from the subdivision scheme SL with

L even and assume that their symbols a(z) and ã(z) are respectively of the form in (5.7). Let

{φ, φ̃, ψ, ψ̃} be a corresponding biorthogonal MRA-wavelet system. Assume that f ∈ CL(R). Then,

for any fixed j ∈ N and k ∈ Z,

|f(2−jk) − 2j/2〈f, φ̃j,k〉| = O(2−jL).

Proof. First, by change of variables, it is clear that

2j/2〈f, φ̃j,k〉 = 2j/2

∫

R

f(t)φ̃j,k(t)dt =

∫

R

f(2−jt)φ̃(t− k)dt.

Using the identity
∫

R
φ̃(t− k)dt = 1 and taking the Taylor polynomial of f(2−jt) of degree L− 1

at 2−jk, we get

f(2−jk) − 2j/2〈f, φ̃j,k〉 =

∫

R

(f(2−jk) − f(2−jt))φ̃(t− k)dt

= −

∫

R

(

L−1
∑

n=1

f (n)(2−jk)

n!
2−nj(t− k)n +RLf(t)

)

φ̃(t− k)dt

where RLf is the remainder of Taylor expansion

RLf(t) = f (L)(ξ)2−jL(t− k)L/L!

with ξ between t2−j and k2−j . By construction φ̃j,k reproduces polynomials in Π<L (see (5.7))

such that the first integral on the right-hand side of the above equation is identically zero. Thus,

it follows that

|f(2−jk) − 2j/2〈f, φ̃j,k〉| ≤ c‖f (L)‖∞2−jL

∫

R

|(t− k)Lφ̃(t− k)|dt.

Since φ̃ is compactly supported,

∫

R

|(t− k)Lφ̃(t− k)|dt <∞, which completes the proof. �

Let ψ̃j,n :=
∑

k∈Z
d̃n−2kφ̃j+1,k. Since 2(j+1)/2〈f, ψ̃j,k〉 =

∑

k∈Z
d̃n−2k〈f, φj+1,k〉, the following

corollary holds immediately by Theorem 5.2.

Corollary 5.3 Let φ be the refinable function obtained from the scheme SL and let {φ, φ̃, ψ, ψ̃}

be a corresponding biorthogonal MRA-wavelet system. Assume that f ∈ CL(R). Then, for any

fixed j ∈ N and k ∈ Z,

|
∑

k∈Z

d̃n−2kf(2−j−1k) − 2(j+1)/2〈f, ψ̃j,k〉| = O(2−(j+1)L).
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L ±n an ãn

0 1 − 2ω 1/2(4ω− 3)/(−1 + 4ω)
2 1 1/2 1/2(−1 + 5ω + 4ω2)/(−1 + 4ω)

2 ω 1/4(1 + 4ω)/(−1 + 4ω)
3 0 −1/2ω(1 + 4ω)/(−1 + 4ω)

0 1 + 6ω 1/64(87 + 6192ω+ 41984ω2)/(16ω + 1)/(64ω+ 1)
1 9/16 −1/16(−9− 741ω+ 21504ω3 − 9872ω2)/(16ω + 1)/(64ω + 1)
2 −4ω 1/256(−63− 2992ω+ 64512ω2)/(16ω + 1)/(64ω+ 1)

4 3 −1/16 1/16(−1− 113ω + 33792ω3 − 2128ω2)/(16ω + 1)/(64ω + 1)
4 ω −1/128(9216ω2 − 9 − 464ω)/(16ω+ 1)/(64ω + 1)
5 0 −1/16ω(−13 + 13312ω2 − 528ω)/(16ω+ 1)/(64ω+ 1)
6 0 1/256(−80ω+ 1024ω2 − 1)/(16ω + 1)/(64ω+ 1)
7 0 1/16ω(−80ω+ 1024ω2 − 1)/(16ω + 1)/(64ω + 1)

0 1 − 20ω [1/16384(−572427− 54787440640ω2 + 1552496459776ω3 + 322878144ω)
1 150/256 3/128(−675− 77033920ω2 + 22145925120ω4 + 3424518144ω3 + 406055ω)
2 15ω 3/32768(66825+ 2837577728ω2 + 332188876800ω3− 30911040ω)
3 −25/256 1/256(675 + 94789248ω2 − 250987151360ω4 − 4279500800ω3 + 452090ω)
4 −6ω −3/8192(7425+ 341966848ω2 + 36909875200ω3 − 3532864ω)

6 5 3/256 3/256(−27− 7393856ω2 + 53016002560ω4 + 404881408ω3 + 26729ω)
6 ω 1/65536(41175+ 2279473152ω2 + 204682035200ω3− 20958656ω)
7 0 −3/256ω(3105 + 129105920ω2 − 1454144ω+ 15435038720ω3)
8 0 −3/32768(675 + 54919168ω2 + 3355443200ω3 − 401600ω)
9 0 1/256ω(−690752ω+ 5771362304ω3 + 1161 + 92405760ω2)
10 0 9/65536(27 + 2490368ω2 − 16064ω+ 134217728ω3)
11 0 −3/256ω(27 + 2490368ω2 − 16064ω+ 134217728ω3)]

/(64ω − 1)/(2097152ω2 − 14336ω+ 27)

Table 2: The dual mask for L = 2, 4, 6.

6 Examples

6.1 Dual Refinable Functions

Let φ ∈ L2(R) be a refinable function associated with SL such that its integer translates are linear

independent, that is, ω is chosen to satisfy (3.11). The construction of its dual refinable function

φ̃ usually starts from finding a dual symbol ã(z) such that the relation

a(z)ã(z) + a(−z)ã(−z) = 4, z = e−iξ. (6.1)

Recall that if y = sin2 ξ/2,

A(y) := a(eiξ) = (1 − y)N

[

2

N−1
∑

n=0

(

N − 1 + n

n

)

yn + ω24N (−1)NyN

]

.

Here, we want to construct the dual symbol ã(z) which has the factor (1 − y)N . Thus, letting

P1(y) = (1 − y)NA(y)/2,
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the problem to find the dual ã(z) in (6.1) is equivalent to constructing P2(y) which solves the

Bezout problem

P1(y)P2(y) + P1(1 − y)P2(1 − y) = 1 (6.2)

where the degree of P2(y) is 3N −1; see ([7]) for the details of the Bezout problem. Since φ(·−k),

k ∈ Z, are linear independent, it is immediate from Theorem 3.7 that there is no common zero of

P1(y) and P2(y), which guarantees the existence of P2(y). Then we obtain the dual symbol ã(z)

such that

ã(eiξ) = 2(1 − y)NP2(y), y = sin2 ξ/2.

For L = 2, 4 and 6, the specific forms of the dual mask of {ãn : n ∈ Z} are given in Table 2. Some

examples of biorthogonal wavelet systems L = 4 are computed with respect to several different

choices of ω. In this case, the refinable functions reproduce cubic polynomials and the wavelet

functions have the vanishing moment of order 4. Eventually, it becomes the Coifman biorthogonal

wavelet of order 4. Figure 1 indicates that the dual functions φ, φ̃ and their associated wavelets

ψ, ψ̃ for ω = 0.025, 0,−0.005,−0.0203. In particular, if ω = 0, it becomes the minimal length

Coiffman biorthogonal wavelet system.

6.2 Dual Functions with Less Dissimilar Lengths

We are concerned with the biorthogonal wavelet systems of less dissimilar filter lengths. Let

L = 2N . Involving the equation of Bezout problem in (6.2), let the zeros of P2(y) are λm, λ̄m ∈ C

with m = 1, . . . ,K and yn ∈ R with n = 1, . . . , 3N −2K−1. Then P2(y) is factored into the form

P2(y) = C

3N−2K−1
∏

n=1

(y − yn)

K
∏

m=1

(y2 − 2yReλm + |λm|2) (6.3)

for some constant C. On the purpose of constructing new refinable dual functions φ and φ̃, we

regroup the factors of P2(y) in (6.3). For this, we set

h(eiξ) := a(eiξ)C1

∏

ℓ∈I1

(y − yℓ)
∏

m∈J1

(y2 − 2yReλm + |λm|2)

g(eiξ) := (1 − y)NC2

∏

ℓ∈I2

(y − yℓ)
∏

m∈J2

(y2 − 2yReλm + |λm|2),

where y = sin2 ξ/2 and

C = C1C2, I1 ∪ I2 = {1, . . . , 3N − 1 − 2K}, J1 ∪ J2 = {1, . . . ,K}.

Then, we can derive new refinable functions φ and φ̃ with the new symbols h and g.

Example 6.1 (13-11 Tab biorthogonal wavelet system based on cubic) Let L = 4. Then, by

using symbolic computation with MAPLE 8, we obtain

P2(y) =2 + 4y + (12 − 256ω)y2 + 16y3 +
16(98304ω3 − 6656ω2 − 176ω − 1)

1 + 80ω + 1024ω2
y4

−
1024ω(−1 − 80ω + 1024ω2)

1 + 80ω + 1024ω2
y5.
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Let y1(6= 0) be a real root of P2(y). Here y1 ∈ R, and t1, t2, t3, t4 can be real or complex numbers

depending on the value of ω. Then, for y = sin2 ξ/2, we have

h(eiξ) = 2(1 − y)2(1 + 2y + 256ωy2)(y − y1)/y1

g(eiξ) = 2(1 − y)2P2(y)y1/(y − y1).

Figure 7 indicates the dual functions φ, φ̃ and their associated wavelets ψ, ψ̃ with the values

ω = 0.02, 0,−0.005,−0.015.

7 Concluding Remarks

In this study, we introduced a large class of biorthogonal wavelets. Each refinement mask has

a tension parameter ω. Our initial numerical test observed that by choosing ω in some suitable

range, the new biorthogonal wavelets systems have competitive approximation and compression

ability (especially for smooth signals) to the Coiffman biorthogonal wavelet system as well as the

9-7 tab biorthogonal wavelet system, which is the most widely used one in the field of wavelet

transform coding. Thus, our next project will focus on implementing suitable algorithms for the

applications of biorthogonal wavelet systems that balance and meet various demands, such as

regularity of wavelets, shapes of refinable functions and approximation power, in time-frequency

analysis. On the other hand, one may interested in continuing this study for the case L is odd,

i.e., L = 2N + 1. The masks of SL are obtained by solving the linear system

pℓ(1/4 + τ/2) =

N+τ
∑

n=−N

aτ−2npℓ(n), ℓ = 1, . . . , L,

where pℓ, ℓ = 1, . . . , L, is a basis of Π<L. For the even mask {a2n : n ∈ Z}, setting a−2N−2 =

(−1)Nω, their explicit forms are

a−2n =

(

4N

2N

)(

2N

N + n

)

(−1)n(4N + 1)

(1 − 4n)43N
− ω(−1)2N−n

(

2N + 1

N + n

)

for n = −N, . . . ,N . For the odd mask {a1+2n : n ∈ Z}, setting a1+2N = (−1)Nω, their explicit

forms are

a1−2n =

(

4N

2N

)(

2N

N − n+ 1

)

(−1)1−n(4N + 1)

(4n − 3)43N
− ω(−1)2N+n−1

(

2N + 1

N − n+ 1

)

for n = −N + 1, . . . , N + 1. However, we leave the corresponding analysis as a next study.
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[15] P. G. Lemarié-Rieusset, On the existence of compactly supported dual wavelets, Appl. Com-

put. Harmon. Anal. 4 (1997), 117-118.

[16] S. Mallat, Multiresolution approximations and wavelet orthonormal bases of L2(R), Trans.

Amer. Math. Soc. 315 (1989), 69-88.

[17] D. Wei, J. Tian, R. O. Wells, Jr., C. S. Burrus, A new class of biorthogonal wavelet systems

for image transform coding, IEEE Trans. on Image Proc. 7 (1998), 1000-1013.


