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Abstract

Consider a bounded function g supported on [—1, 1] and a modula-
tion parameter b €]1/2, 1] for which the Gabor system {E,,477,.9}m nez
is a frame. We show that such a frame always has a compactly sup-
ported dual window. More precisely, we show that if b < NLH for some
N € N, it is possible to find a dual window supported on [—N, N].
Under the additional assumption that g is continuous and only has a
finite number of zeros on | — 1, 1], we characterize the frame property
of {EnpTng}tmmnez. As a consequence we obtain easily verifiable cri-
teria for a function g to generate a Gabor frame with a dual window
having compact support of prescribed size.
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1 Introduction

Let g € L*(R) be a function with supp g C [—1,1]. It is well known that for
modulation parameters b < 1/2, the Gabor system {E,,,75.9 }monez given by

EppThg(x) == ™™ g(x —n), z € R,
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forms a frame for L?(R) if and only if there exist two positive constants A, B
such that

A< Z|g(w—n)|2 < B,a.e.xeR.

nez

If {EmpTng}mmnez 1s a frame and b < 1/2, it is also known that the canonical
dual generator is supported on [—1,1]. For proofs of these facts, we refer to
any standard reference on Gabor frames, e.g., [2, 5, 6]

The purpose of this paper is to investigate the properties of the dual
frames of { Eyp 109 bmonez for b €]1/2,1]. In particular, we show that a frame
{EmpT0g}mmez for which g is supported on [—1, 1] always has a dual Gabor
frame generated by a compactly supported function. More precisely, we show
that if b < NLH for some N € N, it is possible to find a dual window supported
on [N, N|.

Under the additional assumptions that ¢ is continuous and only has a
finite number of zeros on [-1,1] we are able to characterize the frame property
for { E;pT5. tmnez. It turns out that a continuous and compactly supported
dual window always exists in this case. As a special case of the general result
we are thus able to derive easily verifiable conditions for a function ¢ to
generate a Gabor frame having a continuous dual window with a specified
size of the support.

In a sense, our results complement the results by Boleskei and Janssen in
[1]. For any Gabor frame { E,,,577,09 }m.nez for which g is compactly supported
and ab € Q, the results in [1] characterize the existence of a dual frame
generator with compact support in terms of the rank of the Zibulski-Zeevi
matrix. If ab = p/q with ged(p, ¢) = 1, the Zibulski-Zeevi matrix is of the size
p X q, so even for the quite simple functions g considered in the current paper,
it is difficult to check the rank condition directly. Furthermore, our results
apply to the general case, not just to the case of rational oversampling.
On the other hand, we only consider functions g supported on [—1,1], a
restriction that does not appear in [1].

We also note that Laugesen recently obtained constructions of dual pairs
of spline windows supported on [—1,1], see [8]. Most of his windows and
dual windows are with knots at the points z = —1,0,1 and are constructed
so that the functions become continuous, or even smooth up to a certain
order. The constructions are made by counting the number of constraints
(in the duality conditions presented below, and on the points where conti-
nuity /differentiability is required) and then search for polynomials on [—1, 0]
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and on [0,1] of a matching degree; the coefficients in the polynomials are
found by Mathematica. The drawback of the method is that one can not
be completely sure in advance that it actually yields a solution. The results
presented here shed light on the conditions that are necessary for Laugesen’s
approach to work.

We finally note that our motivation stems from recent results, showing
that small modulation parameters b in Gabor frames {E,,1,9}mnez yield
amazing flexibility in the choice of dual window. For example, one of the
main results in [4] shows that functions of the type

o(z) = (Zx> i),

k=0

considered for sufficiently large intervals I, usually lead to Gabor frames
having B-spline dual windows for small values of b; and for functions g with
support on [0, N|, for which the integer-translates form a partition of unity,
one can find dual windows of the type

N-1

h(z) = Z ang(r +mn) (1.1)

n=—N+1

for appropriate choices of the coefficients a,,, see [3, 4]. Unfortunately, the
results in the current paper show that we do not have the same freedom in
the choice of “nice dual windows” for larger values of b.

The paper is organized as follows. In Section 2 we state the results. All
proofs are collected in Section 3. In the rest of the introduction we state a
few key results and definitions.

Recall that {E,Thg}mnez is a frame for L*(R) if there exist constants
A, B > 0 such that

AP < D W EwTog)? < BIIfIR, Vf € LA(R).

m,ne”L

If at least the upper frame condition is satisfied, {E,pTng}mnez is a Bessel
sequence.

Given a frame { Ep 10,9 }monez, a Bessel sequence { EpTph}imnez is a dual
frame if

= f EmTuh)EmTog, Vf € L*(R).

mneZ



The function g generating the frame is called the window and h is called the
dual window. For more information we refer to, e.g., [2] or [5].

The starting point is the duality conditions for two Gabor systems, due
to Ron and Shen [9, 10]. We will apply the version presented by Janssen [7]:

Theorem 1.1 Two Bessel sequences { EypTngtmnez and { EnpThnh}mnez form
dual frames for L*(R) if and only if for all n € Z,

Zg(m —n/b+k)h(z+k) = 0o, a.e. x€][0,1]. (1.2)

kEZ

We will only consider bounded and compactly supported candidates for
the functions g and h, so {EmpThg}mnez and {EnpThh}mnez are automati-
cally Bessel sequences, see [2]. Due to the compact support of g and h, the
condition in (1.2) is automatically satisfied whenever |n| is sufficiently large.
By specifying the support of g and h we can identify the exact values of
n € Z for which the equations in (1.2) need to be checked. Note also that
the infinite sum appearing in (1.2) is periodic; thus, for a given value of n
the condition can be checked by looking at any interval of length 1. These
observations immediately lead to the following consequence of Theorem 1.1:

Corollary 1.2 Let N € N\ {1} and b €]0, i55[ Assume that g and h

are bounded and real-valued functions with supp g C [—1,1] and supp h C
[—N, N|, and that

S g+ k)h(z +k) =b, ae.xe0,1].

keZ
Then the conditions (i) — (ii) below are equivalent:
(1) {EmpTng}tmmez and {EppTyh}mnez form dual frames for L*(R);
(ii) Forn =41,£2,--- £(N — 1),

g(x — %)h(w) +g(x — % +1Dh(x+1)=0, ae z € [% — 1, %]

2 The main results and examples

Consider a Gabor frame { E,,y1,,9 }m nez for which the window ¢ is supported
n [—1,1]. We will show that {E,.,T,,9}mnez has a dual frame, generated

4



by a compactly supported function h. As explained in the introduction we
focus on the range b €]1/2, 1[. The result exhibits a relationship between the
modulation parameter b and the size of the support of the dual window:
Theorem 2.1 Letb € [1/2,1], and choose N € N such that *=2 < b < NLH
Assume that g € L*(R) is supported on [—1,1] and that { E,pT0g}mnez s a
frame for L*(R). Then {EppTng}mnez has a dual { BTy h}mnez, generated
by a function h € L*(R) with supp h C [N, NJ.

The proofs of Theorem 2.1 and all the following results are collected in
Section 3. Even if the window g is continuous, the dual window A constructed
in the proof of Theorem 2.1 will usually not be continuous. Under additional
assumptions on g we will now show that continuous dual windows with com-

pact support exist. We will consider windows belonging to the following
subset of L*(R) :

Vi:={fe€CR) |suppf=][-1,1], f has a finite number of zeros on [—1, 1]}.

We will actually characterize the frame property for windows g € V. Note
that for a given function g € V| it is only possible for {E,,,T,.g}mnez to be
a frame for b €]0,1[; in fact, the option b = 1 has to be excluded because
a continuous function with compact support can not generate a Riesz basis,
see [6] or [2].

Before we characterize the frame property for windows g € V, we state
an example of a function g that does not generate a Gabor frame. First, it

is well known that if g generates a frame {E,,,T,,9}mnez with lower frame
bound A, then

Z lg(x —n)|> > bA, a.e.x. (2.2)

nez

Our example satisfies (2.2), so the reason that we do not obtain a frame
is nontrivial. The example demonstrates “what can go wrong,” and hereby
motivates the technical tools we need to introduce.

Example 2.2 Let b = 3/4 and consider the function
gla) = (z+ 1)(x +1/3)(x = 1/3)(x = )x-1.2(2)-

5
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Then g € V and (2.2) holds, but g does not generate a Gabor frame { E,,,,T,,9 }m nez
for L*(R). In fact, suppose that {E,,Tg}mnez is a frame for L?(R). Then
there exists a function h € L*(R) N L*(R) such that {E,pThg}mnez and
{EmpThh}mnez are dual frames. The functions g and h satisfy the dual-

ity condition (1.2); in particular, letting n = 0 and n = 1 and using the
periodicity to shift the interval,

g(x — D)h(x — 1) + g(x)h(z) = b, a.e. z € [0,1]; (2.3)
o(r — ha) +gle+1 - h(a+1) =0, ez e [%, g]. (2.4)

Let L; denote the set of Lebesgue points of h, and put

1
E:={z¢€ [g, 1] N Ly| (2.3) and (2.4) are true at x},
Then E is dense in [1/3,1]. Let xo = 2/3. Note that

1 1
glro+1— ) :9(5

; ) =0 (2.5)

and

1
oo —1) = g(~3) =0 (2:6)
Since g(zo — 1) = g(—%) # 0 and h is essentially bounded, (2.4) and (2.5)
imply that
lim h(z) =0.

E>x—xg

But (2.3) implies by (2.6) that

b= Elim {9(x = 1)h(z — 1) + g(z)h(x)} = 0.
Sx—X0
This is a contradiction, so we conclude that g does not generate a Gabor
frame for b = %.

It is clear from (2.2) that the location of the zeros for a function ¢ can
make the frame property break down. Example 2.2 provides a deeper insight:
it shows that even if (2.2) holds, the location of the zeroes for g can still make
the frame property break down!



In order to characterize the frame property we will now introduce a class
of help functions that prevent the phenomena in Example 2.2 to occur. As in
TheoreleweﬁXbe[—,N—H[forsomeNEN Let ny € {1,2,--- ,N —
1}, and define the function R,, on (a subset of) [0,n, — % + 1] by

ifn, =1;

ifn, =2, ,N — 1.

(y)
R, (y) =9 1'% oly+i-n-1)

n 1 "
LY gy+2-n) ’

Note that forn =0,1,...,ny — 1,

Q

n+ n
B I [
b+ —i—b n

— (n—n+)(%—1)+1<1.

IN
<
+
I3
|
3
N
3
+

e0ny — L= 4+1]==—n

This implies that R,,, is defined on [0, 74 — %* 4 1], except maybe on a finite
set of points.

Similarly, for n_ € {1,2,--- , N — 1}, we define the function L, (y) on
(a subset of) [-n_ + %= —1,0] by

1
9(y) )
Ln_(y) = { I oly-p+ntD) ifn =2--. N—1
= gy—2+n) - C .

For functions ¢ € V' we now show that one can characterize the frame
property of { E;p1},9}m nez in terms of the behavior of the functions R,,, and
L,,_ close to the zeros of g. In particular, the stated conditions lead to the
existence of a continuous compactly supported dual window. Afterwards, we
state easily verifiable sufficient conditions directly in terms of the zeros of g.

Theorem 2.3 Let N € N\ {1} and b € [N, {F5[. Assume that g € V.
Then the following assertions are equivalent:

(1) The function g generates a Gabor frame {EpTng}mmez;
(2) There exists a continuous dual window h with supp h C [N, N|;

(3) The following four conditions are satisfied:
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<i> |g(l‘>| + |g(‘r+ 1>| > 07 LS [_170];

(ii) If there exist ny € {1,2,--- ,N — 1} and y, € [0,ny — %F + 1]
such that g(y+) = 0 and lim,_,,,, |R, (y)| = oo, then

n
gy + =5 = = 1) #0; (2.7)
(iii) If there exist n_ € {1,2,--- ,N — 1} and y_ € [-n_ + %= — 1,0
such that g(y-) = 0 and lim,_.,, |L, (y)| = oo, then

gly-— T n_+1) A0

(iv) Foryi,y_,ny,n_ asin (ii) and (iii),

n n_
y++7+—n+7éy_—7+n_+1.

Let us relate the conditions in Theorem 2.3(3) with Example 2.2:

Example 2.4 Consider again Example 2.2. We already observed that con-
dition (i) in Theorem 2.3(3) holds. The case b = 3 corresponds to N = 4,
so in condition (ii) in Theorem 2.3(3) we consider n, € {1,2,3} such that
9(y+) = 0 for some y; € [0,ny — %= +1] = [0,1 — gn.]. We immediately see

that this is fulfilled with y, = 5 and ny = 1. Clearly,

1
lim |R, = lim = 00
On the other hand,
ny 1
9(y+ + o T 1) = 9(—5) = 0;

thus, our example violates (2.7). Formulated differently, the condition (2.7)
prevents the case in Example 2.2 to appear.

The conditions in Theorem 2.3 are quite tedious to verify in practice.
We will now derive a sufficient condition for the existence of a continuous
dual window supported on [—N, NJ; this result, to be stated in Theorem 2.6,
is formulated directly in terms of the zeros of the function g and does not



Figure 1: One possibility for the location of the points y, and yy11

involve the functions R,, and L,_. For a function g € V, denote the zeros
on [—1,1] by Z(g) = {y;}, ordered as

1=y <y < - <wu<0<ymp < - <y =1 (2.8)

Note that ¢ € N is chosen such that y, < 0 < yp41. The results to follow
depend on the exact location of the zeros, in particular, whether y, < % -2
or Y, > 3 — 2 (see Figure 1). For this reason we need the following definition:
Definition 2.5 Let N € N\ {1} and b € [22, L[, Let g € V, and denote

"N " N+1
the zeros of g in [—1,1] by Z(g) = {y:}y, as above.

(1) Ifyps1 <2-— %, let kg be the largest integer for which 0 < ypyg, < 2— %
Fork=1,2,-+- ko, let nj, € {1,--- | N — 1} denote the largest integer
for which

n
Yo+k € [O,n—g‘f'l], nzl, , Nk
(2) If yo > % — 2, let ky be the largest integer for which % —2 <y <O.
For k = —ky, =k +1,---,0, let nj, € {1,--- N — 1} be the largest
integer for which

n
Yotk € [—n+3—1,0], n=1---,n.



We now state the announced sufficient condition for g € V' to generate a
Gabor frame. We split into four cases, that altogether cover all options for
the location of the zeros:

Theorem 2.6 Let N € N\ {1} and b € [55+, 5[ Assume that g € V, and
denote the zeros by Z(g) = {y;}1y, ordered as in (2.8). Assume that

l9(x)[ +[g(z + 1) >0, 2z € [-1,0]. (2.9)
Consider the following cases (a)-(d):
(a) ye < 3 —2 and yesr > 2 — 5.

(b) v < % — 2 and Yo <2 — % In this case, take kg > 1 and
ng, k=1,... ko as in Definition 2.5(1), and assume that

Nk

U{yg+k+%—n—1}ﬂZ(g):@, k=1,2,- . ko (2.10)
n=1

(c) ye > % —2 and ypq > 2 — % In this case, take ki > 0 and
ng, k= —ki,...,0 as in Definition 2.5(2), and assume that

n_g
U{ye_k—%—i-n—i—l}ﬂZ(g):@, k=01, k; (2.11)
n=1

(d) ye > %— 2 and ypy1 < 2— %. In this case, take kg, ki, and the associated

numbers ny, k= —ki,..., ko as in Definition 2.5, and assume (2.10),
(2.11) and
ko nk n ki n—j m
U U{ye+k+g—n—1} N U U{?Jz—j_g"‘m"‘l} =0.
k=1n=1 —0m=1
(2.12)

In any of the cases (a)-(d), the function g generates a Gabor frame { EypTng }mnez,

having a continuous dual window supported on [—N, N].

In case b is irrational and Z(g) consists of rational numbers, it is clear
that the relevant condition in (a),(b),(c) or (d) in Theorem 2.6 is satisfied.
This observation leads to an interesting special case:
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Corollary 2.7 Let N € N\{1} and assume that b € [, 85 [ is irrational.

Assume that g € V, that all the zeros are rational numbers, and that
lg(x)| + |g(x+1)| >0, z € [-1,0]. (2.13)

Then g generates a Gabor frame {Eyp 10,9 }mnez, having a continuous dual
window supported on [—N, NJ.

For continuous functions g without zeros on |—1, 1] we obtain the following
immediate consequence of Theorem 2.6:

Corollary 2.8 Let N € N\ {1} and b € [N, 5[ Assume that g € V
satisfies that
g(x) >0, z €] —1,1].

Then g generates a Gabor frame {EmpTng}tmnez, having a continuous dual
window supported on [—N, NJ.

The conditions in Theorem 2.6 are very easy to verify. Let us demonstrate
this in two examples:

Example 2.9 Let b = 0.7 and consider

g(x) = (z + Dz = 0.3)(z = Dx-1n(2)-

Then b € [N ~+il for N = 3. The zeros for g on [—1, 1] are

Y1 = —1, Yo = 03, Ys = 1.
Thus ¢ =1, and
1 1
< =—2 <2— = <uys.
hn b y Y2 > b Ys
Thus kg = 1 and ng, = 1. Also,

" n 1 19

n=1

Thus the condition (b) in Theorem 2.6 is satisfied. Hence g generates a
Gabor frame {E,,7,9}m.nez, having a continuous dual supported on [—3, 3].
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Example 2.10 Let b = 0.7 and consider
g(z) = (z +1)(x+0.2)(x — 0.3)(x — 0.6)(x — 1)x[-1,1(2).
Then b € [N, F55[ for N = 3. The zeros for g on [—1,1] are

Y1 = _17 Yo = _027 Ys = 037 Ys = 06’ Ys = 1’

so £ = 2. The conditions y3 < 2 — % <ysand y; < % —2 <y imply kg =1

and k; = 0. SinceS—%<yg+1§2—%and —2+%<yz§—3+%, choose
ny =1 and ng = 1. Then

" n 1 19
nlzll{yeﬂ + 5 n b={ys + b F=A 0

o2 sn+ = = +2) = (2
Y Ye b =92 b =170

Thus the condition (a) in Theorem 2.6 is satisfied. Hence g generates a
Gabor frame {E,,,75,9}m.nez, having a continuous dual window supported
on [—3,3].

Unfortunately, the calculations leading to the results in the current paper
show that we do not obtain the same amount of freedom in the choice of “nice
dual windows” for large values of b as for small: for example, in general it
is not possible to obtain dual windows of the form (1.1). The next example
illustrates this:

Example 2.11 Let b €]1/2,2/3[ and consider the B-spline By, defined by

By(x) = (1 = [2]) x{-1,1(2).

Corollary 2.8 implies that the Gabor frame { E,,4 7, B2 }m nez has a continuous
dual window supported on [—2,2]. But easy direct calculations based on
Corollary 1.2 show that no dual window of the form in (1.1) exists.

3 Proofs

3.1 Proof of Theorem 2.1

The proof of Theorem 2.1 uses the following elementary lemma:
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Lemma 3.1 Let N € N, and assume that % <b< NLH Then the inter-
vals

k
okl k=1 N1

are nonempty and disjoint. In particular, the interval [1, N]| can be decom-
posed into two sets,

[1,N]=JUJ,
where
N-lo N1
J=\Hk =], J=H]|-k+1]. 3.1
CISIEECTAES (3.1)

Here |# denotes a disjoint union. Furthermore, the sets J and J overlap only
at the endpoints of the appearing intervals.

Proof of Theorem 2.1: Let h € L*(R) be any function such that { E,,,T},9 }m.nez
and {EmanfL}mmeZ are dual frames. Such a function always exist (for exam-

ple, h := S~1g, where S is the frame operator associated with {EmwTng}).
The function h satisfies the duality condition (ii) in Corollary 1.2. Define h

by h(z) = h(z)x;(z), where I = (—.J) U [—1,1] U J. We check that h also
satisfies the duality conditions, i.e., that for n =0,4+1,...,£N,

g(z — n/b)h(x) + gz — n/b+ Dh(z + 1) = bdno, ac. z € [% 1, %]. (3.2)
We split into various cases:
(1) For n = 0, we note that h(z) = h(z) for z € [—1,1]. So (3.2) follows
immediately from the duality conditions for A.
(2) For 1 <n < N —1, we check (3.2) for z € [n/b—1,n/b] by splitting into
the cases x € [n/b— 1,n] and x € [n,n/b].
(2a) For x € [n/b— 1,n], (3.2) only involves z € [n/b— 1,n] and z + 1 €

n/b,n + 1] for h. Note that [2 — 1,n] C [2=, n] because b < 1; thus
[n/ b ;

n —

n/b—1,m] U [n/b,n+1] € "= n] Un/bn+1] C I.

By definition, this implies that i = hon [n/b—1,n]U[n/b,n+1]. So by the
duality conditions for h, (3.2) is satisfied for a.e. z € [n/b— 1,n].
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(2b) For = € [n,n/b], (3.2) only involves x € [n,n/b] and z+1 € [n+1,n/b+1]

for h. Since

n+1
b

hMz)=0=h(z+1)forn=1,2,,--- ,N—2 Forz € [N—1,%2] h(z) =

0=h(z+1) since [N —1,%2]NT =0 and [N, XL + 1] Nsupp h =0

follows.

(3) For n > N, supp ¢(- — n/b) and supp h are disjoint. In fact,

[n,n/b]Un+1,n/b+1] C [n,n/b]U[n+1, ] C J,

supp g(- —n/b) C [-1+n/b,1+n/b],

and =1+ N/b> -1+ N +1= N for b < 5. Thus (3.2) is satisfied.

(4) For n < 0, the proof of (3.2) is similar by the symmetry. O

3.2 Proof of Theorem 2.3

The proof of Theorem 2.3 is quite lengthy and requires some preparation.
We use the sets J and J defined in (3.1). The idea in the proof is first to
identify some intervals on which there is no freedom for the choice of the
dual; for example, Lemma 3.2 will show that a dual window has to vanish
on certain intervals. After that, we use the freedom in the choice of dual
window to “path the dual together in a continuous fashion.”

First, we note that the duality condition and the chosen restrictions on
the support and on the parameter b force a dual window to vanish on certain
intervals.

Lemma 3.2 Let N € N\ {1} and b € [%,NLH[ Assume that g is a
bounded function on R and that supp g = [—1, 1]. Assume that h is supported
in [—N, N], and that for alln = +1,£2,---  +(N — 1),

gla = Ih(x) + g — =
Then h(z) =0, a.e.x € (=J)U J.

Proof. Note that b € [*, 55| implies that for n = 1,2,...,N — 1,

n N+1
b Z Tl_H’ thus,

YDAz +1) =0, ae. z € [% —1, %]. (3.3)

n n
2 1< — :
7 1_n<b, (3.4)
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which will be used at several instances in the proof.

We first show that h(z) = 0, a.e. on [N — 1, %=1] and use induction on
[n, %] forn=1,2,--- N — 2 in reverse order.

We consider (3.3) for n = N — 1. For a.e. € [N — 1,%=1] which by
(3.4) is a subinterval of [~ — 1, 2=1] we see that h(z + 1) = 0 due to the
support assumption on h. If we note that, by (3.4) with n = N — 1,

N -1 N -1 N -1 N -1
N -1 L= N S
then g(z — &=1) # 0 for a.e. © € [N — 1, %=1 This together with (3.3)
implies that
N -1
h(z) = ,a.e.xE[N—l,T].
Assuming h(z) = 0, a.e. v € [ng, 2] for some ng € {2,3,- — 1},

we will show that h(z) =0, a.e. € [ng — 1,26-1]. An apphcatmn of (3.4)
shows that

ng — 1 Un Nng — 1

5 ]C[no—l,?— 7 ).

Then we have g(z — 22=1) £ 0 for a.e. © € [ng — 1,22"] and h(z + 1) =0

for a.e. © € [ng — 1, "-1] by assumption. Considering (3.3) for n = ny — 1
leads to

(ng — 1, 1] Nsupp g(- —

7’L0—1

h(z) =0, a.e. x € [ng — 1, ; .

This completes our induction and so

N-1
h(z) =0, ae. z € U [k, —
k=1

By symmetry, considering (3.3) for n = —1,-2,--- , —(N — 1) leads to

N-1
h(z) =0, a.e. x € U [—
k=1

0

Assuming that our candidate for a dual window h is chosen continuously

n [—1, 1], we now show that certain conditions on the interplay between h

and the functions R,, and L,  imply that A is uniquely determined on the

set (—J)U.J. The result is formulated in terms of conditions on the zeros for
g:
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Lemma 3.3 Let N € N\ {1} and b € [N, 55 Assume that g €V,

defined in (2.1). Assume that h(z) is continuously chosen for x € [—1,1] so
that the following five conditions hold:

(1) g(x)h(z) + g(z + Dh(z+1) =b,x € [-1,0];

. b—g(x—1)h(x—
(2) lim, - el — g

b—g(z+)h(z+1) 0.

(4) If there exist ny € {1,2,--- N — 1} and y; € [0,ny — 55 + 1 such
that g(y4) = 0, then the limit

tim {h(y+ 2% —ny)Ra, (4)} (3.5)

Y=Y+ b

exists; and if g(ng — 5 4+ 1) = 0, then

i {hy+ S - n )R, () =0 (3.6)

y—(ns—SE+1) b

(5) If there ewist n_ € {1,2,--- ,N — 1} and y_ €] —n_ + % — 1,0] such
that g(y—) = 0, then the limit

lim {h<y )L, (y)}

y—y— b

exists; and if g(—n_ 4+ %= — 1) = 0, then

lim . {h(y ey n_)L,_ (y)} = 0.

y—»(—n,—l—nT_—l b

Then the equations, forn = +1,42, -+ £(N — 1),
n_yn

gla = DIh(@) +g(e =T+ Dhe+ ) =0, e €[z - 1L3]  (37)

determine h(z) continuously for x € (—J) U .J. Moreover,

liérn)i h(z) = l(imﬁh(:c) =0, n=12---,N (3.8)

and
lim h(z)= lim h(z)=0, n=12---,N—1. 3.9
z—(n/b)*t ( ) z—(—n/b)~ ( ) ( )
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Proof. We use induction to show that the equations (3.7) determine h(z)
continuously for x € (—J) U J and satisfy (3.8). First, by assumption, hA(x)
is continuously chosen for z € [0,1] = [JI°, [~

net "5, 1] with ng = 1, and

lim h(z) = Jim 9@ = DAz =1)

=0
r—1— rz—1— g((E)

by the conditions (1) and (2). With the purpose to perform an induction
argument we now assume that, for some 1 < nyg < N — 1, the function
h is known to be continuous on (J1°,[%51,n] and lim,_ (- h(z) = 0. We
consider (3.7) for n = ny, i.e.,
n n n n
g(z — f)h(a;) + gz — ?" + Dz +1)=0, z € [70 —1, 70]. (3.10)

We will use (3.10) for xo in the subinterval [52 — 1,n9] We split the
argument into two cases:

1) We first assume that g(zo — 52 + 1) # 0. Then (3.10) implies
g(xo — ) h(wo)

h(zo+1) = — : 3.11
(w0 +1) g(wo — P +1) (3.1)
and if g(ng — 52 +1) # 0, then
_ mo)p, _may .
lm ha41) = — hm 2E M) g5 0

z—(no)~ xz—(no)~ g(SL’ — % + 1) g(no — % —+ 1)

2) We now assume g(zo — 52 +1) = 0. Take y := x — 42 + 1 in the condition
(3.5). Note that, forn=1,--+ ,ng—1,

[n+1 n—+1 n

— 1+l —1=] 2,m] C [3 = L. (3.12)
Combining with (3.7) for n = ny — 1 implies that
h(x) gz — 2=t — 1)h(z — 1) no
e Ly m 1 @ €[5 — 1nel,
gle =3 +1)  gle =3+ gz —=5=) b

which is well-defined except for a finite number of z-values. Applying (3.7)
and (3.12) repeatedly for n = 1,2,--+ ,ng — 2 in reverse order implies that

h(x) )no_lg(x—"(’T—l—l)--‘g(:c—%—ng—i—l)h(x—no—i—l)

= (-1

gz — 2 +1) gly—"+1) - gle — 5 —no+2)

= (=7 (h(z = no + D yfa = 52+ 1))
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If zg € [52 — 1,ng[, i.e., 19 # ng, then the limit

. Mx) ey no
- myy Y Jim (R = my + ) Ryy(e = 50+ 1)
exists by (3.5). Thus we can define
_ h(x) no
h 1)=-1 AR —— - —); 3.13
(2o +1) == lim (g(x—%oﬂ))g(x“ b (3.13)
and if xg = ng, i.e., g(no — 3¢ +1) = 0, then
. h(x) -1 1 o
lim ———— = (=1)™ lim <hx—n + 1R, x———i—l)
z—(n0)~ g(z — 5 +1) I Sy (M mro DB = 57 41)

= 0,

by (3.6). So lim,_,(ne)- h(z + 1) = 0.

Note that g(z — %2),g(z — 5 — 1) and h(z — 1) are continuous for z €
(20 ng + 1] C [22= + 1,19 + 1]. Hence h(x) is determined and continuous for
r € [%2,ng + 1] by (3.11) and (3.13). By induction, h(z) is continuous for
z € J, and h(n)=0forn=1,--- N.

On the other hand, for x € [n, 7], n=1,2,--- | N — 1, the equation

+ Dh(z+1) =0

> 3

gl — D)h(z) + gl

only involves x € [n, %] and x4+ 1 € [n + 1, % 4 1] for h, and

([n,%]u[n—i-l,%le])ﬂj:(Z), n=12---,N—1.

By symmetry, considering (3.7) for n = —1,—2.--- | —N + 1 determines
h(z) continuously for & € (—.J). This proves that h(z) is continuously deter-
mined for z € (—J) U J and satisfies (3.8).

For (3.9), the condition (1) and g(—1) = 0 imply that ¢g(0) # 0. So the
condition (a) implies that

i b= g SEZE DA gCDbp-1)

2 (n/b)* v (n/b)*+ g(r —7) 9(0)

forn=1,--- N — 1. By symmetry,

lim h(z)=0 for n=1,--- ,N —1.
z—(-n/b)~
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Proposition 3.4 Under the assumptions in Lemma 3.3, there exists a unique
extension of h to a function with supp h C [—=N, N| so that for

n==41,42,- £(N 1),

g(z — %)h(w) +gle— % YDAz +1)=0, v € [%,

This function h s continuous.

+1. (3.14)

> 3

Proof. We define h(z) for z € (—.J)U[~1,1]U J as in the proof in Lemma
3.3 and

hz)=0, ¢ (=J)U[-1,1]UJ. (3.15)
From Lemma 3.3, h(x) is a continuous function with supp h C [-N,N]
satisfying (3.14) for n = +£1,£2,--- | +(N —1). O

Proof of Theorem 2.3: (1) = (3) : Suppose g generates a Gabor frame
{E,wT.9}mnez- By Theorem 2.1, there exists a dual window h € L*(R) with
supp h C [—=N, N]. Note that such a function h is essentially bounded due
to the frame assumption. By Corollary 1.2, for n = +1,4£2,--- | £(N — 1)
we have that

gz — %)h(m) +gla— % YDAz +1) =0, ae z € [% 1, %]; (3.16)
further, by a shift of the equation in (1.2) with n =0,
g(x)h(x) + g(z + 1)h(x +1) =b, a.e. xz € [-1,0]. (3.17)

We now verify that the conditions in Theorem 2.3(3)(i)-(iv) are satisfied:
(1): Since g is continuous and { 15,9 }mnez is a frame with lower bound A,

S lgle —m)[* > bA

meZ

for all z € R; since supp g = [—1, 1], this leads to (i).
(ii): Suppose n, and y4 satisfy the assumption in (ii). Via (3.4),

n
yy € [O,n+—7++1] C [0,1].
Let

n n
x+::y++%—1€[%—l,n+].
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Consider (3.16) with n = n4, i.e.,

gl = ZHh(2) + gla = S+ Dh(z+1) =0, ae. z €[5~ 10,

Since ¢ has a finite number of zeros in [—1, 1], it follows that

h(x) h(x +1) ny
n = — , a.e. T € [— — 1, n4|;
gle =5 +1) gz —-7) x .

since g(z4 — %) = g(y+ — 1) # 0 by (i) and h is essentially bounded, it

follows that
h(x)

glr — 5 +1)
where Ly, is the set of Lebesgue points of h. As in the proof of Lemma 3.3,
we have

lim sup ‘ =M < o0,

Lyp3z—xy

h(x —ny +1)R,, (x — % +1)|.

= limsup

limsup T‘
g(l‘ - T+ + 1) Lp3z—axy

Lh3$~>$+
Since lim,_.,, ‘Rm(x — o+ 1)| = 00, we conclude that

lim hA(x—ny+1)=0,

Lp3x—xy

ie.,

. ny
] h(y 4+ — —n.) =0. 1
o m (y + , ny) =0 (3.18)
By (3.17) and (3.18),
b = lim {g(z—ng)h(z—ny)+g(r—ng+1h(z —ny + 1)}

Lyp3x—xy

= i —n)h(z —ny).
g g(r —na)h(z —ny)

Since h(zx) is essentially bounded and g(x) is continuous, we have

g(zy —ny) #0,

ie.,

n
9(y++7+—”+—1)7é0-

This proves that (ii) holds.
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(iii): This is similar to the proof of (ii) by symmetry, so we skip it. But we
note for use in the proof of (iv) that the result corresponding to (3.18) is

lim Ay — %* +n)=0. (3.19)

Lp>y—y-—

(iv): Suppose that yy,n, and y_,n_ are as in (ii) and (iii), respectively.
Then the results in (3.18) and (3.19) hold, i.e,

. n4
lim Ay + — —ny) = 2
pm by + 55 —ny) =0 (3.20)
and
lim Ay — — +n_)=0 (3.21)
Ln3y—y- YT o '

Note that y, + 5 —ng, y— — % +n_+1€[0,1]. If

n n_
y++%—”+:y——7+n—+1u
then by (3.17),
b= dim {gy+ 2t —n. = Dh(y+ 25 —ns = 1)+ gly+ S by +
Lp3y—y+ b b b

however, this contradicts (3.20) and (3.21). Hence

n n_
y++7+—n+7éy,—7+n,+1,

i.e., (iv) holds.

(3) = (2) : Assume that (i)-(iv) in Theorem 2.3(3) hold. We construct h(x)
on [—1,1] satisfying the hypotheses described in Lemma 3.3. For m,n =
1,2,--- ;N — 1 we define the sets Y,, and W,, by

n .
Yo = {yni €l0,n — 5 + 1] : g(ynq) = 0 and Jim |Ru(y)| = 00tiz12, ra

and

m )
Wi = {wp,; €]—m+—-1,0[: g(wn;) =0and lim |L,,(y)| =00 }jz12. 1,

b Y— W, j
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where r,, and [,,, are the cardinalities of Y;, and W,,, respectively. We denote

the open interval of radius € > 0 centered at x by
B(z;€) =]z — €,z + €.

Let yn; € Yy, Wm; € Wy, forn,m=1,2,--- N — 1 and

n m

Yni ‘= Yni — N + 37 Wmj = Wnj — 7 + m.

b
By the conditions (ii), (iii) and (iv),

9(Gni — 1) # 0 # g(m,; + 1),

and
Unyi 7 W,j + 1.
Since
n -
O<3_n<y"’i<1
and

. m
—1<wm7j<m—€<0,

we can by (3.22) choose ¢y > 0 so that g(x) # 0 for

z €] —1,—1+ [UB(Yni — 1;€0) U B(t,; + 15 €0)U]L — €9, 1]

and
B(Un,i; €0) N B + 1560) =0 (by (3.23))

3)
B(n,i; €0) N {]0, €0[U]1 — €0, 1[} =0 (by (3.24))
B(wmd; 60) N {] - 1, —1 + 60[U] — 60,0[} =

0 (by (3.25))

form,n=1,2,--- N—1l,andi=1,2,--- ;r,and j =1,2,--- ,[,.

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

First, we define h(x) on | — €y, 0[U]1 —€g, 1[: By the condition (i), g(1) =0
implies ¢g(0) # 0. Define h(1) = 0 and h(0) = b/g(0). We split into two cases:

Ifgln—%+1)#0forn=1,2,---,N —1, choose h(z) on | — ¢, 0[ so

that ) A )
b gl Dz~ 1)

=0.
z—>1- g(x)

(3.28)

2) If the assumption in 1) does not hold, then there exists {ng};>, C
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{1,---, N — 1} such that

g(nk—%+1):0fork:1,--~,ko,

and
g(n—%—l—l)%o forn e {1,--- ,N—l}\{nk}ﬁ?’:l-

Choose h(z) on | — €y, 0[ so that

b—g(x —1)h(z —1)

li =0 3.29
1 g(z) (3.29)
e b gle — Dh(z — 1)
: —g(@ —1)h(z — T _
lilglli { ) R, (z ; + nk)} =0 (3.30)
for k=1, -+ ky. We remark that there is a certain freedom in the choice of
h(x) on | — €, 0[.

Now, we define h(z) on |1 — €, 1] by

_ b—g(x—1)h(z—1)

i) 9(z) ’

h is well-defined since g(x) # 0 for x €]1 — €, 1[. Then
g@)h(z) + g(x +h(z +1) = b, = €] — €, 0],

Secondly, we define h(x) on B(§,; — 1;€0) U B(fn,; €0). We can choose
h(x) continuously on B(fy.; €y) so that

lim h(y+ =~ —n) =0 = h(j;)

Y—Yn,i b

and the limit n
tim {h(y+ 3 —n)Ru(y)}

Y—Yn,i

do exist. Now, define h(z) on B(g,; — 1;¢€p) by

b—g(x+1)h(z+1)
g(x)

h(z) =

)
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which is well-defined by (3.26). Then
g(@)h(z) + gz + 1)h(zr+1) =b, v € B(gn; — 1;€).

Thirdly, we define h(z) on | — 1,69 — 1[U]0, €o[: Define h(—1) = 0. We
split into two cases:

1) If g(—n+3—1) #0forn=1,2,--- | N —1, choose h(z) on |0, €| so that

lim b—g(zx+1)h(z+1)

= 0.
z—>(~1)+ g(x)

2) If the assumption in 1) does not hold, then there exists {ng};L, C

{1,---,N — 1} such that g(-—ng + % — 1) = 0 for k = 1,--- ,k; and
g(-n+2—1)#0forn e {l,---,N —1}\ {ng};-,. Choose h(z) on ]0, |

so that
b—g(x+1)h(z+1)

lim =0
z—>(—1)+ g(z)
e b— gz + Dh(z +1)
. —glr+ T+ Nk
1 L, — — =0
o { 9() Lty ”’“)}

fork=1,---, k.
We now define h(z) on | —1,¢y — 1] by
_b—glx+1)h(z+1)

h(z) : ()

Y

which is well-defined since g(x) # 0 for x €] — 1, —1 + ¢[. Then
g(@)h(z)+ gz +1h(z+1)=b, v €] -1, -1+ ¢

Fourthly, we define h(z) on B(wy,;;€) U B(Wn,; + 1;€). Choose h(z)
continuously on B(w, ;; €) so that

lim h(y — UL m) =0 =: h(Wy,;)

Y—Wm,j b
and the limit m
lim {h(y - + m)Lm(y)}

Y—=Wm,j
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do exist. Now, define h(z) on B(wy,; + 1;€) by

_b- glx — 1)h(x — 1)
g(x)

h(x)

Y

which is well-defined by (3.26). Then
g(@)h(z) + g(z + 1)h(z 4+ 1) = b, x € B(m; €).
To summarize all these, let
A = (=€, 0JU[—1, =1+e)U(UnT Uy B(fin — 15 €0))U(UNZ] Uy Bt j; €0)) -
Note that A C [—1,0]. We have defined h(z) on AU (A + 1) such that
g(@)h(z) +g(z+ 1h(z+1)=b, z € A

Finally, we choose h(z) on [—1, 1]\ (AU(A+1)) so that h(x) be continuous
on [—1,1] and

g(@)h(z) + g(z + 1)h(z+1) =b, x € [-1,0]\ A,

by the condition (i).
By Proposition 3.4, the function h can be extended to a continuous func-
tion supported on [~ N, N]| that is a dual window.

(2) = (1) : This is well known. See [2] for example. O

3.3 Proof of Theorem 2.6

For each cases, we check the conditions (ii)-(iv) of (3) in Theorem 2.3.
(a) : The conditions (ii)-(iv) are trivially satisfied.

(b) : The conditions (iii) and (iv) are trivially satisfied. For (ii), if & > ko,

then
1

Yotk ¢ [072 - E]
Thus

ye+k¢[0,n—%—|—1], n=12---,N—1,
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since n — 7 + 1 is decreasing as a function of n.
Now fix k € {1,--- , ko}. By Definition 2.5,

y£+k€[0,n—%—|—l] =12 .

By (2.10), we have

n
g(yé+k+g—n—l)7£0, n:1,2’... -

This proves (ii) and (iv).
(¢): Similar to the proof of (b).

(d): As in the proof of (b) and (c), (2.10) and (2.11) imply (ii) and (iii). The
condition (iv) follows from (2.12).
UJ
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