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Abstract

We analyze the internal structure of the multiresolution analyses of L2(Rd) defined by

the unitary extension principle (UEP) of Ron and Shen. Suppose we have a wavelet tight

frame defined by the UEP. Define V0 to be the closed linear span of the shifts of the scaling

function and W0 that of the shifts of the wavelets. Finally, define V1 to be the dyadic

dilation of V0. We characterize the conditions that V1 = W0, those that V1 = V0 u W0

and those that V1 = V0 ⊕ W0. In particular, we show that if we construct a wavelet

frame of L2(R) from the UEP by using two trigonometric filters, then V1 = V0 uW0; and

show that V1 = W0 for the B-spline example of Ron and Shen. A more detailed analysis

of the various ‘wavelet spaces’ defined by the B-spline example of Ron and Shen is also

included.
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1 Introduction and main results

The purpose of this article is to analyze the internal structure of the multiresolution analyses

(MRAs) defined by the unitary extension principle (UEP) of Ron and Shen [7, 10, 21], which

is a powerful generalization of the construction of orthonormal wavelets by Daubechies [8, 9].

First, we introduce a dyadic version of the UEP. The following form of the Fourier transform

is used throughout this article: f̂(x) :=
∫
Rd f(t)e−2πix·t dt if f ∈ L2(Rd) ∩ L1(Rd); and ∧ is

extended to be a unitary operator on L2(Rd) by the Plancherel theorem.

Let ϕ be a refinable function in L2(Rd) such that

ϕ̂(2x) = m0(x)ϕ̂(x) a.e. x ∈ Rd, (1.1)

for some m0 ∈ L2(Td), where Td := Rd/Zd is the d-dimensional torus which is conveniently

identified with [−1/2, 1/2]d or [0, 1]d. We further assume that:

lim
j→−∞

ϕ̂(2jx) = 1 a.e. x ∈ Rd; (1.2)

∑

k∈Zd

|ϕ̂(x + k)|2 ∈ L∞(Td). (1.3)

Moreover, define ψ1, ψ2, · · · , ψn via

ψ̂l(2x) := ml(x)ϕ̂(x), 1 ≤ l ≤ n, (1.4)

for some m1,m2, · · · ,mn ∈ L∞(Td). It is easy to see that ψl ∈ L2(Rd) for each l = 1, 2, · · · , n.

The 1-periodic functions m0, · · · ,mn are called the filters (or masks). Let

Q := {q1, q2, · · · , q2d} := {0, 1}d = Zd/2Zd, (1.5)

and define

M(x) :=




m0

(
x + q1

2

)
m0

(
x + q2

2

) · · · m0

(
x + q

2d

2

)

m1

(
x + q1

2

)
m1

(
x + q2

2

) · · · m1

(
x + q

2d

2

)
...

...
. . .

...

mn

(
x + q1

2

)
mn

(
x + q2

2

) · · · mn

(
x + q

2d

2

)




. (1.6)

For y ∈ Rd and f ∈ L2(Rd), Ty denotes the unitary translation operator such that Tyf(x) :=

f(x− y) and D denotes the unitary dyadic dilation operator such that Df(x) := 2d/2f(2x).
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Proposition 1.1 (UEP of Ron and Shen [21]) Suppose that the refinable function ϕ and

the filters m0,m1, · · · ,mn satisfy (1.1), (1.2) and (1.3). Define ψ1, ψ2, · · · , ψn by (1.4). If

M(x)∗M(x) is the identity matrix for a.e. x ∈ σ(V0) :=
{
x ∈ Td :

∑
k∈Z |ϕ̂(x + k)|2 6= 0

}
,

then {DjTkψl : j ∈ Z, k ∈ Zd, 1 ≤ l ≤ n} is a tight frame (called wavelet frame) for L2(Rd)

with frame bound 1, where M(x) is defined as in (1.6).

The following is an example of UEP filters by Ron and Shen [23] (see also [5, Section

14.3]), which generate the B-spline wavelet frame of L2(R): For a fixed positive integer k,

define trigonometric filters

ml(x) :=
(

2k

l

)1/2

sinl(πx) cos2k−l(πx), l = 0, 1, · · · , 2k. (1.7)

Let ϕ ∈ L2(R), which is a cardinal B-spline of order 2k, be the refinable function with the

low-pass filter m0 such that

ϕ̂(x) :=
(

sin(πx)
πx

)2k

. (1.8)

It is known that ϕ,m0,m1, · · · ,m2k satisfy all the requirements of the UEP. In this case the

number n of the generators of the wavelet frame is 2k, which is strictly greater than 1.

Suppose we have a scaling function ϕ ∈ L2(Rd) and a collection of filters m0,m1, · · · ,mn ∈
L2(Td) satisfying Proposition 1.1. We define an MRA derived from the UEP.





V0 := span{Tkϕ : k ∈ Zd},
W0 := span{Tkψl : k ∈ Zd, 1 ≤ l ≤ n},
V1 := D(V0).

(1.9)

In particular, V1 = span{DTkϕ : k ∈ Zd}. Then, we have V0 ⊂ V1 and W0 ⊂ V1 by (1.1),

(1.3) and (1.4). In this article we characterize the conditions that V1 = W0 and those that

V1 = V0 u W0, i.e., V1 = V0 + W0 and V0 ∩W0 = {0}, and those that V1 = V0 ⊕W0 (Section

3). In particular, we show that:

Theorem 1.2 If we construct a wavelet tight frame of L2(R) by the UEP using two trigono-

metric filters m0 and m1 (a single wavelet case), then V1 = V0 u W0. On the other hand,

suppose that we construct a wavelet tight frame of L2(R) by using n + 1 trigonometric fil-

ters m0, · · · ,mn for some positive integer n greater than 1. Then either V1 = W0 or there
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exist a positive integer i ∈ {1, 2, · · · , n} and scalars λj for j ∈ {1, 2, · · · , n} \ {i} such that

mj = λjmi. In particular, if we use the filters in (1.7), then V1 = W0.

The following theorem gives more detailed information about the internal structure of the

MRA derived from the B-spline example of Ron and Shen. Let ψ0 := ϕ, where ϕ is defined

as in (1.8), ml, l = 0, 1, · · · , n := 2k, the filters as in (1.7), and ψl, l = 1, · · · , n, the ‘wavelets’

defined as in (1.4). Define

W
(l)
0 := span{Tkψl : k ∈ Z}, l = 0, 1, · · · , n.

For the sake of the consistency of the notation we let V0 := W
(0)
0 , W0 := span{Tkψl : k ∈

Z, 1 ≤ l ≤ n}, and V1 = D(V0), where D is now the 1-dimensional dilation operator. Recall

that W0 = V1 by Theorem 1.2. We now have:

Theorem 1.3 For 0 ≤ j < i ≤ n = 2k, W
(j)
0 + W

(i)
0 is closed if and only if i− j is odd and

j ≤ k ≤ i. In this case W
(j)
0 u W

(i)
0 = V1.

The rest of this article is organized in the following manner: We first review those parts

of shift-invariant space theory which are needed in our discussion in Section 2. Then we

count the fiber-wise dimensions of the three spaces, V0,W0 and V1 by extending the ideas

in [16, 18, 19] and give general results on the structure of the MRAs defined by the UEP

in Section 3. More precisely, suppose we have an MRA of L2(Rd) defined by the UEP. We

first characterize the conditions that V1 = W0 (Theorem 3.4). We, then, characterize the

conditions that V1 = V0 u W0 (Theorem 3.8) and those that V1 = V0⊕W0 (Theorem 3.9). A

proof of Theorem 1.2 is given in Section 4 and another of Theorem 1.3 in Section 5.

2 A glimpse at shift-invariant space theory

In this section we review the necessary parts of the theory of shift-invariant subspaces of

L2(Rd) for the sake of completeness. All of the results we review, save Proposition 2.3 and

Lemma 2.4, are contained in [1, 2, 3, 11, 12, 20, 21, 22]. A closed subspace S is said to

be a shift-invariant subspace of L2(Rd) if it is invariant under each (multi-)integer shifts,

i.e., TkS ⊂ S for each k ∈ Zd. For Φ ⊂ L2(Rd) S(Φ) := span{Tkϕ : k ∈ Zd, ϕ ∈ Φ} is
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obviously a shift-invariant subspace. It is said to be the shift-invariant subspace generated

by Φ, and Φ is said to be a generating set of S(Φ). Any shift-invariant subspace of L2(Rd)

has an at most countable generating set. If S is a shift-invariant subspace, define its length

via lenS := min{#Φ : S := S(Φ)}, where # denotes the cardinality. For f ∈ L2(Rd) and

x ∈ Rd, f̂||x denotes the sequence (f̂(x + k))k∈Zd which is in `2(Zd) a.e. For any subset A of

L2(Rd) and x ∈ Rd, let Â||x := {f̂||x : f ∈ A}. If S is a shift-invariant subspace, then Ŝ||x is

called the fiber of S at x ∈ Rd. We have the following formula for the length of S ([1]):

len S = ess-sup{dim Ŝ||x : x ∈ Td}. (2.1)

The following standard theorem is usually called the fundamental theorem of shift-invariant

subspace of L2(Rd).

Proposition 2.1 ([1, 2, 11, 12]) If a shift-invariant subspace S is generated by Φ, i.e.,

S = S(Φ), then, Ŝ||x = spanΦ̂||x for a.e. x ∈ Td. Moreover, a square integrable function f is

in S if and only if f̂||x ∈ Ŝ||x a.e. x ∈ Td.

For a shift-invariant subspace S, the spectrum σ(S) of S is defined to be the set {x ∈ Td :

Ŝ||x 6= {0}}. We have the following obvious corollary.

Corollary 2.2 Suppose that S1, S2 are finitely generated shift-invariant subspaces such that

S1 ⊂ S2. Then Ŝ1||x ⊂ Ŝ2||x a.e. x ∈ Td. In particular, S1 = S2 if and only if dim Ŝ1||x =

dim Ŝ2||x for a.e. x ∈ σ(S2).

The following proposition, which is Theorem 2.3 of [14], characterizes the condition for the

sum of two singly generated shift-invariant subspaces of L2(Rd) to be closed. It was originally

stated for R, but the proof easily generalizes for Rd. See [17] for a general characterization

of the conditions for the sum of two, possibly infinitely generated, shift-invariant subspaces

of L2(Rd) to be closed.

Proposition 2.3 ([14]) Let U := S({ϕ}), V := S({ψ}), and let

E := {x ∈ σ(V ) ∩ σ(W ) : ϕ̂||x and ψ̂||x are linearly independent}.
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Then U + V is closed if and only if either |E| = 0, or

ess-sup
x∈E





∣∣∣
〈
ϕ̂||x, ψ̂||x

〉∣∣∣
||ϕ̂||x||`2(Z)||ψ̂||x||`2(Z)



 < 1. (2.2)

We need the following lemma which extends [14, Lemma 2.2]. A proof can be found in

[17, Lemma 3.4].

Lemma 2.4 For two shift-invariant subspaces U and V of L2(Rd), we have

σ(U ∩ V ) =
{

x ∈ Td : Û||x ∩ V̂||x 6= {0}
}
⊂ σ(U) ∩ σ(V ).

3 General results on the internal structure

Suppose that ϕ, m0, · · · ,mn satisfy all the UEP requirements of Proposition 1.1. Suppose also

that ψ1, · · · , ψn are defined by (1.4) and that V0,W0 and V1 are defined as in the paragraph

preceding Theorem 1.2. Recall that V0 = S({ϕ}) and W0 = S({ψ1, ψ2, · · · , ψn}). We now

review the method of counting the fiber-wise dimensions of finitely generated shift-invariant

subspaces and improve some material contained in [16, 18, 19].

First note that each k ∈ Zd can be written uniquely as k = 2k′ + q for some k′ ∈ Zd

and q ∈ Q, where Q is defined in (1.5). Note also that DTy = Ty/2D for each y ∈ Rd.

Therefore, {DTkϕ : k ∈ Zd} = {Tk′DTqϕ : k′ ∈ Zd, q ∈ Q}. Hence V1 = S(Π), where

Π := {DTqϕ : q ∈ Q}. This shows that lenV1 ≤ 2d. The following is Lemma 8 in [16] (see

also [18, Lemma 3.2]), which can be checked easily by the readers (c.f. (3.5) and Lemma 3.2).

Proposition 3.1 ([16]) σ(V1) = 2σ(V0) (mod 1).

Recall that (1.1), (1.3) and (1.4) imply that V0 and W0 are contained in V1. Therefore,

V0 and W0 are shift-invariant subspaces of the shift-invariant space V1. We now localize the

shift-invariant subspaces V0,W0 and V1. Since (DTqϕ)∧(x) = 2−d/2e−2πiq·(x/2)ϕ̂(x/2), we

have (DTqϕ)∧||x = 2−d/2e−πiq·x(e−πiq·kϕ̂((x + k)/2))k∈Zd . Hence, for a.e. x ∈ Td,

V̂1||x = span
{(

(−1)q·kϕ̂
(

x+k
2

))
k∈Zd

: q ∈ Q
}

,

V̂0||x = span {(ϕ̂(x + k))k∈Zd} = span
{(

m0

(
x+k

2

)
ϕ̂

(
x+k

2

))
k∈Zd

}
. (3.1)
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Similarly,

Ŵ0||x = span
{(

ml

(
x+k

2

)
ϕ̂

(
x+k

2

))
k∈Zd : 1 ≤ l ≤ n

}
. (3.2)

For q ∈ Q, define Pq : `2(Zd) → `2(Zd) via

(Pqa)(k) :=





a(k), if k ∈ 2Zd + q,

0, otherwise.

Then `2(Zd) = ⊕q∈QPq(`2(Zd)). Define, for each x ∈ Td and each q ∈ Q,

ax,q := Pq

((
ϕ̂

(
x+k

2

))
k∈Zd

)
. (3.3)

Note that ax,q is the ‘up-sampled’ version of ϕ̂||(x+q)/2, i.e.,




ax,q(2k + q) = ϕ̂||(x+q)/2(k), if k ∈ Zd,

ax,q(k) = 0, if k /∈ 2Zd + q.
(3.4)

Therefore,

||ax,q||`2(Zd) = ||ϕ̂||(x+q)/2||`2(Zd). (3.5)

With this notation we have ((−1)q·kϕ̂((x + k)/2))k∈Zd =
∑

p∈Q(−1)q·pax,p. On the other

hand,

ϕ̂||x = (ϕ̂(x + k))k∈Zd =
(
m0

(
x+k

2

)
ϕ̂

(
x+k

2

))
k∈Zd =

∑

q∈Q

m0

(x+q
2

)
ax,q. (3.6)

Similarly, for each l = 1, 2, · · · , n,

ψ̂l||x = (ψ̂l(x + k))k∈Zd =
∑

q∈Q

ml

(x+q
2

)
ax,q. (3.7)

This shows that V̂1||x = span{∑p∈Q(−1)q·pax,p : q ∈ Q}. Since the 2d×2d matrix ((−1)q·p)q,p∈Q

is invertible, it is easy to see that V̂1||x = span{ax,q : q ∈ Q} [16, 18, 19]. Combining this

with (3.1) and (3.2) and the 1-periodicity of ml, 0 ≤ l ≤ n, we have:

Lemma 3.2 For a.e. x ∈ Td

V̂0||x = span





∑

q∈Q

m0

(x+q
2

)
ax,q



 , (3.8)

V̂1||x = span {ax,q : q ∈ Q} , (3.9)

Ŵ0||x = span





∑

q∈Q

ml

(x+q
2

)
ax,q : 1 ≤ l ≤ n



 ,
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


ϕ̂||x

ψ̂1||x
...

ψ̂n||x




= M
(x

2

)




ax,q1

ax,q2

...

ax,q
2d




. (3.10)

In particular, for a.e. x ∈ Td,

dim V̂1||x = #{ax,q : ax,q 6= 0}. (3.11)

Proof. Everything except for (3.11) is already shown. Note that {ax,q : q ∈ Q} ⊂ `2(Zd),

which is defined in (3.3), is mutually orthogonal even though some ax,q may be 0. Now,

(3.11) follows from (3.9). ¤

Recall that M(x)∗M(x) is assumed to be the identity matrix for a.e. x ∈ σ(V0). This

forces, in particular, n ≥ 2d − 1. Let us define, for 0 ≤ i ≤ 2d,

∆i := {x ∈ Td : dim V̂1||x = i}. (3.12)

Then σ(V1) = ]2d

i=1∆i, where ] denotes the disjoint union. And, for each 1 ≤ l ≤ 2d − 1 and

each k1, k2, · · · , kl such that 1 ≤ k1 < k2 < · · · < kl ≤ 2d, define

∆k1,··· ,kl

2d−l
:= {x ∈ ∆2d−l : ax,qk1

= · · · = ax,qkl
= 0}.

Then we have, by (3.11) and the orthogonality of {ax,q : q ∈ Q},

∆2d−l =
⊎

1≤k1<k2<···<kl≤2d

∆k1,k2,··· ,kl

2d−l
.

Let M1 be the matrix-valued mapping defined by

M1(x) =




m1

(
x + q1

2

)
m1

(
x + q2

2

) · · · m1

(
x + q

2d

2

)

m2

(
x + q1

2

)
m2

(
x + q2

2

) · · · m2

(
x + q

2d

2

)
...

...
. . .

...

mn

(
x + q1

2

)
mn

(
x + q2

2

) · · · mn

(
x + q

2d

2

)




. (3.13)

Note that, for a.e. x ∈ σ(V0),

I2d = M(x)∗M(x) = M0(x) + M1(x)∗M1(x), (3.14)
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where

M0(x) :=




m0

(
x + q1

2

)
...

m0

(
x + q

2d

2

)




(
m0

(
x + q1

2

) · · · m0

(
x + q

2d

2

))

=
(
m0

(
x + qi

2

)
m0

(
x + qj

2

))
1≤i,j≤2d .

Therefore

M1(x)∗M1(x) = I2d −M0(x). (3.15)

For a matrix A, let Ak1,··· ,kl denote the matrix obtained from A by deleting the k1, · · · , kl-th

columns of A, and let Ak1,··· ,kl
denote the matrix obtained from A by deleting the k1, · · · , kl-th

rows and columns of A, simultaneously. Then, for a.e. x ∈ σ(V0),

(M1(x)k1,··· ,kl)∗M1(x)k1,··· ,kl = I2d−l −M0(x)k1,··· ,kl
. (3.16)

Lemma 3.3 If x ∈ Td ∩ (σ(V0) + 1
2Z

d), then the following hold for each 1 ≤ l ≤ 2d − 1 and

for each choice of k1, k2, · · · , kl such that 1 ≤ k1 < k2 < · · · < kl ≤ 2d.

(1) rankM(x) = 2d;

(2) rankM1(x) = 2d if and only if
∑2d

j=1

∣∣m0

(
x + qj

2

)∣∣2 6= 1;

(3) rankM1(x) = 2d − 1 if and only if
∑2d

j=1

∣∣m0

(
x + qj

2

)∣∣2 = 1;

(4) rankM1(x)k1,··· ,kl = 2d − l if and only if
∑

1≤j≤2d,j /∈{k1,··· ,kl}
∣∣m0

(
x + qj

2

)∣∣2 6= 1;

(5) rankM1(x)k1,··· ,kl = 2d − l − 1 if and only if
∑

1≤j≤2d,j /∈{k1,··· ,kl}
∣∣m0

(
x + qj

2

)∣∣2 = 1.

Proof. If x ∈ Td ∩ (σ(V0) + 1
2Z

d), then there exist x′ ∈ σ(V0) and k ∈ Zd such that

x = x′ + k/2. We see that M(x) = M(x′ + k/2) is a suitable column permutation of the

rectangular matrix M(x′) by (1.6) and by the 1-periodicity of the filters. Since x′ ∈ σ(V0),

M(x′)∗M(x′) = I2d . Hence, M(x)∗M(x) = I2d by the nature of the column permutation of

a rectangular matrix. Therefore, (3.14), (3.15) and (3.16) hold for such x.

(1): The column vectors of M(x) are mutually orthonormal for a.e. x ∈ σ(V0). Hence

rankM(x) = 2d.
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(2), (3): It is easy to see that
∑2d

i=1 |m0(x + qi

2 )|2 is the eigenvalue of the matrix M0(x)

with geometric multiplicity 1 and that 0 is another eigenvalue of M0(x) with geometric

multiplicity 2d − 1. The spectral mapping theorem and (3.15) imply that the eigenvalues of

M1(x)∗M1(x) are 1−∑2d

i=1 |m0(x + qi

2 )|2 with multiplicity 1 and 1 with multiplicity 2d − 1.

Hence rankM1(x) = 2d if and only if
∑2d

i=1 |m0(x+ qi
2 )|2 6= 1, and rankM1(x) = 2d− 1 if and

only if
∑2d

i=1 |m0(x + qi
2 )|2 = 1.

(4), (5): The proof is similar to the above case if we use (3.16) instead of (3.15). ¤

Unlike the case of orthonormal wavelets, we may have V1 = W0 in most cases of the

wavelet frames from the UEP if n > 1. See Corollary 3.5. We first find the conditions for

V1 = W0. The corresponding conditions for V1 = V0 u W0 are given in Theorem 3.8, and

those for V1 = V0 ⊕W0 in Theorem 3.9.

Theorem 3.4 V1 = W0 if and only if
∑

q∈Q,ax,q 6=0 |m0(x
2 + q

2)|2 6= 1 for a.e. x ∈ Td.

Proof. Since W0 ⊂ V1, by Corollary 2.2, V1 = W0 if and only if dim V̂1||x = dim Ŵ0||x for

a.e. x ∈ σ(V1). (3.10) implies that




ψ̂1||x
...

ψ̂n||x


 = M1

(x

2

)




ax,q1

ax,q2

...

ax,q
2d




. (3.17)

Lemma 3.2, (1.9) and Proposition 2.1 imply that V̂1||x = span{ax,q : q ∈ Q}, and Ŵ0||x =

span{ψ̂j ||x : 1 ≤ j ≤ n}. Recall that {ax,q : q ∈ Q} is a set of mutually orthogonal vectors

even though some elements may possibly be 0, and that

σ(V1) = ∆2d ]
2d−1⊎

l=1

⊎

1≤k1<k2<···<kl≤2d

∆k1,k2,··· ,kl

2d−l
. (3.18)

If x ∈ Td \ σ(V1), then V̂1||x = {0} for a.e. such x. Therefore, Ŵ0||x = {0} for a.e. such

x by Corollary 2.2. On the other hand, if x ∈ ∆2d , then, by definition, dim V̂1||x = 2d.

Hence, {ax,q : q ∈ Q} forms an orthogonal basis for V̂1||x a.e. by Lemma 3.2. Therefore, for

almost every such x, dim Ŵ0||x = 2d if and only if rankM(x/2) = 2d by (3.17). Similarly,

if x ∈ ∆k1,k2,··· ,kl

2d−l
, then dim V̂1||x = 2d − l and, {ax,q : q ∈ Q \ {qk1 , qk2 , · · · , qkl

}} forms an

10



orthogonal basis for V̂1||x. Hence, for almost every such x, dim Ŵ0||x = 2d − l if and only if

rankM1(x/2)k1,k2,··· ,kl = 2d − l by (3.17). On the other hand, if x ∈ σ(V1), then there exist

x′ ∈ σ(V0), k ∈ Zd such that x = 2x′ + k by Proposition 3.1. Therefore, x/2 = x′ + k/2 ∈ Td

(recall that we identified Td with [0, 1]d or with [−1/2, 1/2]d). Now, the claimed equivalence

follows from Lemma 3.3. ¤

Corollary 3.5 If
∑

q∈Q |m0(x
2 + q

2)|2 6= 1 for a.e. x ∈ σ(V1), then V1 = W0.

Proof. By Proposition 3.1, for a.e. x ∈ σ(V1), there exist x′ ∈ σ(V0) and k ∈ Zd such that

x = 2x′+k, i.e., x/2 = x′+k/2 ∈ Td. Now, by the argument at the beginning of the proof of

Lemma 3.3, M(x/2)∗M(x/2) = I2d a.e. x ∈ σ(V1). Hence the rows of M(x/2) form a tight

frame for C2d
with frame bound 1 by Corollary 1.3.6 of [5]. In particular, the C2d

-norm of

any row of M(x/2) is less than or equal to 1. Therefore,
∑

q∈Q |m0(x
2 + q

2)|2 ≤ 1. Hence, if
∑

q∈Q |m0(x
2 + q

2)|2 6= 1, then
∑

q∈Q |m0(x
2 + q

2)|2 < 1 and hence
∑

q∈Q,ax,q 6=0 |m0(x
2 + q

2)|2 < 1.

The corollary now follows from Theorem 3.4. ¤

We remark that in most of interesting examples of UEP wavelet frames we have V1 = W0

if it has more than one generators (n > 1). See [13] for one more such an example.

Lemma 3.6 Let U, V and W be shift-invariant subspaces of L2(Rd) such that V ⊂ U and

W ⊂ U . Then U = V u W if and only if

(1) V + W is closed;

(2) Û||x = V̂||x u Ŵ||x, for a.e. x ∈ Td.

Proof. (⇒) (1) is trivial and (2) follows from a slight adaptation of Lemma 3.7 in [15],

where (2) is proved for the case of finitely generated V and W . Recall that any shift-invariant

subspace has a countable generating set.

(⇐) Obviously, V +W ⊂ U . If V +W is closed, then V +W is a shift-invariant subspace since

V and W are invariant under each shift. Now Condition (2) implies that Û||x ⊂ (V + W )∧||x
a.e. Therefore, U ⊂ V + W by Proposition 2.1. This shows that U = V + W . Condition (2),

again, and Lemma 2.4 imply that V ∩W = {0}. Hence U = V u W . ¤
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Lemma 3.7 The following equalities hold:

V0 = span{DjTkψl : j < 0, k ∈ Zd, 1 ≤ l ≤ n} = S({Djψl : j < 0, 1 ≤ l ≤ n}.

In particular, V1 = V0 + W0.

Proof. Let X := span{DjTkψl : j < 0, k ∈ Zd, 1 ≤ l ≤ n}. Since {DjTkψl : j ∈ Z, k ∈
Zd, 1 ≤ l ≤ n} is a tight frame for L2(Rd), X is a shift-invariant subspace by Proposition

3.1 in [4] (see also [14, Section 5] for the 1-dimensional case). Recall that V0 and W0 are

subspaces of V1 = D(V0). Therefore, Dj(V0) and Dj(W0) are subspaces of V0 for each j < 0.

In particular, DjTkψl ∈ V0 for each j < 0, k ∈ Zd and l = 1, 2, · · · , n. This shows that

X is a shift-invariant subspace of V0. Since Djψl ∈ X for each j < 0 and l = 1, 2, · · · , n,

S({Djψl : j < 0, 1 ≤ l ≤ n}) ⊂ X. On the other hand, DjTkψl = T2−jkD
jψl. This shows

that X ⊂ S({Djψl : j < 0, 1 ≤ l ≤ n}). Therefore, we have X = S({Djψl : j < 0, 1 ≤ l ≤ n})
and X is a subspace of V0. To show that X = V0 it is enough to show that σ(V0) ⊂ σ(X)

since V0 = S({ϕ}) is singly generated. Now, suppose that x ∈ σ(V0). Recall that we assumed

M(x)∗M(x) = I2d a.e. x ∈ σ(V0). Then, we have

0 6=
∑

k∈Zd

|ϕ̂(x + k)|2 =
∑

k∈Zd

n∑

l=0

|ml(x)ϕ̂(x + k)|2

=
∑

k∈Zd

|ϕ̂(2(x + k))|2 +
n∑

l=1

∑

k∈Zd

|ψ̂l(2(x + k))|2,

where we have used the fact that
∑n

l=0 |ml(x)|2 = 1, which is the norm squared of one of the

columns of M(x) in (1.6), and Equations (1.1) and (1.4). Suppose that
∑n

l=1

∑
k∈Zd |ψ̂l(2(x+

k))|2 6= 0. Then, obviously, x ∈ σ(X), since D̂−1ψl(x) = Dψ̂l. Suppose, on the other hand,

that
∑n

l=1

∑
k∈Zd |ψ̂l(2(x+k))|2 = 0. Then, we have 0 6= ∑

k∈Zd |ϕ̂(x+k)|2 =
∑

k∈Zd |ϕ̂(2(x+

k))|2. This implies that 2x (mod 1) ∈ σ(V0). Therefore,
∑n

l=0 |ml(2x)|2 = 1. Hence we have

0 6=
∑

k∈Zd

|ϕ̂(x + k)|2 =
∑

k∈Zd

|ϕ̂(2(x + k))|2 =
∑

k∈Zd

n∑

l=0

|ml(2x)ϕ̂(2(x + k))|2

=
∑

k∈Zd

|ϕ̂(22(x + k))|2 +
n∑

l=1

∑

k∈Zd

|ψ̂l(22(x + k))|2.

12



By repeating the previous argument, we have either x ∈ σ(X) or 22x (mod 1) ∈ σ(V0). Either

this process stops after a finite number of times to give the desired result that x ∈ σ(X), or

we have

0 6=
∑

k∈Zd

|ϕ̂(x + k)|2 =
∑

k∈Zd

|ϕ̂(2j(x + k))|2 (3.19)

for all j ∈ N. Now, let E := {x ∈ σ(V0) : (3.19) holds for all j ∈ N}. If we integrate the

middle term of (3.19) over E, then we have
∫
E+Zd |ϕ̂(x)|2 dx. On the other hand, if we

integrate the right-most term of (3.19) over E, we have
∫

E

∑

k∈Zd

|ϕ̂(2jx + 2jk)|2 dx = 2−jd
∑

k∈Zd

∫

2jE+2jk
|ϕ̂(t)|2 dt ≤ 2−jd||ϕ̂||2,

for all j ∈ N. This shows that the Lebesgue measure of E + Zd is 0 and so is the Lebesgue

measure of E. Hence we have shown that σ(V0) ⊂ σ(X) a.e. This completes the first part

of the lemma. For the second part of the lemma we argue as follows. V1 = D(V0) = D(X).

Hence

V1 = span{DjTkψl : j ≤ 0, k ∈ Zd, 1 ≤ l ≤ n}

= span{Tkψl : k ∈ Zd, 1 ≤ l ≤ n}+ span{DjTkψl : j < 0, k ∈ Zd, 1 ≤ l ≤ n}

= W0 + X = W0 + V0.

¤

We now characterize the case where V1 = V0 u W0 under the assumption that V0 + W0 is

closed. See [17] for the condition for the closedness of the sum of two shift-invariant spaces.

Theorem 3.8 Suppose V0 +W0 is closed. Then V1 = V0 uW0 if and only if, for a.e. x ∈ Td,
∑

1≤j≤2d,ax,qj 6=0 |m0(
x+qj

2 )|2 = 1 or 0.

Proof. From the assumption that V0 + W0 is closed we have V1 = V0 + W0 by Lemma 3.7.

Now, for a.e. x ∈ Td, V̂0||x + Ŵ0||x ⊂ V̂1||x since V0 and W0 are shift-invariant subspaces of

V1; and also V̂1||x = (V0 + W0)∧||x ⊂ V̂0||x + Ŵ0||x. Hence V̂1||x = V̂0||x + Ŵ0||x a.e. Therefore,

V1 = V0 u W0 if and only if V̂0||x ∩ Ŵ0||x = {0} a.e. by Lemma 3.6. Since we already have

V̂1||x = V̂0||x + Ŵ0||x a.e., and since V̂1||x is finite dimensional a.e., V1 = V0 u W0 if and only

if dim V̂1||x = dim V̂0||x + dim Ŵ0||x a.e. We first show that dim V̂1||x = dim V̂0||x + dim Ŵ0||x

a.e. if and only if the following two conditions are satisfied:

13



(1)
∑2d

j=1 |m0(
x+qj

2 )|2 = 1 or 0 for a.e. x ∈ ∆2d ;

(2) For each l = 1, 2, · · · , 2d − 1 and for each choice of k1, k2, · · · , kl such that 1 ≤ k1 <

k2, · · · , < kl ≤ 2d,
∑

1≤j≤2d,j /∈{k1,··· ,kl}

∣∣∣∣m0

(
x + qj

2

)∣∣∣∣
2

= 1 or 0 for a.e. x ∈ ∆k1,··· ,kl

2d−l
.

If x ∈ Td \ σ(V1), then obviously V̂1||x = V̂0||x = Ŵ0||x = {0}. Hence there is nothing to

prove.

If x ∈ σ(V1), then there exists x′ ∈ σ(V0) and k ∈ Z such that x = 2x′+ k by Proposition

3.1. Hence x/2 = x′ + k/2. Recall (3.18). Suppose that x ∈ ∆2d . In this case dim V̂1||x = 2d.

Hence {ax,q : q ∈ Q} is an orthogonal basis for V̂1||x by Lemma 3.2. Recall that V0 is singly

generated. Therefore, dim V̂0||x = 0 or 1. This shows that:

dim V̂0||x = 0, dim Ŵ0||x = 2d

⇔
2d∑

j=1

∣∣m0

(
x
2 + qj

2

)∣∣2 = 0, rankM1

(
x
2

)
= 2d (by (3.8), (3.10), (3.13))

⇔
2d∑

j=1

∣∣m0

(
x
2 + qj

2

)∣∣2 = 0 (by Lemma 3.3).

Similarly,

dim V̂0||x = 1, dim Ŵ0||x = 2d − 1

⇔
2d∑

j=1

∣∣m0

(
x
2 + qj

2

)∣∣2 6= 0, rankM1

(
x
2

)
= 2d − 1 (by (3.8), (3.10),(3.13))

⇔
2d∑

j=1

∣∣m0

(
x
2 + qj

2

)∣∣2 = 1 (by Lemma 3.3).

If x ∈ ∆k1,··· ,kl

2d−l
, then dim V̂1||x = 2d − l and ax,qk1

= · · · = ax,qkl
= 0. Therefore, {ax,q : q /∈

{qk1 , qk2 , · · · , qkl
}} is an orthogonal basis for V̂1||x. Now, similar argument shows that:

dim V̂0||x = 0, dim Ŵ0||x = 2d − l

⇔
∑

1≤j≤2d,j /∈{k1,··· ,kl}

∣∣m0

(
x
2 + qj

2

)∣∣2 = 0, rankM1

(
x
2

)k1,··· ,kl = 2d − l

⇔
∑

1≤j≤2d,j /∈{k1,··· ,kl}

∣∣m0

(
x
2 + qj

2

)∣∣2 = 0.
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Likewise, we have:

dim V̂0||x = 1, dim Ŵ0||x = 2d − l − 1

⇔
∑

1≤j≤2d,j /∈{k1,··· ,kl}

∣∣m0

(
x
2 + qj

2

)∣∣2 6= 0, rankM1

(
x
2

)k1,··· ,kl = 2d − l − 1

⇔
∑

1≤j≤2d,j /∈{k1,··· ,kl}

∣∣m0

(
x
2 + qj

2

)∣∣2 = 1.

This shows that V1 = V0 u W0 if and only if Conditions (1) and (2) are satisfied. Obviously,

Conditions (1) and (2) are equivalent to
∑

1≤j≤2d,ax,qj 6=0 |m0(
x+qj

2 )|2 = 1 or 0 a.e. ¤

We now characterize conditions for V1 = V0 ⊕ W0, which are simpler than those for

V1 = V0 u W0.

Theorem 3.9 V1 = V0 ⊕W0 if and only if

2d∑

j=1

m0

(
x+qj

2

)
mi

(
x+qj

2

)
‖ax,qj‖2

`2(Zd) = 0 (3.20)

for a.e. x and for each i = 1, 2, · · · , n.

Proof. Recall that V1 = V0 + W0 by Lemma 3.7. If V0 ⊥ W0, then V0 + W0 is closed.

Therefore, V1 = V0 ⊕W0. On the other hand, If V1 = V0 ⊕W0, then obviously V0 ⊥ W0. It

is easy to see that V0 ⊥ W0 if and only if ϕ̂||x ⊥ ψ̂i||x for each i = 1, 2, · · · , n and for a.e.

x ∈ Td [1]. The orthogonality of {ax,qj : 1 ≤ j ≤ 2d} and Equations (3.6) and (3.7) imply

that ϕ̂||x ⊥ ψ̂i||x if and only if (3.20) holds. ¤

4 Proof of Theorem 1.2

In this section we apply the results in Section 3 to give a proof of Theorem 1.2. Note that

we only deal with the univariate case in this section.

We first prove the first part of Theorem 1.2. Let m0 and m1 be trigonometric filters such

that

M(x) :=


m0(x) m0

(
x + 1

2

)

m1(x) m1

(
x + 1

2

)




is a unitary matrix for each x ∈ T. Note that m0(0) = 1 by (1.1) and (1.2). If we define ϕ,

as usual, via ϕ̂(x) :=
∏∞

j=1 m0(2−jx) for x ∈ R, then ϕ is a compactly supported refinable

15



function in L2(R) [9, Section 6.2]. In particular, ϕ̂ is an entire function of exponential type

by a theorem of Paley and Wiener. Thus, ϕ satisfies the following conditions:

ϕ̂(2x) = m0(x)ϕ̂(x), x ∈ R;

ϕ̂(0) = 1;
∑

k∈Z
|ϕ̂(x + k)|2 is a trigonometric polynomial.

In particular,
∑

k∈Z |ϕ̂(x+ k)|2 has at most a finite number of zeros since it is not identically

zero. If we define ψ ∈ L2(R) via ψ̂(2x) := m1(x)ϕ̂(x), then {DjTkψ : j, k ∈ Z} is a wavelet

frame for L2(R) by the UEP (Proposition 1.1). Moreover, ψ is also compactly supported,

and
∑

k∈Z |ψ̂(x + k)|2 is also a trigonometric polynomial [9, Section 6.2]. Define, as usual,

V0 := S({ϕ}),W0 := S({ψ}), Vj := Dj(V0), and Wj := Dj(W0) for j ∈ Z. We then have the

following direct sum decomposition of V1. Surprisingly enough, this simple fact has a rather

long proof throughout this subsection.

Proposition 4.1 V1 = V0 u W0. In particular, V0 + W0 is closed.

For the convenience of computation we adopt the following notations. Let F (x) :=
∑

k∈Z |ϕ̂(x + k)|2, P (x) :=
∑

k∈Z |ψ̂(x + k)|2, µ0(x) := |m0(x)|2 and µ1(x) := |m1(x)|2. Note

that F, P, µ0 and µ1 are all non-negative trigonometric polynomials. Finally, if f(x) = 0, we

let ord(f, x) denotes the order of the zero at x of f .

The following lemma holds since the matrix M(x) is unitary for each x ∈ T.

Lemma 4.2 For each x ∈ T the following hold:

(1) µ0(x) + µ0

(
x + 1

2

)
= 1;

(2) m0(x)m1(x) + m0

(
x + 1

2

)
m1

(
x + 1

2

)
= 0;

(3) µ1(x) + µ1

(
x + 1

2

)
= 1;

(4) µ0(x) + µ1(x) = 1.

Note that σ(V0) = T. Hence σ(V1) = T by Proposition 3.1. If we assume that V0 + W0 is

closed, then V1 = V0 u W0 by Theorem 3.8 since |m0(x)|2 + |m0(x + 1
2)|2 = 1 a.e. Hence, we
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only need to show that V0 + W0 is closed in order to complete the proof of Proposition 4.1.

The proof is rather long and technical.

Lemma 4.3 Suppose that F (x0) = 0 for some x0 ∈ T. Then,

(1) F
(
x0 + 1

2

) 6= 0 and µ0

(
x0 + 1

2

)
= 0;

(2) There exists a non-trivial cycle {x0, x1, · · · , xn} ⊂ T of zeros of F such that xj =

2xj+1 (mod 1), 0 ≤ j ≤ n, where xn+1 := x0;

(3) ord(F, xk) ≤ ord
(
µ0

(·+ 1
2

)
, xk+1

)
, 0 ≤ k ≤ n;

(4) ord(F, xk) is the same for all k = 0, 1, · · · , n;

(5) ord(F, xk) ≤ ord
(
µ0

(·+ 1
2

)
, xk

)
.

Proof. By a standard argument we note that

F (x) = µ0

(
x
2

)
F

(
x
2

)
+ µ0

(
x
2 + 1

2

)
F

(
x
2 + 1

2

)
. (4.1)

Then (1) and (2) follow if we apply Steps 2, 3, 4 and 5 in the proof of Theorem 6.3.5 in [9]

to (4.1). Suppose that F (xk) = 0. Since xk = 2xk+1 (mod 1) and F is 1-periodic, we have

0 = F (xk) = F (2xk+1) = µ0(xk+1)F (xk+1) + µ0

(
xk+1 + 1

2

)
F

(
xk+1 + 1

2

)
. (4.2)

Moreover, (1) implies that F
(
xk+1 + 1

2

) 6= 0 and µ0

(
xk+1 + 1

2

)
= 0 since F (xk+1) = 0. Thus

µ0(xk+1) = 1 6= 0 by Lemma 4.2 (1). From (4.2) we have, for k = 0, 1, · · · , n,

ord(F, xk) = min
{
ord(F, xk+1), ord

(
µ0

(·+ 1
2

)
, xk+1

)}
. (4.3)

Therefore (3) holds. (4.3) also implies that

ord(F, x0) ≤ ord(F, x1) ≤ · · · ≤ ord(F, xn) ≤ ord(F, x0),

which proves (4). Finally, (3) and (4) imply (5). ¤

Lemma 4.4 {Tkψ : k ∈ Z} is a Riesz basis for W0. In particular, P (x) 6= 0 for each x ∈ T.
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Proof. By a standard result (see [9, Equation (5.3.2)] for example) it suffices to show that

there exist positive constants A and B such that A ≤ P (x) ≤ B a.e. x ∈ T in order to

prove that {Tkψ : k ∈ Z} is a Riesz basis for W0. Since P is a non-negative trigonometric

polynomial, we only need to show that P has no zero. Suppose, on the contrary, that P (x) = 0

for some x ∈ T. Again, by a standard argument, we have

0 = P (x) = µ1

(
x
2

)
F

(
x
2

)
+ µ1

(
x
2 + 1

2

)
F

(
x
2 + 1

2

)
.

µ1

(
x
2

)
F

(
x
2

)
= 0 and µ1

(
x
2 + 1

2

)
F

(
x
2 + 1

2

)
= 0 since µ1 and F are non-negative trigono-

metric polynomials,. Suppose that F
(

x
2

)
= 0. Then, by Lemma 4.3 (1), F

(
x
2 + 1

2

) 6= 0 and

µ0

(
x
2 + 1

2

)
= 0. Lemma 4.2 (4) implies that µ1

(
x
2 + 1

2

)
= 1. Therefore, µ1

(
x
2 + 1

2

)
F

(
x
2 + 1

2

) 6=
0, which is a contradiction. Suppose, on the other hand, that µ1

(
x
2

)
= 0. Then µ1

(
x
2 + 1

2

)
=

1 6= 0 by Lemma 4.2 (3). This forces that F
(

x
2 + 1

2

)
= 0. Thus, µ0

(
x
2

)
= 0 by Lemma

4.3 (1). Lemma 4.2 (4) now implies that µ1

(
x
2

)
= 1 6= 0, which is a contradiction. These

contradictions show that P has no zeros, which completes the proof. ¤

We now give a proof of the first part of Theorem 1.2. As noted before it remains to show

that V0 + W0 is closed. We use Proposition 2.3. The Cauchy-Schwarz inequality implies that

the 1-periodic trigonometric rational function

f(x) :=

∣∣∣
〈
ϕ̂||x, ψ̂||x

〉∣∣∣
2

‖ϕ̂||x‖2
`2(Z)

‖ψ̂||x‖2
`2(Z)

has a removable singularity at the point where the denominator vanishes. Hence it defines

a continuous function on the compact set T. If we show that at each point x ∈ T the value

of the periodic function f(x) is strictly less than 1, then the proof will be complete. Recall

that Q = Z/2Z = {0, 1} since we are working in L2(R). For x ∈ T, define ax,0 and ax,1 as in

(3.4), i.e., 



ax,0(2k) = ϕ̂
(

x+2k
2

)
;

ax,0(2k + 1) = 0;

ax,1(2k + 1) = ϕ̂
(

x+2k+1
2

)
;

ax,1(2k) = 0.

(4.4)
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Recall that

ϕ̂||x = m0

(
x
2

)
ax,0 + m0

(
x
2 + 1

2

)
ax,1,

ψ̂||x = m1

(
x
2

)
ax,0 + m1

(
x
2 + 1

2

)
ax,1,

‖ax,0‖2
`2(Z) = F

(
x
2

)
, and also that ‖ax,1‖2

`2(Z) = F
(

x
2 + 1

2

)
. The orthogonality of {ax,0, ax,1}

and Lemma 4.2 (1) implies that

‖ϕ̂||x‖2
`2(Z) = µ0

(
x
2

)
F

(
x
2

)
+ µ0

(
x+1

2

)
F

(
x+1

2

)

=
(
1− µ0

(
x+1

2

))
F

(
x
2

)
+ µ0

(
x+1

2

)
F

(
x+1

2

)

= µ0

(
x+1

2

) (
F

(
x+1

2

)− F
(

x
2

))
+ F

(
x
2

)
. (4.5)

By symmetry,

‖ϕ̂||x‖2
`2(Z) = µ0

(
x
2

) (
F

(
x
2

)− F
(

x+1
2

))
+ F

(
x+1

2

)
. (4.6)

Similarly,

‖ψ̂||x‖2
`2(Z) = µ1

(
x+1

2

) (
F

(
x+1

2

)− F
(

x
2

))
+ F

(
x
2

)
(4.7)

= µ1

(
x
2

) (
F

(
x
2

)− F
(

x+1
2

))
+ F

(
x+1

2

)
. (4.8)

Likewise, the orthogonality of {ax,0, ax,1} and Lemma 4.2 (2) implies that

∣∣∣
〈
ϕ̂||x, ψ̂||x

〉∣∣∣
2

=
∣∣m0

(
x
2

)
m1

(
x
2

)
F

(
x
2

)
+ m0

(
x+1

2

)
m1

(
x+1

2

)
F

(
x+1

2

)∣∣2

=
∣∣−m0

(
x+1

2

)
m1

(
x+1

2

)
F

(
x
2

)
+ m0

(
x+1

2

)
m1

(
x+1

2

)
F

(
x+1

2

)∣∣2

= µ0

(
x+1

2

)
µ1

(
x+1

2

) ∣∣F (
x+1

2

)− F
(

x
2

)∣∣2 . (4.9)

By symmetry, ∣∣∣
〈
ϕ̂||x, ψ̂||x

〉∣∣∣
2

= µ0

(
x
2

)
µ1

(
x
2

) ∣∣F (
x+1

2

)− F
(

x
2

)∣∣2 . (4.10)

Now let x0 be any element of T. Since f has at most a finite number of removable singularities,

f(x0) = limx→x0 f(x).

We divide into two cases. Let us define, temporarily, a(x) := F (x+1
2 ) − F (x

2 ). Suppose

that a(x0) ≥ 0. In this case, we again divide into two subcases. First, suppose that F (x0
2 ) 6= 0.

Then, since F, µ0, µ1 and a have at most a finite number of zeros, by using (4.5), (4.7) and
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(4.9), we have

f(x0) = lim
x→x0

f(x)

= lim
x→x0

µ0

(
x+1

2

)
µ1

(
x+1

2

)
a(x)2

µ0

(
x+1

2

)
µ1

(
x+1

2

)
a(x)2 + µ0

(
x+1

2

)
F

(
x
2

)
a(x) + µ1

(
x+1

2

)
F

(
x
2

)
a(x) + F (x

2 )2

=
µ0

(
x0+1

2

)
µ1

(
x0+1

2

)
a(x0)2

µ0

(
x0+1

2

)
µ1

(
x0+1

2

)
a(x0)2 + µ0

(
x0+1

2

)
F

(
x0
2

)
a(x0) + µ1

(
x0+1

2

)
F

(
x0
2

)
a(x0) + F (x0

2 )2

< 1.

The last inequality follows since all terms in the numerator and the denominator are non-

negative and F (x0
2 ) is assumed to be positive. Suppose, on the other hand, that F

(
x0
2

)
= 0.

Then, F
(

x0+1
2

) 6= 0, µ0

(
x0+1

2

)
= 0 by Lemma 4.3 (1), µ0

(
x0
2

)
= 1 by Lemma 4.2 (1), and

µ1

(
x0+1

2

)
= 1 by Lemma 4.2 (4). Moreover, there exists α ∈ R such that

α = lim
x→x0

µ0

(
x+1

2

)

F
(

x
2

)

by Lemma 4.3 (5). In particular, a(x0) > 0. Since F, µ0, µ1 and a have at most a finite

number of zeros, by using (4.5), (4.7) and (4.9), we have

f(x0) = lim
x→x0

f(x)

= lim
x→x0

µ0

(
x+1

2

)
µ1

(
x+1

2

)
a(x)2

µ0

(
x+1

2

)
µ1

(
x+1

2

)
a(x)2 + µ0

(
x+1

2

)
F

(
x
2

)
a(x) + µ1

(
x+1

2

)
F

(
x
2

)
a(x) + F (x

2 )2

= lim
x→x0

µ0

(
x+1

2

)

F (x
2
) µ1

(
x+1

2

)
a(x)2

µ0

(
x+1

2

)

F (x
2
) µ1

(
x+1

2

)
a(x)2 + µ0

(
x+1

2

)
a(x) + µ1

(
x+1

2

)
a(x) + F (x

2 )

=
αµ1

(
x0+1

2

)
a(x0)2

αµ1

(
x0+1

2

)
a(x0)2 + µ0

(
x0+1

2

)
a(x0) + µ1

(
x0+1

2

)
a(x0) + F (x0

2 )

=
αa(x0)2

αa(x0)2 + a(x0)
< 1.

The last inequality follows since all terms involved are non-negative and a(x0) > 0.

The case that F (x0+1
2 ) − F (x0

2 ) ≤ 0 can be handled similarly by using (4.6), (4.8) and

(4.10). This completes the proof of the first part of Theorem 1.2.

We now prove the latter part of Theorem 1.2. Suppose we construct a wavelet tight

frame for L2(R) by using n + 1 trigonometric filters with n >. Recall that Q = {0, 1} since
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we are now working in L2(R). Note that |m0(x)|2 + |m0

(
x + 1

2

) |2 − 1 is a trigonometric

polynomial. Hence either it is identically zero or it has only finitely many zeros. Therefore,

either |m0(x)|2 + |m0

(
x + 1

2

) |2 = 1 for each x ∈ T or |m0(x)|2 + |m0

(
x + 1

2

) |2 6= 1 a.e.

Suppose that |m0(x)|2 + |m0

(
x + 1

2

) |2 = 1 for each x ∈ T. Then Lemma 3.3 (3) implies

that rankM1(x) = 1 for a.e. x ∈ σ(V0). Since M1(x) is an n × 2 matrix and |σ(V0)| > 0,

the linear dependence condition in Theorem 1.2 holds on a set of positive measure. Since

mi’s are trigonometric polynomials, the linear dependence condition holds on T. Suppose,

on the other hand, that |m0(x)|2 + |m0

(
x + 1

2

) |2 6= 1 a.e. Then V1 = W0 by Corollary 3.5.

In particular, if m0(x) = cos2k πx, then cos4k(πx
2 ) + cos4k(πx

2 + π
2 ) < 1 a.e. x ∈ T. Therefore,

V1 = W0 by Corollary 3.5.

5 Proof of Theorem 1.3

In this section we prove Theorem 1.3. Recall that ψ0 := ϕ is defined in (1.8) and ψ̂l(2x) :=

ml(x)ϕ̂(x) for l = 1, 2, · · · , n := 2k, where the filters ml’s are defined in (1.7). Since ϕ

is compactly supported and the filters are trigonometric polynomials, ψl is also compactly

supported for each l. Moreover, ϕ̂||x is defined for each x ∈ T and ϕ̂||x 6= 0 for each x ∈ T
[6, Theorem 4.5]. Define F (x) := ‖ϕ̂||x‖2

`2(Z) =
∑

k∈Z |ϕ̂(x + k)|2. A well-known result shows

that F is a trigonometric polynomial, and so is ‖ψ̂l||x‖2
`2(Z) for each l = 1, 2, · · · , 2k. Hence

F is strictly positive and continuous, and ‖ψ̂l||x‖2
`2(Z) is non-negative and continuous on the

compact set T. Recall that we define W
(l)
0 := S({ψl}), V0 := W

(0)
0 , W0 := S({ψl : l =

1, · · · , 2k}), and V1 = D(V0), where D is now the 1-dimensional dyadic dilation operator.

Hence σ(V0) = T, and Theorem 1.2 implies that W0 = V1. Recall also that Q = {0, 1} since

we are working in L2(R) and that ax,0 and ax,1 are defined in (4.4).

In particular ax,0 ⊥ ax,1 and (ϕ̂(x+k
2 ))k∈Z = ax,0 ⊕ ax,1. Since ψ̂l(x) = ml(x/2)ϕ̂(x/2),

ψ̂l||x = ml(x/2)ax,0 ⊕ml(x/2 + 1/2)ax,1 for each l = 0, 1, · · · , 2k. (3.9) implies that V̂1||x =

span{ax,0, ax,1}, and (3.5) implies that dim V̂1||x = 2 for each x ∈ T. For 0 ≤ j < i ≤ 2k
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define

Mij(x) :=


mi(x) mi

(
x + 1

2

)

mj(x) mj

(
x + 1

2

)




=


c

1/2
i sini(πx

2 ) cos2k−i(πx
2 ) c

1/2
i cosi(πx

2 )(−1)2k−i sin2k−i(πx
2 )

c
1/2
j sinj(πx

2 ) cos2k−j(πx
2 ) c

1/2
j cosj(πx

2 )(−1)2k−j sin2k−j(πx
2 )


 ,

where ci :=
(
2k
i

)
and cj :=

(
2k
j

)
. Then we have


ψ̂i||x

ψ̂j ||x


 = Mij

(x

2

)

ax,0

ax,1


 . (5.1)

Now,

detMij

(
x
2

)
= c

1/2
i c

1/2
j

(
sin2k−i+j

(
πx
2

)
cos2k−i+j

(
πx
2

)
(−1)2k−i

)

×
(
(−1)i−j sin2(i−j)

(
πx
2

)− cos2(i−j)
(

πx
2

))
.

Let us identify T with [−1/2, 1/2]. Then, detMij(x/2) = 0 if and only if




x = ±1/2 or 0, if i− j is even and i− j 6= 2k,

x = ±1/2, if i− j = 2k,

x = 0, if i− j is odd.

(5.2)

In particular, detMij(x/2) 6= 0 a.e., and hence rankM(x/2) = 2 a.e. This shows that

dim span{ψ̂i||x, ψ̂j ||x} = 2 a.e. Recall that span{ψ̂i||x, ψ̂j ||x} ⊂ V̂1||x and that dim V̂1||x = 2

for each x ∈ T. Since S({ψi, ψj}) = W
(i)
0 + W

(j)
0 , W

(i)
0 + W

(j)
0 = V1 by Corollary 2.2. The

determinant condition also implies that Ŵ
(i)
0 ||x ∩ Ŵ

(j)
0 ||x = {0} a.e. Hence W

(i)
0 ∩W

(j)
0 = {0}

by Lemma 2.4. This shows that, for 0 ≤ j < i ≤ 2k, W
(i)
0 u W

(j)
0 = V1 if and only if

W
(i)
0 +W

(j)
0 is closed. Therefore, we only need to show that W

(i)
0 +W

(j)
0 is closed if and only

if i− j is odd and j ≤ k ≤ i in order to complete the proof of Theorem 1.3.
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Using (5.1) we have
∣∣∣∣
〈
ψ̂i||x, ψ̂j ||x

〉
`2(Z)

∣∣∣∣
2

= cicj

∣∣∣sini+j
(

πx
2

)
cos4k−i−j

(
πx
2

)
F

(
x
2

)

+(−1)4k−i−j cosi+j
(

πx
2

)
sin4k−i−j

(
πx
2

)
F

(
x+1

2

)∣∣∣
2
, (5.3)

‖ψ̂i||x‖2
`2(Z) = ci sin2i

(
πx
2

)
cos4k−2i

(
πx
2

)
F

(
x
2

)

+ ci cos2i
(

πx
2

)
sin4k−2i

(
πx
2

)
F

(
x+1

2

)
, (5.4)

‖ψ̂j ||x‖2
`2(Z) = cj sin2j

(
πx
2

)
cos4k−2j

(
πx
2

)
F

(
x
2

)

+ cj cos2j
(

πx
2

)
sin4k−2j

(
πx
2

)
F

(
x+1

2

)
. (5.5)

For 0 ≤ j < i ≤ 2k, define

Eij :=
{

x ∈ σ
(
W

(i)
0

)
∩ σ

(
W

(i)
0

)
: ψ̂i||x and ψ̂j ||x are linearly independent

}
,

and

gij(x) :=

∣∣∣∣
〈
ψ̂i||x, ψ̂j ||x

〉
`2(Z)

∣∣∣∣
2

‖ψ̂i||x‖2
`2(Z)

‖ψ̂j ||x‖2
`2(Z)

.

Recall that F (x) > 0 for each x ∈ T. Therefore, (5.4) or (5.5) implies that σ(W (l)
0 ) = T if

l = 0 or l = 2k and σ(W (i)
0 ) = T \ {0} if 0 < l < 2k. Hence we have Eij = T \ {x ∈ T :

detMij(x/2) = 0}. Note that, by (5.1), neither ψ̂i||x nor ψ̂j ||x is 0 if x ∈ Eij since ax,0 6= 0,

ax,1 6= 0 and ax,0 ⊥ ax,1 for each x ∈ T. We note that the numerator and both terms

in the denominator of gij are trigonometric polynomials. The Cauchy-Schwarz inequality

implies that gij has a removable singularity at the points where the denominator vanishes.

In particular, gij defines a continuous function on the compact set T.

Now, suppose that 0 ≤ j < i ≤ 2k and i − j is even. (5.2) implies that ψ̂i||x and ψ̂j ||x
are linearly dependent at x = ±1/2. Moreover, (5.4) and (5.5) imply that neither ψ̂i||x nor

ψ̂j ||x are 0 at x = ±1/2 since F (x) > 0 for each x ∈ T. Hence gij(±1/2) = 1 by the equality

condition of the Cauchy-Schwarz inequality. Since gij is continuous, limx→±1/2 gij(x) = 1.

Hence ess-supx∈Eij
g(x) = 1. Proposition 2.3 implies that W

(i)
0 + W

(j)
0 is not closed.

Suppose, on the other hand, that 0 ≤ j < i ≤ 2k and i − j is odd. (5.2) implies that

Eij = T \ {0} and gij(x) < 1 for x ∈ Eij by the equality condition of the Cauchy-Schwarz

inequality. Since gij is continuous on the compact set T, W
(i)
0 + W

(j)
0 is closed if and only if
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limx→0 gij(x) < 1 by Proposition 2.3. We divide into two subcases: i+ j < 2k and i+ j > 2k.

(i + j cannot be 2k since i− j is assumed to be odd.)

We first consider the case: j < i, i−j is odd, and i+j < 2k. In particular, i+j < 4k−i−j.

Hence the right-hand side of (5.3) becomes

α := cicj sin2(i+j)
(

πx
2

) ∣∣∣cos4k−i−j
(

πx
2

)
F

(
x
2

)− cosi+j
(

πx
2

)
sin4k−2(i+j)

(
πx
2

)
F

(
x+1

2

)∣∣∣
2
.

If, moreover, 2i < 4k − 2i and 2j < 4k − 2j, then the right-hand side of (5.4) becomes

β := ci sin2i
(

πx
2

) (
cos4k−2i

(
πx
2

)
F

(
x
2

)
+ cos2i

(
πx
2

)
sin4k−4i

(
πx
2

)
F

(
x+1

2

))
,

and that of (5.5) becomes

γ := cj sin2j
(

πx
2

) (
cos4k−2j

(
πx
2

)
F

(
x
2

)
+ cos2j

(
πx
2

)
sin4k−4j

(
πx
2

)
F

(
x+1

2

))
.

Hence

lim
x→0

gij(x) = lim
x→0

α

βγ
=

F (0)2

F (0)2
= 1,

since 2k− 2j > 0, 2k− 2i > 0 and F (0) > 0. Hence W
(i)
0 + W

(j)
0 is not closed by Proposition

2.3.

If, 2i ≥ 4k − 2i and 2j < 4k − 2j, then the right-hand side of (5.4) becomes

δ := ci sin4k−2i
(

πx
2

) (
sin4i−4k

(
πx
2

)
cos4k−2i

(
πx
2

)
F

(
x
2

)
+ cos2i

(
πx
2

)
F

(
x+1

2

))
.

Then, α/(δγ) = sin4i−4k
(

πx
2

) × (∗) if 2i > 4k − 2i and 2j < 4k − 2j, where (∗) denotes a

quantity that is irrelevant in our calculation. In this case limx→0 α/(δγ) = 0. On the other

hand, if 2i = 4k − 2i and 2j < 4k − 2j, then α/(δγ) becomes

∣∣∣cos4k−i−j
(

πx
2

)
F

(
x
2

)− sin4k−2(i+j)
(

πx
2

)× (∗)
∣∣∣
2

cos2i
(

x
2

) (
F

(
x
2

)
+ F

(
x+1

2

)) (
cos4k−2j

(
πx
2

)
F

(
x
2

)
+ sin4k−4j

(
πx
2

)× (∗))

As x approaches 0 the above quantity becomes F (0)/(F (0) + F (1/2)) < 1 since F (0) > 0

and F (1/2) > 0. Hence

lim
x→0

gij(x) = lim
x→0

α

δγ
=





0, if 2i > 4k − 2i, 2j < 4k − 2j,
F (0)

F (0)+F (1/2) < 1, if 2i = 4k − 2i, 2j < 4k − 2j,
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If 2i ≥ 4k− 2i and 2j ≥ 4k− 2j, then i + j ≥ 2k, which is impossible since we assumed that

i + j < 2k. We have just shown that, under the assumptions that j < i, i − j is odd, and

i + j < 2k, W (j) + W (i) is closed if and only if j < k ≤ i.

We now consider the case that j < i, i − j is odd, and i + j > 2k. In particular,

i + j > 4k − i− j. Then, the right-hand side of (5.3) becomes

ζ := cicj sin2(4k−i−j)
(

πx
2

) ∣∣∣sin2i+2j−4k
(

πx
2

)
cos4k−i−j

(
πx
2

)
F

(
x
2

)− cosi+j
(

πx
2

)
F

(
x+1

2

)∣∣∣
2

If 2i > 4k − 2i and 2j > 4k − 2j, then the right-hand side of (5.4) becomes δ and that of

(5.5) becomes

η := cj sin4k−2j
(

πx
2

) (
sin4j−4k

(
πx
2

)
cos4k−2j

(
πx
2

)
F

(
x
2

)
+ cos2j

(
πx
2

)
F

(
x+1

2

))
.

Hence

lim
x→0

gij(x) = lim
x→0

ζ

δη
=

F (1/2)2

F (1/2)2
= 1

since F (1/2) > 0.

On the other hand, if 2i > 4k−2i and 2j < 4k−2j, then gij(x) = ζ/(δγ) = sin4k−4j ×(∗).
Hence limx→0 gij(x) = 0.

If 2i > 4k − 2i and 2j = 4k − 2j, then gij(x) = ζ/(δγ) and it becomes

∣∣sin2i−2k
(

πx
2

)× (∗)− cosi+j
(

πx
2

)
F

(
x+1

2

)∣∣2
(
sin4i−4k

(
πx
2

)× (∗) + cos2i
(

πx
2

)
F

(
x+1

2

))
cos2j

(
πx
2

) (
F

(
x
2

)
+ F

(
x+1

2

)) .

Hence

lim
x→0

gij(x) =
F (1/2)

F (0) + F (1/2)
< 1

since F (0) > 0 and F (1/2) > 0. Finally, if 2i ≤ 4k − 2i and 2j ≤ 4k − 2j then i + j ≤ 2k,

which is impossible since we assumed that i + j > 2k. We have just shown that, under the

assumptions that j < i, i − j is odd, and i + j > 2k, W (j) + W (i) is closed if and only if

j ≤ k < i. If we combine this fact with that we proved earlier, we have: If j < i, then

W (j) + W (i) is closed, and hence V1 = W (j) u W (i), if and only if i− j is odd and j ≤ k ≤ i.

¤
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