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Abstract

Based on two real and invertible d x d matrices B and C' such
that the norm ||CT B|| is sufficiently small, we provide a construction
of tight Gabor frames {EpmnTcng}mneze With explicitly given and
compactly supported generators. The generators can be chosen with
arbitrary polynomial decay in the frequency domain.
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1 Introduction

The purpose of this paper is to present a construction of a class of tight
matrix-generated Gabor frames in L?(R?). In particular, we focus on con-
struction of frames with explicitly given generators and good time-frequency
localization.

The question of construction of tight Gabor frames was first treated in
the seminal paper [4] by Daubechies, Grossmann and Meyer, which was deal-
ing with the one-dimensional case. Theoretical results in higher dimensions
(i.e., characterization of tight Gabor frames) were obtained in [10] and [6].
Note that non-tight Gabor frames with explicitly given dual generators were
constructed in [2] and [3]; the constructions in [3] work in any dimensions,
but the expression for the dual generator involves some book-keeping in high
dimensions.

In the rest of the introduction, we collect some basic definitions and
conventions.

For y € R? the translation operator T, acting on f € L*(R?) is defined
by

(T,f)(z) = fx—y), zeR™
For y € R%, the modulation operator E, is
(Eyf)(x) =™ f(z), z€R,

where y -z denotes the inner product between y and x in R?. Given two real
and invertible d x d matrices B and C' and a function g € L?(R¢) we consider
Gabor systems of the form

{627riBm-a:

{EBmTCng}m,nEZd - g(l‘ - Cn)}m,nEZd'

The dilation operator associated with a matrix C' is
(Def)(x) = |det C|Y2f(Cz), € R
Let CT denote the transpose of a matrix C; then
D¢E, = EcryDe, DcTy=Te,Dec.
If C' is invertible, we use the notation

Ct = (CT)L,
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Furthermore, the norm of a matrix C' is defined by

IC[| = sup [|Cz|].

||l||=1

For f € L'(R?) N L*(R?) we denote the Fourier transform by
Ff =1 = | fl@)e*dn.
R

As usual, the Fourier transform is extended to a unitary operator on L*(R?).
The reader can check that

Recall that a countable family of vectors { fi }xe; belonging to a separable
Hilbert space H is a Parseval frame if

S AP = A1 VF € H.

kel

Parseval frames are also known as tight frames with frame bound equal to
one. Like orthonormal bases, a Parseval frame provides us with an expansion
of the elements in H: in fact, if {f;}res is a Parseval frame, then

F= (ffui)fe VFEH.

kel

On the other hand, the conditions for being a Parseval frame is considerably
weaker than the condition for being an orthonormal basis; thus, Parseval
frames yield more flexible constructions.

Our starting point is a characterization of Parseval frames with Gabor
structure; several versions of this result exist in the literature, see [10], [7],
(6], [3].

Lemma 1.1 A family {EpmTcng}mneze forms a Parseval frame for L?(R?)
if and only iof

Z g(x — Bin — Ck)g(x — Ck) = | det B|d, 0, a.e.x € R (1)

kezd



2 The results

We now present the first version of our results. We are mainly interested in
generators g, whose Z?translates form a partition of unity, but we state the
result under a weaker assumption. For simplicity we first consider the case
C=1I

Theorem 2.1 Let N € N. Let g € L*(R?Y) be a non-negative function with
supp g C [0, N]¢, for which

Z g(x —n) >0, ae. xR

nezd

Assume that the d x d matriz B is invertible and ||B|| < \/Zle' Define h €
L*(R?) by

h(z) == \/| det B <= @) (2)

neZzd g(x - n)
Then the function h generates a Parseval frame { Epm b}y neza for L*(R?).
Proof. Note that

0< h < v/ | det B|X[O,N]d;

this implies that h € L*(R?).
We now apply Lemma 1.1. Since B is invertible, for any n € Z¢ we have

[n| = [|B" B*nl| < [|B]] [|B*nl|;

thus, for n # 0, ||B*n|| > 1/||B||. Hence (1) is satisfied for n # 0if 1/||B|| >
Vd N, ie., if

1
BlI| < ——.
181 < =
For n =0, (1) follows from the the definition (2). O

The construction in Theorem 2.1 has several attractive features: it is given
explicitly, and it has compact support. Furthermore, polynomial decay of the
generator g of any given order in the frequency domain can be achieved by
requiring ¢ to be sufficiently smooth:



Lemma 2.2 Let k € N and let f € C¥*(R?) be compactly supported. Then

F(N] < AL+ [y~

Proof. Note that f is in L?*(R?). Integration by parts for a variable z;
implies

Fo) = [ e
! /00 of e~ 2T g

2miy; J_o Ox;

Inductively, since f has partial derivative of order kd, we have

. 1 oo akdf -
= e T dx
A
TT (1 + |y
B A
- kj2"
(I 1+ 1D)?)
A direct calculation shows that
d
[Ta+1h? = QO+ mP)A+ P @+ )
j=1

(L4 I+ )@+ ysh)? - (1 + |al)?

(AVARAVARV]

1+ ]y
This implies that R
[F()] < AL+ |43 72,
O

Via a change of variable Theorem 2.1 leads to a construction of frames of
the type {EpmTonh}m neza:



Theorem 2.3 Let N € N. Let g € L*(R?) be a non-nenegative function
with supp g C [0, N]¢, for which

Z g(x —n) >0 forae xcR
nezd

Let B and C' be invertible d x d matrices such that ||CTB|| < ﬁ, and let

g(x)
S =) ®)

Then the function Do-1h generates a Parseval frame { Epy/TonDe-1hY} pmnezd
for L2(R?).

h(z) = \/| det(C'B)

Proof. By assumptions and Theorem 2.1, the Gabor system { Ecr g, T b} ez
forms a tight frame; since

De-1EcrpmTn = EpnlconDo-1,
the result follows from Dg-1 being unitary. ([l

We are particulary interested in the case where the integer-translates of
the function g generates a partition of unity, i.e.,

Z g(xr —n) =1 for a.e. z € R%

nezd

In that case, the generator in Theorem 2.3 takes the form

De-1h(z) = /| det(B)| g(C~'x).

Let By denote the Nth cardinal B-spline on R, and define the box-spline

d
By (z) = HBN(%'), r=(r1,...,24) € RL
i=1

Then
Z BN(QT — n) =1.

nezd

Thus, we obtain the following consequence of Theorem 2.3:
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Corollary 2.4 Let N € N, and let B and C be invertible d X d matrices
such that || lN. Let

= /| det(B)| By(C-1x).
Then { EppnTcn$tmneza is a Parseval frame for L*(R?).

Example 2.5 The one-dimensional B-spline of order 4 is given by

( 3

5 x € [0,1[;
%—2x+2x -z x € [1,2];

By(z) = 2 4102 — 42+ 2, x€[2,3;
— 81 + 222 —%, x € [3,4[;

\ 0, z ¢ [0,4]

Define the box-spline
B4(I‘) = B4($1)B4(.T2), xr = (Jfl,l’z) S ]R2.

Let 2 x 2 matrices B and C' be defined by
1 /1 6 2 0
B:@(—2 4)’ C:<—1 2)'

A direct calculation shows that
1 1 2 1 1 2 cos 0
T _ il _
78 = (4 3)| =l () (506

()

2
|CTB||INVd = ‘1/—; 4/2=08< 1.

Thus

Let

= /| det(B)| By(C—1x).

By Corollary 2.4, {EpnTon}mmnezz is a Parseval frame for L*(R?). On
Figure 1, we plot the functions ¢ and ||
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Figure 1: The functions ¢ (Figure (a)) and |¢| (Figure (b)) in Example 2.5.



For functions g of the type considered in Theorem 2.3 and arbitrary real
invertible d X d matrices B and C', Theorem 2.3 leads to a construction of a
(finitely generated) tight multi-Gabor frame {Epm,Tonhk }mnezd ker, Where
all the generators hy are dilated and translated versions of h:

Theorem 2.6 Let N € N. Let g € L2(R?Y) be a non-negative function with
supp g C [0, N|¢, for which

Zg(x—n)zl.

Let B and C be invertible d x d matrices and choose J € N such that
J > ||CTB|| Vd N. Define the function h by (3). Then the functions

hi = Ty Dyorh, ke z'n|o,J — 1]

generate a multi-Gabor Parseval frame {EpnTonhi}mnezd pezinp,s—1¢ for
L3(RY).

Proof. The choice of J implies that the matrices B and %C’ satisfy the
conditions in Theorem 2.3; thus

‘ 1
{62mBm-:v(DJC_1 h) (x — jCTL)}m,neZd

forms a tight Gabor frame for L*(R¢). Now,
1 1
— = —Ck .
{JC'n} ) U {JC' —i—C’n} )
nez kEZdﬂ[O,Jfl}d neZ
Thus

{(D"Clh)("§cn)}nezd - U Ao oe-cn}

kezan[o,J—1]d nezs

— U {TCnT%ckDJC’*Ih('>}

nezd
kezZdn[o,J—1]d

Inserting this into the expression for the tight frame leads to the result. [



Example 2.7 Let By be the 4th box-spline in R? as in Example 2.5 and let
2 x 2 matrices B and C' be defined by

1 (1 6 2 0
B_4_o(—2 4)’0_(—1 2)‘

|ICTB|NVd = \f 4/2=16<2.

Thus we can apply Theorem 2.6 with J = 2. Define

Then

= /| det(C'B)|By(x).
By Theorem 2.6, the four functions
hi, = TicpDac—1h, k€ 22N [0, 1)
generate a multi-Gabor Parseval frame { Egy, Tonhk }m nezz kezzno,2 for L*(R?).

On Figure 2, we plot the functions h and |h).
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Figure 2: The functions h (Figure (a)) and || (Figure (b)) in Example 2.7.
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