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Abstract

The precise Sobolev exponent s« (¢r) of the Butterworth refinable function ¢,, associated with the
— cos®" (£/2)
Butterworth filter of order n, b, (§) := T /2 e ED)
37™). This recovers the previously given asymptotic estimate of so(¢n) of Fan and Sun [1], and gives
more accurate regularity of Butterworth refinable function ¢,.
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is shown to be soo(¢n) = nlog, 3+1og,(1+

The Sobolev exponent s (f) of a function f is defined in terms of its Fourier transform

Soo(f) = sup{s| sup /@)L +[€])* < oo}

This gives the regularity of f as f € C*® for any s < soo(f) — 1.
The Butterworth filter of order n is defined by

b (€) := cos®™(£/2) L, (€),

where
1

Ln(§) = cos2n(£/2) + sin®™(€/2)

Then the corresponding refinable function ¢,,, called Butterworth refinable function, is given by
= an( Hcos (2™ i- 15 Hﬁn(Q*J
j=1 j=1
B (sm £/2) )2n ﬁ£
£/2

Fan and Sun [1] obtained the estimate

nlogy 3 < seo(pn) < nlogy 3 +logy(14377).
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We prove here that the precise Sobolev exponent is their upper bound of s (¢ ):
Soo(tpn) =nlogy 3+ logy (1 +377).

As an application, we also give the precise Sobolev exponents of the special class of refinable orthonormal
cardinal functions from Blaschke products in [2].

We recall a method to estimate the decay of ¢ of a refinable function ¢ adapted for our particular
purpose in the following proposition. See [3, Lemma 7.1.5, Lemma 7.1.6].

Proposition 1 For £ € CY(T), let b be the refinable filter of the refinable function ¢ of the form

[b()] = cos®™(£/2)|L(E)], € € [=m, 7).
Suppose that [—m, 7] = D1 U Dy U D3 and that

L@ < 1£C), €€ Dy

£E©Lee)| < 1L, €€ D
L©LeoL6e) < 1L, € e Dy

Then
[B(E) < O(1 +[e))~2Fr,

where k = logy (|L(27/3)]), and this decay is optimal; i.e., Soo(p) = 2n — k. Consequently, ¢ € C* for any
s<2n—rk—1.

The idea is to divide the interval [-1/2,1/2] into union of three sets to have the relevant estimates on
each set as in the following lemma.

Lemma 2 Let Q,(z) :== (1/2 —2)" + (1/2+ z)™. Then

() Qu() 2 @uld), w €[5, ~71U[ 5]
, s 1 1. 11
(b) Qn(x)Qn(l/Qfllx ) > (Qn(i)) , TE [71»7170]U[Ea1];
(©) Qula)Qn(1/2 ~ 42)Qu(~642" + 162> 1/2) > @u(}), & €[5, 7]

Proof. Note that Q,, (), Q,(1/2—4x2) and Q,,(—64x* + 1622 —1/2) are symmetric about the origin. Thus

we only assume that z € [0, 1].
The condition (a) follows from the fact that @, is increasing on [0, 1], since

Q. (x) = n(—(1/2— )" + (1/24+2)" ) > 0, = € [0, %].

We now prove the condition (b). For n = 1, we have
1 2 L2
Qi)@i(5 —40%) = 1= (@u(}))*
For n =2, let f(z) := Q2(x)Q2(% — 42?). Then a direct calculation shows that for 0 < z < 1,
f'(x) = da(—1 4+ 962*) < 0.

Thus we have

Qa()@2(1/2 = 4%) 2 F(1/4) = (@a(1/4), for w € [, 7]



Assume that n > 3. Since (3 — z)" > (3(3 +2))" for z € [{5, 7], we have

Q@)@ —42) = (5 — )" + (5 +2)")(1 — 427)" + (42)")

> (55 +2)" + (5 + ") — 42)" + (42?)")
= ()" + (5 +)"((1— A7) + (422)"), 1)

Let g,,(z) == (3 + )" (1 — 42?)" + (42%)") . We claim that

on(@) > (i)n ((2>n+ (i)n) forze [%&]. @)

Indeed, we divide into two cases. Suppose that = € [11—0 g] Then
1 1 1
I/TL _ 2 — — —_— 2 =
3.,,3 1
> (S)((5)? + (5)HY3 %~ 0.569.
> A+ (G~ 0569

Noticing that (($)" + ()")!/™ is decreasing on n, we obtain Condition (2). Suppose, on the other hand,
that x € [, 1]. We first derive g/, as follows:

gh (@) = n(z + 3)”*{(1 — 42?)" + (422)")

+n(z+ ) {—8x(1 — 42*)" ! + 8x(42?)" 1}

_ ~\n—1

{(1 —42®)" + (42*)" + (v + %)(—890(1 —42®)" ! 4 8z (42?)" 1)}
— (o + %)"*1{(1 — 42?21 — 40?)? — 8a(1 — 42?)(z + %))
+ (47" 24222 + 8o (4a) (w + ).
Since 42% < 1 —4a? for z € [%, 1], we obtain
Gu(w) <l -+ )"~ 421~ 457 821 — 4a?)(a + )
+ (1 — 42" 2((42?)? + 8z (42?) (v + %))}

1
_ ’I’L(l‘ 4+ = n—l(l _ 4x2)n—2

)
2
(1 — 42?)? — 82(1 — 42?)(z + %) + (422)? + 8z(4a?)(z + %)}

1
SN 422)7 (960" + 320° — 162 — 4w + 1), ®)

Let h(x) := 962* + 3223 — 1622 — 42 + 1. Then

B (x) = 384(x — i)(w _ —3%%)@ 3 —31;2¢§

]. Since h(%) = =g <0, h(z) < 0 for z € [, 1]. This together with (3) imply

gn() > gn(i) = (i)n ((Dn + (i)n) for z € [%, i].

=n(x +

Thus h/(z) <0 for x € [z,
that g, (z) < 0 for z € [z,



This concludes the claim. Putting this back to Condition (1), we obtain that for z € [15, 1],

1 1 3 3 1
Z 49 2y > ((Z\» D2\ (2 \n
Qu(@)Qn(z —42) > ()" + DEG) + ()"
3 n 1 ny\2
-Gy gm
1
- (@)
Finally, we check the condition (c¢). Note that since Q1(y) = 1, the condition (3) is obviously true for
n = 1. Suppose that n > 2. It is obvious by elementary calculation that for x € [0, 1—10]7
1 1 1 1 1
— (= _ n - nos (Z\(Z n - n,
Qulr) = (3 )" + (5 +a)" > ()5 +2)" + (5 + )"
1 1 96
S 4 = (1 =42+ @) > (1 — 42" > (1 —4(=))" = (=)™
Quly —43%) = (1L 47" + (47)" > (1~ 4a)" > (1= 4(0))" = ()"

Qn(—64x* + 1627 — %) = (1 —82?)* + (162%(1 — 42%))" > (1 — 8z%)*".

These imply that

1

(Qn(x)Qn(% — 42%)Q, (—642* + 1622 — %))Un > ((g)n T 1)1/n(1 96

Y _ 2\2
5+ )3 (1 - 827)7.

Since (5 + 2)(1 — 822)% > 1 for z € [0, 5], we have
1 96 48 15 3,3 1
Z 1822 > — 20(2)2 4 (2)2)2/2.
G T o100 8" 2 355 > 33 = 33 T (G

Noticing that ((2)™ 4 (3)")%/™ is decreasing on n, we have

(@n(2)Qu(5 — 42)Qu(~64* + 162 — 1))/
> ()" + DY)+ (I
=+ (Y
= (@n(1/9)*™.
This completes the proof. O

Theorem 3 Let ¢, be the Butterworth refinable function with order n. Then
2 ()] < O+ g2, (4)

where Ky, = 1ogy(Qn(3)) = 2n—nlog, 3—1log,(1+37") and this decay is optimal; i.e., Soo(Pn) = 2n— Ky =
nlogy 3 + logy (1 + 37™). In particular, |¢n(€)| < C(1 + [£]) 71823 and p,, € C for any s < nlogy 3 — 1.

Proof. Recall that

B cos?™(£/2)
bn(g) - cosQ"(ﬁ/Q) + Slnzn(f/Z) .

Since
Qun(sin®(€/2) — 1/2) = cos™ (£/2) +sin®" (£/2),
|£(w)| in Proposition 1 is exactly (Q,(sin?(¢/2) — 1/2)~" here. Let z := sin®(£/2) — 1/2. Then we have
1£026)] = (@u(sin®(6) ~ 1))~
§

= (@uasin?($)(1—sin?($) = 2)7 = (@l — 427



Similarly,
L) = (@u(—642" + 1657 ~1/2)) "
We take
Dy :=[-m, =27 /3] U [27/3, 7];
Dy == [-2r/3,~2sin~" (v/3/5)] U [2sin™ ! (v/3/5), 27/3];
Dy = [~2sin*(,/3/5), 2sin ™" (1/3/5)].

Then it is easy to see that

EeDyexe[-1/2,-1/4U[1/4,1/2];
€Dy e xe|-1/4,—1/10] U[1/10,1/4];
¢ € Dy & xe[-1/10,1/10).

Hence, by Proposition 1 and Lemma 2, ¢ satisfies

(&) < C(1L+ [gh =",

where k = log,(|£(27/3)]) and this decay is optimal. This leads to ¢ € C*® for any s < 2n — x — 1. O

We can also give the precise Sobolev exponent of a special class of refinable orthonormal cardinal
functions from Blaschke products in [2].

Example 4 Consider the rational filter a,, defined by

(1 +67iw)2n+1
(1 + e—iw)2n+1 _ (1 _ e—iw)2n+1’

an(w) =

which yields the refinable orthonormal cardinal function ¢,,. See [2]. Since

cos?2n 1) (/2) 2
|an(w)| = 2(2 1 .
0s22n+1) (1 /2) + sin?" Y (w/2)

Hence, by Theorem 3, we obtain
160 (€)] < C(1 + |¢])~2{(2nt1) logz 3+log, (1437771}

and this decay is optimal; i.e.,

1
sol(pn) = 5{(2n + 1) loga 3 + loga(1 +372 )},
In particular, 1
|¢n(§)| < C(l + |§D—§(2n+1)log23

and .
n € C? for any s < 5(2714— 1)logy,3 — 1.
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