Sobolev exponents of Butterworth refinable functions *

Hong Oh Kim ${ }^{\dagger}$ Rae Young Kim ‡

May 31, 2007

Abstract

The precise Sobolev exponent $s_{\infty}\left(\varphi_{n}\right)$ of the Butterworth refinable function φ_{n} associated with the Butterworth filter of order $n, b_{n}(\xi):=\frac{\cos ^{2 n}(\xi / 2)}{\cos ^{2 n}(\xi / 2)+\sin ^{2 n}(\xi / 2)}$, is shown to be $s_{\infty}\left(\varphi_{n}\right)=n \log _{2} 3+\log _{2}(1+$ $\left.3^{-n}\right)$. This recovers the previously given asymptotic estimate of $s_{\infty}\left(\varphi_{n}\right)$ of Fan and Sun [1], and gives more accurate regularity of Butterworth refinable function φ_{n}.

AMS 2000 Subject Classification: 42C15, 42C40.
Keywords: Sobolev exponent, Butterworth filter, Butterworth refinable function, Orthonormal cardinal function, Blaschke product.

The Sobolev exponent $s_{\infty}(f)$ of a function f is defined in terms of its Fourier transform

$$
s_{\infty}(f)=\sup \left\{s\left|\sup _{\xi}\right| \hat{f}(\xi) \mid(1+|\xi|)^{s}<\infty\right\}
$$

This gives the regularity of f as $f \in C^{s}$ for any $s<s_{\infty}(f)-1$.
The Butterworth filter of order n is defined by

$$
b_{n}(\xi):=\cos ^{2 n}(\xi / 2) \mathcal{L}_{n}(\xi),
$$

where

$$
\mathcal{L}_{n}(\xi):=\frac{1}{\cos ^{2 n}(\xi / 2)+\sin ^{2 n}(\xi / 2)}
$$

Then the corresponding refinable function φ_{n}, called Butterworth refinable function, is given by

$$
\begin{aligned}
\hat{\varphi}_{n}(\xi) & :=\prod_{j=1}^{\infty} b_{n}\left(2^{-j} \xi\right)=\prod_{j=1}^{\infty} \cos ^{2 n}\left(2^{-j-1} \xi\right) \prod_{j=1}^{\infty} \mathcal{L}_{n}\left(2^{-j} \xi\right) \\
& =\left(\frac{\sin (\xi / 2)}{\xi / 2}\right)^{2 n} \prod_{j=1}^{\infty} \mathcal{L}_{n}\left(2^{-j} \xi\right)
\end{aligned}
$$

Fan and Sun [1] obtained the estimate

$$
n \log _{2} 3 \leq s_{\infty}\left(\varphi_{n}\right) \leq n \log _{2} 3+\log _{2}\left(1+3^{-n}\right)
$$

[^0]We prove here that the precise Sobolev exponent is their upper bound of $s_{\infty}\left(\varphi_{n}\right)$:

$$
s_{\infty}\left(\varphi_{n}\right)=n \log _{2} 3+\log _{2}\left(1+3^{-n}\right) .
$$

As an application, we also give the precise Sobolev exponents of the special class of refinable orthonormal cardinal functions from Blaschke products in [2].

We recall a method to estimate the decay of $\hat{\varphi}$ of a refinable function φ adapted for our particular purpose in the following proposition. See [3, Lemma 7.1.5, Lemma 7.1.6].

Proposition 1 For $\mathcal{L} \in C^{1}(\mathbb{T})$, let b be the refinable filter of the refinable function φ of the form

$$
|b(\xi)|=\cos ^{2 n}(\xi / 2)|\mathcal{L}(\xi)|, \quad \xi \in[-\pi, \pi] .
$$

Suppose that $[-\pi, \pi]=D_{1} \cup D_{2} \cup D_{3}$ and that

$$
\begin{aligned}
& |\mathcal{L}(\xi)| \leq\left|\mathcal{L}\left(\frac{2 \pi}{3}\right)\right|, \quad \xi \in D_{1} \\
& |\mathcal{L}(\xi) \mathcal{L}(2 \xi)| \leq\left|\mathcal{L}\left(\frac{2 \pi}{3}\right)\right|^{2}, \quad \xi \in D_{2} \\
& |\mathcal{L}(\xi) \mathcal{L}(2 \xi) \mathcal{L}(4 \xi)| \leq\left|\mathcal{L}\left(\frac{2 \pi}{3}\right)\right|^{3}, \quad \xi \in D_{3}
\end{aligned}
$$

Then

$$
|\hat{\varphi}(\xi)| \leq C(1+|\xi|)^{-2 n+\kappa}
$$

where $\kappa=\log _{2}(|\mathcal{L}(2 \pi / 3)|)$, and this decay is optimal; i.e., $s_{\infty}(\varphi)=2 n-\kappa$. Consequently, $\varphi \in C^{s}$ for any $s<2 n-\kappa-1$.

The idea is to divide the interval $[-1 / 2,1 / 2]$ into union of three sets to have the relevant estimates on each set as in the following lemma.

Lemma 2 Let $Q_{n}(x):=(1 / 2-x)^{n}+(1 / 2+x)^{n}$. Then
(a) $Q_{n}(x) \geq Q_{n}\left(\frac{1}{4}\right), x \in\left[-\frac{1}{2},-\frac{1}{4}\right] \cup\left[\frac{1}{4}, \frac{1}{2}\right]$;
(b) $Q_{n}(x) Q_{n}\left(1 / 2-4 x^{2}\right) \geq\left(Q_{n}\left(\frac{1}{4}\right)\right)^{2}, x \in\left[-\frac{1}{4},-\frac{1}{10}\right] \cup\left[\frac{1}{10}, \frac{1}{4}\right]$;
(c) $Q_{n}(x) Q_{n}\left(1 / 2-4 x^{2}\right) Q_{n}\left(-64 x^{4}+16 x^{2}-1 / 2\right) \geq\left(Q_{n}\left(\frac{1}{4}\right)\right)^{3}, x \in\left[-\frac{1}{10}, \frac{1}{10}\right]$.

Proof. Note that $Q_{n}(x), Q_{n}\left(1 / 2-4 x^{2}\right)$ and $Q_{n}\left(-64 x^{4}+16 x^{2}-1 / 2\right)$ are symmetric about the origin. Thus we only assume that $x \in\left[0, \frac{1}{2}\right]$.

The condition (a) follows from the fact that Q_{n} is increasing on $\left[0, \frac{1}{2}\right]$, since

$$
Q_{n}^{\prime}(x)=n\left(-(1 / 2-x)^{n-1}+(1 / 2+x)^{n-1}\right) \geq 0, x \in\left[0, \frac{1}{2}\right]
$$

We now prove the condition (b). For $n=1$, we have

$$
Q_{1}(x) Q_{1}\left(\frac{1}{2}-4 x^{2}\right)=1=\left(Q_{1}\left(\frac{1}{4}\right)\right)^{2}
$$

For $n=2$, let $f(x):=Q_{2}(x) Q_{2}\left(\frac{1}{2}-4 x^{2}\right)$. Then a direct calculation shows that for $0<x<\frac{1}{4}$,

$$
f^{\prime}(x)=4 x\left(-1+96 x^{4}\right)<0 .
$$

Thus we have

$$
Q_{2}(x) Q_{2}\left(1 / 2-4 x^{2}\right) \geq f(1 / 4)=\left(Q_{2}(1 / 4)\right)^{2}, \text { for } x \in\left[\frac{1}{10}, \frac{1}{4}\right]
$$

Assume that $n \geq 3$. Since $\left(\frac{1}{2}-x\right)^{n} \geq\left(\frac{1}{3}\left(\frac{1}{2}+x\right)\right)^{n}$ for $x \in\left[\frac{1}{10}, \frac{1}{4}\right]$, we have

$$
\begin{align*}
Q_{n}(x) Q_{n}\left(\frac{1}{2}-4 x^{2}\right) & =\left(\left(\frac{1}{2}-x\right)^{n}+\left(\frac{1}{2}+x\right)^{n}\right)\left(\left(1-4 x^{2}\right)^{n}+\left(4 x^{2}\right)^{n}\right) \\
& \geq\left(\left(\frac{1}{3}\left(\frac{1}{2}+x\right)\right)^{n}+\left(\frac{1}{2}+x\right)^{n}\right)\left(\left(1-4 x^{2}\right)^{n}+\left(4 x^{2}\right)^{n}\right) \\
& =\left(\left(\frac{1}{3}\right)^{n}+1\right)\left(\frac{1}{2}+x\right)^{n}\left(\left(1-4 x^{2}\right)^{n}+\left(4 x^{2}\right)^{n}\right) \tag{1}
\end{align*}
$$

Let $g_{n}(x):=\left(\frac{1}{2}+x\right)^{n}\left(\left(1-4 x^{2}\right)^{n}+\left(4 x^{2}\right)^{n}\right)$. We claim that

$$
\begin{equation*}
g_{n}(x) \geq\left(\frac{3}{4}\right)^{n}\left(\left(\frac{3}{4}\right)^{n}+\left(\frac{1}{4}\right)^{n}\right), \text { for } x \in\left[\frac{1}{10}, \frac{1}{4}\right] \tag{2}
\end{equation*}
$$

Indeed, we divide into two cases. Suppose that $x \in\left[\frac{1}{10}, \frac{1}{5}\right]$. Then

$$
\begin{aligned}
\left(g_{n}(x)\right)^{1 / n} & \geq\left(\frac{1}{2}+x\right)\left(1-4 x^{2}\right) \geq\left(\frac{1}{2}+\frac{1}{10}\right)\left(1-4\left(\frac{1}{10}\right)^{2}\right)=0.576 \\
& \geq\left(\frac{3}{4}\right)\left(\left(\frac{3}{4}\right)^{3}+\left(\frac{1}{4}\right)^{3}\right)^{1 / 3} \approx 0.569
\end{aligned}
$$

Noticing that $\left(\left(\frac{3}{4}\right)^{n}+\left(\frac{1}{4}\right)^{n}\right)^{1 / n}$ is decreasing on n, we obtain Condition (2). Suppose, on the other hand, that $x \in\left[\frac{1}{5}, \frac{1}{4}\right]$. We first derive g_{n}^{\prime} as follows:

$$
\begin{aligned}
& g_{n}^{\prime}(x)=n\left(x+\frac{1}{2}\right)^{n-1}\left\{\left(1-4 x^{2}\right)^{n}+\left(4 x^{2}\right)^{n}\right\} \\
&+n\left(x+\frac{1}{2}\right)^{n}\left\{-8 x\left(1-4 x^{2}\right)^{n-1}+8 x\left(4 x^{2}\right)^{n-1}\right\} \\
&=n\left(x+\frac{1}{2}\right)^{n-1} \\
&\left\{\left(1-4 x^{2}\right)^{n}+\left(4 x^{2}\right)^{n}+\left(x+\frac{1}{2}\right)\left(-8 x\left(1-4 x^{2}\right)^{n-1}+8 x\left(4 x^{2}\right)^{n-1}\right)\right\} \\
&=n\left(x+\frac{1}{2}\right)^{n-1}\left\{\left(1-4 x^{2}\right)^{n-2}\left(\left(1-4 x^{2}\right)^{2}-8 x\left(1-4 x^{2}\right)\left(x+\frac{1}{2}\right)\right)\right. \\
&\left.+\left(4 x^{2}\right)^{n-2}\left(\left(4 x^{2}\right)^{2}+8 x\left(4 x^{2}\right)\left(x+\frac{1}{2}\right)\right)\right\} .
\end{aligned}
$$

Since $4 x^{2} \leq 1-4 x^{2}$ for $x \in\left[\frac{1}{5}, \frac{1}{4}\right]$, we obtain

$$
\begin{align*}
g_{n}^{\prime}(x) & \leq n\left(x+\frac{1}{2}\right)^{n-1}\left\{\left(1-4 x^{2}\right)^{n-2}\left(\left(1-4 x^{2}\right)^{2}-8 x\left(1-4 x^{2}\right)\left(x+\frac{1}{2}\right)\right)\right. \\
& \left.+\left(1-4 x^{2}\right)^{n-2}\left(\left(4 x^{2}\right)^{2}+8 x\left(4 x^{2}\right)\left(x+\frac{1}{2}\right)\right)\right\} \\
& =n\left(x+\frac{1}{2}\right)^{n-1}\left(1-4 x^{2}\right)^{n-2} \\
& \left\{\left(1-4 x^{2}\right)^{2}-8 x\left(1-4 x^{2}\right)\left(x+\frac{1}{2}\right)+\left(4 x^{2}\right)^{2}+8 x\left(4 x^{2}\right)\left(x+\frac{1}{2}\right)\right\} \\
& =n\left(x+\frac{1}{2}\right)^{n-1}\left(1-4 x^{2}\right)^{n-2}\left(96 x^{4}+32 x^{3}-16 x^{2}-4 x+1\right) . \tag{3}
\end{align*}
$$

Let $h(x):=96 x^{4}+32 x^{3}-16 x^{2}-4 x+1$. Then

$$
h^{\prime}(x)=384\left(x-\frac{1}{4}\right)\left(x-\frac{-3+\sqrt{3}}{12}\right)\left(x-\frac{-3-\sqrt{3}}{12}\right) .
$$

Thus $h^{\prime}(x) \leq 0$ for $x \in\left[\frac{1}{5}, \frac{1}{4}\right]$. Since $h\left(\frac{1}{5}\right)=-\frac{19}{625}<0, h(x)<0$ for $x \in\left[\frac{1}{5}, \frac{1}{4}\right]$. This together with (3) imply that $g_{n}^{\prime}(x)<0$ for $x \in\left[\frac{1}{5}, \frac{1}{4}\right]$. Hence

$$
g_{n}(x) \geq g_{n}\left(\frac{1}{4}\right)=\left(\frac{3}{4}\right)^{n}\left(\left(\frac{3}{4}\right)^{n}+\left(\frac{1}{4}\right)^{n}\right) \text { for } x \in\left[\frac{1}{5}, \frac{1}{4}\right] .
$$

This concludes the claim. Putting this back to Condition (1), we obtain that for $x \in\left[\frac{1}{10}, \frac{1}{4}\right]$,

$$
\begin{aligned}
Q_{n}(x) Q_{n}\left(\frac{1}{2}-4 x^{2}\right) & \geq\left(\left(\frac{1}{3}\right)^{n}+1\right)\left(\frac{3}{4}\right)^{n}\left(\left(\frac{3}{4}\right)^{n}+\left(\frac{1}{4}\right)^{n}\right) \\
& =\left(\left(\frac{3}{4}\right)^{n}+\left(\frac{1}{4}\right)^{n}\right)^{2} \\
& =\left(Q_{n}\left(\frac{1}{4}\right)\right)^{2}
\end{aligned}
$$

Finally, we check the condition (c). Note that since $Q_{1}(y) \equiv 1$, the condition (3) is obviously true for $n=1$. Suppose that $n \geq 2$. It is obvious by elementary calculation that for $x \in\left[0, \frac{1}{10}\right]$,

$$
\begin{aligned}
& Q_{n}(x)=\left(\frac{1}{2}-x\right)^{n}+\left(\frac{1}{2}+x\right)^{n} \geq\left(\frac{1}{3}\right)^{n}\left(\frac{1}{2}+x\right)^{n}+\left(\frac{1}{2}+x\right)^{n} \\
& Q_{n}\left(\frac{1}{2}-4 x^{2}\right)=\left(1-4 x^{2}\right)^{n}+\left(4 x^{2}\right)^{n} \geq\left(1-4 x^{2}\right)^{n} \geq\left(1-4\left(\frac{1}{10}\right)^{2}\right)^{n}=\left(\frac{96}{100}\right)^{n} ; \\
& Q_{n}\left(-64 x^{4}+16 x^{2}-\frac{1}{2}\right)=\left(1-8 x^{2}\right)^{2 n}+\left(16 x^{2}\left(1-4 x^{2}\right)\right)^{n} \geq\left(1-8 x^{2}\right)^{2 n} .
\end{aligned}
$$

These imply that

$$
\left(Q_{n}(x) Q_{n}\left(\frac{1}{2}-4 x^{2}\right) Q_{n}\left(-64 x^{4}+16 x^{2}-\frac{1}{2}\right)\right)^{1 / n} \geq\left(\left(\frac{1}{3}\right)^{n}+1\right)^{1 / n}\left(\frac{1}{2}+x\right) \frac{96}{100}\left(1-8 x^{2}\right)^{2}
$$

Since $\left(\frac{1}{2}+x\right)\left(1-8 x^{2}\right)^{2} \geq \frac{1}{2}$ for $x \in\left[0, \frac{1}{10}\right]$, we have

$$
\left(\frac{1}{2}+x\right) \frac{96}{100}\left(1-8 x^{2}\right)^{2} \geq \frac{48}{100}>\frac{15}{32}=\frac{3}{4}\left(\left(\frac{3}{4}\right)^{2}+\left(\frac{1}{4}\right)^{2}\right)^{2 / 2} .
$$

Noticing that $\left(\left(\frac{3}{4}\right)^{n}+\left(\frac{1}{4}\right)^{n}\right)^{2 / n}$ is decreasing on n, we have

$$
\begin{aligned}
& \left(Q_{n}(x) Q_{n}\left(\frac{1}{2}-4 x^{2}\right) Q_{n}\left(-64 x^{4}+16 x^{2}-\frac{1}{2}\right)\right)^{1 / n} \\
& \quad>\left(\left(\frac{1}{3}\right)^{n}+1\right)^{1 / n} \frac{3}{4}\left(\left(\frac{3}{4}\right)^{n}+\left(\frac{1}{4}\right)^{n}\right)^{2 / n} \\
& \quad=\left(\left(\frac{3}{4}\right)^{n}+\left(\frac{1}{4}\right)^{n}\right)^{3 / n} \\
& \quad=\left(Q_{n}(1 / 4)\right)^{3 / n} .
\end{aligned}
$$

This completes the proof.
Theorem 3 Let φ_{n} be the Butterworth refinable function with order n. Then

$$
\begin{equation*}
\left|\hat{\varphi}_{n}(\xi)\right| \leq C(1+|\xi|)^{-2 n+\kappa_{n}} \tag{4}
\end{equation*}
$$

where $\kappa_{n}=\log _{2}\left(Q_{n}\left(\frac{1}{4}\right)\right)=2 n-n \log _{2} 3-\log _{2}\left(1+3^{-n}\right)$ and this decay is optimal; i.e., $s_{\infty}\left(\varphi_{n}\right)=2 n-\kappa_{n}=$ $n \log _{2} 3+\log _{2}\left(1+3^{-n}\right)$. In particular, $\left|\hat{\varphi}_{n}(\xi)\right| \leq C(1+|\xi|)^{-n \log _{2} 3}$ and $\varphi_{n} \in C^{s}$ for any $s<n \log _{2} 3-1$.

Proof. Recall that

$$
b_{n}(\xi)=\frac{\cos ^{2 n}(\xi / 2)}{\cos ^{2 n}(\xi / 2)+\sin ^{2 n}(\xi / 2)}
$$

Since

$$
Q_{n}\left(\sin ^{2}(\xi / 2)-1 / 2\right)=\cos ^{2 n}(\xi / 2)+\sin ^{2 n}(\xi / 2)
$$

$|\mathcal{L}(w)|$ in Proposition 1 is exactly $\left(Q_{n}\left(\sin ^{2}(\xi / 2)-1 / 2\right)^{-1}\right.$ here. Let $x:=\sin ^{2}(\xi / 2)-1 / 2$. Then we have

$$
\begin{aligned}
|\mathcal{L}(2 \xi)| & =\left(Q_{n}\left(\sin ^{2}(\xi)-\frac{1}{2}\right)\right)^{-1} \\
& =\left(Q_{n}\left(4 \sin ^{2}\left(\frac{\xi}{2}\right)\left(1-\sin ^{2}\left(\frac{\xi}{2}\right)\right)-\frac{1}{2}\right)\right)^{-1}=\left(Q_{n}\left(\frac{1}{2}-4 x^{2}\right)\right)^{-1}
\end{aligned}
$$

Similarly,

$$
|\mathcal{L}(4 \xi)|=\left(Q_{n}\left(-64 x^{4}+16 x^{2}-1 / 2\right)\right)^{-1}
$$

We take

$$
\begin{aligned}
& D_{1}:=[-\pi,-2 \pi / 3] \cup[2 \pi / 3, \pi] ; \\
& D_{2}:=\left[-2 \pi / 3,-2 \sin ^{-1}(\sqrt{3 / 5})\right] \cup\left[2 \sin ^{-1}(\sqrt{3 / 5}), 2 \pi / 3\right] ; \\
& D_{3}:=\left[-2 \sin ^{-1}(\sqrt{3 / 5}), 2 \sin ^{-1}(\sqrt{3 / 5})\right] .
\end{aligned}
$$

Then it is easy to see that

$$
\begin{aligned}
& \xi \in D_{1} \Leftrightarrow x \in[-1 / 2,-1 / 4] \cup[1 / 4,1 / 2] \\
& \xi \in D_{2} \Leftrightarrow x \in[-1 / 4,-1 / 10] \cup[1 / 10,1 / 4] \\
& \xi \in D_{3} \Leftrightarrow x \in[-1 / 10,1 / 10]
\end{aligned}
$$

Hence, by Proposition 1 and Lemma 2, φ satisfies

$$
|\hat{\varphi}(\xi)| \leq C(1+|\xi|)^{-2 n+\kappa}
$$

where $\kappa=\log _{2}(|\mathcal{L}(2 \pi / 3)|)$ and this decay is optimal. This leads to $\varphi \in C^{s}$ for any $s<2 n-\kappa-1$.
We can also give the precise Sobolev exponent of a special class of refinable orthonormal cardinal functions from Blaschke products in [2].

Example 4 Consider the rational filter a_{n} defined by

$$
a_{n}(w)=\frac{\left(1+e^{-i w}\right)^{2 n+1}}{\left(1+e^{-i w}\right)^{2 n+1}-\left(1-e^{-i w}\right)^{2 n+1}}
$$

which yields the refinable orthonormal cardinal function φ_{n}. See [2]. Since

$$
\left|a_{n}(w)\right|=\left(\frac{\cos ^{2(2 n+1)}(w / 2)}{\cos ^{2(2 n+1)}(w / 2)+\sin ^{2(2 n+1)}(w / 2)}\right)^{1 / 2}
$$

Hence, by Theorem 3, we obtain

$$
\left|\hat{\varphi}_{n}(\xi)\right| \leq C(1+|\xi|)^{-\frac{1}{2}\left\{(2 n+1) \log _{2} 3+\log _{2}\left(1+3^{-2 n-1}\right)\right\}}
$$

and this decay is optimal; i.e.,

$$
s_{\infty}\left(\varphi_{n}\right)=\frac{1}{2}\left\{(2 n+1) \log _{2} 3+\log _{2}\left(1+3^{-2 n-1}\right)\right\}
$$

In particular,

$$
\left|\hat{\varphi}_{n}(\xi)\right| \leq C(1+|\xi|)^{-\frac{1}{2}(2 n+1) \log _{2} 3}
$$

and

$$
\varphi_{n} \in C^{s} \text { for any } s<\frac{1}{2}(2 n+1) \log _{2} 3-1
$$

Acknowledgments

The authors thank the anonymous referee for the careful and valuable comments.

References

[1] A. Fan and Q. Sun, Regularity of Butterworth refinable function, Asian J. Math. 5 (3) 433-440 (2001).
[2] M. Cotronei, M.L. LoCascio, H.O. Kim, C.A. Micchelli and T. Sauer, Refinable functions from Blaschke Products, Rend. Mat. Appl. (7) 26 267-290 (2006).
[3] I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF series in Applied Mathematics, SIAM, Philadelphia (1992).

[^0]: *This work was supported by the Korea Science and Engineering Foundation (KOSEF) Grant funded by the Korea Government(MOST) (R01-2006-000-10424-0:the first author) and by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD, Basic Research Promotion Fund) (KRF-2006-331-C00014:the second author).
 ${ }^{\dagger}$ Department of Mathematical Sciences, KAIST, 373-1, Guseong-dong, Yuseong-gu, Daejeon, 305-701, Republic of Korea (hkim@amath.kaist.ac.kr)
 \ddagger Department of Mathematics, Yeungnam University, 214-1, Dae-dong, Gyeongsan-si, Gyeongsangbuk-do, 712-749, Republic of Korea (rykim@ynu.ac.kr)

