On asymptotic behavior of Battle-Lemarié scaling functions and wavelets *

Hong Oh Kim ${ }^{\dagger}$ Rae Young Kim ${ }^{\ddagger}$ and Ja Seung Ku^{\S}

April 12, 2006

Abstract

We show that the 'centered' Battle-Lemarié scaling function and wavelet of order n converge in $L^{q}(2 \leq q \leq \infty)$, uniformly in particular, to the Shannon scaling function and wavelet as n tends to the infinity.

AMS 2000 Subject Classification: 41A60, 42A20, 42C40.
Keywords: B-spline, Multiresolution analysis, Battle-Lemarié wavelet, Shannon wavelet, Euler-Frobenius polynomial.

1 Introduction

The Battle-Lemarié scaling function is obtained by applying the orthogonalization trick to the B-spline functions. In order to get the symmetry about the origin, we will take the centered B-spline of order n as

$$
\begin{align*}
B_{1}(x) & :=\chi_{[-1 / 2,1 / 2)}(x) \\
B_{n}(x) & :=B_{n-1} * B_{1}(x), n=2,3, \cdots \tag{1.1}
\end{align*}
$$

The Fourier transform of B_{n} then has the form

$$
\begin{equation*}
\hat{B}_{n}(w)=\left(\frac{\sin w / 2}{w / 2}\right)^{n}=(\cos w / 4)^{n} \hat{B}_{n}(w / 2) \tag{1.2}
\end{equation*}
$$

We note

$$
\begin{align*}
\Phi_{n}(w) & :=\sum_{k \in \mathbb{Z}}\left|\hat{B}_{n}(w+2 \pi k)\right|^{2} \\
& =(\cos w / 4)^{2 n} \Phi_{n}(w / 2)+(\sin w / 4)^{2 n} \Phi_{n}(w / 2+\pi) \tag{1.3}
\end{align*}
$$

and apply the orthonormalization trick to B_{n} to get the Battle-Lemarié scaling function φ_{n} of order n defined by

$$
\begin{equation*}
\hat{\varphi}_{n}(w):=\frac{\hat{B}_{n}(w)}{\sqrt{\Phi_{n}(w)}}=m_{n}(w / 2) \hat{\varphi}_{n}(w / 2) \tag{1.4}
\end{equation*}
$$

[^0]where
\[

$$
\begin{equation*}
m_{n}(w)=(\cos w / 2)^{n} \sqrt{\frac{\Phi_{n}(w)}{\Phi_{n}(2 w)}} \tag{1.5}
\end{equation*}
$$

\]

The filter m_{n} is 2π-periodic if n is even and 4π-periodic if n is odd. We note that m_{n} is a CQF filter in the sense that

$$
\begin{equation*}
\left|m_{n}(w)\right|^{2}+\left|m_{n}(w+\pi)\right|^{2}=1 \tag{1.6}
\end{equation*}
$$

The corresponding wavelet is given by

$$
\begin{equation*}
\hat{\psi}_{n}(2 w)=e^{-i w} M_{n}(w) \hat{\varphi}_{n}(w) \tag{1.7}
\end{equation*}
$$

where

$$
\begin{equation*}
M_{n}(w)=|(\sin w / 2)|^{n} \sqrt{\frac{\Phi_{n}(w+\pi)}{\Phi_{n}(2 w)}}=\left|m_{n}(w+\pi)\right| \tag{1.8}
\end{equation*}
$$

Note that M_{n} is 2π-periodic. Therefore, if n is even, the function φ_{n} defines an orthonormal scaling function for a multiresolution analysis. If n is odd, φ_{n} does not define a scaling function of a multiresolution analysis, but they have the same asymptotic behavior as will be seen in the main theorem in this article. See [1, 2, 3] for the standard Battle-Lemarié wavelet. In this short article, we show that the Battle-Lemarié scaling function φ_{n} and its corresponding wavelet ψ_{n} converge, in $L^{q}(\mathbb{R})(2 \leq q \leq \infty)$, uniformly in particular, to the Shannon scaling function $\varphi_{S H}$ and Shannon wavelet $\psi_{S H}$ as n tends to the infinity, where

$$
\hat{\varphi}_{S H}(w):=\chi_{[-\pi, \pi]}(w)
$$

and

$$
\hat{\psi}_{S H}(w):=e^{-i w / 2} \chi_{[-2 \pi,-\pi]} \bigcup[\pi, 2 \pi](w) .
$$

It is known that the centered B-spline B_{n} tends to the Gaussian distribution as $n \rightarrow \infty[4,5]$. For the asymptotic behavior of Daubechies filters and scaling functions, see $[6,7,8]$. The idea of the proof also appears in $[9,10]$ for the analogous asymptotic behaviors of other family of wavelets.

2 Main result

We need the following property of the Euler-Frobenius polynomials.
Proposition 2.1 ([11]) Let n be any positive integer and let $E_{2 n-1}$ be the Euler-Frobenius polynomial of degree $2 n-2$ defined by

$$
E_{2 n-1}(z):=(2 n-1)!\sum_{k=0}^{2 n-2} B_{2 n}(-n+k+1) z^{k} .
$$

Then the $2 n-2$ roots, $\left\{\lambda_{n, j}: j=1, \cdots, 2 n-2\right\}$, of $E_{2 n-1}$ has the properties that

$$
\begin{gathered}
\lambda_{n, 2 n-2}<\lambda_{n, 2 n-3} \cdots<\lambda_{n, n}<-1<\lambda_{n, n-1}<\cdots<\lambda_{n, 1}<0 \\
\lambda_{n, j} \lambda_{n, 2 n-1-j}=1, \quad(j=1,2, \cdots, n-1)
\end{gathered}
$$

and

$$
\Phi_{n}(w)=\frac{e^{i w(n-1)}}{(2 n-1)!} E_{2 n-1}\left(e^{-i w}\right)=\frac{1}{(2 n-1)!} \prod_{k=1}^{n-1} \frac{1-2 \lambda_{n, k} \cos w+\lambda_{n, k}^{2}}{\left|\lambda_{n, k}\right|} .
$$

Therefore, $\Phi_{n}(w+\pi) \leq \Phi_{n}(w)$ on $[-\pi / 2, \pi / 2]$ and $\Phi_{n}(w) \leq \Phi_{n}(w+\pi)$ on $[-\pi,-\pi / 2) \bigcup(\pi / 2, \pi]$.

The 2π-periodic filters for the Shannon scaling function and wavelet are given, respectively, as

$$
m_{S H}^{0}(w):= \begin{cases}1, & |w| \leq \pi / 2 \tag{2.1}\\ 0, & \pi / 2<|w| \leq \pi\end{cases}
$$

and

$$
m_{S H}^{H}(w):= \begin{cases}0, & |w|<\pi / 2 \tag{2.2}\\ 1, & \pi / 2 \leq|w| \leq \pi\end{cases}
$$

We also define a 4π-periodic filter $m_{S H}^{1} \in L^{2}([-2 \pi, 2 \pi])$ by

$$
m_{S H}^{1}(w):= \begin{cases}1, & |w| \leq \pi / 2 \tag{2.3}\\ 0, & \pi / 2<|w| \leq \pi \\ -1, & \pi<|w|<3 \pi / 2 \\ 0, & 3 \pi / 2 \leq|w| \leq 2 \pi\end{cases}
$$

Notice that

$$
\begin{equation*}
\hat{\varphi}_{S H}(w):=\chi_{[-\pi, \pi]}(w)=\prod_{j=1}^{\infty} m_{S H}^{0}\left(w / 2^{j}\right)=\prod_{j=1}^{\infty} m_{S H}^{1}\left(w / 2^{j}\right) . \tag{2.4}
\end{equation*}
$$

Lemma 2.2 As n tends to ∞,
(a) $m_{2 n}(w)$ converges to $m_{S H}^{0}(w)$ for every $w \in[-\pi, \pi] \backslash\{ \pm \pi / 2\}$;
(b) $m_{2 n+1}(w)$ converges to $m_{S H}^{1}(w)$ for every $w \in[-2 \pi, 2 \pi] \backslash\{ \pm \pi / 2, \pm 3 \pi / 2\}$;
and so, $M_{n}(w)$ converges to $m_{S H}^{H}(w)$ for every $w \in[-\pi, \pi] \backslash\{ \pm \pi / 2\}$.
Proof. For $w \in(-3 \pi / 2,-\pi / 2) \bigcup(\pi / 2,3 \pi / 2), \Phi_{n}(w) \leq \Phi_{n}(w+\pi)$ by Proposition 2.1. By use of (1.3), we see that

$$
\begin{aligned}
\left|m_{n}(w)\right|^{2} & =\frac{(\cos w / 2)^{2 n} \Phi_{n}(w)}{\Phi_{n}(2 w)} \\
& =\frac{(\cos w / 2)^{2 n}}{(\sin w / 2)^{2 n}} \frac{(\sin w / 2)^{2 n} \Phi_{n}(w)}{(\cos w / 2)^{2 n} \Phi_{n}(w)+(\sin w / 2)^{2 n} \Phi_{n}(w+\pi)} \\
& \leq \frac{1}{(\tan w / 2)^{2 n}} \frac{(\sin w / 2)^{2 n} \Phi_{n}(w)}{(\sin w / 2)^{2 n} \Phi_{n}(w+\pi)} \\
& \leq \frac{1}{(\tan w / 2)^{2 n}} \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

Now, let $w \in(-2 \pi,-3 \pi / 2) \bigcup(-\pi / 2, \pi / 2) \bigcup(3 \pi / 2,2 \pi)$. Note that

$$
\begin{equation*}
\left|m_{n}(w)\right|^{2}+\left|m_{n}(w+\pi)\right|^{2}=1 . \tag{2.5}
\end{equation*}
$$

Hence $\lim _{n \rightarrow \infty}\left|m_{n}(w)\right|=1$, since $\lim _{n \rightarrow \infty}\left|m_{n}(w+\pi)\right|=0$ by (2.5). Since $m_{2 n}(w)$ is 2π-periodic and positive by the definition of $m_{2 n}, \lim _{n \rightarrow \infty} m_{2 n}(w)=1$. Therefore, (a) is satisfied. For (b), note that $m_{2 n+1}$ is 4π-periodic. If $w \in(-\pi / 2, \pi / 2)$, then $m_{2 n+1}(w)$ is positive. Hence $\lim _{n \rightarrow \infty} m_{2 n+1}(w)=1$. If $w \in(-2 \pi,-3 \pi / 2) \bigcup(3 \pi / 2,2 \pi)$, then $m_{2 n+1}(w)$ is negative. Therefore $\lim _{n \rightarrow \infty} m_{2 n+1}(w)=-1$.

Lemma 2.3 For all n,

$$
\left|m_{n}(w)-1\right| \leq\left\{\begin{array}{lr}
2, & \text { for all } w \\
2|w| / \pi, & |w| \leq \pi / 2
\end{array}\right.
$$

Proof. We note that

$$
\left|m_{n}(w)-1\right| \leq\left|m_{n}(w)\right|+1 \leq 2 .
$$

For $|w| \leq \pi / 2$ and for $n \geq 1,|\tan w / 2|^{2 n} \leq|\tan w / 2| \leq 2|w| / \pi$. Therefore, we have for $|w| \leq \pi / 2$,

$$
\begin{aligned}
\left|m_{n}(w)-1\right| & =\left|\sqrt{\frac{\Phi_{n}(w)}{\Phi_{n}(2 w)}}(\cos w / 2)^{n}-1\right| \\
& =\left|\frac{\sqrt{\Phi_{n}(w)}(\cos w / 2)^{n}-\sqrt{\Phi_{n}(2 w)}}{\sqrt{\Phi_{n}(2 w)}}\right| \\
& =\left|\frac{\Phi_{n}(w)(\cos w / 2)^{2 n}-\Phi_{n}(2 w)}{\sqrt{\Phi_{n}(2 w)}\left(\sqrt{\Phi_{n}(w)}(\cos w / 2)^{n}+\sqrt{\Phi_{n}(2 w)}\right)}\right| \\
& \leq \frac{(\sin w / 2)^{2 n} \Phi_{n}(w+\pi)}{\Phi_{n}(2 w)} \\
& =\frac{(\sin w / 2)^{2 n}}{(\cos w / 2)^{2 n}} \frac{(\cos w / 2)^{2 n} \Phi_{n}(w+\pi)}{\Phi_{n}(2 w)} \\
& =(\tan w / 2)^{2 n} \frac{(\cos w / 2)^{2 n} \Phi_{n}(w+\pi)}{(\cos w / 2)^{2 n} \Phi_{n}(w)+(\sin w / 2)^{2 n} \Phi_{n}(w+\pi)} \\
& \leq(\tan w / 2)^{2 n} \frac{\Phi_{n}(w+\pi)}{\Phi_{n}(w)} \\
& \leq \frac{2}{\pi}|w|,
\end{aligned}
$$

where we used the fact that $\Phi_{n}(w+\pi) \leq \Phi_{n}(w)$ on $[-\pi / 2, \pi / 2]$.
Lemma 2.4 (a) For each fixed $w, \hat{\varphi}_{n}(w)=\prod_{j=1}^{\infty} m_{n}\left(w / 2^{j}\right)$ converges uniformly on n.
(b) $\hat{\varphi}_{n}(w) \rightarrow \hat{\varphi}_{S H}(w)$ pointwise a.e. as $n \rightarrow \infty$.
(c) $\hat{\psi}_{n}(w) \rightarrow \hat{\psi}_{S H}(w)$ pointwise a.e. as $n \rightarrow \infty$.

Proof. (a) Fix w and choose j_{0} so that $\left|w / 2^{j_{0}}\right| \leq \pi / 2$. By Lemma 2.3,

$$
\begin{aligned}
\sum_{j=1}^{\infty}\left|m_{n}\left(\frac{w}{2^{j}}\right)-1\right| & =\sum_{j=1}^{j_{0}}\left|m_{n}\left(\frac{w}{2^{j}}\right)-1\right|+\sum_{j=j_{0}+1}^{\infty}\left|m_{n}\left(\frac{w}{2^{j}}\right)-1\right| \\
& \leq 2 j_{0}+\sum_{j=j_{0}+1}^{\infty} \frac{2}{\pi} \frac{|w|}{2^{j}}=2 j_{0}+\frac{2}{\pi} \frac{|w|}{2^{j_{0}}},
\end{aligned}
$$

uniformly on n. Therefore, the product $\varphi_{n}(w)$ converges uniformly on n.
(b) Fix $w \notin \cup_{j=1}^{\infty} 2^{j}(\pm \pi+2 \pi \mathbb{Z})$ and let $\epsilon>0$. By (a), we can choose j_{1} (independent of n) so that

$$
\left|\hat{\varphi}_{n}(w)-\prod_{j=1}^{j_{1}} m_{n}\left(\frac{w}{2^{j}}\right)\right|<\epsilon
$$

and

$$
\left|\hat{\varphi}_{S H}(w)-\prod_{j=1}^{j_{1}} m_{S H}^{i}\left(\frac{w}{2^{j}}\right)\right|<\epsilon,
$$

for $i=0,1$. Therefore, we have

$$
\begin{aligned}
\left|\hat{\varphi}_{n}(w)-\hat{\varphi}_{S H}(w)\right| & \leq\left|\hat{\varphi}_{n}(w)-\prod_{j=1}^{j_{1}} m_{n}\left(\frac{w}{2^{j}}\right)\right|+\left|\prod_{j=1}^{j_{1}} m_{n}\left(\frac{w}{2^{j}}\right)-\prod_{j=1}^{j_{1}} m_{S H}^{i}\left(\frac{w}{2^{j}}\right)\right|+\left|\prod_{j=1}^{j_{1}} m_{S H}^{i}\left(\frac{w}{2^{j}}\right)-\hat{\varphi}_{S H}(w)\right| \\
& <2 \epsilon+\left|\prod_{j=1}^{j_{1}} m_{n}\left(\frac{w}{2^{j}}\right)-\prod_{j=1}^{j_{1}} m_{S H}^{i}\left(\frac{w}{2^{j}}\right)\right| .
\end{aligned}
$$

We choose $i:=i(n)=0$ ($n=$ even), 1 ($n=$ odd). Note that $w / 2^{j} \notin \pm \pi / 2+2 \pi \mathbb{Z}$ for any $j \geq 1$. Since $m_{2 n}\left(w / 2^{j}\right) \rightarrow m_{S H}^{0}\left(w / 2^{j}\right)$ and $m_{2 n+1}\left(w / 2^{j}\right) \rightarrow m_{S H}^{1}\left(w / 2^{j}\right)$ as $n \rightarrow \infty$ as shown in Lemma 2.2, we can choose $n_{0} \in \mathbb{N}$ so that

$$
\left|\prod_{j=1}^{j_{1}} m_{n}\left(w / 2^{j}\right)-\prod_{j=1}^{j_{1}} m_{S H}^{i(n)}\left(w / 2^{j}\right)\right|<\epsilon \quad \text { for } n \geq n_{0}
$$

Therefore, $\hat{\varphi}_{n}(w) \rightarrow \hat{\varphi}_{S H}(w)$ pointwise as $n \rightarrow \infty$ for $w \notin \cup_{j=1}^{\infty} 2^{j}(\pm \pi+2 \pi \mathbb{Z})$.
(c) The proof follows from (b) in view of the definition of $\hat{\psi}_{n}$ in (1.7). It is also proved in [3] with a different proof.

Now, we state and prove our main result.
Theorem 2.5 (a) For $1 \leq p<\infty,\left\|\hat{\varphi}_{n}-\hat{\varphi}_{S H}\right\|_{L^{p}(\mathbb{R})} \rightarrow 0$ and

$$
\left\|\hat{\psi}_{n}-\hat{\psi}_{S H}\right\|_{L^{p}(\mathbb{R})} \rightarrow 0 \text { as } n \rightarrow \infty
$$

(b) For $2 \leq q \leq \infty,\left\|\varphi_{n}-\varphi_{S H}\right\|_{L^{q}(\mathbb{R})} \rightarrow 0$ and $\left\|\psi_{n}-\psi_{S H}\right\|_{L^{q}(\mathbb{R})} \rightarrow 0$, as $n \rightarrow \infty$.

In particular, $\varphi_{n} \rightarrow \varphi_{S H}$ and $\psi_{n} \rightarrow \psi_{S H}$ uniformly on \mathbb{R} as $n \rightarrow \infty$.
Proof. We define an auxiliary 2π-periodic continuous function M, via

$$
M(w)= \begin{cases}1, & |w| \leq \frac{\pi}{2} \\ 2^{3 / 2}(\cos w / 2)^{3}, & \frac{\pi}{2}<|w| \leq \pi\end{cases}
$$

and let $\hat{\varphi}(w):=\prod_{j=1}^{\infty} M\left(w / 2^{j}\right)$. It is obvious that

$$
0 \leq\left|m_{n}(w)\right| \leq M(w), n=3,4, \cdots
$$

and that $\hat{\varphi}(w)$ has the decay $|\hat{\varphi}(w)| \leq C(1+|w|)^{-3 / 2}$ by Theorem 5.5 of [11]. We have

$$
\begin{aligned}
\left|\hat{\varphi}_{n}(w)\right| & =\prod_{j=1}^{\infty}\left|m_{n}\left(\frac{w}{2^{j}}\right)\right| \\
& \leq \prod_{j=1}^{\infty}\left|M\left(\frac{w}{2^{j}}\right)\right|=|\hat{\varphi}(w)| \leq C(1+|w|)^{-3 / 2} \\
\left|\hat{\psi}_{n}(w)\right| & =M_{n}(w / 2)\left|\hat{\varphi}_{n}(w / 2)\right| \leq C(1+|w / 2|)^{-3 / 2}
\end{aligned}
$$

Therefore (a) follows from Lemma 2.4 by the dominated convergence theorem. (b) follows from (a) by Hausdorff-Young inequality:

$$
\|f\|_{L^{q}(\mathbb{R})} \leq\|\hat{f}\|_{L^{p}(\mathbb{R})}, \text { for } 1 \leq p \leq 2
$$

where q is the conjugate exponent to p.
Remark. We illustrate the convergence of the Battle-Lemarié scaling functions and wavelets (for $n=4$ and 10) to the Shannon scaling function and wavelet in Figure 1.

Acknowledgments

The authors thank the anonymous referee for the careful and valuable comments.

Figure 1: (a) φ_{4} (b) φ_{10} (c) $\varphi_{S H}$ (d) ψ_{4} (e) ψ_{10} (f) $\psi_{S H}$.

References

[1] G. Battle, A block spin construction of ondelettes. I. Lemarié functions, Comm. Math. Phys. 110 601-615 (1987).
[2] I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia (1992).
[3] P.G. Lemarié, Ondelettes à localisation exponentielle, J. Math. Pures Appl. (9), 67 227-236 (1988).
[4] I.J. Schoenberg, Cardinal interpolation and spline functions, J. Approx. Theory, 2 167-206 (1969).
[5] M. Unser, A. Aldroubi and M. Eden, On the asymptotic convergence of B-spline wavelets to Gabor functions, IEEE Trans. Inform. Theory, 38 864-872 (1992).
[6] D. Kateb and P.G. Lemarie-Rieusset, Asymptotic behavior of the Daubechies filters, Appl. Comput. Harmon. Anal. 2 398-399 (1995).
[7] J. Shen and G. Strang, Asymptotic analysis of Daubechies polynomials, Proc. Amer. Math. Soc. 124 3819-3833 (1996)
[8] J. Shen and G. Strang, Asymptotics of Daubechies filters, scaling functions, and wavelets, Appl. Comput. Harmon. Anal. 5 312-331 (1998).
[9] M. Cotronei, M.L. LoCascio, H.O. Kim, C.A. Micchelli and T. Sauer, Refinable functions from Blaschke products, preprint.
[10] H.O. Kim, R.Y. Kim and J.S. Ku, Wavelet frames from Butterworth filters, Sampl. Theory Signal Image Process. 4 231-250 (2005).
[11] C.K. Chui, An Introduction to Wavelets, Academic Press, San Diego (1992).

[^0]: *This work was supported by Korea Research Foundation Grant (KRF-2002-070-C00004).
 ${ }^{\dagger}$ Division of Applied Mathematics, KAIST, 373-1, Guseong-dong, Yuseong-gu, Daejeon, 305-701, Republic of Korea (hkim@amath.kaist.ac.kr)
 ${ }^{\ddagger}$ Department of Mathematics, Yeungnam University, 214-1, Dae-dong, Gyeongsan-si, Gyeongsangbuk-do, 712-749, Republic of Korea (rykim@ynu.ac.kr)
 §Division of Applied Mathematics, KAIST, 373-1, Guseong-dong, Yuseong-gu, Daejeon, 305-701, Republic of Korea (capricio@amath.kaist.ac.kr)

