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Abstract

We show that the ‘centered’ Battle-Lemarié scaling function and wavelet of order n converge in
Lq(2 ≤ q ≤ ∞), uniformly in particular, to the Shannon scaling function and wavelet as n tends to the
infinity.
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1 Introduction

The Battle-Lemarié scaling function is obtained by applying the orthogonalization trick to the B-spline
functions. In order to get the symmetry about the origin, we will take the centered B-spline of order n as

B1(x) := χ[−1/2,1/2)(x),
Bn(x) := Bn−1 ∗B1(x), n = 2, 3, · · · . (1.1)

The Fourier transform of Bn then has the form

B̂n(w) =
(

sinw/2
w/2

)n
= (cosw/4)nB̂n(w/2). (1.2)

We note

Φn(w) :=
∑

k∈Z
|B̂n(w + 2πk)|2

= (cosw/4)2nΦn(w/2) + (sinw/4)2nΦn(w/2 + π). (1.3)

and apply the orthonormalization trick to Bn to get the Battle-Lemarié scaling function ϕn of order n
defined by

ϕ̂n(w) :=
B̂n(w)√
Φn(w)

= mn(w/2)ϕ̂n(w/2), (1.4)
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where

mn(w) = (cosw/2)n
√

Φn(w)
Φn(2w)

. (1.5)

The filter mn is 2π-periodic if n is even and 4π-periodic if n is odd. We note that mn is a CQF filter in
the sense that

|mn(w)|2 + |mn(w + π)|2 = 1. (1.6)

The corresponding wavelet is given by

ψ̂n(2w) = e−iwMn(w)ϕ̂n(w), (1.7)

where

Mn(w) = |(sinw/2)|n
√

Φn(w + π)
Φn(2w)

= |mn(w + π)|. (1.8)

Note that Mn is 2π-periodic. Therefore, if n is even, the function ϕn defines an orthonormal scaling function
for a multiresolution analysis. If n is odd, ϕn does not define a scaling function of a multiresolution analysis,
but they have the same asymptotic behavior as will be seen in the main theorem in this article. See [1, 2, 3]
for the standard Battle-Lemarié wavelet. In this short article, we show that the Battle-Lemarié scaling
function ϕn and its corresponding wavelet ψn converge, in Lq(R)(2 ≤ q ≤ ∞), uniformly in particular, to
the Shannon scaling function ϕSH and Shannon wavelet ψSH as n tends to the infinity, where

ϕ̂SH(w) := χ[−π,π](w)

and
ψ̂SH(w) := e−iw/2χ[−2π,−π]

S
[π,2π](w).

It is known that the centered B-spline Bn tends to the Gaussian distribution as n → ∞ [4, 5]. For the
asymptotic behavior of Daubechies filters and scaling functions, see [6, 7, 8]. The idea of the proof also
appears in [9, 10] for the analogous asymptotic behaviors of other family of wavelets.

2 Main result

We need the following property of the Euler-Frobenius polynomials.

Proposition 2.1 ([11]) Let n be any positive integer and let E2n−1 be the Euler-Frobenius polynomial of
degree 2n− 2 defined by

E2n−1(z) := (2n− 1)!
2n−2∑

k=0

B2n(−n+ k + 1)zk.

Then the 2n− 2 roots, {λn,j : j = 1, · · · , 2n− 2}, of E2n−1 has the properties that

λn,2n−2 < λn,2n−3 · · · < λn,n < −1 < λn,n−1 < · · · < λn,1 < 0;

λn,jλn,2n−1−j = 1, (j = 1, 2, · · · , n− 1)

and

Φn(w) =
eiw(n−1)

(2n− 1)!
E2n−1(e−iw) =

1
(2n− 1)!

n−1∏

k=1

1− 2λn,k cosw + λ2
n,k

|λn,k| .

Therefore, Φn(w + π) ≤ Φn(w) on [−π/2, π/2] and Φn(w) ≤ Φn(w + π) on [−π,−π/2)
⋃

(π/2, π].
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The 2π-periodic filters for the Shannon scaling function and wavelet are given, respectively, as

m0
SH(w) :=

{
1, |w| ≤ π/2;
0, π/2 < |w| ≤ π, (2.1)

and

mH
SH(w) :=

{
0, |w| < π/2;
1, π/2 ≤ |w| ≤ π. (2.2)

We also define a 4π-periodic filter m1
SH ∈ L2([−2π, 2π]) by

m1
SH(w) :=





1, |w| ≤ π/2;
0, π/2 < |w| ≤ π;
−1, π < |w| < 3π/2;
0, 3π/2 ≤ |w| ≤ 2π.

(2.3)

Notice that

ϕ̂SH(w) := χ[−π,π](w) =
∞∏

j=1

m0
SH(w/2j) =

∞∏

j=1

m1
SH(w/2j). (2.4)

Lemma 2.2 As n tends to ∞,

(a) m2n(w) converges to m0
SH(w) for every w ∈ [−π, π] \ {±π/2};

(b) m2n+1(w) converges to m1
SH(w) for every w ∈ [−2π, 2π] \ {±π/2,±3π/2};

and so, Mn(w) converges to mH
SH(w) for every w ∈ [−π, π] \ {±π/2}.

Proof. For w ∈ (−3π/2,−π/2)
⋃

(π/2, 3π/2), Φn(w) ≤ Φn(w + π) by Proposition 2.1. By use of (1.3), we
see that

|mn(w)|2 =
(cosw/2)2nΦn(w)

Φn(2w)

=
(cosw/2)2n

(sinw/2)2n

(sinw/2)2nΦn(w)
(cosw/2)2nΦn(w) + (sinw/2)2nΦn(w + π)

≤ 1
(tanw/2)2n

(sinw/2)2nΦn(w)
(sinw/2)2nΦn(w + π)

≤ 1
(tanw/2)2n

→ 0 as n→∞.

Now, let w ∈ (−2π,−3π/2)
⋃

(−π/2, π/2)
⋃

(3π/2, 2π). Note that

|mn(w)|2 + |mn(w + π)|2 = 1. (2.5)

Hence limn→∞ |mn(w)| = 1, since limn→∞ |mn(w + π)| = 0 by (2.5). Since m2n(w) is 2π-periodic and
positive by the definition of m2n, limn→∞m2n(w) = 1. Therefore, (a) is satisfied. For (b), note that
m2n+1 is 4π-periodic. If w ∈ (−π/2, π/2), then m2n+1(w) is positive. Hence limn→∞m2n+1(w) = 1. If
w ∈ (−2π,−3π/2)

⋃
(3π/2, 2π), then m2n+1(w) is negative. Therefore limn→∞m2n+1(w) = −1. �

Lemma 2.3 For all n,

|mn(w)− 1| ≤
{

2, for all w;
2|w|/π, |w| ≤ π/2.
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Proof. We note that
|mn(w)− 1| ≤ |mn(w)|+ 1 ≤ 2.

For |w| ≤ π/2 and for n ≥ 1, | tanw/2|2n ≤ | tanw/2| ≤ 2|w|/π. Therefore, we have for |w| ≤ π/2,

|mn(w)− 1| =
∣∣∣∣∣

√
Φn(w)
Φn(2w)

(cosw/2)n − 1

∣∣∣∣∣

=

∣∣∣∣∣

√
Φn(w)(cosw/2)n −

√
Φn(2w)√

Φn(2w)

∣∣∣∣∣

=

∣∣∣∣∣
Φn(w)(cosw/2)2n − Φn(2w)√

Φn(2w)(
√

Φn(w)(cosw/2)n +
√

Φn(2w))

∣∣∣∣∣

≤ (sinw/2)2nΦn(w + π)
Φn(2w)

=
(sinw/2)2n

(cosw/2)2n

(cosw/2)2nΦn(w + π)
Φn(2w)

= (tanw/2)2n (cosw/2)2nΦn(w + π)
(cosw/2)2nΦn(w) + (sinw/2)2nΦn(w + π)

≤ (tanw/2)2nΦn(w + π)
Φn(w)

≤ 2
π
|w|,

where we used the fact that Φn(w + π) ≤ Φn(w) on [−π/2, π/2]. �

Lemma 2.4 (a) For each fixed w, ϕ̂n(w) =
∏∞
j=1mn(w/2j) converges uniformly on n.

(b) ϕ̂n(w)→ ϕ̂SH(w) pointwise a.e. as n→∞.
(c) ψ̂n(w)→ ψ̂SH(w) pointwise a.e. as n→∞.

Proof. (a) Fix w and choose j0 so that |w/2j0 | ≤ π/2. By Lemma 2.3,

∞∑

j=1

|mn(
w

2j
)− 1| =

j0∑

j=1

|mn(
w

2j
)− 1|+

∞∑

j=j0+1

|mn(
w

2j
)− 1|

≤ 2j0 +
∞∑

j=j0+1

2
π

|w|
2j

= 2j0 +
2
π

|w|
2j0

,

uniformly on n. Therefore, the product ϕn(w) converges uniformly on n.
(b) Fix w /∈ ∪∞j=12j(±π + 2πZ) and let ε > 0. By (a), we can choose j1 (independent of n) so that

|ϕ̂n(w)−
j1∏

j=1

mn(
w

2j
)| < ε,

and

|ϕ̂SH(w)−
j1∏

j=1

mi
SH(

w

2j
)| < ε,
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for i = 0, 1. Therefore, we have

|ϕ̂n(w)− ϕ̂SH(w)| ≤ |ϕ̂n(w)−
j1∏

j=1

mn(
w

2j
)|+ |

j1∏

j=1

mn(
w

2j
)−

j1∏

j=1

mi
SH(

w

2j
)|+ |

j1∏

j=1

mi
SH(

w

2j
)− ϕ̂SH(w)|

< 2ε+ |
j1∏

j=1

mn(
w

2j
)−

j1∏

j=1

mi
SH(

w

2j
)|.

We choose i := i(n) = 0 (n=even), 1 (n=odd). Note that w/2j /∈ ±π/2 + 2πZ for any j ≥ 1. Since
m2n(w/2j) → m0

SH(w/2j) and m2n+1(w/2j) → m1
SH(w/2j) as n → ∞ as shown in Lemma 2.2, we can

choose n0 ∈ N so that

|
j1∏

j=1

mn(w/2j)−
j1∏

j=1

m
i(n)
SH (w/2j)| < ε for n ≥ n0.

Therefore, ϕ̂n(w)→ ϕ̂SH(w) pointwise as n→∞ for w /∈ ∪∞j=12j(±π + 2πZ).
(c) The proof follows from (b) in view of the definition of ψ̂n in (1.7). It is also proved in [3] with a different
proof.

�
Now, we state and prove our main result.

Theorem 2.5 (a) For 1 ≤ p <∞, ||ϕ̂n − ϕ̂SH ||Lp(R) → 0 and
||ψ̂n − ψ̂SH ||Lp(R) → 0 as n→∞.

(b) For 2 ≤ q ≤ ∞, ||ϕn − ϕSH ||Lq(R) → 0 and ||ψn − ψSH ||Lq(R) → 0, as n→∞.
In particular, ϕn → ϕSH and ψn → ψSH uniformly on R as n→∞.
Proof. We define an auxiliary 2π-periodic continuous function M , via

M(w) =
{

1, |w| ≤ π
2 ;

23/2(cosw/2)3, π
2 < |w| ≤ π,

and let ϕ̂(w) :=
∏∞
j=1M(w/2j). It is obvious that

0 ≤ |mn(w)| ≤M(w), n = 3, 4, · · ·
and that ϕ̂(w) has the decay |ϕ̂(w)| ≤ C(1 + |w|)−3/2 by Theorem 5.5 of [11]. We have

|ϕ̂n(w)| =
∞∏

j=1

|mn(
w

2j
)|

≤
∞∏

j=1

|M(
w

2j
)| = |ϕ̂(w)| ≤ C(1 + |w|)−3/2,

|ψ̂n(w)| = Mn(w/2)|ϕ̂n(w/2)| ≤ C(1 + |w/2|)−3/2.

Therefore (a) follows from Lemma 2.4 by the dominated convergence theorem. (b) follows from (a) by
Hausdorff-Young inequality:

||f ||Lq(R) ≤ ||f̂ ||Lp(R), for 1 ≤ p ≤ 2,

where q is the conjugate exponent to p. �

Remark. We illustrate the convergence of the Battle-Lemarié scaling functions and wavelets (for n = 4
and 10) to the Shannon scaling function and wavelet in Figure 1.
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Figure 1: (a) ϕ4 (b) ϕ10 (c) ϕSH (d) ψ4 (e) ψ10 (f) ψSH .
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