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Abstract

We show that the ‘centered’ Battle-Lemarié scaling function and wavelet of order n converge in
L7(2 < ¢ < 00), uniformly in particular, to the Shannon scaling function and wavelet as n tends to the
infinity.
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1 Introduction

The Battle-Lemarié scaling function is obtained by applying the orthogonalization trick to the B-spline
functions. In order to get the symmetry about the origin, we will take the centered B-spline of order n as

Bl(x) = X[—1/2,1/2)(SU),
B, (z):= Bp_1 % Bi(x), n=2,3,---. (1.1)

The Fourier transform of B,, then has the form

3 _ (sme/2)" cosw/4)" By, (w
Bu(w) = (T2 ) = (cosuwfa) B (w/2). (1.2

‘We note

O, (w) =Y |Bn(w + 2k)|?
kEZ

= (cosw/4)*" @, (w/2) + (sinw/4)*"®,, (w/2 + T). (1.3)

and apply the orthonormalization trick to B,, to get the Battle-Lemarié scaling function ¢, of order n
defined by

On(w) = ——= = mu(w/2)Pn(w/2), (1.4)
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where
@, (w)

my(w) = (cosw/2)" B, (20)’

(1.5)

The filter m,, is 2w-periodic if n is even and 4r-periodic if n is odd. We note that m,, is a CQF filter in
the sense that
[ (w0) 2 + [ (w + 7)[2 = 1. (1.6)

The corresponding wavelet is given by
'(Z)n(Qw) = e_inn(w)@n(w)v (17)

where

@, (w + )

M) = (sinw/2)" [ =5

= |my(w + 7). (1.8)

Note that M,, is 2w-periodic. Therefore, if n is even, the function ¢,, defines an orthonormal scaling function
for a multiresolution analysis. If n is odd, ¢, does not define a scaling function of a multiresolution analysis,
but they have the same asymptotic behavior as will be seen in the main theorem in this article. See [1, 2, 3]
for the standard Battle-Lemarié wavelet. In this short article, we show that the Battle-Lemarié scaling
function ¢,, and its corresponding wavelet 1, converge, in L4(R)(2 < ¢ < o), uniformly in particular, to
the Shannon scaling function ¢ gy and Shannon wavelet ¥ sy as n tends to the infinity, where

s (W) = X[ g (W)

and
—iw/2

&SH (’U}) =€ X[—2m,—7] S[ﬂ',27r] (’LU)

It is known that the centered B-spline B,, tends to the Gaussian distribution as n — oo [4, 5]. For the
asymptotic behavior of Daubechies filters and scaling functions, see [6, 7, 8]. The idea of the proof also
appears in [9, 10] for the analogous asymptotic behaviors of other family of wavelets.

2 Main result

We need the following property of the Euler-Frobenius polynomials.

Proposition 2.1 ([11]) Let n be any positive integer and let Ea,_1 be the Euler-Frobenius polynomial of

degree 2n — 2 defined by
2n—2

Epp_1(2) == (2n— 1)1 > Bou(—n+k+1)z".
k=0

Then the 2n — 2 roots, {\,; :j=1,---,2n — 2}, of Ea,_1 has the properties that
)\n,2n72 < )\n,2n73 e < )\mn <-1< )\’I’L71’L71 <---< )\ml < 07

Anjdnon—1—j =1, (j=1,2,--- ,;n—1)

and
piw(n—1) , 1 ] - 2)\,k cosw + A2k

)= (2n—1)! ] o]

k=1
Therefore, ®,,(w + ) < &, (w) on [—7/2,7/2] and D, (w) < Op(w+ 7) on [—m, —7/2) J(7w /2, 7.



The 27-periodic filters for the Shannon scaling function and wavelet are given, respectively, as

mgp (w) = { (1) ggiﬁﬁé . (2.1)
and
mi(w) = { (1) 5‘22%2\3 . (2.2)
We also define a 4m-periodic filter mk, € L?([—2m,27]) by
Lo Jwf<m/2;
mba() =4 0 TS 23
0, 3r/2 < |w| < 27.
Notice that - -
P51 (w) = X(mn (w) = [ [ M (w/2) = [] mbn (w/2). (2.4)

j=1 j=1
Lemma 2.2 Asn tends to oo,
(a) may,(w) converges to m%y (w) for every w € [—m,m) \ {£7/2};
(b) mant1(w) converges to mky(w) for every w € [—2m, 27 \ {£7/2, £37/2};
and so, M, (w) converges to mi, (w) for every w € [—m, 7]\ {£n/2}.

Proof. For w € (=3n/2,—7/2) (7 /2,37/2), ®,,(w) < P, (w + 7) by Proposition 2.1. By use of (1.3), we
see that

5 (cosw/2)?"®, (w)

~ (cosw/2)*" (sinw/2)?"®,, (w)
(sinw/2)2" (cosw/2)?" P, (w) + (sinw/2)2"®,,(w + )
< 1 (sinw/2)*"®,, (w)
~ (tanw/2)2" (sinw/2)?"®,, (w + )
1

SWHOBJSTL—)OO.

Now, let w € (=27, —37/2) J(—7/2,7/2) J(37/2,27). Note that
[y (W) + [mn (w + ) > = 1. (2.5)

Hence lim, o0 |my,(w)| = 1, since lim,, o0 |my(w + 7)| = 0 by (2.5). Since may,(w) is 2m-periodic and
positive by the definition of may,, lim,_,o ma,(w) = 1. Therefore, (a) is satisfied. For (b), note that
Mant1 is 4m-periodic. If w € (—m/2,7/2), then may41(w) is positive. Hence lim,, o mopt1(w) = 1. If
w € (=2m, —37/2) | J(37/2,27), then ma,11(w) is negative. Therefore lim,, oo Map41(w) = —1. O

Lemma 2.3 For all n,
2 for all w;
_ < ) )
[ (w) = 1] < { Swl/m, |w| < 1/2.



Proof. We note that
[ (w) — 1] < [mp(w)| +1 < 2.

For |w| < 7/2 and for n > 1, |[tanw/2|?" < |tanw/2| < 2|w|/m. Therefore, we have for |w| < 7/2,

| (w) — 1] = f:((;;)) (cosw/2)" — 1
_ V@, (w)(cosw/2)" — /P, (2w)
D, (2w)
_ @, (w)(cosw/2)%" — &, (2w) |
V@ (2w) (/@ (w)(cosw/2)" + 1/, (2w))

(sinw/2)?"®,, (w + )
D, (2w)
_ (sinw/2)?" (cosw/2)*"®,, (w + )
(cosw/2)2n D, (2w)

(cosw/2)*"®,, (w + 7)
(cosw/2)?2n®,, (w) + (sinw/2)?" P, (w + )
D, (w+ )

D, (w)

= (tanw/2)*"

< (tanw/2)?"

2
< *|U)|,
™

where we used the fact that ®,,(w + 7) < &, (w) on [—7/2,7/2].
Lemma 2.4 (a) For each fized w, ¢p(w) = H;il mn(w/27) converges uniformly on n.
(b) @n(w) — @su(w) pointwise a.e. as n — oo.

(¢) n(w) — Psm(w) pointwise a.e. as n — oo.

Proof. (a) Fix w and choose jjo so that |w/27°| < 7/2. By Lemma 2.3,

oo Jjo o
w w w
Z|mn(§)*1|12|mn(§)*l|+ Z |mn(2—])—1\
i=1 i=1 d=do+1
2w 2 |w|
< 2jo+ Z Py U
Jj=jo+1

uniformly on n. Therefore, the product ¢, (w) converges uniformly on n.

(b) Fix w ¢ U52,27 (47 + 27Z) and let € > 0. By (a), we can choose j; (independent of n) so that

J1
R w
|n(w) — l_llmn(27)| <¢,
j=

and 4
J1 ] w
psw) = [Lmbu(55)1 <
j:



for 4 = 0, 1. Therefore, we have

[Bu(w) - psm(w)] < Hmn (5) |+|Hmn HmSH (5) |+|HmSH (57) = ¢sm(w)

J1
w i W
< 2€+|Hmn(§)— [Lmsun )1
j:

j=1

We choose i := i(n) = 0 (n=even), 1 (n=o0dd). Note that w/2’ ¢ +7/2+ 277Z for any j > 1. Since
man(w/27) — m&,(w/27) and mapi1(w/27) — miy(w/27) as n — oo as shown in Lemma 2.2, we can
choose ng € N so that

J1
| Hmn(w/2j H ml(n) (w/29)| < e for n > ny.

Therefore, ¢ (w) — @sm(w ) pointwise as n — oo for w ¢ U2, 27 (7 + 27Z).

(¢) The proof follows from (b) in view of the definition of ¢, in (1.7). It is also proved in [3] with a different
proof.
O
Now, we state and prove our main result.

Theorem 2.5 (a) For 1 < p < oo, ||¢n — @sul|Lr®) — 0 and

|9 — bsa Lo — 0 as n — oo.
(b) For2 < q <00, |l¢n —@sullraw) — 0 and |[n, — Ysu||La@) — 0, as n — oo.
In particular, ¢, — @sg and P, — Ygy uniformly on R as n — oo.

Proof. We define an auxiliary 27-periodic continuous function M, via

e jw| <5
Mw) = { 222(cosw/2)?, § < |w| <,

and let ¢(w) := [[;2, M(w/27). Tt is obvious that
and that ¢(w) has the decay |$(w)| < C(1 + |w|)~3/2 by Theorem 5.5 of [11]. We have

< [T1MG)l = [(w)] < C(1+ Juw]) =32,

[ (w)] = My (w/2)|@n(w/2)] < O(L+ w/2])7/2.

Therefore (a) follows from Lemma 2.4 by the dominated convergence theorem. (b) follows from (a) by
Hausdorff-Young inequality:

e < [1f]lo@), for 1 <p<2,

where ¢ is the conjugate exponent to p. O

Remark. We illustrate the convergence of the Battle-Lemarié scaling functions and wavelets (for n = 4
and 10) to the Shannon scaling function and wavelet in Figure 1.
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Figure 1: (a) ¢4 (b) w10 (¢) psu (d) ¥a (e) 10 (f) Ysm-
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