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Abstract

If the integer translates of a function φ with compact support gen-
erate a frame for a subspace W of L2(R), then it is automatically a
Riesz basis for W, and there exists a unique dual Riesz basis belonging
to W. Considerable freedom can be obtained by considering oblique
duals, i.e., duals not necessarily belonging to W. Extending work by
Ben–Artzi and Ron, we characterize the existence of oblique duals
generated by a function with support on an interval of length one. If
such a generator exists, we show that it can be chosen with desired
smoothness. Regardless whether φ is polynomial or not, the same
condition implies that a polynomial dual supported on an interval of
length one exists.

1 Introduction

Let L2(R) denote the real Hilbert space consisting of real-valued square-
integrable functions on R, and with the inner product

〈f, g〉 =

∫ ∞

−∞
f(x)g(x) dx.

Let Tk, k ∈ Z, denote the translation operator (Tkf)(x) = f(x − k), x ∈ R.
In this paper we aim at construction of two functions φ, φ̃ ∈ L2(R) with
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compact support, for which the expansions

f =
∑
k∈Z

〈f, Tkφ̃〉Tkφ, f ∈ span{Tkφ}k∈Z (1)

hold. Our goal is to obtain expansions which can be implemented directly,
without modification of the functions φ and φ̃; this means that we want the
functions φ and φ̃ to have compact support and be given explicitly in terms
of (finite linear combinations of) elementary functions. Very often we also
want φ and φ̃ to be differentiable up to a certain order.

In our approach, we fix a function φ having compact support and for
which {Tkφ}k∈Z is a Riesz basis for its closed linear span, and search for a
nice (in the above sense) function φ̃ such that the expansion property (1)
holds. We note that the generator for the canonical dual frame of {Tkφ}k∈Z

in general does not satisfy our requirements: in general, this function is an
infinite linear combination of the functions Tkφ, k ∈ Z, and does not have
compact support. The generator for the canonical dual frame belongs to
W := span{Tkφ}k∈Z. We will see that, by allowing φ̃ to be outside W, we
obtain considerable freedom, which, under a natural condition, allows us to
construct functions φ̃ with the properties we want.

We note that results of that type are known for B-splines, due to work
by deBoor [3], [4]. Furthermore, in 1990 Ben–Artzi and Ron [1] obtained
results in the spirt of what we are aiming at. In particular, they proved the
following:

Theorem 1.1 Assume that {Tkφ}k∈Z is a Riesz sequence and that φ has
support in [0, N ] for some N ∈ N. Then the following holds:

(i) The expansion property (1) holds with a compactly supported function
φ̃ if and only if the only solution to the equation

∑
k∈Z

ckTkφ = 0 is
ck = 0, ∀k;

(ii) If the functions x �→ φ(x), x �→ φ(x + 1), . . . , x �→ φ(x + N − 1) are
linearly independent, there exists a function φ̃ with support in [0, 1] such
that (1) holds.

One of our results, Corollary 3.2, characterizes the independence condi-
tion in Theorem 1.1 (ii).

A few remarks about terminology are in order. Considering a function
φ ∈ L2(R) such that {Tkφ}k∈Z is a Riesz sequence, the unique function
φ̃ ∈ W satisfying (1) is called the (canonical) dual generator. Any func-
tiom φ̃ ∈ L2(R) satisfying (1) is called a generalized dual generator; and if a
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generalized dual generator φ̃ has the additional property that {Tkφ̃}k∈Z is a
frame sequence, then φ̃ is called an oblique dual generator. This terminology
is used, e.g., in [6]. All our constructions yield oblique dual generators sup-
ported on an interval of the form [n, n + 1] for some n ∈ Z; thus, {Tkφ̃}k∈Z

is in fact an orthogonal system. We further note that while the expansions
we obtain in (1) are more general than classical frame decompositions, they
are a special case of the pseudo-frame decompositions considered by Li and
Ogawa [9]. Oblique duals of Riesz bases of translates played a key role in the
construction of a biorthogonal multiresolution analysis in [8].

Note that [6] also deals with frames of translates and their oblique duals,
but with a different setup: the results in [6] yield theoretical conditions for
the existence of oblique duals belonging to precribed vector spaces, but only
few concrete constructions.

2 Basic results

Let H denote a separable real Hilbert space with inner product 〈·, ·〉. We
assume that the reader is familiar with the concepts of frames, Riesz bases,
and Bessel sequences in Hilbert spaces.

Any Riesz basis {fk}∞k=1 for H is also a frame for H. On the other hand,
a frame {fk}∞k=1 is a Riesz basis if

∞∑
k=1

ckfk = 0, {ck} ∈ �2 ⇒ ck = 0, ∀k.

A sequence {fk}∞k=1 in H which only forms a frame (resp. Riesz basis) for a
closed subspace of H is called a frame sequence (resp. Riesz sequence).

It is well–known that if φ ∈ L2(R) has compact support and {Tkφ}k∈Z

is a frame sequence, then it is automatically a Riesz sequence; a proof can
be found, e.g., in [5]. The following lemma will be the starting point for our
constructions.

Lemma 2.1 Assume that the functions φ, φ̃ ∈ L2(R) have compact support
and generate Bessel sequences. Then the following are equivalent:

(i) f =
∑

k∈Z
〈f, Tkφ̃〉Tkφ, ∀f ∈ W;

(ii) 〈φ, Tkφ̃〉 = δk,0.

Proof. If (i) holds, then {Tkφ}k∈Z is a frame for W, and therefore a Riesz
sequence; (ii) follows by letting f = φ in (i). On the other hand, if (ii) holds,
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then (i) holds for f = φ. A change of the summation index proves that then
(i) holds for any translate Tkφ, and therefore on span{Tkφ}k∈Z; by continuity
of the operator f �→∑

k∈Z
〈f, Tkφ̃〉Tkφ we obtain the conclusion. �

Assume now that we fix the function φ and want to find a function φ̃ such
that the expansion property (1) holds. If we want to obtain (1) via Lemma
2.1, then we will have to solve the equations in (ii). Our main tool will be to
reformulate these equations as a moment problem. We refer to the appendix
for more information on moment problems.

Lemma 2.2 Let {fk}N
k=1 be a collection of vectors in H and consider the

moment problem

〈f, fk〉 =

{
1 if k = 1,

0 if k = 2, ..., N.
(2)

Then the following are equivalent:

(i) The moment problem (2) has a solution f .

(ii) If
∑N

k=1 ckfk = 0 for some scalar coefficients ck, then c1 = 0.

(iii) f1 /∈ span{fk}N
k=2.

In case a solution exists, it can be chosen of the form f =
∑N

k=1 dkfk for
some scalar coefficients dk.

The proof is given in the appendix. For our purpose, it turns out to be
essential to find other solutions to the moment problem (2) than the one
stated in Lemma 2.2. In the next theorem we find solutions belonging to
other vector spaces.

Theorem 2.3 Assume that the vectors {fk}N
k=1 in H satisfy the condition

(ii) in Lemma 2.2 and that {gj}∞j=0 is total in H. Then there exists M ∈ N

such that the moment problem (2) has a solution f ∈ span{gj}M
j=0.

The proof of Theorem 2.3 is given in the appendix.
For our examples, we will mainly consider B-splines. Recall that they are

given inductively by

B1(x) = χ[0,1], BN+1(x) = (BN ∗ B1)(x) =

∫ 1

0

BN(x − t)dt.
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3 Oblique dual generators supported on [0, 1]

Given a function φ ∈ L2(R) with compact support such that {Tkφ}k∈Z is a
Riesz sequence, our first goal is to search for oblique dual generators sup-
ported on an interval of length one. For convenience, we first consider the
interval [0, 1].

By translation, we can always assume that the generator φ for the Riesz
basis {Tkφ}k∈Z has support in an interval [0, N ] for some N ∈ N. Note that
we do not require the support to equal such an interval.

Theorem 3.1 Assume that φ ∈ L2(R) has support in an interval [0, N ] for
some N ∈ N and that {Tkφ}k∈Z is a Riesz sequence. Then the following are
equivalent:

(i) {Tkφ}k∈Z has a generalized dual {Tkφ̃}k∈Z for which supp φ̃ ⊆ [0, 1].

(ii) If
∑N−1

k=0 ckφ(x + k) = 0 for all x ∈ [0, 1], then c0 = 0.

(iii) φ|[0,1] /∈ span{(T−N+1φ)|[0,1], · · · , (T−N+2φ)|[0,1], · · · , (T−1φ)|[0,1]}.
In case the conditions are satisfied, the generalized duals {Tkφ̃}k∈Z are or-
thogonal sequences; in particular, they are oblique duals of {Tkφ}k∈Z. One
can choose φ̃ of the form

φ̃(x) =

(
N−1∑
k=0

dkφ(x + k)

)
χ[0,1](x) (3)

for some scalar coefficients dk.

Proof. We will apply Lemma 2.1. If supp φ̃ ⊆ [0, 1], then

〈Tkφ, φ̃〉 =

∫ 1

0

φ(x − k)φ̃(x)dx.

Since we have assumed that suppφ ⊆ [0, N ], this expression shows that for
all k > 0 and all k ≤ −N , we have 〈Tkφ, φ̃〉 = 0. Thus, the duality condition
in Lemma 2.1 means that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 = 〈φ, φ̃〉 =

∫ 1

0

φ(x)φ̃(x)dx

0 = 〈T−1φ, φ̃〉 =

∫ 1

0

φ(x + 1)φ̃(x)dx

0 = · · · · · ·

0 = 〈T−N+1φ, φ̃〉 =

∫ 1

0

φ(x + N − 1)φ̃(x)dx

(4)

5



This is a moment problem in the Hilbert space L2(0, 1), and the stated equiv-
alence follows immediately from Lemma 2.2. Furthermore, if the condition
(ii) is satisfied, it is clear that {Tkφ̃}k∈Z is an orthogonal sequence. �

Note that the coefficients dk in (3) are easy to find: inserting this ex-
pression for φ̃ into the moment problem (4) leads to a system of N linear
equations in the coefficients, d0, d1, . . . , dN−1.

It is clear that the condition in Theorem 3.1 (ii) is weaker than the con-
dition in Theorem 1.1 (ii): for example, if g = 0 on an interval [k, k + 1] for
some k = 1, 2, . . . , N − 1, then the condition in Theorem 3.1 (ii) is not satis-
fied, but Theorem 3.1 (ii) might be satisfied. Further, the reader can check
that the function φ(x) = xχ[0,1](x)+χ[2,3](x) generates a Riesz sequence, and
that it satisfies the condition in Theorem 3.1 (ii); however, the condition in
Theorem 1.1 (ii) is not satisfied.

Exactly the same argument as in the proof of Theorem 3.1 gives a neces-
sary and sufficient condition for the existence of an oblique dual generated by
a function with support on an interval [n, n+1] for some n = 0, 1, . . . , N −1.
In fact, under the assumptions in Theorem 3.1, the following are equivalent:

(i) {Tkφ}k∈Z has an oblique dual {Tkφ̃}k∈Z for which suppφ̃ ⊆ [n, n + 1].

(ii) If
∑N−1

k=0 ckφ(x + k) = 0 for all x ∈ [0, 1], then cn = 0.

An immediate consequence of this is that the independence condition in
Theorem 1.1 (ii) characterizes the case where for each n = 0, 1, . . . , N − 1
there exist oblique dual generators supported on [n, n + 1]:

Corollary 3.2 Assume that φ ∈ L2(R) has support on an interval [0, N ] and
that {Tkφ}k∈Z is a Riesz sequence. Then the following are equivalent:

(i) The functions

x �→ φ(x), x �→ φ(x + 1), . . . , x �→ φ(x + N − 1)

are linearly independent on the interval [0, 1];

(ii) For each n = 0, 1, . . . , N − 1, there exists an oblique dual generated by
a function with support on [n, n + 1].

It is known that for any B-spline BN , the functions BN(· + k), k =
0, · · · , N−1, are linearly independent on [0, 1]. Thus, for each n = 0, 1, . . . , N−
1, the Riesz sequence {TkBN}k∈Z has an oblique dual generator of the form

φ̃(x) =

(
N−1∑
k=0

dkBN(x + k)

)
χ[n,n+1](x). (5)
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Example 3.3 Assume that φ satisfies the conditions in Theorem 3.1. By
Theorem 2.3 it immediately follows that {Tkφ}k∈Z has an oblique dual gen-
erated by a trigonometric polynomial

φ̃(x) =

(
a0 +

M∑
n=1

(an cos(2πnx) + bn sin(2πnx))

)
χ[0,1](x).

For completeness, we mention that there actually exist functions φ with
compact support for which {Tkφ}k∈Z is a Riesz sequence, but for which no
compactly supported dual generator exists. Consider, e.g., the function

φ = χ[0,1] +
1

2
χ[1,2]

A direct verification (or a perturbation argument, see, e.g., Example 15.1.2
in [5]) reveals that {Tkφ}k∈Z is a Riesz sequence. Via Theorem 1.1 (i) it is
easy to see that no compactly supported generalized dual generator exists.

4 Smooth oblique dual generators

For notational convenience, we stick to oblique dual generators supported on
[0, 1] in this section. Let us look once more at the expression for the oblique
dual generator φ̃ in (3). We observe that even if the generator φ is smooth,
φ̃ will in general not be differentiable at x = 0 and x = 1. In that case a
smoother dual generator can be obtained via the following result. Note that
no extra assumption (compared to Theorem 3.1) is needed:

Theorem 4.1 Assume that φ ∈ L2(R) has support on an interval [0, N ] and
that {Tkφ}k∈Z is a Riesz sequence. Assume that

N−1∑
k=0

ckφ(x + k) = 0, ∀x ∈ [0, 1] ⇒ c0 = 0.

Then, for any p, q ∈ N, there exists an oblique dual generator of the form

φ̃(x) = xp(1 − x)q

(
N−1∑
k=0

dkφ(x + k)

)
χ[0,1](x). (6)

Proof. Due to the assumption, we know that if

N−1∑
k=0

ckφ(x + k)xp/2(1 − x)q/2 = 0 for all x ∈ [0, 1],
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then c0 = 0. Thus, according to Lemma 2.2 with H = L2(0, 1), the moment
problem ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 =

∫ 1

0

φ(x)xp/2(1 − x)q/2h(x)dx

0 =

∫ 1

0

φ(x + 1)xp/2(1 − x)q/2h(x)dx

0 = · · · · · ·

0 =

∫ 1

0

φ(x + N − 1)xp/2(1 − x)q/2h(x)dx

has a solution h of the form

h(x) =

(
N−1∑
k=0

dkφ(x + k)xp/2(1 − x)q/2

)
χ[0,1](x).

This means that the function

φ̃(x) := xp/2(1 − x)q/2h(x) =

(
N−1∑
k=0

dkφ(x + k)

)
xp(1 − x)qχ[0,1](x)

solves the moment problem (4). �

We note that in order to apply Theorem 4.1 we do not need to worry about
its proof: we may simply take a function φ̃ of the form (6) and determine
the constants d0, . . . , dN−1 such that we obtain a solution to the moment
problem (4). On matrix form, the constants d0, . . . , dN−1 are determined by
the equation

Md = e,

where M is the symmetric matrix⎛
⎜⎜⎜⎜⎜⎝

∫ 1
0 xp(1 − x)qφ(x)φ(x)dx · · ∫ 1

0 xp(1 − x)qφ(x)φ(x + N − 1)dx∫ 1
0 xp(1 − x)qφ(x + 1)φ(x)dx · · ∫ 1

0 xp(1 − x)qφ(x + 1)φ(x + N − 1)dx
· · · ·
· · · ·∫ 1

0 xp(1 − x)qφ(x + N − 1)φ(x)dx · · ∫ 1
0 xp(1 − x)qφ(x + N − 1)φ(x + N − 1)dx

⎞
⎟⎟⎟⎟⎟⎠

and

d =

⎛
⎜⎜⎜⎜⎝

d0

d1

·
·

dN−1

⎞
⎟⎟⎟⎟⎠ , e =

⎛
⎜⎜⎜⎜⎝

1
0
·
·
0

⎞
⎟⎟⎟⎟⎠ .

8



We note that if we want higher order derivatives of φ̃ at the points x = 0
and x = 1 to exist, it only affects the integrals in the entries of matrix M ,
but not the size of the matrix. Thus, the computational complexity does not
increase.

Example 4.2 The figures show some oblique dual generators for Riesz se-
quences generated by various B-splines, for various values of p and q. Note
that the existence of smooth oblique dual generators is known from the lit-
erature in this special case.

Observe that the oblique dual generator associated with φ = B6, p = q =
4 is a polynomial of degree 13 on the interval [0, 1] and that it oscillates
heavily!

5

3

2

1

-1

0,8

4

0

-2

x

0,60 0,2 0,4 1

The generator φ̃ in (6) corresponding to φ = B2, p = q = 2.

30

0

10

-10

-30

0,4

20

-20

0,8

x

0,60,20 1

The generator φ̃ in (6) corresponding to φ = B3, p = q = 3.
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150000

0

50000

-50000

-150000

0,4

100000

-100000

0,8

x

0,60,20 1

The generator φ̃ in (6) corresponding to φ = B6, p = q = 4.

5 Polynomial oblique dual generators

The ”smoothening procedure” described in Section 4 only works if the gen-
erator φ has derivatives of sufficiently high order (except maybe at points
x ∈ Z). For example, if φ is non–differentiable at x = 1/2, the dual in
Theorem 4.1 will in general not be differentiable, regardless how p, q are cho-
sen. Our aim now is to prove that if the necessary condition in Theorem 3.1
is satisfied, then a polynomial dual with support on [0, 1] exists, regardless
whether φ is a polynomial or not. As a corollary of that, we will be able to
find smooth oblique generators via the same procedure as before.

Theorem 5.1 Assume that φ ∈ L2(R) has support on an interval [0, N ] and
that {Tkφ}k∈Z is a Riesz sequence. Assume further that

N−1∑
k=0

ckφ(x + k) = 0, ∀x ∈ [0, 1] ⇒ c0 = 0. (7)

Then {Tkφ}k∈Z has an oblique dual {Tkφ̃}k∈Z generated by a function of the
form

φ̃(x) =
(
a0 + a1x + · · ·+ aMxM

)
χ[0,1](x) (8)

for some M ∈ N.

Proof. We have to prove that the moment problem (4) has a solution φ̃
of the form (8) for some M ∈ N. But since the polynomials are dense in
L2(0, 1), this follows directly from Theorem 2.3. �
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We note that the proof of Theorem 5.1 relies on Weierstrass’ theorem and
is non-constructive.

Exactly as in Theorem 4.1, the condition (7) in Theorem 5.1 is invariant
under multiplication with functions xp/2(1 − x)q/2. Thus, analog to earlier
results, we have

Corollary 5.2 Under the assumptions in Theorem 5.1, for any p, q ∈ N we
can find am oblique dual generated by a function of the form

φ̃(x) =
(
a0 + a1x + · · ·+ aMxM

)
xp(1 − x)qχ[0,1](x)

for some M ∈ N.

6 Appendix

In this section we provide some general information on moment problems, as
well as proofs of Lemma 2.2 and Theorem 2.3.

Let H be a separable Hilbert space with an inner product 〈·, ·〉. Given a
countable sequence {fk}k∈I of elements in H and {ak}k∈I ∈ �2(I), we ask if
we can find f ∈ H such that

〈f, fk〉 = ak, ∀k ∈ I. (9)

A problem of this type is called a moment problem. It is clear that there are
cases where no solution exist, and other cases where infinitely many solutions
exist. If {fk}k∈I is a Riesz sequence, then there exists a unique solution f
belonging to span{fk}k∈I .

Proof of Lemma 2.2. Assume first that (i) is satisfied, i.e., (2) has a
solution f . Then, if

∑N
k=1 ckfk = 0 for some coefficients {ck}N

k=1, we have
that

0 = 〈f,

N∑
k=1

ckfk〉 =

N∑
k=1

ck〈f, fk〉 = c1,

i.e., (ii) holds. Now assume that (ii) is satisfied. Then f1 /∈ span{fk}N
k=2.

Let P denote the orthogonal projection of H onto span{fk}N
k=2, and put

ϕ = f1 − Pf1. Then

〈ϕ, f1〉 = 〈f1 − Pf1, f1 − Pf1〉 + 〈f1 − Pf1, P f1〉 = ||f1 − Pf1||2 �= 0,

and 〈ϕ, fk〉 = 0 for k = 2, . . . , N . Thus

f :=
ϕ

||f1 − Pf1||2
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solves the moment problem (2), i.e., (i) is satisfied. The equivalence of (ii)
and (iii) is clear. By construction, f ∈ span{fk}N

k=1. �

We now want to prove Theorem 2.3. We begin with an elementary lemma.
Let R

N denote the vector space consisting of real scalar-valued sequences,
indexed by N.

Lemma 6.1 Let N ∈ N, and assume that the vectors

v1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

v11

v12

·

·v1k

·
·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, v2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

v21

v22

·
·

v2k

·
·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, · · · , vN =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

vN1

vN2

·
·

vNk

·
·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

in R
N are linearly independent. Then there exists M ∈ N such that the

vectors ⎛
⎜⎜⎜⎜⎝

v11

v12

·
·

v1M

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝

v21

v22

·
·

v2M

⎞
⎟⎟⎟⎟⎠ , · · · ,

⎛
⎜⎜⎜⎜⎝

vN1

vN2

·
·

vNM

⎞
⎟⎟⎟⎟⎠

are linearly independent in R
M .

Proof. Assume that v1, v2, . . . , vN are linearly independent in R
N. In order

to arrive at a contradiction, assume that for each M ∈ N, there exists a
sequence {cM

k }N
k=1 ∈ R

N \ {0} such that

N∑
k=1

cM
k

⎛
⎜⎜⎜⎜⎝

vk1

vk2

·
·

vkM

⎞
⎟⎟⎟⎟⎠ = 0.

We choose {cM
k }N

k=1 such that
∣∣{cM

k }N
k=1

∣∣ = 1. Due to compactness of the
unit ball in R

N , we can find a subsequence (call again the members of the
sequence {cM

k }N
k=1) which is convergent,

{cM
k }N

k=1 → {ck}N
k=1 as M → ∞.
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By construction, we conclude that

N∑
k=1

ckvk = 0,

which is a contradiction. �

Lemma 6.2 Let {fk}N
k=1 and {gk}∞k=0 be sequences in H; assume that {fk}N

k=1

is linearly independent and that {gk}∞k=0 is total in H. Then there exists
M ∈ N such that the moment problem (2) has a solution f ∈ span{gk}M

k=0.

Proof. Let M ∈ N. Any f ∈ span{gk}M
k=0 can be written on the form

f =
∑M

k=0 akgk; then the moment problem (2) takes the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 = 〈f1, f〉 =

M∑
k=0

ak〈f1, gk〉

0 = 〈f2, f〉 =
M∑

k=0

ak〈f2, gk〉

0 = · · · · · ·

0 = 〈fN , f〉 =

M∑
k=0

ak〈fN , gk〉.

(10)

On matrix form, the equations have the form⎛
⎜⎜⎜⎜⎝

〈f1, g0〉 〈f1, g1〉 · · 〈f1, gM 〉
〈f2, g0〉 〈f2, g1〉 · · 〈f2, gM 〉

· · · · ·
· · · · ·

〈fN , g0〉 〈fN , g1〉 · · 〈fN , gM 〉

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

a0

a1

· · ·
· · ·
aM

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

1
0
· · ·
· · ·
0

⎞
⎟⎟⎟⎟⎠ (11)

Note that the vectors

v1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈f1, g0〉
〈f1, g1〉

·
·

〈f1, gM 〉
·
·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, v2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈f2, g0〉
〈f2, g1〉

·
·

〈f2, gM 〉
·
·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, . . . , vN =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈fN , g0〉
〈fN , g1〉

·
·

〈fN , gM 〉
·
·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
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are linearly independent in R
N. In fact, if

N∑
k=1

ckvk = 0,

then

〈
N∑

k=1

ckfk, gj〉 = 0

for all j = 0, 1, 2, .... Since span{gj}∞j=0 is dense in H this implies that

N∑
k=1

ckfk = 0

and therefore, by assumption, that ck = 0 for all k. According to Lemma
6.1, there exists M ∈ N such that the N vectors⎛

⎜⎜⎜⎜⎝
〈f1, g0〉
〈f1, g1〉

·
·

〈f1, gM〉

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝

〈f2, g0〉
〈f2, g1〉

·
·

〈f2, gM〉

⎞
⎟⎟⎟⎟⎠ , . . . ,

⎛
⎜⎜⎜⎜⎝

〈fN , g0〉
〈fN , g1〉

·
·

〈fN , gM〉

⎞
⎟⎟⎟⎟⎠

are linearly independent. Thus, with this choice of M , the row-rank of the
matrix in (11) is N ; therefore also the rank of the column-space is N , i.e.,
the matrix is surjective, and the equation solvable. �

Proof of Theorem 2.3:
Suppose that f1 /∈ span{f2, · · · , fN} and that {gk}∞k=0 is total. Then we
can decompose {2, · · · , N} = A ∪ B such that {f1} ∪ {fi}i∈A is linearly
independent and {fi}i∈B ⊂ span{fi}i∈A. By Lemma 6.2 there exist M ∈ N

and g ∈ span{gj}M
j=1 such that 〈f1, g〉 = 1 and 〈fi, g〉 = 0 for i ∈ A. Then

obviously, 〈fi, g〉 = 0 for i ∈ B. Hence the moment problem has a solution
in span{gj}M

j=1. �
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